E. C. KAYSER.

METHOD OF SATURATING FATTY ACIDS OR THEIR GLYCEBIDS WITH HYDROGE! .

APPLICATION FILED FEB. 18, 1910.

1,008,474.

Patented Nov. 1-1, 1911.

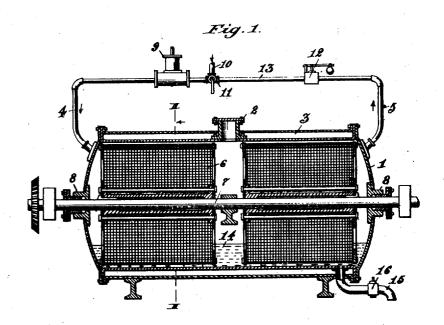
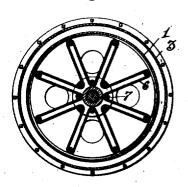



Fig. 2.

Witnesses: N. P. Deonard. L. H. Fille. Invertor Edwin buns Kayer, 4 Rymu, Townson Rose Greatin, Heizs.

UNITED STATES PATENT OFFICE.

EDWIN CUNO KAYSER, OF CINCINNATI, OHIO, ASSIGNOR TO THE PROCTOR AND GAMBLE COMPANY, OF CINCINNATI, OHIO, A CORPORATION OF OHIO.

METHOD OF SATURATING FATTY ACIDS OR THEIR GLYCERI IS WITH HYDROGEN.

1,008,474.

Pat inted Nov. 14, 1911. Specification of Letters Patent.

Application filed February 18, 1910. Serial No. 544,630.

To all whom it may concern:

Be it known that I, EDWIN CUNO KAYSER, a subject of the King of Great Britain, and a resident of the city of Cincinnati, in the 5 county of Hamilton and State of Ohio, United States of America, have invented certain new and useful Improvements in Methods for Saturating Fatty Acids or Their Glycerids with Hydrogen, of which

10 the following is a specification.

It is by now well known that unsaturated fatty acids, their glycerids or other esters, in the fluid state, can be made to absorb gaseous hydrogen, until they become con-15 verted into the corresponding semi-saturated or saturated compounds, by the intervention of certain finely divided metals, nickel in particular. For that purpose, the nickelpowder is kept in suspension in the hot oil 20 or fatty acid, while hydrogen gas is passed through, or otherwise brought in suitable contact with, the mixture.

In order to sufficiently expedite the transfer of hydrogen for practical purposes, con-25 siderable quantities of nickel have to be present. This metal must take the form of an almost impalpable powder and in consequence, when it comes to its separation from the product of reaction, it will be found to 30 form an almost impenetrable sediment on the filter cloth, a fact greatly interfering with the technical applicability of the process. Moreover, for reasons but imperfectly understood, but apparently due to the depo-35 sition thereon of carbonaceous by-products, such pure metal soon loses its catalytic activity and cannot be made to repeatedly answer its purpose.

In the catalytic production of sulfuric .0 acid, and in similar industrial processes, where reaction between gases is to be induced, it is customary to spread the catalytic metal or other catalyzer over fibrous materials like asbestos, over fragments of brick 45 or the like inert materials. Since the "catalyst" in these cases remains stationary, such measures are obviously necessary in order to facilitate the transverse movement. of the gas through the catalyzer, or in order 50 to produce more contact than a mere pas-

sage over a pulverous layer of metal would afford. In the present instance, however, when the metallic particles are already kept apart and readily accessible by their suspension in a liquid medium, it would be con- 55 sidered unnecessar t to disseminate such metal over an inert vehicle and the presence of the latter would be judged more likely to impede than to facilitate the reaction. have, notwithstanding this, ascertained, 60 however, that nickel firmly and evenly deposited upon a voluminous, pulverous inert material exercises in a fluid medium a far more energetic action, and much longer retains its vitality than an equal weight of 65 pure metal in the finest state of division procurable. The method of thus depositing on or coating the pulverous inert material with the nickel powder forms no part of my present invention, which relates to the 70 use of such pulvere is nickelized material in the saturation of o ls and fats with hydrogen. It will, there ore, be sufficient to state that in order to prepare my catalytic agent,
I bring suitable soluble or insoluble com- 75 pounds of nickel ir an appropriate manner into intimate comb nation with an inert absorptive and comparatively bulky mineral substance such as kieselguhr. I then dry and comminute the product, and reducing 80 the powder thus produced with hydrogen, a highly efficient aid reliable nickelized, inert pulverous mate ial is the result.

In order to carry out my process, I introduce into a suitable closed receptacle a 85 quantity of the mix ure of my fatty material and the pulverizel, nickelized inert support, and by means of paddles or stirrers, I thoroughly agitate the mixture while intro-ducing the hydroge 1. The vessel may either 90 be filled with the charge, in which case the gas has to be atomized within the fluid, or the vessel may be only partly filled, so as to permit the agitator; or paddles to propel or project the charge into a surrounding atmos- 95 phere of hydrogen By preference, the hydrogen is supplied inder pressure, but a certain amount is alvays allowed to continuously escape in order to carry off generated steam and other ga eous by-products.

100

Under suitable precautions, water gas or other gas mixture sufficiently rich in hydrogen gas may be used in place of pure hydrogen. When pure hydrogen is used, under 5 artificial pressure, the gas outlet should be closed by a weighted valve, and the gas supply so regulated as to constantly maintain the desired pressure.

The temperature of the oil mixture may 10 vary within considerable limits. A temperature from one hundred and fifty degrees centigrade to one hundred and sixty degrees centigrade will, as a rule, be found

desirable. The great technical advantage secured by my process in which the nickel powder is firmly and evenly distributed upon the voluminous, pulverous inert material, when mixed with the oil or fat to be treated, may 20 in part be attributed to the ultra-division of the metal, attainable by suitable chemical incorporation, with the inert vehicle, wherein it approaches the colloidal state. It may, however, with equal force be ascribed to a direct coöperation between metal and "inert" body, the latter, present in preponderating quantity and volume, absorbing the hydrogen in the first instance and then yielding it to the metal, which in 30 turn transmits it to the fatty body. prolonged vitality of the catalyzer may on the other hand be due either to a modified action of the disseminated metal and to a diminished formation of by-products, or to 35 the retention thereof by the inert vehicle, or finally to the more constant physical struc-ture of the metallic particles. Whatever be the cause of the increased activity and prolonged vitality of the metalliferous pulver-40 ous catalyzer over the pure metal, the direct technical advantage attained by the change is sufficiently conspicuous. This advantage is further advanced by two other factors, greatly pronounced when using a vehicle, 45 like kieselguhr, namely the comparatively low specific gravity and the easy permeability of the catalyzer. The former greatly facilitates suspension in the surrounding fluid, the latter renders rapid and neat sepate ration from the fatty substance by the conventional use of the filter-press an easy matter. Finally, the inert material, which forms by far the principal constituent of a well-made catalyzer, exercises a decolorizing 55 and deodorizing action upon the material treated, far beyond that observed with an equal proportion of pure metal.

Suitable apparatus for carrying out the process is shown in the accompanying draw-ing, in which—

Figure 1 is a vertical axial section; and Fig. 2 is a vertical transverse section on the line II—II of Fig. 1.

The apparatus illustrated comprises a sta-65 tionaly horizontal cylinder 1, having a manhole 2 for the introduction of oil and catalyzer, a steam jacket 3, hydrogen supply- and discharge-pipes 4, 5, and revolving wiregauze beaters or agitators 6, carried by a central shaft 7 journaled in stuffing-boxes 8 in 70 the ends of the cylinder. Hydrogen is supplied to the compression-pump 9 through a pipe 10 having a three-way or other cock 11. The unabsorbed excess of hydrogen escaping from the drum through the pipe 5 75 passes a weighted relief-valve 12 and is thence returned by a pipe 13 to the pump. The liquid mixture of oil and catalyzer to be treated in the cylinder is indicated by the line 14. The product is delivered through 80 the tap 15 having the cock 16.

In practice, the oil to be hydrogenized, for example cotton-seed oil, is preferably charged into the cylinder through the manhole 2 to about the level indicated. A rela- 85 tively small amount of the nickelized catalyzer, usually less than one per cent. by weight of the oil, is also introduced. The mixture is then heated by steam in the jacket 3 to a temperature of about 150° to 160° C. Hy- 90 drogen is pumped into the cylinder through the pipe 4, the unabsorbed excess escaping through the pipe 5 and relief-valve 12, and the wire-gauze beaters are set in motion. The heat, supply of hydrogen and agitation 95 are continued until the oil has been hydrogenized to the desired degree, as shown by its consistency or by determination of its titre and iodin value, usually for several hours and until it has been converted into a 100 product which is solid or semi-solid when cold. The cock 16 is then opened, the mixture of hydrogenized oil and catalyzer is run out through the tap 15, and the catalyzer is filtered out for re-use.

What I claim as new, and of my invention and desire to secure by Letters Patent, is:

1. The process of hydrogenizing fatty acids and their esters, which consists in agitating in the presence of hydrogen a heated 110 mixture of the fatty acid or ester and a pulverulent catalyzer consisting of a light, vo-luminous, finely-divided, inert support impregnated with an active metal, whereby the catalyzer is maintained in suspension and 115 the acid or ester and hydrogen are brought into intimate contact with the active sur-

105

130

faces of said catalyzer. 2. The process of hydrogenizing fatty acids and their esters, which consists in mechanically subdividing and agitating, in the presence of an atmosphere of hydrogen, a heated mixture of the fatty acid or ester and a pulverulent catalyzer consisting of a light, voluminous, finely-divided, inert support 125 impregnated with metallic nickel, whereby the catalyzer is maintained in suspension and the acid or ester and hydrogen are brought into intimate contact with the active surfaces of said catalyzer.

3. The process of hydrogenizing fatty acids and their esters, which consists in repeatedly projecting or propelling into an atmosphere of compressed hydrogen portions of a heated mixture of the fatty acid or ester and a pulverulent catalyzer consisting of a light, voluminous, finely-divided, inert support impregnated with an active metal.

EDWIN CUNO KAYSER.

Attest:

ARTHUR H. EWALD,
EARL W. GRIFF N.

It is hereby certified that the name of the assignee in Letters Patent No. 1,008,474, granted November 14, 1911, upon the application of Edwin Cuno Kayser, of Cincinnati, Ohio, for an improvement in "Methods of Saturating Fatty Acids or Their Glycerids With Hydrogen," was erroneously written and printed "The Proctor and Gamble Company," whereas it should have been written and printed The Proctor and Gamble Company; and that the said Letters Patent should be read with this correction therein that the same may conform to the record of the case in the Patent Office.

Signed and sealed this 16th day of January, A. D., 1912.

[SEAL.]

C. C. BILLINGS,

Acting Comm ssioner of Patents.