Title: METHOD OF BIOMOLECULE IMMOBILIZATION ON POLYMERS USING CLICK-TYPE CHEMISTRY

Abstract: The present invention provides a method for the covalent immobilization of biomolecules on polymers for delivery of the biomolecules, which has the advantage of being simple, highly efficient, environmentally friendly and free of side products relative to traditional immobilization techniques. The invention provides a modified micro/nanoparticle system, which uses a functionalized polymer formed into micro or nanoparticles to bind a molecule to the particles using uses facile chemistry, the Diels–Alder cycloaddition between a diene and a dienophile with the polymer being functionalized with one of them and the molecule with the other, or the Huisgen 1,3-dipolar cycloaddition between a terminal alkyn and an azide to bind the molecule to the particle. The molecules and/or other therapeutic agents may be encapsulated within the polymer particles for intravenous therapeutic delivery. The invention also provides a novel synthetic biodegradable polymer, a furan/alkyne-functionalized poly(trimethylene carbonate) (PTMC)-based polymer, whose composition can be designed to meet the defined physical and chemical property requirements. In one example, the particle system self-aggregates from functionalized PTMC-based copolymers containing poly(ethylene glycol) (PEG) segments. The composition of the copolymers can be designed to meet various particle system requirements, including size, thermodynamic stability, surface PEG density, drug encapsulation capacity and biomolecule immobilization capacity.
METHOD OF BIOMOLECULE IMMOBILIZATION ON POLYMERS USING CLICK-TYPE CHEMISTRY

CROSS REFERENCE TO RELATED U.S PATENT APPLICATION

This patent application relates to U.S. utility patent application Serial No. 60/696,506 filed on July 6, 2005 entitled METHOD OF BIOMOLECULE IMMOBILIZATION ON POLYMERS USING CLICK-TYPE CHEMISTRY, filed in English, which is incorporated herein in its entirety by reference.

FIELD OF THE INVENTION

The present invention relates to the field of biotechnology. Specifically, this invention provides a simple chemistry to immobilize biological molecules onto synthetic biodegradable polymers. The system, comprising a polymeric carrier and an immobilized biomolecule, introduces a specific cell-material interaction with many biomedical and non-biomedical applications such as in drug delivery, biosensors, medical implant materials, bioseparations, bioreactors, and biocatalysis.

BACKGROUND OF THE INVENTION

The design of polymer-biomolecule hybrid biomaterials with precisely defined properties has been proven to be critical in many biological applications. Immobilization of monoclonal antibodies/peptides on polymeric particles allows for targeted drug delivery (B.A. Khaw, Encyclopedia of pharmaceutical Technology 1998:2733; F. Marcucci et al., Drug Discovery Today 2004, 9:219). Immobilization of peptides/proteins on polymeric surfaces is of great interest for the development of biosensors and medical materials (M. Tirrell et al., Surface

Since biomolecules are much more chemically sensitive than typical small organic molecules, the choice of methods for covalent bond formation between biomolecules and polymers is limited to those occurring under specific and sufficiently mild conditions, which usually include aqueous solutions with pH values between 6 and 8, temperatures less than 37°C, and the absence of any reagents which may induce denaturation of biomolecules (L. Nobs et al., Journal of Pharmaceutical Sciences 2004, 93:1980).

The immobilization of biomolecules by binding them covalently to pre-formed polymers is based on the reaction between the functional groups on biomolecules and polymers. There are various natural or synthetic polymers with functional groups that have been reported for this purpose (M.I. Shtilman, Immobilization on Polymers 1993:341). In most cases, carboxylic acid, amine, or thiol groups on biomolecules take part in the reactions with the involvement of cross-linkers (G.T. Hermanson, Bioconjugate Techniques 1996:137). Those traditional immobilization methods can be limited by the operational complexity of the reaction procedure, the involvement of organic solvent or offensive reagents, instability of the functional groups, possible side-reactions and low immobilization efficiency (V.P. Torchilin, Biochimica et Biophysica Acta 2001, 151 1:397; T.M. Allen, Biochimica et Biophysica Acta 1995, 1237:99).

There is therefore a need for simple, clean, and highly efficient immobilization chemistries which are applicable to a broad class of biomolecules. The concept of “click chemistry” was first introduced in 2001 (H.C. Kolb et al.,
Angewandte Chemie International Edition 2001, 40:2005). Sharpless and co-workers have used the term to describe chemical reactions that occur rapidly and selectively, without prior activation, and with high atom economy. Prototypical "click" reactions include cycloadditions of unsaturated species (especially the [2+3] Huisgen addition of azides to alkynes); nucleophilic substitution chemistry; carbonyl chemistry of the "non-aldol" type; and additions of carbon-carbon multiple bonds, including Diels-Alder chemistry. These reactions are diverse in scope yet orthogonal in reactivity, give very high yields, produce only inoffensive byproducts or no byproducts, occur under simple reaction conditions, and use benign solvents (including water). The strategy has been successfully utilized for rapid synthesis of small molecule libraries and enzyme inhibitors (H.C. Kolb et al., Drug Discovery Today 2003, 8:1 128).

SUMMARY OF THE INVENTION

The present invention provides a novel method for the covalent immobilization of molecules on polymer nanoparticles or microparticles for targeted delivery of the molecules, which has the advantage of being simple, highly efficient, environmentally friendly and free of side products relative to traditional immobilization techniques.

Thus, in one aspect of the invention there is provided a composition for therapeutic delivery of a molecule, comprising:

composition for therapeutic delivery of a molecule, comprising:

a polymer nanoparticle or microparticle comprised of a polymer functionalized to include a first unsaturated functional group; and
a molecule functionalized to include a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional group react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition to covalently bind the molecule to said polymer nanoparticle or microparticle to form a delivery vehicle for therapeutic delivery of said molecule.

The method is based on the principle of functionalizing a polymer (in the form of a microparticle or nanoparticle) preferably with a diene, and functionalizing the molecule to be immobilized thereon with a complementary dienophile, or vice versa (so that if the polymer is functionalized with the complementary dienophile, the molecule to be immobilized thereon is functionalized with the diene), and using cycloaddition chemistry, specifically the Diels-Alder cycloaddition between the diene and the dienophile, to chemically bind the molecule to the polymer. Alternatively, the polymer may be functionalized with a terminal alkyne and the molecule to be bound thereto is functionalized with a complementary azide, or vise versa (so that the polymer is functionalized with the azide and the molecule to be immobilized thereon is functionalized with the alkyne) and the molecule is bound to the polymer using the Huisgen 1,3-dipolar cycloaddition between a terminal alkyne and an azide (preferably a Cu(I)-catalyzed cycloaddition).

The molecules chemically bound to the nano/microparticles may be biomolecules having a therapeutic function. In this aspect of the invention the polymers may be of natural origin including but not limited to proteins, polypeptides, polysialic acids, hyaluronic acid and derivatives thereof,
polysaccharides, chitosan and derivatives thereof, alginate and derivatives thereof, dextran and derivatives thereof, and aliphatic poly(esters), polycarbonates and derivatives thereof, poly(hydroxyalkanoates) and derivatives thereof. The polymers may be produced by chemical synthesis including
polymers produced by ring-opening polymerization, polycondensation, free radical polymerization, or ionic polymerization. The polymers may be produced by biological synthesis and may include polymers synthesized by fermentation.

The nanoparticles/microparticles can be used to encapsulate one or more therapeutic agents in the interior of the polymer particles for targeted therapeutic delivery. The therapeutic agents may be the same molecule bound to the micro/nanoparticle by Diels-Alder cycloaddition chemistry or Huisgen 1,3-dipolar cycloaddition, or it may simply be encapsulated inside the particle without being chemically bound. In addition, the therapeutic agents encapsulated in the interior may also include nucleic acids (DNA, cDNA, RNA, and PNA), proteins (including but not limited to antibodies, antibody fragments, enzymes, ligands, receptors, viral vectors, and viruses), small molecules (such as polypeptides, peptides, amino acids, metabolites and drugs), and other biomolecules (such as vitamins, antibiotics, hormones, or even entire cells) for targeted delivery of the therapeutic agent(s). The therapeutic molecule may be immobilized to the micro/nanoparticle by one of the cycloaddition reactions or it may be encapsulated within. The therapeutic molecule may provide a therapeutic capacity and a targeting capacity.

The present invention also provides a method of delivery of a molecule, comprising:
a) providing nanoparticles or microparticles of a polymer functionalized to include a first unsaturated functional group;

b) providing a molecule functionalized with a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional groups react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition;

c) mixing said nanoparticles or microparticles with said molecule under conditions suitable to react said first unsaturated functional group on said polymer nanoparticle or microparticle with said second unsaturated functional group on said molecule by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition to covalently bind the molecule to said polymer nanoparticle or microparticle to form a delivery vehicle for said molecule; and

d) introducing said nanoparticles or microparticles having said molecule bound thereto into a biological system.

The present invention also provides polymer, comprising:

a poly(trimethylene carbonate) (PTMC)-based polymer functionalized to include a first unsaturated functional group which reacts with a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional groups react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition for covalently binding the second unsaturated functional group to the first unsaturated functional group on said polymer.
Preferably the poly(trimethylene carbonate) (PTMC)-based polymer is functionalized to bear a diene or dienophile for Diels-Alder cycloaddition (or an alkyne or azide for Huisgen 1,3-dipolar cycloaddition) as discussed above, whose composition can be designed to meet the defined physical and chemical property requirements.

This novel functionalized PTMC polymer may be formed into a micro/nanoparticle system, which can have desired molecules (suitably functionalized) chemically bound to the particle by the Diels-Alder cycloaddition and/or Huisgen 1,3-dipolar cycloaddition depending on the functional groups added to the polymer. The nanoparticles/microparticles can be used to encapsulate one or more therapeutic agents for targeted therapeutic delivery. The particle system self-aggregates from functionalized poly(trimethylene carbonate) (PTMC)-based copolymers containing poly(ethylene glycol) (PEG) segments. The composition of the copolymers can be designed to meet various particle system requirements, including size, thermodynamic stability, surface PEG density, drug encapsulation capacity and biomolecule immobilization capacity.

The therapeutic agent may be the same molecule bound to the micro/nanoparticle by Diels-Alder cycloaddition chemistry or Huisgen 1,3-dipolar cycloaddition, or it may simply be encapsulated inside the particle without being chemically bound. The therapeutic agent may also serve as a targeting ligand to specific cells or tissues. The therapeutic agents may include nucleic acids (DNA, cDNA, RNA, and PNA), proteins (including but not limited to antibodies, antibody fragments, enzymes, ligands, receptors, viral vectors, and viruses), small molecules (such as polypeptides, peptides, amino acids, metabolites and drugs),
and other biomolecules (such as vitamins, antibiotics, hormones, or even entire cells) for targeted delivery of the therapeutic agent(s).

A further understanding of the functional and advantageous aspects of the invention can be realized by reference to the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The method of biomolecule immobilization on polymers using click-type chemistry according to the present invention will now be described, by way of example only, reference being made to the accompanying drawings, in which:

Figure 1 is a diagrammatic illustration of biomolecule immobilization on a polymeric carrier by Diels-Alder cycloaddition;

Figure 2 shows a diagrammatic illustration of biomolecule immobilization on a polymeric carrier by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition;

Figure 3 shows an exemplary synthesis of carboxylic acid-substituted poly(trimethylene carbonate-co-lactide) [poly(TMCC-co-LA)] copolymer;

Figure 4 shows an exemplary synthesis of poly(trimethylene carbonate-co-lactide) grafted with PEG-furan [poly(TMCC-co-LA)-o/-PEG-furan] copolymer;

Figure 5 shows an exemplary synthesis of furan-substituted poly(allylTMC-co-LA) copolymer;

Figure 6 shows an exemplary synthesis of poly(furfurylTMC-co-LA) copolymer;

Figure 7 shows an exemplary synthesis of poly(TMCC-co-LA)-g-PEG-alkyne (or azide) copolymer;
Figure 8 shows an exemplary synthesis of poly(TMCC-co-LA)-g-PEG-furan (and alkyne) copolymer.

Figure 9 shows a representative STEM image of self-aggregated nanoparticles from poly(TMCC-co-LA)-g'-PEG-furan copolymer;

Figure 10 shows the determination of CAC values of the poly(TMCC-co-LA)-g-PEG graft copolymers;

Figure 11 shows the copolymer composition dependence of the Diels-Alder binding capacity of the nanoparticles;

Figure 12 shows a schematic presentation of the formation of immuno-nanoparticles by DA chemistry;

Figure 13 shows the representative time-dependence of binding anti-bovine IgG immuno-nanoparticle to a bovine IgG-immobilized ELISA plate;

Figure 14 shows the flow cytometry results which demonstrate anti-HER2 immuno-nanoparticles binding with HER2-overexpressed breast cancer cell SKBR3;

Figure 15 shows the reaction time dependence of the peptide density on the surface of the furan-substituted poly(allylTMC-co-LA) polymer film; and

Figure 16 shows the effects of peptide aqueous concentration on peptide surface density.

Table 1 summarizes the characterization of poly(TMCC-co-LA)-gr-PEG-furan copolymers;

Table 2 summarizes the characterization of furan-substituted poly(allylTMC-co-LA) copolymers;

Table 3 summarizes the characterization of poly(furfurylTMC-co-LA) copolymers;
Table 4 summarizes the effective diameters of the self-aggregated nanoparticles;

Table 5 summarizes the characterization of hydrophobic drug encapsulation of copolymer nanoparticles;

Table 6 summarizes the characterization of protein drug encapsulation of copolymer nanoparticles.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "microparticle" includes a microsphere and means a particle between about 1 micron and about 1 millimetre in size, and the term "nanoparticle" includes a nanosphere and means a particle between about 1 nanometre and about 1 micron in size.

The present invention provides a novel method for the covalent immobilization of molecules on polymer nanoparticles or microparticles for targeted delivery of molecules. A polymer in the form of a microparticle or nanoparticle is functionalized with a diene, and the molecules to be bound to the particle are functionalized with a complementary dienophile, or vice versa (so that if the polymer is functionalized with the complementary dienophile, the molecules are functionalized with the diene), and cycloaddition chemistry, specifically the Diels-Alder cycloaddition between the diene and the dienophile, is used to chemically bind the molecule to the polymer particle. Alternatively, the polymer may be functionalized with a terminal alkyne and the molecules to be bound thereto are functionalized with a complementary azide, or vise versa (so that the polymer is functionalized with the azide and the molecules to be immobilized thereon are functionalized with the alkyne) and the molecules are bound to the
polymer using the Huisgen 1,3-dipolar cycloaddition between a terminal alkyne and an azide (preferably a Cu(I)-catalyzed reaction).

The polymer particles could also be functionalized with both dienes and dienophiles and the molecules could also include dienes and dienophiles and if one type of molecule is being immobilized some of them may be functionalized with the dienes and the remainder with the dienophiles. Alternatively, if more than one type of molecule is being bound, one type may be functionalized with the dienes and the other with the dienophiles. The same applies for the polymers functionalized with alkynes and azides, such that the polymer particle may contain both groups, and if one type of molecule is being immobilized some of them may be functionalized with the alkynes and the remainder with the azides. Alternatively, if more than one type of molecule is being bound, one type may be functionalized with the azide and the other with the alkyne.

When the polymer/molecule are functionalized using dienes/dienophiles, and the Diels-Alder cycloaddition reaction is used to covalently bind the two, the diene may include for example furan and derivatives thereof, cyclopentadiene and derivatives thereof, butadiene and derivatives thereof, or cyclohexadiene and derivatives thereof. The dienophile may include maleimide and derivatives thereof, acrylonitrile and derivatives thereof, acrylamide and derivatives thereof, methyl vinyl ketone and derivatives thereof, esters of maleic acid and derivatives thereof, esters of fumaric acid and derivatives thereof, esters of acrylic acid and derivatives thereof, maleic anhydride and derivatives thereof, esters and amides of but-2-ynedioic acid and derivatives thereof, quinone and derivatives thereof, and substituted acetylenes and derivatives thereof.
When the polymer/molecule are functionalized using alkynes/azides and
the Huisgen 1,3-dipolar cycloaddition reaction is used to covalently bind the two,
the alkyne may be terminal alkynes substituted with alkyl groups and derivatives
thereof, ester groups and derivatives thereof, amide groups and derivatives thereof,
alkyl and polyoxoalkyl groups and derivatives thereof, aryl and
derivatives thereof, phenyl groups and derivatives thereof, and benzyl groups and
derivatives thereof. The azide may be alkyl and polyoxoalkyl azides and
derivatives thereof, aryl azides and derivatives thereof, benzyl azides and
derivatives thereof.

The polymers may be block copolymers, copolymers, terpolymers, graft
copolymers, graft terpolymers or amphiphilic copolymers. The polymers may be
of natural origin, including but not limited to proteins, polypeptides, polysialic
acids, hyaluronic acid and derivatives thereof, polysaccharides, chitosan and
derivatives thereof, alginate and derivatives thereof, dextran and derivatives
thereof, and aliphatic poly(esters), polycarbonates and derivatives thereof,
poly(hydroxyalkanoates) and derivatives thereof. The polymers may be produced
by chemical synthesis including polymers produced by ring-opening
polymerization, polycondensation, free radical polymerization, or ionic
polymerization. The polymers may be produced by biological synthesis and may
include polymers synthesized by fermentation. The molecules chemically bound
to the nano/microparticles may be biomolecules having a therapeutic function.

Thus, in this invention, examples of types of the polymers include, but are
not limited to, functionalized biodegradable polymers with at least one
unsaturated functional group which performs at least one kind of Diels-Alder
cycloaddition reaction or 1,3-dipolar Huisgen cycloaddition reaction, such as
furan- (or maleimide-) functionalized PTMC homopolymers, furan-functionalized
PTMC-based copolymers from PTMC and other biodegradable polymers such as
poly(D,L-lactide) (PLA), poly(glycolic acid) (PGA) and poly(lactic acid-co-glycolic
acid) (PLGA), and functionalized PTMC-based copolymers containing PEG
segments such as poly(TMCC-co-LA)-g-PEG-furan, poly(TMCC-co-LA)-g-PEG-
alkyne, poly(TMCC-co-LA)-g-PEG-furan (and alkyne) and poly(TMCC-co-LA)-gf-
PEG-azide copolymers, PTMC-PEG diblock copolymers, and PEG-PTMC-PEG
triblock copolymers. As discussed above, other biodegradable polymers that can
be formulated as microparticles and/or nanoparticles (or microspheres and/or
nanospheres) and are modified with a functional group capable of Diels-Alder or
Huisgen cycloaddition also fall within the scope of the present invention.

As mentioned above, the present invention also provides a new synthetic
biodegradable polymer as a carrier for biomolecules, and a new biomolecule
immobilization methodology based on at least one of the Diels-Alder
cycloaddition reaction and the Huisgen 1,3-dipolar cycloaddition reaction.
Basically, the polymeric carriers are prepared from pre-synthesized PTMC-based
biodegradable polymers, with outer/inner surface bearing at least one
unsaturated functional group which performs at least one of the Diels-Alder
cycloaddition reaction and the Huisgen 1,3-dipolar cycloaddition reaction.
Biomolecules are specifically modified to introduce the corresponding functional
groups. The reaction between the two functional groups fulfills the criteria for
"click"-type chemistry, as described by Sharpless: to be simple (a one-step
reaction without by-products), clean (no initiator or coupling reagents are
involved), environmentally friendly (reaction proceeds in aqueous solution), highly
efficient, and relatively rapid under physiological conditions, with stable products.
The superior reactions employed in this invention have the general descriptions given below. Referring to Figures 1 and 2, both Diels-Alder cycloadditions and Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions involve two unsaturated reactants and provide fast access to five- or six-membered rings.

In Example 1, furan-functionalized poly(TMCC-co-LA)-g-PEG 1 (Figure 4), furan-substituted poly(allylTMC-co-LA) 2 (Figure 5) and poly(furfurylTMC-co-LA) 3 (Figure 6) were synthesized by different routes for Diels-Alder reaction. The furan group was chosen as the diene function on the polymer surface because of its wide availability in small molecules, which allows for the functionalization of the polymers simply and easily before or after polymerization. In addition, due to its high stability under polymerization conditions, a broad class of PTMC-based homopolymers and copolymers can be synthesized starting from the new furan-containing monomers.

To prepare the furan-functionalized PTMC-based copolymer containing poly(ethylene glycol) (PEG) segments, furan-modified PEG chains were grafted on carboxylic acid-substituted poly(trimethylene carbonate-co-D,L-lactide) (poly(TMCC-co-LA)) to yield poly(TMCC-co-LA)-g-PEG-furan (Figure 3 and Figure 4). In a similar synthesis route, the poly(TMCC-co-LA)-g-PEG-alkyne (or azide) and poly(TMCC-co-LA)-g-PEG-furan (and alkyne) were prepared to bear alkyne (or azide) on the polymer for Cu(I)-catalyzed Huisgen 1,3-dipolar cycloadditions (Figure 7 and Figure 8). In Example 1, the novel furan-containing poly(TMCC-co-LA) copolymers 2 and 3 were synthesized by two different routes. In synthesis route 1 (Figure 5), the novel allyl-containing poly(allylTMC-co-LA) was polymerized first and then reacted with furfuryl mercaptan to introduce furan groups into the copolymers (furan-substituted poly(allylTMC-co-LA)). In
synthesis route 2 (Figure 6), the novel furan-containing monomer 5-
furfurylamide-5-methyl-1,3-dioxane-2-one was synthesized and then
copolymerized with D,L-lactide monomers to yield poly(furfurylTMC-co-LA)
copolymers with freely adjusted furan concentrations and physical properties for
film preparation.

The polymer design in this invention provides for an unexpected degree of
control over the physical and chemical properties of the polymers, which can fulfill
specific requirements for the preparation and use of polymeric carriers. Examples
of the polymeric carriers include, but are not limited to, single polymer chains,
microparticles, nanoparticles, films, tubes, scaffolds, gels, and fibers. The
polymeric forms include, but are not limited to, solid polymers, semisolid
polymers, hydrogels, and liquid polymers. The physical and chemical properties
include the composition of the polymers, concentration of the functional groups,
degradation rate, molecular weight, glass transition temperature \(T_g \), self-
assembly/self-aggregation properties and others.

In Example 1 discussed below, the PEG grafting density and backbone
composition of the poly(TMCC-co-LA)-g-PEG-furan 1 copolymers (Figure 4)
were tuned to design micro/nanoparticles with controlled particle size, critical
aggregation concentrations (CACs), and furan concentration on the surface
(Example 2). The molar ratio between TMCC and LA segments in the copolymer
backbone was adjusted by the feed ratio of the two monomers. The PEG grafting
density was well controlled by the initial feed ratio of PEG/poly(TMCC-co-LA)
during the synthesis (Table 1). For the non-PEG-containing furan-substituted
poly(allylTMC-co-LA) 2 (Figure 5) and poly(furfurylTMC-co-LA) 3 (Figure 6), the
molecular weight, \(T_g \) and furan content of the copolymers were controlled by the
feed ratio of the two monomers during the synthesis (Table 2 and Table 3). The adjustable physical/chemical properties allow for the design of various polymeric carriers, such as polymeric films and polymeric microparticles and nanoparticles with defined requirements.

The polymer design in this invention also provides for an unexpected degree of control over the type and concentration of the functional groups in the polymers. This directly leads to control over the type and density of the biomolecules immobilized on the polymeric carriers. In Example 1, the presence of furan functional groups on poly(TMCC-co-LA)-g-PEG-furan 1, furan-substituted poly(allylTMC-co-LA)-furan 2, and poly(furfurylTMC-co-LA) 3 allows for the immobilization of maleimide-modified biomolecules (Figure 13, Figure 15 and Figure 16). The concentration of furan is adjusted to control the density of biomolecules immobilized on the polymeric carriers (Table 1, Table 2 and Table 3). It is anticipated that the adjustable furan concentration controls the level of biomolecule immobilization. The ways by which the copolymers were synthesized allows versatile functionalization. For instance, poly(TMCC-co-LA)-g-PEG-azide (or alkyne) or poly(TMCC-co-LA-g-PEG-furan (and alkyne) can be prepared through a method (Figure 7 and Figure 8) similar to the one used for the preparation of poly(TMCC-co-LA)-g-PEG-furan (Figure 4) by using the bifunctional BocNH-PEG-azide or BocNH-PEG-alkyne. The furan (or azide or alkyne) concentration in the final copolymer can be adjusted by the feed ratio of bifunctional PEG segments and poly(TMCC-co-LA) backbone segments (Table 1). In Example 2, the number of furan functional groups available on the nanoparticles is well controlled by the PEG grafting density of the copolymers (Figure 11). A larger number of available furan groups indicates a greater
capacity to bind with maleimide-containing species by Diels-Alder chemistry (defined Diels-Alder binding capacity in Example 2).

Additionally, the presence of both diene and alkyne functional groups on the polymeric carriers allows for the immobilization of biomolecules functionalized with reactive maleimide and azide, respectively. In Example 1, the synthesis of poly(TMCC-co-LA)-g-PEG-diene/alkyne, bearing two types of functional group on the same copolymer (Figure 8), allows for the immobilization of two types of biomolecules on one polymeric carrier. The adjustable concentrations of diene and alkyne groups are used to control the density of the two biomolecules. Thus, the polymers may be functionalized with dienes, dienophiles, azides and alkynes, and biomolecules can be functionalized with all of these types as well.

The modification of biomolecules to introduce the required functional groups employs specific modification techniques that efficiently preserve specific bioactivity. In Example 3, the modification of the Fc portion of the antibodies leaves the Fab portion, which is responsible for antigen binding, undisturbed (Hermanson, GT. Bioconjugate Techniques. Academic Press, 1996, pp235-237). This modification technique is efficient, resulting in 2.3 maleimide groups per antibody molecule and preserving at least 72±14% of the specific bioactivity.

Herein, the terms biomolecules and therapeutic molecules refer to nearly every major group of natural compounds: nucleic acids (DNA, cDNA, RNA, and PNA), proteins (including but not limited to antibodies, antibody fragments, enzymes, ligands, receptors, viral vectors, and viruses), small molecules (such as polypeptides, peptides, amino acids, metabolites and drugs), and other biomolecules (such as vitamins, antibiotics, hormones, phage or even entire cells). The terms biomolecules and therapeutic molecules also include synthetic
molecules that have biological effects. Useful drugs to be incorporated include Herceptin®, IL-2, and doxorubicin but it will be understood that any therapeutic drug may be encapsulated. In addition, molecules of no therapeutic value themselves may be bound to the particles or encapsulated for therapeutic purposes nevertheless, for example to deliver a radioactive or fluorescent marker to a particular site in a biological system (e.g. an animal or human) so that the combination of functionalized polymer and molecule are still considered to be for therapeutic delivery of a molecule.

The highly facile chemistry described in this invention proceeds with unexpected efficiency in buffered aqueous solutions with appropriate pH values. The Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition (preferably Cu(I)-catalyzed) between small molecules both proceed rapidly to completion and tend to be highly selective for a single product. In this invention, although steric hindrance from the polymer chains is present and could be expected to complicate interaction with functional groups on the biomolecules due to their uneven distribution, chemical reaction between the polymers and biomolecules nonetheless proceeded with unexpected rapidity and efficiency within several hours (Figure 13, Figure 15 and Figure 16). In Example 4, incubation of nanoparticles (self-aggregated from poly(TMCC-co-LA)-g-PEG-furan-i-b) with maleimide-modified antibodies at 37°C achieved an unexpectedly high coupling efficiency of greater than 80% after 6 h, corresponding to 27.0 µg of antibody bound per mg of nanoparticle. The preservation of the specific bioactivity of the nanoparticle-bound antibody during the coupling procedure is essential for active drug targeting. The highly selective Diels-Alder antibody-coupling reaction occurs under very mild conditions with minimal impact on the bioactivity of the
antibodies. This is also confirmed by the ELISA results (Figure 13), which show that reaction time can be used to control the extent of antibody immobilization onto the nanoparticles, and that antigen-binding ability is maintained even after prolonged reaction times. In Example 4, the study of the effect of interfacial Diels-Alder reaction time on peptide surface density on furan functionalized polymer surfaces (prepared from furan-substituted poly(allylTMC-co-LA)) demonstrated that the peptide surface density increased dramatically within the first 4 h of reaction and then tended to reach a plateau between 4 and 24 h (Figure 15). The highest surface density of 282±32 pmol/cm² was determined after 24 h of reaction.

The highly efficient chemistry described in this invention for covalently binding the molecule of interest to the polymer particles proceeds under mild conditions with minimal impact on the bioactivity of the biomolecules coupled to the particles. In Example 4, the anti-bovine IgG immuno-nanoparticle prepared by the Diels-Alder cycloaddition was capable of binding with bovine IgG coated ELISA plates. The antigen-binding ability was maintained even after prolonged reaction times. The successful binding of anti-HER2 immuno-nanoparticles to HER2-overexpressing SKBR3 cancer cells further demonstrated that the specific antigen binding ability was preserved after the antibody coupling (Figure 14).

The polymer design in this invention provides a method to prepare novel particle systems for targeted and controlled therapeutic delivery. Self-aggregation of amphiphilic copolymers leads to the formation of microscopic or nanoscopic particles by intra- or intermolecular association (Figure 9). The amphiphilic nature of the poly(TMCC-co-LA)-g-PEG-furan copolymers, composed of the hydrophobic poly(TMCC-co-LA) backbone and hydrophilic PEG chains, drives
the formation of particle structure when organic solutions of the polymers are
dialyzed against water. Long flexible PEG chains comprise the nanoparticle
surface and sterically stabilize the nanoparticles. This is important for applications
in cancer therapy, where nanoparticles may be injected intravenously and reach
the target tissue through the "leaky" vasculature associated with cancerous
tissue. This "passive targeting" is enhanced by the PEG corona of the
nanoparticle drug delivery system, which is expected to provide prolonged blood
circulation times. Functional groups which are located on the terminus of the PEG
chains are available on the surface of the particles for at least one of Diels-Alder
cycloaddition or 1,3-dipolar Huisgen cycloaddition chemistry after self-
aggregation. Unexpectedly, the inner hydrophobic core of poly(TMCC-co-LA) can
host both hydrophobic drugs and hydrophilic drugs (such as protein-based drugs)
due to the hydrophobicity of the inner core and the presence of carboxyl groups
on the copolymer backbone, respectively. In Example 2, hydrophobic anticancer
drug Doxorubicin and protein drug Interleukin-2 were encapsulated within the
nanoparticle by a similar process of dialysis (Table 5 and Table 6).

Surprisingly, the structure and property of the micro/nanoparticles can be
finely tuned by controlling the composition of the copolymers. In Example 2, the
size of the particles is shown to be dependent on the composition of the
copolymers (Table 4). The size (and degree of PEGylation) of the nanoparticles
is expected to predominantly influence their blood circulation time and organ
distribution. Evidence in both experimental animals and humans has shown that
nanoparticles which are less than 200 nm in size are more resistant to
reticuloendothelial system (RES) clearance and can extravasate in specific
cancers. As the hydrophobic polymer domain plays an essential role in self-
aggregation behavior, the composition of the copolymer backbone largely
determined the size of the nanoparticles (Table 4): Larger numbers of carboxylic
acid substituents in the hydrophobic segments result in increased steric and
electrostatic repulsion along the polymer chains, leading to larger particle size of
the self-aggregated nanoparticles. Moreover, the presence of carboxylic acid
substituents in the copolymers significantly influences the hydrophobicity of the
backbone, and so the effective diameters of the self-aggregated nanoparticles
show sensitivity to pH and ionic strength (Table 4), suggesting that these
copolymer nanoparticles can be used as stimuli-responsive drug delivery
vehicles. The thermodynamic stability (CAC in Figure 10) results indicate that the
self-aggregated structure will be stable at concentrations as low as 10^{-8} M,
providing limited dissociation when used as a drug delivery vehicle for in vivo
applications. It is noteworthy that the CAC values for these poly(TMCC-co-LA)-g-
PEG-furan graft copolymers are significantly lower (i.e., 10^{-8} M or 1 to 5 µg/ml)
than those reported for synthetic amphiphilic polymers intended for drug delivery
(i.e., 10^{-7} to 10^{-2} M or 10 to 1000 µg/ml, depending on the polymer molar mass).
The inventors contemplate that, taking advantage of both passive and active
targeting, the high aggregate stability in the system according to the present
invention will lead to a highly efficient drug delivery vehicle for intravenous drug
delivery.

The invention will now be illustrated with respect to the exemplary
cases which are not to be interpreted to limiting in any way.
EXAMPLES

Example 1

Synthesis of Functionalized Biodegradable Polymers

The amphiphilic biodegradable copolymer, poly(2-methyl-2-carboxytrimethylene carbonate-co-D,L-lactide)-gra/if-poly(ethylene glycol)-furan (poly(TMCC-co-LA)-g-PEG-furan) 1, comprising a hydrophobic backbone of poly(TMCC-co-LA) and a hydrophilic graft of furan-terminated PEG, was synthesized as shown in Figure 3 and Figure 4. The carboxylic acid group of 2,2-bis(hydroxymethyl)propionic acid was protected by a benzyl group to yield benzyl 2,2-bis(hydroxymethyl)propionate, which was then condensed with ethyl chloroformate to form a cyclic carbonate monomer 5-methyl-5-benzylxycarbonyl-1,3-dioxan-2-one. The resulting cyclic carbonate monomer was co-polymerized with D,L-lactide by ring-opening polymerization with tin octanoate in a bulk melt to produce the benzyl-protected poly(TMCC-co-LA). The benzyl group was removed, yielding native poly(TMCC-co-LA). 1H NMR (CDCl₃, 300 MHz): δ 1.20-1.30 ppm (bm, CH₃ protons of the TMC segments), 1.35-1.55 ppm (bm, CH₃ protons of the LA segments), 4.10-4.30 ppm (bm, CH₂ protons of the TMC segments), 5.05-5.25 ppm (bm, CH protons of the LA segments), 7.35 ppm (bm, Ar). In Figure 4, BocNH-PEG-NHS was coupled with furfurylamine to yield BocNH-PEG-furan. The Boc-protected amine was then deprotected with trifluoroacetic acid and coupled to the carboxyl groups of the poly(TMCC-co-LA) backbone. 1H NMR data (CDCl₃, 300 MHz): δ 1.38-1.48 ppm, (bm, CH₃ protons of the poly(TMCC-co-LA) backbone), 3.45-3.52 ppm (bs, CH₂ protons of the PEG grafts), 5.05-5.25 ppm (bm, CH₂ protons of the poly(TMCC-co-LA) backbone) The final poly(TMCC-co-LA)-g-PEG-furan copolymers have an adjustable
backbone composition (which has impact on the size of the nanoparticle self-aggregated from the copolymer) and controlled PEG grafting density, the average PEG number per copolymer backbone (which has impact on the ability of the nanoparticle to bind with biomolecules by DA chemistry). The characterization of the copolymers is shown in Table 1.

<table>
<thead>
<tr>
<th>Graft copolymers</th>
<th>Feed mass ratio Poly(TMCC-co-LA): PEG-furan</th>
<th>Feed molar ratio Poly(TMCC-co-LA): PEG-furan</th>
<th>PEG-furan grafts/copolymer chain</th>
<th>Molecular weight (Mn) (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(TMCC-co-LA)-g-PEG-furan-1-a</td>
<td>1:0.25</td>
<td>1:1.5</td>
<td>0.63</td>
<td>22.9</td>
</tr>
<tr>
<td>Poly(TMCC-co-LA)-g-PEG-furan-1-b</td>
<td>1:0.5</td>
<td>1:1.3</td>
<td>0.99</td>
<td>24.2</td>
</tr>
<tr>
<td>Poly(TMCC-co-LA)-g-PEG-furan-1-c</td>
<td>1:1</td>
<td>1:8.0</td>
<td>1.64</td>
<td>26.4</td>
</tr>
<tr>
<td>Poly(TMCC-co-LA)-g-PEG-furan-2-b</td>
<td>1:0.5</td>
<td>1:2.3</td>
<td>1.00</td>
<td>19.2</td>
</tr>
</tbody>
</table>

1Synthesized from poly(TMCC-co-LA)-1, Mn=20.8kDa and PDI=2.5 as determined by GPC; Molar ratio of TMC=6.5% as estimated from 1H NMR; Synthesized from poly(TMCC-co-LA)-2, Mn=15.8kDa and PDI=2.3 as determined by GPC; Molar ratio of TMC=13.0% as estimated from 1H NMR

Furan-substituted poly(allylTMC-co-LA) copolymers 2 were synthesized as shown in Figure 5. These copolymers were derived from poly(allylTMC-co-LA) copolymers by addition of the reactive thiol group of furfuryl mercaptan to the pendant allyl groups of the copolymers. 1H NMR (CDCl$_3$) of poly(allylTMC-co-LA) copolymer: δ LOpmp (CH$_3$ protons from allyl), 1.55 (m, CH$_3$ protons from lactide), 3.32 (d, -CCH$_2$OCH$_2$), 3.93 (d, -OCH$_2$-CH=CH$_2$), 4.10 (s, -CH$_2$CCH$_2$), 5.13-5.30 (m, -OCH$_2$CH=CH$_2$ and -CHCH$_3$), 5.7-5.9 (m, -OCH$_2$CH=CH$_2$). The final furan-substituted poly(allylTMC-co-LA) copolymers have controlled furan composition
and physical properties. The characterization of furan-substituted poly(allylTMC-co-LA) before and after furan bulk modification is shown in Table 2.

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>Allyl content (mol%)</th>
<th>Furan content (mol%)</th>
<th>T_g (°C)</th>
<th>M_w (g/mol)</th>
<th>M_n (g/mol)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(allylTMC-co-LA)-1-b1</td>
<td>12.5</td>
<td>0</td>
<td>21</td>
<td>27,500</td>
<td>13,920</td>
<td>1.97</td>
</tr>
<tr>
<td>Furan-substituted Poly(allylTMC-co-LA)-1-a2</td>
<td>8.5</td>
<td>4</td>
<td>23</td>
<td>36,900</td>
<td>15,100</td>
<td>2.45</td>
</tr>
<tr>
<td>Furan-substituted Poly(allylTMC-co-LA)-2-b3</td>
<td>20.0</td>
<td>0</td>
<td>12</td>
<td>22,200</td>
<td>12,100</td>
<td>1.83</td>
</tr>
<tr>
<td>Poly(allylTMC-co-LA)-2-a4</td>
<td>12.2</td>
<td>7.8</td>
<td>13</td>
<td>40,200</td>
<td>15,600</td>
<td>2.57</td>
</tr>
</tbody>
</table>

* Determined from 1H NMR
b Determined from GPC
1 Before furan bulk modification
2 After furan bulk modification

Furan-containing poly(furfurylTMC-co-LA) copolymers 3 were synthesized as shown in Figure 6. The carboxylic acid group of 2,2-bis(hydroxymethyl)propionic acid was protected by a benzyl group and then the diol reacted with ethyl chloroformate to yield 5-methyl-5-benzyloxy carbonyl-1,3-dioxan-2-one prior to deprotection of the benzyl ester to yield 5-methyl-5-carboxy-1,3-dioxan-2-one. The 5-methyl-5-carboxy-1,3-dioxan-2-one reacted with furfurylamine to yield a novel furan-containing monomer 5-furfurylamide-5-methyl-1.3-dioxane-2-one. 1H NMR (CDCl$_3$) δ 1.33 (s, 3H, CH$_3$), 4.20 (d, 6H, CH$_2$O), 4.45 (d, 2H, CH$_2$O), 6.22 (m, 1H, furan), 6.32 (m, 1H, furan), 6.65 (m, 1H, NHCO), 7.35 (m, 1H, furan). The furan-containing monomer was copolymerized with D,L-lactide to yield poly(furfurylTMC-co-LA) copolymers. The ratio of two segments and furan concentration in the copolymers can be tuned to design
various copolymers with different physical/chemical properties. The characterization of poly(furfurylTMC-co-LA) is shown in Table 3.

Table 3 Characterization of poly(furfurylTMC-co-LA) copolymers

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>Furan content (mol%)</th>
<th>T<sub>g</sub> (°C)</th>
<th>M<sub>w</sub><sup>b</sup> (g/mol)</th>
<th>M<sub>n</sub><sup>b</sup> (g/mol)</th>
<th>PDI<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(furfurylTMC-co-LA)-2</td>
<td>2.0</td>
<td>44</td>
<td>21,200</td>
<td>10,200</td>
<td>2.08</td>
</tr>
<tr>
<td>Poly(furfurylTMC-co-LA)-10</td>
<td>10.0</td>
<td>47</td>
<td>10,100</td>
<td>4,770</td>
<td>2.12</td>
</tr>
</tbody>
</table>

*Estimated from ¹H NMR.
* Determined from GPC.

Alkyne (or azide)-functionalized poly(TMCC-co-LA)-g-PEG copolymers were synthesized as shown in Figure 7. The NHS end of BocNH-PEG-NHS was coupled with propargylamine (or azido-PEG-amine (n=8)) to introduce alkyne or azide functional groups, respectively. The BocNH end of the PEG chains was deprotected with trifluoroacetic acid followed by coupling to carboxyl groups along the poly(TMCC-co-LA) backbone.

Example 2

Preparation of Nanoparticles

Self-aggregated nanoparticles from copolymers 1 (Figure 4) were prepared by a dialysis process. Briefly, 5 mg/ml poly(TMCC-co-LA)-g-PEG-furan copolymer solution in dimethyl sulfoxide (DMSO)/borate buffer (90:10 vol.%) was dialyzed against distilled water using a dialysis membrane with a molecular weight cut-off (MWCO) of 12-14 kg/mol at room temperature (RT) for 24h. The distilled water was replaced every two hours for the first 8h. The resulting particle
solution was centrifuged at 4000 rpm for 5 min to remove the aggregates. The characterization of the nanoparticles is shown in Table 4 and Figures 9 to 11.

Table 4 The effective diameters of self-aggregated nanoparticles

<table>
<thead>
<tr>
<th>Nanoparticle samples</th>
<th>Effective diameters in various aqueous environments</th>
<th>Polydispersity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 7.4 (PBS buffer 10mM)</td>
<td>pH 6.8 (HEPES buffer 10mM)</td>
</tr>
<tr>
<td>NP-1-a</td>
<td>49.7 (0.201)</td>
<td>48.7 (0.005)</td>
</tr>
<tr>
<td>NP-1-b</td>
<td>46.5 (0.029)</td>
<td>42.8 (0.163)</td>
</tr>
<tr>
<td>NP-1-c</td>
<td>46.0 (0.261)</td>
<td>44.3 (0.005)</td>
</tr>
<tr>
<td>NP-2-b</td>
<td>111.7 (0.129)</td>
<td>98.1 (0.303)</td>
</tr>
</tbody>
</table>

Nanoparticles self-aggregated from copolymer poly(TMCC-co-LA)-g-PEG-furan 1-a, 1-b, and 1-c, respectively. The copolymers have backbones of 6.5% TMCC content with increased PEG grafting density.

Nanoparticles self-aggregated from copolymer 2-b (backbone of 13.0% TMCC content).

Polydispersity index is the measure of the homogeneity of a dispersion, ranging from 0.0 (monodisperse) to 1.0 (very heterogeneous).

The STEM image shown in Figure 9 demonstrates the successful formation of a core-shell structure of the self-aggregating system. Each nanoparticle appears as a dark spot corresponding to the hydrophobic centre core, surrounded by a gray corona originating from the hydrophilic PEG graft.

Figure 10 is the determination of CAC values of the poly(TMCC-co-LA)-g-PEG graft copolymers: when exposed to amphiphilic copolymer solution, pyrene molecules preferably partition into the hydrophobic microdomains of self-aggregates, which results in different photophysical characteristics. The CACs were determined by taking the crossover point of the curve of the intensity ratio (340 nm/336 nm) from pyrene excitation spectra versus concentration of polymer in aqueous solutions. Figure 10A is the determination of CACs of poly(TMCC-co-LA)-g-PEG-furan-1-a, poly(TMCC-co-LA)-g-PEG-furan-1-b and poly(TMCC-co-LA)-g-PEG-furan-1-c (backbone of 6.5% TMC content with increased PEG
grafting density); **Figure 10B** is the determination of CACs of poly(TMCC-co-LA)-gr-PEG-furan-1-b in different aqueous environments.

The critical aggregation concentration (CAC) values of the copolymers fall into the range of 1 to 5 µg/ml for the graft copolymers with different PEG grafting density, even in different aqueous environments. These results indicate that the self-aggregated structure will be stable at concentrations as low as 10^{-8} M, providing limited dissociation when used as a drug delivery vehicle for in vivo applications. The Diels-Alder binding capacity of the nanoparticles was defined as the maximum number of maleimide-modified molecules bound per gram of nanoparticle, without considering the steric hindrance between bound molecules.

Figure 11 shows the Diels-Alder binding capacity of the nanoparticles is a function of PEG-furan grafting density on the copolymers. For example, the nanoparticles from copolymer poly(TMCC-co-LA)-g-PEG-furan-1-c (Table 1) with 1.64 PEG grafts per copolymer chain had the highest DA binding capacity, at 0.05 mmol/g copolymer nanoparticle. The results in Table 5 and Table 6 describe the drug encapsulation properties of the nanoparticles. Both small-molecule hydrophobic drugs and large protein drugs can be successfully encapsulated with the nanoparticles by dialysis. The drug loading of DOX before (1.41 ±0.04 µg/mg nanoparticle) and after (1.33±0.01 µg/mg nanoparticle) antibody coupling indicates that the Diels-Alder immobilization reaction did not greatly change the drug loading (Table 5). The effective diameter of the immuno-nanoparticles with encapsulated DOX (103.5 nm with a polydispersity of 0.182) was higher than that of nanoparticles without bound antibody (81.6 nm with a polydispersity of 0.31 1). Thus coupling the antibody on the surface of the nanoparticle increased its hydrodynamic radius. The presence and concentration of carboxylic acid groups
on the copolymer backbone play an important role for Interleukin-2 encapsulation. The driving force for protein encapsulation was likely the hydrogen-bonding and electrostatic interactions between the protein and the charged copolymer backbone.

Table 5 Characterization of hydrophobic drug encapsulation of copolymer nanoparticles

<table>
<thead>
<tr>
<th>Type of drugs</th>
<th>Drug content</th>
<th>Before antibody conjugation</th>
<th>After antibody conjugation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxorubicin*</td>
<td>µg/mg nanoparticle</td>
<td>1.41±0.04</td>
<td>1.33±0.01</td>
</tr>
</tbody>
</table>

*The Doxorubicin-encapsulated nanoparticles were prepared by a similar process as the blank nanoparticles. The copolymer employed here was poly(TMCC-co-LA)-g-PEG-furan-1-b.

Table 6 Characterization of protein drug encapsulation of copolymer nanoparticles

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Drug content*</th>
<th>Interleukin-2 (ng)copolymer (mg)</th>
<th>Encapsulation Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-1-a</td>
<td></td>
<td>63.9±28.1</td>
<td>9.6±4.2</td>
</tr>
<tr>
<td>NP-1-b</td>
<td></td>
<td>42.0±9.0</td>
<td>6.3±1.3</td>
</tr>
<tr>
<td>NP-1-c</td>
<td></td>
<td>107.5±14.1</td>
<td>16.1±2.1</td>
</tr>
</tbody>
</table>

*The protein-encapsulated nanoparticles were prepared as a similar process as the blank nanoparticles.

Example 3

Modification of Biomolecules

Maleimide-modified rabbit anti-bovine IgG antibody 4 (Mal-Ab) was prepared by oxidation of polysaccharide residues on the Fc portion with sodium periodate followed by conjugation with maleimide-containing molecule 4-(4-Λ-
maleimidophenyl)butyric acid hydrazide (MPBH) (Hermanson, GT. Bioconjugate techniques. Academic Press, c1996, 235-237). 100 µl of sodium periodate solution (0.1 M in 100 mM acetate buffer of pH 5.5) was added into 0.5 ml of antibody solution (2.0 mg/ml in distilled water). The reaction solution was protected from light and incubated at RT for 30 min. The oxidized antibody was purified immediately by passing the reaction solution through a Sephadex G-25 column with 100 mM acetate buffer of pH 5.5. The concentration of oxidized antibody was determined by UV-VIS spectrometer. MPBH solution (5 mg/ml in DMSO) was added slowly into the oxidized antibody solution at a 20-times molar excess. The reaction solution was incubated at RT for 2 h, followed by adding 10 µl of 5 M sodium cyanoborohydride solution (prepared in 1 N NaOH) per millilitre reaction solution in a fume hood and reacting for 30 min at RT. The unreacted aldehyde sites were blocked by adding 50 µl of 1 M ethanolamine (in distilled water, pH 9.6 adjusted by HCl) per millilitre reaction solution. The reaction was incubated at RT for 30 min. The maleimide-modified antibody was purified immediately by passing the reaction solution through a Sephadex G-25 column with 50 mM MES buffer of pH 5.5. Based on an IgG-specific ELISA, the mean (± standard deviation) of 72±14% of the specific bioactivity of IgG is preserved after the site-specific modification of carbohydrate chains within the Fc region.

The number of maleimide residues per antibody molecule was determined indirectly by assaying the binding to Mal-Ab of a thiol-containing fluorescent probe, 5-((2-(and 3)-S-(acetylmercapto)succinoyl)amino)fluorescein (SAMSA fluorescein). This experiment demonstrated that there was an average of 2.3 maleimide groups per antibody molecule.
Azide-modified rabbit anti-bovine IgG antibody was prepared using the method described above (oxidation followed by hydrazide conjugation) using a new heterobifunctional linking reagent, 4-azidomethylbenzoyl hydrazide (AMBH), in place of the MPBH. AMBH was prepared as follows: methyl A-bromomethylbenzoate (1 mmol) was dissolved in a 0.5 M solution of sodium azide in DMSO (3 ml). The reaction mixture was stirred for two hours, poured into water, and extracted twice with ether. After washing with brine and drying over anhydrous magnesium sulfate, the ether solution was evaporated to give 88% of a clear oil (methyl 4-azidomethylbenzoate). This product (2.3 mmol) was dissolved in ethanol (10 ml) containing 4 ml of hydrazine hydrate. After heating at reflux for one hour, the reaction mixture was cooled to room temperature and then partially concentrated under reduced pressure, causing the precipitation of a white solid, which was filtered, washed with cold water, and dried, giving 50% of 4-azidomethylbenzoyl hydrazide. \[\text{1H NMR (DMSO-d\textsubscript{6})}: \text{9.78 (s, 1H), 7.84 (app d, 2H, 6.3 Hz), 7.43 (d, 2H, 8.4 Hz), 4.51 (app s, 4H).}\]

Synthesis of maleimide-modified peptide \(\text{N-(3-maleimidopropionyl)}-\text{N- (fluorescein)}\text{-lysine-GDPGYIGSR (Mal-(f)GDPGYIGSR)}\) 5 was performed on a solid-state peptide synthesizer on the 0.1 mmol scale. In general, the desired oligopeptide sequence, i.e. GDPGYIGSR, was first synthesized on a 0.1 mmol scale on a peptide synthesizer without cleaving the side chain protecting groups. A fluorescein-labeled lysine derivative, \(\text{N-Fmoc-N-(5/6-carboxyfluorescein)-L-lysine}\) was added to the \(\text{N-}\)terminus. In a separate dried flask, 3-maleimidopropionic acid (1 mmol) was activated using dicyclohexylcarbodiimide (1 mmol) in dichloromethane (10 ml) for 30 min under nitrogen protection and a white precipitate was filtered. The filtrate was collected and reacted with the

30
amine terminus of the peptide on the resin for 2 h. The resin was washed sequentially with dichloromethane, 2-propanol, and methanol before being dried under vacuum. The MI-(f)GDPGYIGSR was deprotected and cleaved from the resin using 95% aqueous trifluoroacetic acid (TFA; 2h) and then lyophilized.

Example 4

Immobilization Reaction

The Mal-Ab was immobilized on the surface of the poly(TMCC-co-LA)-g-PEG-furan nanoparticles by Diels-Alder cycloaddition as in the scheme shown in Figure 12.

3.0 mg/ml copolymer nanoparticle solution in distilled water was mixed with the same volume of 0.1 mg/ml Mal-Ab 4 solution in 50 mM MES buffer of pH 5.5. The reaction solution was incubated under mild shaking at 37°C for various time periods. The immuno-nanoparticles were purified by passing over a Sephacryl S-300HR column in PBS buffer of pH 7.4. The bound antibody was quantified by enzyme-linked immunosorbent assay (ELISA). The result is shown in Figure 13, which demonstrates not only the successful coupling of the Mal-Ab with the nanoparticle but also the high efficiency of the DA chemistry. It is notable that a coupling efficiency of greater than 80% was achieved after 6 h of incubation, corresponding to 27.0 µg of antibody bound per mg of nanoparticle. The highly selective Diels-Alder antibody-binding reaction occurs under very mild conditions with minimal impact on the bioactivity of the antibodies. This is confirmed by the ELISA results, which show that reaction time can be used to control the extent of antibody immobilization onto the nanoparticles, and that antigen-binding ability is maintained even after prolonged reaction times. To
demonstrate the binding of the immuno-nanoparticles (antibody-coupled nanoparticles) with the receptor-expressed cells, a monoclonal antibody Herceptin® was coupled with the nanoparticles using the procedure described above. Herceptin® antibodies specifically recognize and bind with the HER2 receptor, which is overexpressed on the surface of SKBR3 breast cancer cells. The flow cytometry results in Figure 14 demonstrate that anti-HER2 immuno-nanoparticles successfully bound with SKBR3 breast cancer cells.

Mal-(f)GDPGYIGSR 5 was immobilized on the surface of films of the furan-substituted poly(allylTMC-co-LA) copolymer 2 by Diels-Alder cyclcoaddition as shown below:

Polymeric films were prepared by a solution casting method. Briefly, a 2.5% copolymer solution in chloroform was prepared and filtered through a 0.22 µm filter. The solution was dropped onto circular glass slide surfaces (D = 1.25 cm) and the solvent was evaporated slowly overnight to form thin films. All films were further dried under vacuum at 50°C. The furan-substituted poly(allylTMC-co-LA) copolymer film was immersed in 125I radiolabeled MI-(f)GDPGYIGSR solutions (0.87 mM in PBS buffer, pH = 5.5). The reaction was carried out at 37°C for 2 ~ 24 h. After washing the films extensively with water and then 0.01 M PBS buffer solution (pH = 7.4), the films were further immersed into a 5% KI aqueous solution for 10 min to remove traces of free 125I residue on the surface before γ-
counting. In control experiments, the maleimide groups of the peptide were quenched with L-cysteine and then the furan-substituted poly(allylTMC-co-LA) copolymer films were immersed in this solution to test the Diels-Alder reaction vs. adsorption. The results are shown in Figure 15. The peptide surface density has a trend to reach a plateau between 8 and 24 h, with the highest surface density of 282±32 pmol/cm² after 24 h reaction time.

Mal-(f)GDGYIGSR 5 was immobilized on the surface of films of the poly(furfurylTMC-co-LA) copolymer 3 by Diels-Alder cycladdition as shown below:

The effect of peptide aqueous concentrations on peptide surface density and physical adsorption density was investigated when the reaction time was kept at 4 h, as shown in Figure 16. For MI-(f)GDGYIGSR, both peptide surface density and peptide adsorption density (for control) increased linearly with increasing peptide aqueous concentrations. For MI-GDGYIGSR, peptide surface density increased with increasing MI-GDGYIGSR concentrations (< 0.32 mM). The amount of physically absorbed GDGYIGSR on all surfaces is little, less than 2 pmol/cm².

As used herein, the terms "comprises", "comprising", "including" and "includes" are to be construed as being inclusive and open ended, and not
exclusive. Specifically, when used in this specification including claims, the terms "comprises", "comprising", "including" and "includes" and variations thereof mean the specified features, steps or components are included. These terms are not to be interpreted to exclude the presence of other features, steps or components.

The foregoing description of the preferred embodiments of the invention has been presented to illustrate the principles of the invention and not to limit the invention to the particular embodiment illustrated. It is intended that the scope of the invention be defined by all of the embodiments encompassed within the following claims and their equivalents.
THEREFORE WHAT IS CLAIMED IS:

1. A composition for therapeutic delivery of a molecule, comprising:
 a polymer nanoparticle or microparticle comprised of a polymer functionalized to include a first unsaturated functional group; and
 a molecule functionalized to include a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional group react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition to covalently bind the molecule to said polymer nanoparticle or microparticle to form a delivery vehicle for therapeutic delivery of said molecule.

2. The composition of claim 1 wherein said complementary unsaturated functional groups includes a mixture of two types of pairs of complementary unsaturated functional groups, a first pair in which the two unsaturated functional group reacts with each other by said Diels-Alder cycloaddition, and a second type in which the two unsaturated group reacts with each other by said Huisgen 1,3-dipolar cycloaddition.

3. The composition of claim 1 or 2 wherein said complementary unsaturated functional groups which react with each other by said Diels-Alder cycloaddition include a diene and a dienophile, and wherein said complementary unsaturated functional groups which react with each other by said Huisgen 1,3-dipolar cycloaddition include an alkyne and an azide.
4. The composition according to claim 3 wherein said diene is selected from the group consisting of furan and derivatives thereof, cyclopentadiene and derivatives thereof, butadiene and derivatives thereof, and cyclohexadiene and derivatives thereof, and wherein said dienophile is selected from the group consisting of maleimide and derivatives thereof, acrylonitrile and derivatives thereof, acrylamide and derivatives thereof, methyl vinyl ketone and derivatives thereof, esters of maleic acid and derivatives thereof, esters of fumaric acid and derivatives thereof, esters of acrylic acid and derivatives thereof, maleic anhydride and derivatives thereof, esters and amides of but-2-ynedioic acid and derivatives thereof, quinone and derivatives thereof, and substituted acetylenes and derivatives thereof.

5. The composition according to claim 3 wherein said diene is furan and said dienophile is maleimide.

6. The composition according to claim 3 wherein said alkyne is selected from the group consisting of terminal alkynes substituted with alkyl groups and derivatives thereof, ester groups and derivatives thereof, amide groups and derivatives thereof, alkyl and polyoxoalkyl groups and derivatives thereof, aryl and derivatives thereof, phenyl groups and derivatives thereof, and benzyl groups and derivatives thereof, and wherein said azide is selected from the group consisting of alkyl and polyoxoalkyl azides and derivatives thereof, aryl azides and derivatives thereof, and benzyl azides and derivatives thereof.

7. The composition according to claim 6 wherein said alkyne group is an amide of propargylamine, and said azide is a substituted benzyl azide.
8. The composition of claim 1, 2, 3, 4, 5, 6 or 7 wherein the polymer is selected from the group consisting of block copolymers, copolymers, terpolymers, graft copolymers, graft terpolymers and amphiphilic copolymers.

9. The composition of claim 1, 2, 3, 4, 5, 6 or 7 wherein the polymer is selected from the group consisting of polymers of natural origin, polymers produced by chemical synthesis and polymers produced by biological synthesis, and wherein said polymers of natural origin are selected from the group consisting of proteins, polysialic acids, hyaluronic acid and derivatives thereof, polysaccharides and derivatives thereof, chitosan and derivatives thereof, alginate and derivatives thereof, collagen and derivatives thereof, and aliphatic poly(esters), polycarbonates and derivatives thereof, poly(hydroxyalkanoates) and derivatives thereof, and wherein said polymers produced by biological synthesis include polymers synthesized by fermentation, and wherein said polymers produced by chemical synthesis include polymers produced by ring-open polymerization, polycondensation, free radical polymerization, or ionic polymerization.

10. The composition of claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 wherein said polymers are biodegradable polymers selected from the group consisting of homopolymers, copolymers or terpolymers of polyesters, polycarbonates, polyamides, poly(ester-amide)s, poly(anhydride)s, polyurethanes, poly(ester-urethane)s, poly(hydroxyalkanoate)s and combinations thereof.
11. The composition according to claims 1, 2, 3, 4, 5, 6, 7 or 8 wherein said microparticles or nanoparticles have a structure with an interior and including said molecule and/or other therapeutic agents encapsulated in said interior.

12. The composition according to claim 11 wherein said molecules encapsulated in said interior of said microparticles or nanoparticles are covalently bound to said microparticles or nanoparticles.

13. The composition according to claim 11 wherein said therapeutic agents encapsulated in said interior are selected from the group consisting of nucleic acids, proteins, small molecules, biomolecules, viruses, phage, cells and cell fragments.

14. The composition according to claim 13 wherein said nucleic acids are selected from the group consisting of DNA, cDNA, RNA, and PNA.

15. The composition according to claim 13 wherein said proteins are selected from the group consisting of antibodies, antibody fragments, enzymes, ligands, receptors, viral vectors and viruses.

16. The composition according to claim 13 wherein said small molecules are selected from the group consisting of polypeptides, peptides, amino acids, metabolites and drugs.

17. The composition according to claim 13 wherein said biomolecules are selected from the group consisting of vitamins, lipids, antibiotics and hormones.
18. The composition according to any one of claims 1 to 17 wherein said polymer is one of a liquid polymer, a solid polymer, a hydrogel and a semisolid polymer.

19. The composition according to claim 1 wherein said polymer is poly(trimethylene carbonate) (PTMC)-based polymer.

20. A method of delivery of a molecule, comprising:
 a) providing nanoparticles or microparticles of a polymer functionalized to include a first unsaturated functional group;
 b) providing a molecule functionalized with a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional groups react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition;
 c) mixing said nanoparticles or microparticles with said molecule under conditions suitable to react said first unsaturated functional group on said polymer nanoparticle or microparticle with said second unsaturated functional group on said molecule by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition to covalently bind the molecule to said polymer nanoparticle or microparticle to form a delivery vehicle for said molecule; and
 d) introducing said nanoparticles or microparticles having said molecule bound thereto into a biological system.

21. The method of claim 20 wherein said complementary unsaturated functional groups includes a mixture of two types of pairs of complementary
unsaturated functional groups, a first type in which each unsaturated functional
group reacts with each other by said Diels-Alder cycloaddition, and a second type
in which each unsaturated group reacts with each other by said Huisgen 1,3-
dipolar cycloaddition.

22. The method of claim 20 or 21 wherein said complementary unsaturated
functional groups which react with each other by said Diels-Alder cycloaddition
include a diene and a dienophile, and wherein said complementary unsaturated
functional groups which react with each other by said Huisgen 1,3-dipolar
cycloaddition include an alkyne and an azide.

23. The method according to claim 22 wherein said diene is selected from the
group consisting of furan and derivatives thereof, cyclopentadiene and
derivatives thereof, butadiene and derivatives thereof, and cyclohexadiene and
derivatives thereof, and wherein said dienophile is selected from the group
consisting of maleimide and derivatives thereof, acrylonitrile and derivatives
thereof, acrylamide and derivatives thereof, methyl vinyl ketone and derivatives
thereof, esters of maleic acid and derivatives thereof, esters of fumaric acid and
derivatives thereof, esters of acrylic acid and derivatives thereof, maleic
anhydride and derivatives thereof, esters and amides of but-2-ynedioic acid and
derivatives thereof, quinone and derivatives thereof, and substituted acetylenes
and derivatives thereof.

24. The method according to claim 22 wherein said diene is furan and said
dienophile is maleimide.
25. The method of claim 22 wherein said pair of complementary unsaturated functional groups include an alkyne and an azide which react with each other by said Huisgen 1,3-dipolar cycloaddition.

26. The method according to claim 25 wherein said alkyne is selected from the group consisting of terminal alkyynes substituted with alkyl groups and derivatives thereof, ester groups and derivatives thereof, amide groups and derivatives thereof, alkyl and polyoxoalkyl groups and derivatives thereof, aryl and derivatives thereof, phenyl groups and derivatives thereof, and benzyl groups and derivatives thereof, and wherein said azide is selected from the group consisting of alkyl and polyoxoalkyl azides and derivatives thereof, aryl azides and derivatives thereof, benzyl azides and derivatives thereof.

27. The method according to claim 25 wherein said alkyne group is an amide of propargylamine, and said azide is a substituted benzyl azide.

28. The method of any one of claims 20 to 27 wherein the polymer is selected from the group consisting of block copolymers, copolymers, terpolymers, graft copolymers, graft terpolymers and amphiphilic copolymers.

29. The method of any one of claims 20 to 28 wherein the polymer is selected from the group consisting of polymers of natural origin, polymers produced by chemical synthesis and polymers produced by biological synthesis, and wherein said polymers of natural origin are selected from the group consisting of proteins, polysialic acids, hyaluronic acid and derivatives thereof, polysaccharides and derivatives thereof, chitosan and derivatives thereof, alginate and derivatives thereof.
thereof, collagen and derivatives thereof, and aliphatic poly(esters),
polycarbonates and derivatives thereof, poly(hydroxyalkanoates) and derivatives thereof, and wherein said polymers produced by biological synthesis include polymers synthesized by fermentation, and wherein said polymers produced by chemical synthesis include polymers produced by ring-open polymerization, polycondensation, free radical polymerization, or ionic polymerization.

30. The method of any one of claims 20 to 29 wherein said polymers are biodegradable polymers selected from the group consisting of polyesters, polycarbonates, polyamides, poly(ester-amide)s, poly(anhydride)s, polyurethanes, poly(ester-urethane)s, poly(hydroxyalkanoate)s and combinations thereof.

31. The method according to any one of claims 20 to 30 wherein said microparticles or nanoparticles have a structure with an interior and including said molecules and/or other therapeutic agents encapsulated in said interior.

32. The method according to claim 31 wherein said molecules encapsulated in said interior of said microparticles or nanoparticles are covalently bound to said microparticles or nanoparticles.

33. The method according to claim 31 wherein said therapeutic agents encapsulated in said interior are selected from the group consisting of nucleic acids, proteins, biomolecules, viruses, small molecules, cells and cell fragments.
34. The method according to claim 33 wherein said nucleic acids are selected from the group consisting of DNA, cDNA, RNA, and PNA.

35. The method according to claim 33 wherein said proteins are selected from the group consisting of antibodies, antibody fragments, enzymes, ligands, receptors, viral vectors and viruses.

36. The method according to claim 33 wherein said small molecules are selected from the group consisting of polypeptides, peptides, amino acids, metabolites and drugs.

37. The method according to claim 33 wherein said biomolecules are selected from the group consisting of vitamins, antibiotics and hormones.

38. The method according to any one of claims 20 to 37 wherein said polymer is one of a liquid polymer, a solid polymer, a hydrogel and a semisolid polymer.

39. The method according to any one of claims 20 to 38 wherein said biological system is a human.

40. The method according to any one of claims 20 to 38 wherein said biological system is an animal.

41. The method according to any one of claims 20 to 38 wherein said biological system is a horticultural product.
42. The method according to any one of claims 20 to 41 wherein said Huisgen 1,3-dipolar cycloaddition is Cu(I) catalyzed.

43. The method according to claim 36 wherein said drugs are selected from the group consisting of hydrophobic drugs and hydrophilic drugs.

44. The method according to claim 20 to 43 wherein said step a) providing functionalized nanoparticles or microparticles of a polymer includes synthesizing said polymer from a monomer containing said first unsaturated functional group.

45. The method according to claim 20 to 43 wherein said step a) providing functionalized nanoparticles or microparticles of a polymer includes synthesizing said polymer from a monomer, followed by incorporation of said first unsaturated functional group into said polymer.

46. The composition according to any one of claims 1 to 19 wherein said Huisgen 1,3-dipolar cycloaddition is Cu(I) catalyzed.

47. A polymer, comprising:

 a poly(trimethylene carbonate) (PTMC)-based polymer functionalized to include a first unsaturated functional group which reacts with a second unsaturated functional group, said first and second functional groups being complementary to each other and being selected such that said first and second unsaturated functional groups react with each other by one of Diels-Alder cycloaddition and Huisgen 1,3-dipolar cycloaddition for covalently binding the
second unsaturated functional group to the first unsaturated functional group on said polymer.

48. The polymer of claim 47 wherein said complementary unsaturated functional groups includes a mixture of two types of pairs of complementary unsaturated functional groups, a first type in which each unsaturated functional group reacts with each other by said Diels-Alder cycloaddition, and a second type in which each unsaturated group reacts with each other by said Huisgen 1,3-dipolar cycloaddition.

49. The polymer of claim 47 wherein said complementary unsaturated functional groups which react with each other by said Diels-Alder cycloaddition include a diene and a dienophile, and wherein said complementary unsaturated functional groups which react with each other by said Huisgen 1,3-dipolar cycloaddition include an alkyne and an azide.

50. The polymer according to claim 49 wherein said diene is selected from the group consisting of furan and derivatives thereof, cyclopentadiene and derivatives thereof, butadiene and derivatives thereof, and cyclohexadiene and derivatives thereof, and wherein said dienophile is selected from the group consisting of maleimide and derivatives thereof, acrylonitrile and derivatives thereof, acrylamide and derivatives thereof, methyl vinyl ketone and derivatives thereof, esters of maleic acid and derivatives thereof, esters of fumaric acid and derivatives thereof, esters of acrylic acid and derivatives thereof, maleic anhydride and derivatives thereof, esters and amides of but-2-ynedioic acid and derivatives thereof, quinone and derivatives thereof, and wherein said alkyne is
selected from the group consisting of substituted acetylenes and derivatives thereof, terminal alkynes substituted with ester groups and derivatives thereof, amide groups and derivatives thereof, alkyl and polyoxoalkyl groups and derivatives thereof, aryl and derivatives thereof, phenyl groups and derivatives thereof, and benzyl groups and derivatives thereof, and wherein said azide is selected from the group consisting of alkyl and polyoxoalkyl azides and derivatives thereof, aryl azides and derivatives thereof, and benzyl azides and derivatives thereof.

51. The polymer according to claim 49 wherein said diene is furan and said dienophile is maleimide.

52. The polymer according to claim 49 wherein said alkyne is an amide of propargylamine, and said azide is a substituted benzyl azide.

53. The polymer according to any one of claims 47 to 52 formed as any one of single polymer chains, microparticles, nanoparticles, films, tubes, scaffolds, gels, hydrogels and fibers.

54. The polymer according to any one of claims 47 to 53 wherein the functionalized poly(trimethylene carbonate) (PTMC)-based polymer is a homopolymer.

55. The polymer according to claim 47 to 53 wherein the functionalized poly(trimethylene carbonate) (PTMC)-based polymer is produced as any one of a copolymer, a block copolymer, a graft copolymer, a terpolymer, graft terpolymer,
and an amphiphilic copolymer of poly(trimethylene carbonate) with at least one of a polyester, polycarbonate, polyamide, poly(ester-amide), poly(anhydride), polyurethane, poly(ester-urethane), poly(ester-uranoate), poly(ethylene glycol), and combinations thereof.

56. The polymer according to any one of claims 47 to 56 wherein said Huisgen 1,3-dipolar cycloaddition is Cu(I) catalyzed.

57. The polymer according to any one of claims 47 to 56 for binding a molecule to said polymer, wherein said molecule includes said second unsaturated functional group of said pair of complementary unsaturated functional groups such that when the first and second functional groups undergo said Diels-Alder cycloaddition or Huisgen 1,3-dipolar cycloaddition said molecule is covalently bound to said polymer.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 10A

Figure 10B
Figure 11
Figure 12
Figure 13
Florescence-labeled anti-HER2 immunonanoparticles bound with SKBR3.

Negative control I: SKBR3 alone

Control II: Florescence-labeled nanoparticles did not bind with SKBR3.

Control III: Blank nanoparticles did not bind with SKBR3.

Figure 14
Figure 15

Peptide Surface Density (pmol/cm²)

- MI-(f)GDPY1GSR
- control (cysteine quenched)
- MI-(f)GDPY1GSR
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER
IPC C08G 64/02 (2006 01), A61K 35/76 (2006 01), A61K 31/7088 (2006 01), A61K 38/00 (2006 01), A67K 47/30 (2006 01)
According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC C08G 64/02 (2006 01), A61K 35/76 (2006 01), A61K 31/7088 (2006 01), A61K 38/00 (2006 01), A67K 47/30 (2006 01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CA 2,286,320 (PROLIGO) 29 October 1998 (29-10-1998) abstract, pages 8-10</td>
<td></td>
</tr>
<tr>
<td>P, A</td>
<td>LIETZ, M et al., Biotechnology and Bioengineering, 26 Sep 2005 on-line, Vol 93, No 1, p 99-109</td>
<td></td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C

[] See patent family annex

* Special categories of cited documents
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure use exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
16 October 2006 (16-10-2006)

Date of mailing of the international search report
2 November 2006 (02-11-2006)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage 1, C1 14 - 1st Floor, Box PCT 50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No 001(819)953-2476

Authorized officer
Reese A Adeney (819) 997-2852

Form PCT/ISA/210 (second sheet) (April 2005) Page 3 of 4
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claim Nos 20-40, 42-45
 because they relate to subject matter not required to be searched by this Authority, namely these claims are directed to a method for treatment of the human or animal body by surgery or therapy which the International Search Authority is not required to search. Regardless, this Authority has carried out a search based on the alleged effects or purposes/uses of the product.

2. [X] Claim Nos 1-18, 20-46 in part
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically the polymer nanoparticle or microparticle is so broadly defined in these claims that a proper search could not be made. Since only poly(tetramethylene carbonate) (PTMC)-based polymers was explicitly defined in the description, as well as in the examples, a search of these claims was limited to these specific polymers.

3. [] Claim Nos
 because they are dependant claims and are not drafted in accordance with the second and third sentences of Rule 64(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos.

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claim Nos.

Remark on Protest
[] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

[] No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT
Information on patent family members

<table>
<thead>
<tr>
<th>Patent Document Cited in Search Report</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA2286320</td>
<td>29-10-1998</td>
<td>AU7152098 A</td>
<td>13-1 1-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0979233 A 1</td>
<td>16-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL132377D</td>
<td>19-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2001520660T</td>
<td>30-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9847910 A 1</td>
<td>29-10-1998</td>
</tr>
</tbody>
</table>