I*I Innovation, Sciences et Innovation, Science and CA 2974065 C 2018/09/18

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 974 065
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépd6t/Filing Date: 2011/11/30 (51) ClLiInt./Int.Cl. GO6F 12/0844(2016.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2012/07/05 GO6F 12/0866 (2016.01), GO6F 17/30(2006.01)
(45) Date de délivrance/lssue Date: 2018/09/18 (72) Inventeur/inventor:

o o o VENKATARAMANI, VENKATESHWARAN, US
(62) Demande originale/Original Application: 2 964 006 (73) Propriétaire/Owner:

(30) Priorités/Priorities: 2010/12/30 (US61/428,799); FACEBOOK, INC., US
2011/09/07 (US13/227,381)
(74) Agent: AUERBACH, JONATHAN N.

(54) Titre : CACHE REPARTI POUR DONNEES GRAPHIQUES
(54) Title: DISTRIBUTED CACHE FOR GRAPH DATA

(57) Abrégé/Abstract:
A distributed caching system for storing and serving information modeled as a graph that includes nodes and edges that define
associations or relationships between nodes that the edges connect in the graph.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

ABSTRACT

A distributed caching system for storing and serving information modeled as a graph that

includes nodes and edges that define associations or relationships between nodes that the edges
connect in the graph.

#11327836

CA 2974065 2017-07-21

WO 2012/091846 PCT/US2011/062609

DISTRIBUTED CACHE FOR GRAPH DATA

TECHNICAL FIELD

The present disclosure relates generally to storing and serving graph data, and more

particularly. to storing and serving graph data with a distributed cache system.

5 BACKGROUND

Computer uscrs arc able to access and share vast amounts of information throngh
various local und wide arca computer networks including proprictary networks as well as public
networks such as the Internet. Typically, a web browser installed on a user’s computing device
facilitates access to and interaction with information located at various network servers identified
10 by, for cxample, associsted uniform resource locators (URLs). Couventional approaches to
enable sharing of user-generated content include various information sharing technologies or
platforms such as social networking websites. Such websites may include, be linked with, or
provide a platform for applications caabling users to view web pages created or customized by
other users where visibility and interaction with such pages by other users is governed by some

IS characteristic set of rules,

Such social nerworking information, and most information in general, is typically
stored in relational databases. Generally, a relational database is a colfcction of relations
(frequently referred to as tables). Relational datubases use a set of mathematical teems, which
may use Structured Query Language (SQL) database (crminology. For example, @ relation may

20 be delined as a sct of tuples that have the same attributes, A tuple usuaily represents an object
and information about that object. A refation is usually deseribed as a tble, which is organized
ino rows and cohmnns. Generally, all the data referenced by an attribute are in the same domain
and conform to the same canstraints.

The relational model specifies that the tuples of a relation have no specific order and

25 that the tuples, in turn, 4mpose no order on the attributes. Applications access data by specifying

gucrics, which usc opcerations to identify tuples, identify attributes, and to combine rclations.

Relotions can be medified and new tuples can supply explicit values or be derived from a query.

CA 2974065 2017-07-21

20

o
w

30

o

Similarly, querics identify may tuples for updating or deleting. it is nceessary for cach tuple of a
relation 10 be unigucly identifiable by some combination (one or more) of its attribute valucs.
This combination is referred 1o as the primary key. (n a rclational database, all data are stored
and aceessed via relations. Relations that store data are typically implemented with or referred to
as tables. .

Relational databases, as implemented in relational databasc management systems,
have become a predominant choice for the storage of imformation in databascs vsed for, for
example, financial records, manufacturing and logistical information, persounel data, and other
applications. As computer power has increased, the inefficicncics of rclational databascs. which
madc them impractical in carlicr times, have been outweighed by their case of use for
conventional applications. The three leading open source implementations are MySQL,
PostgreSQL, and SQLite. MySQL is 4 relational database management system (RDBMS) that
runs as a scrver providing multi-user acecss to a nwnber of databases. The "M” in the acronym
of the popular LAMP software stack rcfers to MySQL. Its popularity for use with web
applications is closely tied to the popularity of PHP (the "P" in LAMP). Several high-traffic web
sites use MySQL for data storage and logging of user data.

As communicating with relational databases is often a speed bottleneck, many
networks wtilize caching systems to serve particular information queries. For example,
Memcached is a gencral-purpose distributed memory caching system. 1t is ofien used to speed
up dynamic databasc-driven websites by caching data and objects in RAM to reduce the number
of times #n external data source (such as a database or API) must be read. Memcached's APls
provide a giant hash table distributed across muitiple machines. When the table is full.
subscquent inserts cause older data to be purged in [cast recently used (LRU) order. Applications
using Memcached typically layer requests and additions into core before falling back on a slower
backing storc, such as a databasc.

The Memeached system uses a client sevver architecture, The servers maintain
key value associative array; the clients populate this arvity and query it. Clients use client side
librarics to contact the servers. Typically, cach client knows all servers and the servers do not
cormmunicate with cach other, If a client wishes to sct or read the value corresponding 1o a

certain key, the client's library first computes a hash of the key to determine the server that will

CA 2974065 2017-07-21

10

20

o
N

30

be used. The clivnt then contacts that server. The server will compute a sceand hash of the key
to determine where to store or read the corresponding value. Typically, the servers keep the
valucs in RAM; if a scrver runs out of RAM, it discards the oldest values. Therefore, clients must
weat Memceached as a transitory cache; they cannot assume that data stored in Memcached is still

there when they need it

BRIEF DESCRIPTION OF THE DRAWINGS

Figure [illustrates an cxample caching system architccture according to onc

tmplemeniation of the invention.

Fiaure 2 illustrates an example computer system architecture.

Figure 3 provides an example network environment.

Figure 4 shows a flowchart illustrating an cxample method for adding a new
association tu a graph.

Figure 5 is a schematic diagram illustrating an example message flow between
various components of a .cuching system.

Figure 6 shows a flowchart illustrating an example method for processing changes
1o graph data.

‘ Figure 7 is a schematic diagram illustrating an example message flow belween

various componenls ol « caching system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Particular embodiments relate to a distributed caching system for storing and serving
information modeled as a graph that includes nodes and edges that define associations or
velationships between nodes that the edges conneet n the graph. In particular cmbodiments, the
graph is. or includes. a social graph, and the distributed caching system is part of a larger
nerworking system. infrastructure. or platform that enables un integrated social network
cnvironment. In the present disclosure, the social network environment may be described in
terms of a social graph including social graph information. In fact, particular embodiments of
the present disclosure rely on, exploit, or make use of the fuct that most or all of the data swored

by or for the social network cnvironment can be represented as o social graph., Particular

CA 2974065 2017-07-21

20

25

33

cmbodiments provide a cost-cffective infrastructure that can cfficiently, inteiligently, and
successfully scale with the exponentially increasing number of users of the social network
environment such as that deseribed hesein.

In particular embodiments, the distributed caching system and backend infrastructure
deseribed herein provides one or more of: low latency at scale, a lower cost per request. an casy
10 use framework for developers, an infrastructure that supports multi-master, an infrastructure
that provides access to storcd data to clients written in languages other than Hypertext
Preprocessor (PHP), an infrastructure that cnables combined queries involving both associations
(edges) and objects (nodes) of a social graph as described by way of example herein, and an
infrastructure that cnables different persisient data stores to be used for different types of data.
Furthermore, particular embodiments provide one or more oft an infrastructure that enables «
clean sepavation of the data access AP [tom the caching+persistencetreplication infrastructure,
an infrostructure that supports write-through/read-through caching, an infrastructure that moves
computations closer Lo the data, an infrastructure that enables transparent migration to different
storage schemas and back ends, and an infrastructure that improves the efficiency of data object
access.,

.,

Additionally, as used herein, “or” may imply “and” as well as “or;” that is, “or” does
not necessarily preclude “and,” unless explicitly stated or implicitly implied.

Particular embodiments may operate in a wide arca network environment, such as the
Internet, including maltiple network addressable systems. Figure 3 illustrates an example
network environment, in which various example embodiments may operate. Network cloud 60
generally represents one or more interconnected networks, over which the systems and hosts
deseribed hercin can communicate. Network cloud 60 may include packet-based wide area
networks (such as the Internet), private networks, wircless netwarks, satellite networks, cellutar
nctworks, paging networks, and the like. As Figure 3 illustrates, particular ciubodiments may
operate in a network environment comprising social networking system 20 and one or more
client devices 30, Client devices 30 are operably connected to the network environment via a
network service provider, o wireless carricr, or any other suitable means.

In one example embodiment, social nehworking system 20 somprises compuling

svstems that allow users 1o comununicate or otherwise interact with cach other and aceuss

CA 2974065 2017-07-21

content, such as uscr profiles, as described hercin, Social networking system 20 is a network
addressable systom that, in various cxample embodiments, comprises one or more physical
servers 22 and data store 24, The onc or more physical servers 22 are operably connected to
compurtcer netwark 60 via, by way of example, a set of routers and/or networking switches 26. In
S an example cmbodiment, the functionality hosted by the onc or more physical servers 22 may
include web or TITTP servers, FTP servers, as well as, without limitation, web pages and
applications implemented using Common Gateway Interface (CGI) script, PHP Hyper-text
Preprocessor (PHP), Active Server Pages (ASP), Hyper Text Markup Language (FITML),
Extensible Markup Language (XML). Java, JavaScript, Asynchronous JavaScript and XML
10 (AJAX). and the like.

Physical scrvers 22 may host functionality dirceted to the operations of social
networking system 20, By way of example. social networking system 20 may host a website that
allows one or nore users, at one or more clieat deviees 30, to view and post infonmation, as well
as communicate with one another via the website. [lereinafter servers 22 may be referred fo us

15 scrver 22, although server 22 may include numerous servers hosting, for example, social
networking system 20, as well as other content distribution servers, data stores, and databases.
Duta store 24 may store content and data relating to, and enabling, operation of the social
networking system as digital data objects. A data object, in particular implementations, is an
item of digital information typically stored or embodicd in a data filc, databasc or record,
20 Countent objects may take many forms, including: text {c.g., ASCIl. SGML. ITML), images
(e, jpeg. 6f and gif), graphics (vector-based or bitmap), wudio, video (e.g., mpeg), or other
multimedia, and combinations thercof. Content objcet duta may also include executable code
objeets (c.g., games executable within g browser window or frame), podeasts, cte. Logically,
data store 24 corresponds to one or more of a varicty of sepatate and integrated databases, such
25 as rclational databascs and object-oricnted databascs, that maintain information as an integrated
collection of logically related records or files stored on one or more physical systems.
Structurally, data store 24 may generally include one or more of a large class of data storage and
managenment systems. In particular embodiments, data store 24 may be implemented by any
suitable physical system(s) including components. such as onc or more dalabase scrvers, mass

30 storage media, media library systems, storage drea networks, data storage clouds, and the like. [n

CA 2974065 2017-07-21

onc cxample cmbodiment, data store 24 includes onc or morce scrvers, databascs (¢.g., MySQL),
and/or data warchouses.

Data store 24 may include data associated with different social networking system 20

users and/or client devices 30, In particular cmbodimcnts. the social networking system 20

S maintaing a user profile for cach user of the system 20, User profiles include data that describe

the users of a social network. which may include. for example, proper names (first, middle and

last of a person, a trade name and/or company namc of a business entity, cte.) biographic,

demographic, and other types of descriptive information, such as work cxpericnce, cducational

history, hobbics or preferences, geographic location, and additional descriptive data. By way of

10 cxample, uscr profiles may include a uscr's birthday, relationship status, city of residence, and
the like. The system 20 may further store data describing one or more relationships between
ditTerent users. The relationship information may indicate users who have similar or common
work expericnee, group memberships, hobbices, or educational history. A wser profile may also
include privacy settings goveming aceess to the user's information is to other uscrs,

15 Client device 30 is generally a computer or computing device including functionality
for communicating (c.g., remotely) over a computer network. Client device 30 may be a desktop
compuler, laptop computer, personal digital assistant (PDA), in- or out-of-car navigation system,
smart phone or other cellnlar or mobile phone, or mobile gaming device, among other suitable
computing deviees. Client device 30 may execute one or more clicnt applications, such as a web

20 browser (c.g., Microsoft Windows Intornet Explorer, Mozilla Firefox. Apple Safari, Google
Chrome, and Opera, ete), o access and view content over a computer network, In particular
implementations, the client applications allow a user of clicat device 30 to enter addresses of
specifie network resourees o be retrieved, such as resources hosted by social networking system
20. These addresses can be Uniform Resouree Locators, or URLs. [n addition, once a page or

25 other resource has been retricved, the client applications may provide acceess to other pages or
records when the user "clicks" on hyperlinks to other resources. By way of example, such
hyperlinks may be located within the web pages and provide an automated way for the user to
enter the URL of another page and to retrieve that page.

Figures 1 illustrates an example embodiment of a networking syslem, architecture, or

30 infrastructure 100 (hereinafter referred o as networking system 100) that can implement the

CA 2974065 2017-07-21

20

25

back cnd functions of social nctworking system 20 illustrated in Figure 3. In particular
embodiments, nctworking system 100 enables vsers of nctworking system 100 to interact with
cach other via social networking services provided by nctworking system 100 as well as with
third partics. For cxample, users at remote user computing devices (¢.g.. personal computers,
netbooks, multimedia devices, cellular phones (especially smart phones), ete)) way access
networking system 100 via web browsers or other user client applications to sccess websites,
web pages, or web applications hosted or aceessible, at least in part, by networking system 100
to view information, store or update information, conununicate information, or otherwisce interact
with other users, third party websites, web pages, or web applications, or other information
starcd, hosted, or accessibic by networking systeny [00. Tn particular embodiments, networking
system 100 maintains a graph that includes graph nodes representing users, concepts, topics, and
other information (data), as well as graph cdges that connect or define relationships between
uraph nodes, as described in more detail below.

With reference to Figures 1 and 3, in particular cmbodiments, networking system 100
includes one or more data centers 102, For example, networking system 100 may include u
plurality of data centers 102 located strategically within various geographic regions for serving
users Jocated within respective regions. [n particular embodiments, each data center includes a
number of client or web servers 104 (hercinafier client scrvers 104) that communicate
information to and fromr users of nctworking >syslcm 100. For cxample, uscrs at remote user
computing devices may communicate with client scrvers 104 via load balancers or other suitable
systems vin any suitable combination of networks and service providers. Client servers 104 may
query the caching system described herein in order to retricve data to gencrate suucturcd
documents for responding to user requests,

Each of the client servers 104 communicates with one or more follower distributed
cache clusters or rings 106 (hercinafler follower cache clusters 106). In the illustrated
embodiment, data center 102 includes three follower cache clusters 106 that cach serve a subset
of the web servers 104, 1n particular embodiments, a follower cache cluster 106 and the client
servers 104 the follower cache cluster 106 serves are located in close proximity, such as within a
building, room, or other centralized location, which reduces costs associated with the

infrastructure (e.g., wires or other communication lines, cte.) as well as lateney between the

CA 2974065 2017-07-21

10

20

[
(v

30

client servers 104 and respective serving follower cache nodces cluster 106, However, in some
embodiments, while cach of the follower cache clusters 106, and the client servers 104 they
respectively serve, may be located within a centralized location, cach of the follower cache
clusters 106 and respective client servers 104 the follower cache clnsters 106 respectively serve,
may be located in a different location than the other follower cache clusters 106 and respective
client scrvers 104 of a given data center; that is, the follower cache clusters 106 (and the
respeclive client servers 104 the clusters serve) of a given data center of a given region may be
distributed throughout various locations within the region,

fu particular cmbodiments. cach dara center 102 further includes a leader cache
cluster 108 that communicates information between the follower cache clusters 106 of a given
data center 102 and a persistent storage database 110 of the given data center 102, In particular
cmbodiments, database 110 is a relations] database. In particular embodiments, leader cache
cluster 108 may include a plug-in operative to intcroperate with any suitable implementation of
databasc 110. For cxamplc. database 110 may be implemented as a dynamicalty-variable plug-in
architecture and may utilize MySQL, and/or any suitable relational database management system
such as, for example, LIAYSTACK, CASSANDRA, among others. [n one implementation, the
plug-in performs various translation operations, such as translating data stored in the caching
layer as graph nodes and edges to gueries and commands suitable for a relational databusc
including onc or morc tables or flat files. In particular embodiments, leader cache cluster 108
also coordinates write requests ta database 110 from follower cache clusters 106 and sometimes
read requests from follower cache clusters 106 for information cached in leader cache cluster 108
or (if not cached in leader cache cluster 108) stored in database 110, In particular cimbodiments.
teader cache cluster 108 further coordinates the synchronization of information stored in the
follower cache clusters 106 of the respective data center 102, That is, in particular cmbodiments.
the lecader cache cluster 108 of a given data center 102 is configured to maintain cache
consistency (e.g.. the information cached) between the follower cache clusters 106 of the data
center 102, to mainrain cache consistency between the follower cache clusters 106 and the leader
vache cluster 108, and to store the information cached in leader cache cluster 108 within databasc
110, Tn one implementation, a keader cache cluster 108 and a follower cache cluster 106 can be

considercd a caching layer between client servers 104 and databasc 110,

CA 2974065 2017-07-21

Y]

1o
=4

30

9

In onc implementation, the caching layer is a write-thru/read-thru caching layer,
wherein all reads and writes traverse the caching layer. In one implementation, the caching layer
maintains association information and, thus, can handle queries for such information. Other
querics are passed through to databasc 110 for execution. Databasc [10 generally connotes a
databasc system that maS(itself include other caching laycers for handling other query types.

Each follower cache cluster 106 may include a plurality of follower cache nodes 112,
cach of which may be running on an individual computer, computing systcm, or scrver,
towever, as described above. cach of the follower cache nodes 112 of a given follower cache
cluster 100 may be located within a centralized location. Similarly, cach leader cache cluster
108 may include a plurality of leader cache nodes 114, cach of which may be running on an
individual computer, computing system, or server. Similar to the follower cache nodes 112 of a
given follower cache cluster 106, cach of the teader cache nodes 114 of a given leader cache
cluster 108 may be tocated within a ceptralized location. For example, cach data conter 102 may
include tens, hundreds, or thousands of client servers 104 and cach follower cache cluster 106
may include tens, hundreds, or thousands of follower cache nodes 112 that serve a subset of the
chent servers 104, Simifarly, each leader cache cluster 108 may include tens, hundreds, or
thousands of leader cache nodes 114, {n particulir embodiments, each of the follower cache
nodes 112 within o given follower cache cluster 106 may only communicate with the other
follower cache nodes 112 within the particular follower cache cluster 106, the elient scrvers 104
served by the particular follower cache cluster 106, and the leader cache nodes 114 within the
teader cache cluster 108,

In particular embodiments, information stored by networking system 100 is stored
withia caeh data center 102 both within database 110 as well as within cach of the follower and
leader cache clusters 106 and 108, respeetively. In particular embodiments, the information
stored within cach database 110 is stored relationally (e.g., as objccts and tables via MySQL),
whereas the sanie information is stored within cach of the follower cache clusters 106 and the
leader cache cluster 108 in a number of data shards stored by cach of the follower and fcader
cache clusters 106 and 108, respectively, in the form of a graph including graph nodes and
associations or connections between nodes (referred to herein as graph edges). In particular

cmbodiments, the data shards of cach of the Follower cache clusicrs 106 and fcader cache cluster

CA 2974065 2017-07-21

1

[
wn

30

10

108 are bucketized or divided among the cache nodes 112 or 114 within the respective cache
cluster. That is, cach of the cache nodes 112 or 114 within the respective cache cluster stores
subset of the shards stored by the cluster (and cach sct of shards stored by cach of the follower
and leader cache clusters 106 and 108, respectively, stores the same information, as the leader
cache cluster synchronizes the shards stored by each of the cache clusters of a given data center
102, and, in some cmbodiments, between data centers 102),

In particular cmbodiments, cach graph node is assigned a unique identificr (ID)
(hereinafter referred to as node D) that uniquely identifies the graph node in the graph stored by
cach of the follower and leader cache clusters 106 and 108, respectively, and database 1 10; that
is. cach node 1D is globally unique. In one implementation, cach node 1D is a 64-bit identificr.
In onc implementation. a shard is allocated a segment of the node D space. In particular
cimbodiments, cach node ID maps (¢.g., arithmetically or via come mathematical function) 1o a
unique corresponding shard 1D; that is, cach shard 1D is also globally unique and tefers to the
same data object in each sct of shards stored by each of the follower and leader cache clusters
106 and 108, respectively. In other words, all data objects are stored as graph nodes with unique
node 1Ds and all the information stored in the graph in the data shards of cach of the follower
and leader cache clusters 106 and 108, respuectively. is stored in the data shards of cach of the
follower and feader cache clusters 106 and 108, respeetively, using the same corresponding
unigue shard (Ds.

As just described, in particular embodiments, the shaed ID space (the collection of
shard IDs and associated information stored by all the shards of each cache cluster, and
replicated in all of the 0(}1‘21‘ follower cache clusters 106 und leader cache cluster 108} is divided
amony the fotlower or leader cache nodes 112 and L4, respectively, within the follower or
leador cache clusters 106 and 108, respeetively. For example, cach follower cache node 112 ina
given follower cache cluster 106 may store a subsct of the shards (c.g., tens, hundreds, or
thousands of shards) stored by Lhe respective follower cache cluster 106 and cach shard is
assigned a range of node IDs for which to store information, including information about the
nodes whose respective node 1Ds map to the shard [Ds in the 1ange of shard IDs stored by the
pasticular shard. Similarly, cach leader cache node 114 in the feader cache cluster 108 may store

a subsct of the shards (c.g., tens, hundreds, or thousands of shards) stored by the respective

CA 2974065 2017-07-21

w

20

30

lcader cache cluster 108 and cach shard is assigned a range of node 1Ds for which to store
information, including information about the nodes whosc respective node 1Ds map to the shard
10s in the range of shard {Ds stored by the particular shard.

However, as described above, a given shard ID corresponds ta the same data objects
stored by the follower and leader cache clusters 106 and 108, respectively. As the number of
follower cache nodes 106 within cach follower cache cluster 106 und the number of leader cache
nodes 114 within the I¢ader cache cluster 108 may vary statically (c.g., the follower cache
clusters 106 and the leader cache cluster 108 may generally include different numbers of
follower cache nodes 112 and feader cache nodes 114, respectively) or dynamically (c.g., cache
nodes within a given cache cluster may be shut down for various reasons periodically or as
needed for fixing, updaling, ot maintenance), the number of shards stored by cach of the follower
cache nodes 112 and leader cache nodes 114 may vary statically or dynamically witlnn cach
cache cluster as well as between cache clusters. Furtheninore, the range of shard [Ds assigned to
cach shard may also vary statically or dynamically.

In particular embodiments. each of the follower cache nodes 112 and leader cache
nodes 114 includes graph manugement software that manages the storing and serving of
information cached within the respective cache node. In particular embodiments, the graph
management software running on each of the cache nodes of a given cache cluster may
communicate to determine which shards (and corresponding shard [Ds) arc stored by cach of the
cachc nodes within the respective cache cluster. Additionally, if the cache node is a follower
cache nodc 112, the graph management software ruming on the follower cache node {12
receives requests (¢.g.. write or read requests) from client servers 104, serves the requests by
retrieving, updating, deleting, or storing information within the appropriate shard within the
follower cache node, and manages or facilitates communication between the follower cache node
112 and other follower cache nodes 112 of the respective follower cache cluster 106 as well as
communication between the follower cache node (12 and the leader cache nodes 114 of the
leader cache cluster 108, Similarly, if the cache node is a leader cache node |14, the graph
management software running on the leader cache node 114 manages the communication
between the leader cache node 114 and follower cache nodes 112 of the follower cache clusters

106 and the other leader cache nodes 114 of the leader cache clusier 108, as well as

CA 2974065 2017-07-21

12

conmununication between the Ieader cache node 114 and database 110. The graph management

softwarc running on cach of the cache nodes 112 and 114 understands that it is storing and
serving information in the form of a graph.

In particular cmbodiments, the graph management software on cach follower cache

5 node 112 is also responsible for maintaining a table that it shares with the other cache nodes 112

ol the respective follower cache cluster 106, the leader cache nodes 114 of the leader cache

cluster 108, as well as the clicnt servers 104 that (he vespective follower cache cluster 106 serves.

This table provides a mapping of cach shard ID to the particular cache node 112 in a given

follower cache cluster 106 that stores the shard 1D and information associated with the shard 1D.

10 In this way, the client servers 104 served by a particular follower cache cluster 106 know which

of the follower cachie nodes 112 within the follower cache cluster 106 maintain the shard ID

associated with information the client server 104 s trying to aceess, add, or update (c.y., a client

server 104 may send write or read requests o the particular follower cache node 112 that stores,

or will store, the information associated with a particular shard 1D afier using the mapping table

15 10 determine which of the follower cache nodes 112 is assigned, and stores, the shard 1D).

Similarly, in particular embodiments, the graph management software on each leader cache node

114 is also responsible for maintaining a table that it shares with the other cache nodes 114 of the

respective leader cache cluster 108, as well as the follower cache nodes 112 of the follower

cache clusters 106 that the leader cache cluster 108 manages. Furthermore, in this way, cach

20 follower cache node 112 in a given follower cache cluster 106 knows which of the other follower

vache nodes 112 in the given follower cache cluster 106 stores which shard IDs stored by the

respective follower cuche cluster 106, Similarly, in this way cach leader cache node 114 in the

leader cache cluster 108 kuows which of the other Teader cache nodes 114 in the lcader cache

cluster 108 stores which shard IDs stored by the leader cache cluster 108, Furthermore, cach

o)
w1

tollower cachie node 112 in a given follower cache cluster 106 knows which of the (cader cache
nodes 114 in the leader cache cluster 108 stores which shard 1Ds. Similarly, each leader cache
node 114 in the leader cache cluster 108 knows which of the follower cache nodes 112 in cach of
the foltower cache clusters 106 stores which shard 1Ds.

In particular embodiments, information regarding cach node in the graph, and in

30 purticular example embodiments a social graph, is stored in a respective shard of cuch of the

CA 2974065 2017-07-21

10

20

(]
N

30

follower cache clusters 106 and leader cache cluster 108 based on its shard ID. Each node in the
graph. as discussced above, has a node 1D, Along with the shard ID, the respective cache node
112 or [{4 may storc a node type paramcter identifying a type of the node, as well as onc or
more name-value pairs (such as content (¢.g., text, media, or URLs to media or other resources))
and metadata (c.g., a timestamnp when the node was created or modified). In particular
cmbodiments, each edge in the graph, and in particuluar example embodiments a social graph, is
stored with cach node the cdge is connected to. For example, most edges are bi-directional; that
is. most edges cach conncct twa nodes in the graph. In particular cmbodiments. each cdge is
stored in the same shard with cach node the edge conncets. For example. an edge connecling
node 101 to node ID2 may be stored with the shard 1D corresponding to node TDI (c.g., shard
ID1) and with the shard [D correspouding to node 102 (e.g., shard 1D2), which may be in
different shards or even different cache nodes of a given cache cluster. For example, the edge
may be stored with shard [D1 in the form of {node D1, cdge type, node 1D2} where the cdge
type indicates the type of edge. The edge may also include metadata (c.g., a timestamp
indicating when the edge was created or modified). The edge may also be cached with shard 102
in the form of (node [DI, edge type, node [D2). For example. when a user of social networking
system 100 establishes a contact relationship with another user or a fan relationship with a
coneept or user, the dge relationship of type “friend” or “fan™ may be stored in two shards, a
first shared cotresponding to Lhe shard to which the user’s identifier is mapped and a sceond
shard to which the objcct identifier of the other uscr or concept is mapped.

Networking systent 100, and particularly the graph management software running on
the follower cache nodes 112 of follower cache clusters 106 and the feader cache nodes 114 of
the leader cache cluster 108, support a number of yuerics reeeived from client servers 104 as
well as to or from other follower or feader cache nodes 112 and 114, respectively. For example,
the query objeet addiIDI. node typel, metadata (not always specificd), payload (not always
specified)}! causes the receiving cache node to store a new node with the node 1D specified in
the query of the specified node typel in the shard the node DI corresponds to. The recciving
cache node also stores with the node ID] the metadata (e.g., a timestamp) and payload {c.g.,
name-value pairs and/or content such as text, media, resources, or references to resources), if

specificd. As another cxamplc, the query object_update{lD1, node typel (not always specificd),

CA 2974065 2017-07-21

Lo

20

30

14

metadata (not always specified), payload (not always specified)} causcs the reeciving cache node
to update the node identified by node 1D1 specified in the query (e.g., change the node type to
the node typel specified in the query, update the metadata with the metadata specified in the
query, or update the content stored with the payload specified in the query) in the corresponding
shard. As another cxample, the query object dclete{node ID1} causes the receiving cache node
to delete the node identified by node 1D1 specified in the query. As another example, the query
vbjeet get{node 1D} causes the receiving cache node to retvieve the content stored with the
node identificd by node 1D specified in the query.

Now referring to cdge queries (as opposed lo the node queries just deseribed), the
guery assoc add [1D1, edge typel, (D2, metadata (not always specified)} couses the receiving
cache node (which stores node ID1) to create an edge between the node identified by node 1D
and the node identificd by node ID2 of edge type edge typel and to store the edge with the node
identiticd by node ID! along with the metadata (c.g., a timestamp indicating when the cdge was
requiested) if specificd. As another example, the query assoc _update{node ID1, edge typel,
node 1D2, metadata (not always specified)} causes the receiving cache node (which stores node
1D1) to update the edge between the node identified by node ID1 and the node identified by node
ID2. As another example, the guery assoe deletednode [D1, edge typel (not always specified),
node 1D2} causes the receiving cache node {which stores node 1DL) to delete the edge between
the node identified by node ID1 and the node identificd by node ID2. As another cxample, the
query assoc get{node ID1, cdge typel, sortkey (not always specified), start (not always
specificd), Fimit (not always specified)} causes the receiving cache node (which stores node 1D1)
to return the node 1Ds of the nodes connected to the node identified by node IDI by cdges of
edge typel, Additionally, if specified, the sortkey specifics a filter. For example, if the sortkey
specifics a timestamp, the reeciving cache node (which stores node 1D1) returns the node [Ds of
the nodes conncected to the node identificd by node IDI by edges of cdge typel which were
created between the time value specified by the start paramceter and the time value specified by
the limit parameter, As another example, the query assoc exists{node [DI. edge typel, list of
other node 1Ds, sortkey (not always specified), start (not always specified), limit (not always
specilied)} causes the recciving cache node (which stores node 1D1) to return the node IDs of the

nodes specificd in the list of other node IDs conneeted to the node identificd by shard ID1 by

CA 2974065 2017-07-21

10

20

]
w

30

13

edges of edge typel. In addition, the gqueries described above may be sent in the deseribed form
and used to update the leader cache nodes 114,

1n one implementation, the caching layer implemented by the follower and Icader
sache clusters 108 and 106 cache maintain association data in one or more indexes in a manner
that supports high gquery rates for onc or more query types. In somc implementations, the
invention facilitates efficient intersection, membership and filtering queries directed to
associations between nodcs in the graph. For example, in one implementation, the caching layer
caches information in a manner optimized to handle point lookup, range and count gueries for a
varicty of associations between nodes. For examiple, in constructing a page, a client server 104
may issuc a query for all friends of a given user, The client server 104 may issuc an assoc_get
guery identifying the user and the “friend™ cdye type. To facilitate handling of the query,
ciiche node in the caching layer may store associations of a given type (such as “friends”, *fans”,
“members™, *likes”, cle.) between a first node (e.g., a node correspouding to a user) und a node
corresponding to contacts or friends of a uscr. In addition, to construct another party of the page,
a client server 104 may issue a query of the last N set of wall posts on the profile, by issuing a
assoc get query identifying the user or user profile, the “wallpost™ edge type and a limit value,
Similarly, comments 1o a particular wall post can be retrieved in a similar munner.

In one implementation, the caching layer implemented by the follower cache
clusters 106 and the leader cache clusters maintain a set of in-memory structures for associations
Letween nodes (idl. id2) in the graph that Tacilitate fast scarching and handie high query rates.
For example, for cach (id i, typel associntion set (a sel of all associations that originate at idl and
have 2 given type). the caching Jayer maintuing two in-memory indexes. As discussed above,
these assovietion sels are maintined by cache nodes in each cluster that based on the shiard in
which i falls. Sl furiher, given the siructure discussed Below, a given associstion berween
two nodes oy e stared i two assoctifion sets vach dirceted 1o the respestive nodes of the
pssociaiion. A Frst index 15 based vn a tensporal atnbuote (e time sturps) and supports range

whietics, A second index by 102 does b suppori range @ieries, ol supporis bedor thoe
H R) i

xiiy of inserts and iook vps. i one implementation, the first index i an ordered dynumic
aray of assoctation cuttics stored i a circwdar baffer, Bach eotry in the virenly baller describes

ar correanonds o one assoctation and comians e following felds: 2) $8ags (1 byee tindicaling
N K & YIC) {

CA 2974065 2017-07-21

0

20

25

30

16

sacigtiony: by $id? (& bytes];) Stme 2 bytes); o)y $data (8 bytes) (Sdata is

the vigsibility of w ag
a fixed size R byte field (when more than & bytes are needed for Sdata, this becomes & poinior ©0
anvther memory chank 1 hold the full Sdata valoe: Sduta is eptional for a given assoc ypel; and

vy Shink (& by

25 offsets of next and previous eotrics in the same id2 index bucket (see below),
17t one immplementation, the aray s ordered by the Stime attribute ascending. The nuwwber of
suries in the index is capped (such ax 10,000} and configurable by associaiion type. Wheo the

Hirit is veached the aray wraps sround. Because the array is Stime-sorted, most new entries will

be appended at the ond without shifting any of the existing clements.

In one implementation, the primary index can be stored in a single memcache key
that can be fooked up by name ("assoc:<id>:<type>") through a global memeached hash tablc.
The array can be fronted with a header containing the following fields: .a) count (4 bytes): the
count of visible associations in the (idl,type) association set (stored persistently, not just the
cached cotries in the index); b} head (4 bytes): the byt offsct of array head (clement that sorts
highest) in the circular buffer; ¢) tail (4 bytes) : the byte offset of array tail (element that sorts
lowest) in the circular buffer; and d) id2 index pointer (8 bytes): a pointer to a block containing
an id2 hash table.

The second (Sid2) index is implemented, in one embodiment, as a hash table and
supports yuick inserts and lookups for a given (Sid1,Stype.Sid2) association. The hash table
itself, in one implementation, may be slored in a scparate block allocated with memcached's
memory allocator. The table is an array of offscts into the primary index, each identifying the
first clement in the corresponding hash bucker. Elements are linked into a bucket through their
$link ficlds. Storing the hash table in a scparate block allows implementers to resize the table and
the primary index independently, thus reducing the amount of memory copied as the association
scl grows. Linking association entrics into buckets in-place also improves memory efficiency,
The hash table (and bucket lists) may nced to be rebuilt when entrics marked hidden or deleted
are expunged from the index. but this can be done infrequently.

Accordingly. as a new association of the sume <type> is added, a cache node 112,
114 uds the newly associated objeet to the hash table and the eircular buffer, removing the oldest
enlry from the circular buffer, As discussed above, the <sortkey> value can be used Lo sort

matching cntrics bascd on the attribute, such as a time stamps. In addition, a <limit> valuc limits

CA 2974065 2017-07-21

20

[2e]
w

30

17

the number of returncd results to the tirst N values, where N=<limit>. This configuration allows
for serving queries regarding associations between nodes at a very high query vate. For example,
i first query may ask to display a set of friends in a section of a web page. A cache node can
quickly respond to a get_assoc (idl, type, sortkey, limit) query by looking up association set
corresponding to id! by accessing the primary index and retrieving the first N (where N = limit)
id2 cntrics in the circular buffer. In addition, the hash table of the sceondary index facilitates
point look ups, Still further, the count value maintained by the caching layer fucilitates fast
responses 10 the count of a given association sct {id1, rype).

Some gencral cxamples of storing and serving data will now be described (more
specific examples relating to particular example implementations of a social graph will be
deseribed later afier the particular exunple implementations of the social graph are described).
For cxample, when a client server 104 receives a request for a web page, such as from a user of
networking system 100, er from another scrver, componcnt, application, or process of
networking system 100 (c.g., in response lo a uscr request), the client server 104 may need to
issue one or more querics in order to generate the requested web page. In addition, as a user
interacts with networking system 100, the client server 104 may receive requests that establish or
modify object nodes and/or associations be object nodes. [n some instances. the request received
by a client server 104 gencrally includes the node ID representing the user on whose behal{ the
request 1o the client server 104 was made, The request may also, or alternately, inctude one or
mare other node 1Ds corresponding to objects the user may want to view, update, delete, or
conneet ov associate (with an cdge).

For example, a request may be a read request for accessing information associated
with the object or objects the user wants to view (c.g.. one or more objects for serving a web
page). For example, the read request may be a request for contemt stored for a particutar node.
For cxample, a wall post on a user profile can be represented as a node with an cdge type of
“wallpost.” Comments to the wallpost can also be represented as nodes in the graph with edge
type “comment” associations to the wallpost. In such an example, in particular embodiments,
the client server 104 determines the shard [D corresponding to the node ID of the object (node)
that includes the content or other information requested, uses the mapping table to determine

which of the ollower cache nodes 112 (in the follower cache clusier 106 that scrves the elient

CA 2974065 2017-07-21

18

scrver 104) stores the shard 1D, and transmits a query including the shard 1D to the particular one
of the follower cache nodes 112 storing the information associated with and stored with the shard
[D. The particutar cache node (12 then retricves the requested information (if cached within the
corresponding shard) and transmits the information to the requesting client server 104, which
5 may then serve the information to the requesting user (e.g., in the form of an 1ITML or other
structured document that is renderable by the web browser or other document-rendering
application nunning on the uscr’s computing device. I the requested information is not
stored/cached within the follower cache node 112, the follower cache node 112 may then
determine, using the mapping table, which of the leader cache nodes 1 14 stores the shard storing
10 the shard 1D and forwards the query to the particular lcader vache node 114 that stores the shard
1D, I the requested information is cached within the particular leader cache node 114, the feader
vache node 114 may then retrieve the requested information and forward it w the follower cache
node 112, which then updates the particular shard in the follower cache node 112 (o store the
requested information with the shard 1D and proceeds to serve the query as just described to the
15 client server 104, which may then serve the information to the requesting user. If the requested
information is not cached within the leader cache node 114, the leader cache node 114 may then
translate the guery into the language of database 110, and transmit the new query to databuse
110, which then retrieves the requested information and transmits the requested information to
the particular leader cache node 114, The leader cache node 114 may then translate the retricved
20 infermation back into the graphical language understood by the graph management software.
update the particular shard in the leader cache node 114 to store the requested information with
the shard D, and transmit the retrieved information to the particular follower cache node 112,
which then updates the particular shard in the follower cache node 112 1o store the requested
information with the shard ID and procceds to serve the query as just described to the client

25 scrver 104, which may then serve the information to the requesting user.
As another example, the user request may be a write request to update existing
information or store additional information for a node or to create or modify an edge between
o nodes. In the former case, if the information to be stored is for a non-existing node. the
client server 104 receiving the user vequest transmits a request for a node 1D for a new node ©
30 the respective follower cache cluster 106 scrving the client server 104, In somc cascs or

CA 2974065 2017-07-21

10

20

30

19

cmbodiments, the clicnt scrver 104 may specify a particular shard within which the ncw nodc is
to be stored (e.g.. to co-locate the new node with another node). In such a case, the client server
104 requests a new node [D from the particular follower cache node 112 storing the specified
shard. Alternately, the client server 104 may pass a node [D of an existing node with the request
for & new node [D to the follower cache node 112 storing the shard that stores the passed node
ID to cause the follower cache node 112 to respond to the chent server 104 with a node ID for
the new node that is in the range of node IDs stored in the shard, In other cascs or cmbodiments,
the client server 104 may select (c.g., randomly or based on some function) a particular follower
cache node |12 or a particular shard to send the new node ID request to. Whatever the case, the
particular cache node 112, or more particutarly the graph management software running on the
follower cache node 112, then tramsmits the new node 1D to the chient sciver 104, The client
server 104 may then formulate a write request that includes the new node ID to the
corresponding follower cache node 112, The wrile request may also specily a node type of the
new node and include a payload (e.g., content to be stored with the new nodc) and/or metadata
(c.g.. the node 1D of the user making the request, a timestamp indicating when the request was
received by the client server 104, among other data) to be stored with the node ID. For example,
the write request sent to the follower cache node 112 may be of the form object_add{node 1D,
node type. payload. metadata}. Similarly. to update a node, the client scrver 104 may send a
write request of the form objeet modify{node 1D, nude type, payload. metadata} to the follower
cache node 112 storing the shard within which the node ID is stored. Similarly, to delcte a node,
the clicnt server 104 may send o request of the form object_delete{node D} to the follower
cache node 112 storing the shard within which the shard 1D is stored.

In particular embodiments, the follower cache node then transmits the request to
the leader cache node 114 storing the shard that stores the corresponding node 1D so that the
leader cache node 114 may then update the shard, The feader cache node 114 then translates the
request into the language of database 110 and transmits the translated request to the database 110
so that the database may then be updated.

Figure 4 illustrates an example method for processing o request o add an
association (assoc add) between two nodes. As Figure 4 illustrates, when a follower cache node

112 receives an assoc_add request (c.g., assoc_add(ictl, type, id2, metadata), it accesses an index

CA 2974065 2017-07-21

10

20

30

20

to identify the association sct object corresponding to idl and type (402). Follower cache nodes
112 adds id2 to both the hash table and the circular buffer of the association set object and
increments the count value of the association sct object (404). The association sct object now
maintains the new association of the given type between node idl and node id2. To facilitate
scarching of the association relative to id2, follower cache node 112 identifies the shard Td
corresponding to the node identifier 1d2 and forwards the assoc_add request to the follower cache
node 112 in the cluster that handles the identificd shard (406). If the instant follower cache node
112 handles the shard, it processes the assoc add request. In one implemientation. the
forwarding follower cache node 112 may transmit a modificd assoc_add request that signals that
this is an updste required to cstablish a bi-directional association in the cache layer. The
follower cache node 112 also forwards the assoc_add request to the leader cache node 114
corresponding to the shard in which 1d1 falls (408). The leader cache node 114 may exceute a
similar process to cstablish a bi-dircctional association in the leader cache cluster. The leader
cache node 114 also causes the new association to be persisted in database 110, In this manacr,
an association between node id] and node id?2 is now scarchable in an index with reference to id]
and type. and separately, id2 and type.

In particular embodiments. the graph can maintain a variety of different node
types, such as users, pages. cvents, wall posis. comments, photographs, videos, background
information, concepts. interests and any other clement that would be uschul to represent as a
node. Edge types correspond to associations between the nodes and can include friends,
followers, subscribers, fans, likes (or other indications of interest), wallpost, comment, links,
suggestions, recommendations, and other types of associations between nodes. In onc
implementation, # portion of the graph can be a social graph including user nodes that cach
cbn'cspond to a respective user of the social network environment. The social graph may also
include other nodes such as concept nodes cach devoted or directed to a particular concept as
well as 1opic nodes, which may or may not be ephemeral, each devoted or directed to a particular
topic of curremt interest among users of the social network eovironment. In particular
embodinients, cach node has, represents, or is represented by, a corresponding web page
(“profile page™) hosted or accessible in the social network cnvironment. By way of example, a

uscr nodc may have a corresponding uscr profile page in which the corresponding uscr can add

CA 2974065 2017-07-21

10

20

[2]
“h

2]

content, make declarations, and otherwise express himscelf or herself. By way of cxample, as
will be described below, various web pages hosted or accessible in the social network
environment such as, for example, user profile pages, concept profile pages, or topic profile
pages, cnablc uscrs to post content, post status updates, post messages, post comments including
conuments on other posts submitted by the user or other users, declare interests, declare a “like”
(deseribed below) towards any of the aforementioned posts as well as pages and specific content,
or o otherwise express themscelves or perform various actions (hereinafier these and other user
actions may be collectively referred to as “posts™ or “user actions™). In some cmbodiments,
posting nuay include finking to, or otherwise referencing additional content, such as maedia
content (c.g., photos, videos, music, text, cte.), uniform resource locators (URLs), and other
nodes, via their respective profile pages, other user profile pages, concept profile pages, topic
pages, or other web pages or web applications. Such posts, declarations, or actions may then be
vicwable by the authoring uscr as well as other users. In particular embodiments, the soctal
graph further includes a plurality of edges that each define or represent a connection between a
covresponding pair of nodes in the social graph. As discussed above, each item of content may
be a node in the graph linked to other nodes.

As just deseribed. in various example embodiments, onc or more described web
pages or web applications are associated with a social network environment or social networking
service. As used herein, a “user” may be an individual (human uscr), an cntity (c.g., an
cnterprise, business, or third party application), or a group (c.g., of individuals or eutitics) that
interacts or communicates with or over such a social network environment. As used herein, a
“registered user” refoers to a user that has officially registered within the social network
environment (Generafly, the users and user nodes described herein refer to registered users only,
afthough this is not necessarily a reguirement in other embodiments; that is, in other
cmbadiments, the users and user nodes described hercin may refer to usces that have not
registered with the social network environment described herein). In particular embodiments,
cach uscr has a corresponding “profile” page stored, hosted, or accessible by the social network
environment and viewable by all or a selected subsct of other users, Generally, a user has
administrative rights to all or a portion of his or her own respeclive profile page as well as,

potentially, o other pages created by or for the pacticular user including, for example, home

CA 2974065 2017-07-21

10

20

(28]
an

22

pages, pages hosting web applications, amony other possibilitics. As used hercin, an
“authenticated user™ refers to a user who has been authenticated by the social network
environment as being the user claimed in a corresponding profile page to which the user has
administrative rights or, alternately, a suitable trusted representative of the claimed user.

A connection between two users or concepts tiay represent a defined relationship
between users or coneepts of the social network enviromuent, and can be defined logically in a
suitable data structure of the social nelwork cnvironment as an cdge between the nodes
comesponding to the uscrs. concepts, cvents. or other nodes of the social network cnvironment
for which the association has been made, As used herein, a “friendship™ represents an
association, such as a defined social relationship. between a pair of uscrs of the social network
environment, A “friend,” as used herein, may refer to uny uscr of the social network
cnvironment with which another user has formed a connection, fiiendship, association, or
relationship with, causing an cdge to be generated belween the two users. By way of example,
two registered users may become friends with onc another explicitly such as, for example, by
one of the two users sclecting the other for fricndship us a result of transmitting, or causing to be
wansmitted, a friendship request to the other user. who may then accept or deny the request.
Alternately, Fiendships or other connections may be automatically established. Such a social
tricndship may be visible o other users, especiatly those who themselves are friends with one or
both of the registered uscrs. A friend of a registered user may also have increased access
privileges Lo content, especially user-gencrated or declared content, on the registered uscr's
profile or ather page. [t should be noted, however, that two users who have a fricnd connection
established between them in the social graph may not necessarily be fricnds (in the conventional
sense) in real life (outside the social networking cnvironment). For example, in some
implementations, a user may be a business or other non-human entity. and thus, incapable of
being u friend with a human being user in the traditional sense of the word.

As used herein, a “fan™ may refer to a user that is a supporter or follower of a
particular user, web page, web application, or other web content accessible in the social network
environment. In particular embodiments, when a user is a fan of a particulur web page (“fans™
the particular web page), the user may be listed on that page as a fan for other registered uscrs or

the public in general to see. Additionally, an avatar or profile picture of the uscr may be shown

CA 2974065 2017-07-21

23

on the page (or infon any of the pages described below). As used herein, a “like” may refer to
something, such as, by way of example and not by way of limitation, a post, a comment, an
interest, a link, a picee of media (e.g., photo, photo album, video, song. ctc.) a concept, an cntity,
or ot page, among other possibilitics (in some implementations a user may indicate or declare a
5 like to or for virtually anything on any page hosted by or accessible by the sacial network system
or environuent), that a user, and particularly a registered or authenticated user, has declured or
otherwise demonstrated that he or she likes, is a fan of, supports, enjoys, or othcrwise has a
positive view of. In one embodiment. to indicatc or declare a “like” or to indicate or declare that
the user is a “fun” of somcthing may be processed and defined cquivalently in the social

10 networking environment and may be used interchangeably; similarly, to declare oneself a “fan™
ol something, such as a coneept or concept profile page, or (o declare that oneselll “likes™ the
thing. nay be defined cyuivalently in the social networking environment and used
interchangeably herein. Additionally, as uscd hercin, an “interest” may refer lo o nser-dectared
interest, such as a uscr-declared interest presented in the user's profile page. As used lierein, a

15 “want” may refer to virtually anything that a aser wants. As desceribed above, a “concepl” may
refer to virtually anything that a user may declare or otherwise demonstrate an interest in, a like
towards, or a relationship with, such as, by way of cxample, a sport, a sports team, a genre of
music, a musical composer, a hobby, a business (cnterprisc), an entity, a group, a celebrity, a
person who is nol a registered uscr, or even, an evenl, in some cmbodiments, another uscr (c.g., a

20 non-authenticated user), ctc. By way of cxample, there may be a concept node and concept
profile page for *“Jerry Rice,” the fumed professional football player, created and administered by
onc or more of a plurality of users (c.g., other than Jerry Rice), while the social graph
additionally includes a user node and uscr profile page for Jemy Rice created by and
administered by Jerry Rice, himself (or trusted or authorized representatives of Jerry Rice).

25 Figure 5 illustrates a distributed, redundant system. In the implementation shown,
the distributed redundant system includes at least first and second data centers 102a, 102b, Each
of the data centers 102a, 1020 includes one or more follower cache clusters 106 and a leader
cache cluster 108a, 108b. In one implementation, leader cache cluster 108a acts as a primary
(master) cuche claster, while leader cache cluster 108b is a sccondary (slave) cache cluster. In

30 one implementation, data centers 102a, 102b arc redundant in the sense that synchironization

CA 2974065 2017-07-21

20

25

0

24

functions arc cmployed to achicve replicated copics of the databasc 110. In onc implementation,
data center 102a may be physically located at onc geographic region (such as the West Coast of
the United States) to scrve traffic from that region, whilc data center 102b may be physically
focated at another geographic region (such as the East Coast of the United States). Given that
users from cither of tﬁcsc regions may access the samc data and associations, cfficient

synchronization incchanisms are desired.

writc commands. As discusscd above and with reference to Figure 3, a follower cache node 112
may reccive a writc command to add/update an object or association from a clicnt server 104
(Figure 5, No. 1). The follower cache node 112 forwards the write command to a corresponding
Jeader cache node 114 (Figure 5. No. 2). When the leader cache node 114 reecives a write
comumand from a follower cache node (602), it processcs the write command to update one or
morc entrics in the cache maintained by the leader cache cluster 108a (604) and writcs the updale
to persistent database 110a (606) (Figure S, No. 3). The leader cache node 114 also
acknowledges the writc command (ACK) to the follower cache node 112 and broadcasts the
update to other follower cache clusters 106 of the data center 102a (Figure 5, No. 4a) and the
secondary leader cache cluster 108b, which forwards the update to its follower cache clusters
106 (Figure S, No. 4b) (608). As Figurc 6 illustrates, the leader cache node 114 also adds the
updatc to a rcplication log {610). The databascs 110a, 110b implement a synchronization
mcchanism, such as MySQL Replication, to synchronize the persistent databases.

Figure 7 illustrates a message flow according to onc implementation of the
imvention. When o write command is reecived at a {ollower cache node 112 in a ving 106 that is
not dircetly associated with the primary leader cache cluster 108a (Figure 7, No. 1), the follower
cache node 112 forwards the writc message to the primary leader cache cluster 108a for
processing (Figure 7, No. 2). A lcader cache node 114 in the primary lcader cache cluster 108a
may then broadcast the update to its follower cache clusters 106 (Figure 7, No. 3) and writes the
changes to database [[0a. As Figure 7 shows, the follower cache node 112 that received the
write command may also forward the write command (o ils secondary leader cache cluster 108b
(Figure 7, No. 5), which broadeasts the updates to other follower cache clusters 106 (Figare 7,

No. 5). The foregoing architccwre allows for therefore allows for changes (o the caching layer to

CA 2974065 2017-07-21

10

20

o
wi

30

25

be quickly replicated across data centers, while the separate replication between databascs 1104,
1100 allow for data sceurity,

The applications or processes described herein can be implemented us a series of
computcr-readable instructions, embodied or encoded on or within a tangible data storage
medium, that when exceuted are operable to cause one or mare processors to implement the
operations described above. While the foregoing processes and mechanisms can be implemented
by a widc varicty of physical systems and in a wide variety of nctwork and compuling
cnvironments, the computing systems described below provide example computing system
architectures of the server and client systems described above, for didactic, rather than limiting,
PUIPOSCS,

Figure 2 illustrales an example computing system architecture, which may be
uscd to implement a scrvér 22a, 22b. In onc cmbodiment, hardware system 1000 comprises a
processor 1002, a cache memory 1004, and one or more cxceutable modules and drivers, stored
on a tangiblc computer readable medium, dirceted to the functions described hescin,
Additionally, hardware system 1000 includes a high performance input/output (I/0) bus 1004
and a standard [/O bus 1008. A hast bridge 1010 couples processor 1002 to high performance
[/O bus 1006, whereas 17O bus bridge 1012 couples the two buses 1006 and 1008 to cach other.
A system memory 1014 and one or more network/communication interfaces 1016 couple to bus
1006, Hardware system 1000 may further include video memory (not shown) and a display
device coupled to the video memory. Mass storage 1018, and /0 ports 1020 couple to bus 1008.
Hardware system 1000 may optionally include a keyboard and pointing device, and a display
device (not shown) coupted to bus 1008, Collectively, these elements arc intended to represent a
broad category of computer hardware syslems, including but not limited to general purpose
compuler systems based on the x86-compatible processors manufactured by intct Corporation of
Santa Clura, California, and the x86-compatible processors manufactured by Advanced Micro
Devices (AMD). Inc., of Sunnyvale, California, as well as any other suitable processor.

The clements of hardware system 1000 are described in greater detail below, In
particutar, network interface 1016 provides communication between hardware system 1000 and
any of a wide range ol networks, such as an Ethernet (e.g., IEEE 802.3) network, a backplane,

ctc. Mass storage 1018 provides permancut storage for the data and programuming instructions to

CA 2974065 2017-07-21

20

(%)
]

26

perform the sbove-described functions implemented in the scrvers 22a, 22b, whereas system
memoty 1014 (c.g.. DRAM) provides temporary storage for the data and programuming
instructions when executed by processor 1002, 17O ports 620 are one or more serial and/or
parallel communication ports that provide communication between additional peripheral devices,
which may be coupled to hardware system | 000,

Hardware system 1000 may include a varicty of system architectures; and various
companents of’ lmrd\a".u'c.syslun 1000 may be reurranged. For exemple, cache 1004 may be on-
chip with processor 1002, Alternatively, cache 1004 and processor 1002 may be packed together

3

as a “processor module.” with processor [002 being referred to as the “processor core.”
Furthermore, certain embodiments of the present invention may not require nor include all of the
above components. For example, the peripherat deviees shown coupled to standard I/0 bus 1008
may couple to high performance /O bus 1006. [n addition. in some cmbodiments, only a single
bus may cxist, with thc componcents of hardwarce systein 1000 being coupled to the single bus.
Furthermore, hardware system 1000 may include additional compouents, such as additional
processors, storage deviees, or memorics.

[n one implementation, the operations of the embodiments described herein are
implemented as a scries of exceutable modules run by hardware system 1000, individually or
collectively in a diswibuted computing cnvironment. In a particular embodiment, a sct of
softwarc modulcs and/or drivers implements a network communications protocol stack,
browsing and other computing functions, optimaization processes, and the like. The foregoing
functional modulcs may bLe realized by hardware, executable modules stored on a computer
readable medivm, or a combination of both. For cxample, the functional modules may comprise
a plurality or serics of instructions to be execuled by o processor in a hardware system, such as
processor 1002, tnitially, the serics of instructions may be stored on a storage device, such ag
mass storage 1018, lowever, the scrics of instructions can be tangibly storcd on any suitable
storage medium, such as a diskette, CD-ROM, ROM, EEPROM, etc. Furthermore, the series of
instructions need not be stored locally, and could be received from a remote storage device, stuch
4s @ server on a nclwork, vig network/communications interface 1016, The instructions are
copicd from the storage device, such as mass storage 1018, into memory [014 and then accessed

and excented by processor 1002.

CA 2974065 2017-07-21

=

20

25

30

27

An opcrating system manages and controls the operation of hardware system
1000, including the input and output of duta to and from software applications (not shown). The
operating system provides an interface between the software applications being executed on the
system and the hardware components of the system. Any suitable operating system may be used,
such as the LINUX Operating System, the Apple Macintosh Operating System, available from
Apple Computer Ine, of Cupertine, Califl, UNIX operating systems, Microsoft (t) Windows(r)
operating systems, BSD operating systeins, and the like. Of course, other implementations arce
possible. For example, the nickname generating functions described herein may be implemented
in finmware or on an application specific integrated circuit.

Furthermore, the above-described clements and operations can be comprised of
instructions that are stored on storage media. The instructions can be tetricved and executed by o
processing system. Some examples of instructions are software, program code, and firmware,
Some examples of storage wtedis ore memory devices, tape, disks, integrated cireuits, and
servers. The instructions arce operational when exceuted by the processing system to direct the
processing system to operate in accord with the invention. The term "processing system" refers
to a single processing device or a group of inter-operational processing devices. Some examples
of processing devices are integrated circuits and logic circuitry. Those skilled in the art are
familiar wilh instructions, computers, and storage media.

The present disclosure cncompasses all changes, substitutions, variations,
alterations. and modifications to the example embodiments herein that a person having ordinary
skitl in the art would comprehend. Similarly. where appropriate, the appended claims encompass
all changes, substitutions, variations, alterations, and modifications to the example embodiments
herein that a person having ordinary skill in the art would comprehend. By way of example,
while embodiments of the present invention have been deseribed as operating in connection with
a social nctworking website, the present invention can be uscd in conncction with any
communications facility that supports wcb applications and modcls data as a graph of
associations. Furthermore, in some embodiments the term “web service” and “wcb-site” may be
uscd interchangeably and additionally may refer to a custom or gencralized API on a device,
such as a mobile device (e.g., celiular phone, smart phone, personal GPS, personal digital

assistance, personal gaming deviee, ete.). that makes API calls dircetly to a server,

CA 2974065 2017-07-21

28

Claims

1. A system comprising:
one or more first computing devices providing a persistent-storage database operative to
maintain a graph data structure comprising a plurality of graph nodes and a plurality of graph
edges connecting the graph nodes, a graph edge connecting two graph nodes indicating an
association between the two graph nodes, each graph node being a data object corresponding to a
profile associated with a social-networking system and having a unique graph-node identifier;
and
a plurality of second computing devices coupled to the one or more first computing
devices and providing a cache layer between the persistent-storage database and a plurality of
client servers, the cache layer comprising a plurality of follower cache clusters that each
comprise one or more follower cache nodes, each follower cache node comprising one or more
one individual computing system, each follower cache node being operative to:
maintain in the follower cache node at least a portion of the graph data structure,
wherein the portion of the graph data structure comprises a plurality of graph nodes and a
plurality of graph edges, and wherein a count value of an association set is maintained for
each graph node, the count value being either increased or decreased in response to
commands to add or delete an association with respect to the graph node, respectively;
receive a query from a user of the social-networking system for associations
between nodes in the portion of the graph data structure maintained in the follower cache
node, wherein the user is associated with a particular profile that corresponds to a graph
node in the portion of the graph data structure maintained in the follower cache node; and
respond to the query for associations between nodes in the graph data structure at
Icast in part by accessing the portion of the graph data structure maintained in the

follower cache node.

2. The system of Claim 1, wherein the follower cache node is operative to respond

to the query by:

#11640696 v2

CA 2974065 2018-01-22

29

storing, updating, deleting, or retrieving information associated with at least one graph
node or graph edge in the portion of the graph data structure maintained in the follower cache
node based on the query;

modifying the query for processing by the persistent-storage database; and

forwarding the query as modified to the persistent-storage database for processing.

3. The system of Claim 1, wherein each follower cache cluster is allocated a subset

of a plurality of data shards.

4, The system of Claim 1, wherein the cache layer further comprises a leader cache

cluster comprising a plurality of leader cache nodes.

5. The system of Claim 1, wherein the follower cache node is further operative to:

maintain in a memory, for each association set corresponding to a first graph node of a
plurality of graph nodes and an association type of a plurality of association types, a first index
and a second index, the first index comprising an ordered array of entries, each entry comprising
a graph-node identifier of a second graph node that is associated with the first node and a sorting
attribute, the second index comprising a hash table comprising entries corresponding to the node
identifiers of respective second nodes that are associated with the first node;

receive a command to add an association of a first association type between a first node
and a second node, the command including a first node identifier and a second node identifier;
and

access the memory against the first association type and the first node identifier to add
the second node identifier to a first index and a second index corresponding to the first

association type and the first node identifier.

6. The system of Claim 5, wherein the follower cache node is further operative to:
maintain the count value for each association set;
increment count values in response to commands to add an association corresponding to

respective association scts; and

#11640696 v2

CA 2974065 2018-01-22

30

decrement count values in response to commands to delete an association corresponding

to respective association sets.

7. The system of Claim 1, wherein:

at least a portion of the graph data structure is a social graph of the social-networking
system;

at least some of the nodes correspond to one or more profiles of one or more users of the
social-networking system, respectively; and

at least some of the nodes correspond to one or more profiles of one or more concepts

associated with the social-networking system, respectively.

8. A method comprising:

by one or more first computing devices, providing a persistent-storage database operative
to maintain a graph data structure comprising a plurality of graph nodes and a plurality of graph
edges connecting the graph nodes, a graph edge connecting two graph nodes indicating an
association between the two graph nodes, each graph node being a data object corresponding to a
profile associated with a social-networking system and having a unique graph-node identifier;
and

by a plurality of second computing devices coupled to the one or more first computing
devices and providing a cache layer between the persistent-storage database and a plurality of
client servers, the cache layer comprising a plurality of follower cache clusters that each
comprise one or more follower cache nodes, each follower cache node comprising one or more
one individual computing system, each follower cache node being operative to:

maintaining in the follower cache node at least a portion of the graph data

structure, wherein the portion of the graph data structure comprises a plurality of graph

nodes and a plurality of graph edges, and wherein a count value of an association set is

maintained for each graph node, the count value being either increased or decreased in

response to commands to add or delete an association with respect to the graph node,

respectively;

#11640696 v2

CA 2974065 2018-01-22

31

receiving a query from a user the social-networking system for associations
between nodes in the portion of the graph data structure maintained in the follower cache
node, wherein the user is associated with a particular profile that corresponds to a graph
node in the portion of the graph data structure maintained in the follower cache node; and

responding to the query for associations between nodes in the graph data structure
at least in part by accessing the portion of the graph data structure maintained in the

follower cache node.

9. The method of Claim 8, wherein responding to a query comprises:

storing, updating, deleting, or retrieving information associated with at least one node or
cdgc in the portion of the graph data structure maintained in the follower cache node based on
the query;

modifying the query for processing by the persistent-storage database; and

forwarding the query as modified to the persistent-storage database for processing.

10. The method of Claim 8, wherein each follower cache cluster is allocated a subset

of a plurality of data shards.

11. The method of Claim 8, wherein the cache layer further comprises a leader cache

cluster comprising a plurality of leader cache nodes.

12, The method of Claim 8, wherein each of the follower cache nodes is operative to:

maintain in a memory, for each association set corresponding to a first graph node of a
plurality of graph nodes and an association type of a plurality of association types, a first index
and a second index, the first index comprising an ordered array of entries, each entry comprising
a graph-node identifier of a second graph node that is associated with the first node and a sorting
attribute, the second index comprising a hash table comprising entries corresponding to the node

identifiers of respective second nodes that are associated with the first node;

#11640696 v2

CA 2974065 2018-01-22

32

receive a command to add an association of a first association type between a first node
and a second node, the command including a first node identificr and a second node identifier;
and

access the memory against the first association type and the first node identifier to add
the second node identifier to a first index and a second index corresponding to the first

association type and the first node identifier.

13. The method of Claim 12, wherein each of the follower cache nodes is further
operative to:

maintain the count value for each association set;

increment count values in response to commands to add an association corresponding to
respective association sets; and

decrement count values in response to commands to delete an association corresponding

to respective association sets.

14. The method of Claim 8, wherein:

at least a portion of the graph data structure is a social graph of the social-networking
system,;

at least some of the nodes correspond to one or more profiles of one or more users of the
social-networking system, respectively; and

at least some of the nodes correspond to one or more profiles of one or more concepts

associated with the social-networking system, respectively.

15. A plurality of non-transitory computer-readable storage media embodying
software that is operative when executed to:

provide a persistent-storage database operative to maintain a graph data structure
comprising a plurality of graph nodes and a plurality of graph edges connecting the graph nodes,
a graph edge connecting two graph nodes indicating an association between the two graph nodes,
each graph node being a data object corresponding to a profile associated with a social-

networking system and having a unique graph-node identifier; and

#11640696 v2

CA 2974065 2018-01-22

33

provide a cache layer between the persistent-storage database and a plurality of client
servers, the cache layer comprising a plurality of follower cache clusters that each comprise one
or more follower cache nodes, each follower cache node comprising one or more one individual
computing system, each follower cache node being operative to:
maintain in the follower cache node at least a portion of the graph data structure,
wherein the portion of the graph data structure comprises a plurality of graph nodes and a
plurality of graph edges, and wherein a count value of an association set is maintained for
each graph node, the count value being either increased or decreased in response to
commands to add or delete an association with respect to the graph node, respectively;
receive a query from a user of the social-networking system for associations
between nodes in the portion of the graph data structure maintained in the follower cache
node, wherein the user is associated with a particular profile that corresponds to a graph
node in the portion of the graph data structure maintained in the follower cache node; and
respond to the query for associations between nodes in the graph data structure at
least in part by accessing the portion of the graph data structure maintained in the

follower cache node.

16. The media of Claim 15, wherein the follower cache node is operative to respond
to the query by:

storing, updating, deleting, or retrieving information associated with at least one graph
node or graph edge in the portion of the graph data structure maintained in the follower cache
node based on the query;

modifying the query for processing by the persistent-storage database; and

forwarding the query as modified to the persistent-storage database for processing.

17. The media of Claim 15, wherein each follower cache cluster is allocated a subset

of a plurality of data shards.

18. The media of Claim 15, wherein the cache layer further comprises a leader cache

cluster comprising a plurality of leader cache nodes.

#11640696 v2

CA 2974065 2018-01-22

34

19. The media of Claim 15, wherein the follower cache node is further operative to:

maintain in a memory, for each association set corresponding to a first graph node of a
plurality of graph nodes and an association type of a plurality of association types, a first index
and a second index, the first index comprising an ordered array of entries, each entry comprising
a graph-node identifier of a second graph node that is associated with the {irst node and a sorting
attribute, the second index comprising a hash table comprising entries corresponding to the node
identifiers of respective second nodes that are associated with the first node;

receive a command to add an association of a first association type between a first node
and a second node, the command including a first node identifier and a second node identifier;
and

access the memory against the first association type and the first node identifier to add
the second node identifier to a first index and a second index corresponding to the first

association type and the first node identifier.

20. The media of Claim 19, wherein the follower cache node is further operative to:

maintain the count value for each association set;

increment count values in response to commands to add an association corresponding to
respective association sets; and

decrement count values in response to commands to delete an association corresponding

to respective association sets.

#11640696 v2

CA 2974065 2018-01-22

175

CA 2974065 2018-01-22

2/5

1000
1002~ procESSOR 10/04 /
A
- » CACHE
Y 1016
1010~] HOST NETWORK
BRIDGE INTERFACE
f 1006 \
v HIGH PERFORMANCE I/0 BUS / ,
< r 3 f >
\ Y
/0 BUS SYSTEM
1012~} BRIDGE MEMORY [~1014
A J 3
+ STANDARD I/OBUS
<: A / A :>
3 1008 ¥
MASS o)
10187 STORAGE PORTS [™1020
FIG. 2

CA 2974065 2018-01-22

3/5

SOCIAL NETWORKING SYSTEM
22b 22b
20\ 24 'I 'I
ﬂ
Q : :)| FIG. 3
§
26
i N
224
30~ CLIENT CLIENT 30
A\
30~ CLIENT NETWORK CLIENT P~ 30
[60 [+]
301 CLIENT CLIENT [_3p

assoc_add (id1, type, id2, metadata)

IDENTIFY ASSOCIATION SET (id1, type) |~ 402

!

ADD id2 TO HASH TABLE AND | - 404
CIRCULAR BUFFER; INCREMENT COUNT

!

IDENTIFY Shardid FOR id2; FORWARD
assoc TO CACHE NODE FOR PROCESSING; ~-406
IF SAME CACHE NODE, PROCESS

!

FORWARD assoc_add TO
FIG. 4 LEADER CACHE NODE ™-408

CA 2974065 2018-01-22

WRITE

108a

CA 2974065 2018-01-22

4/5

110a
REPLICATION

FIG. 5

102b

RECEIVE WRITE COMMAND
FROM FOLLOWER CACHE NODE

|~ 602

!

PROCESS WRITE COMMAND
IN LEADER CACHE CLUSTER

|_~604

!

WRITE UPDATES TO
PERSISTENT DATABASE

|~ 606

!

SEND ACK TO FOLLOWER CACHE
NODE AND BROADCAST UPDATE TO
OTHER FOLLOWER CACHE CLUSTERS

™-608

!

ADD UPDATE TO REPLICATION LOG

~~-610

FIG. 6

5/5

WRITE

~ REPLICATION _

108b

110a 110b
FIG. 7

CA 2974065 2018-01-22

110

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - REPRESENTATIVE_DRAWING

