(86) Date de dépôt PCT/PCT Filing Date: 2003/12/08	(51) Cl.Int.⁷/Int.Cl.⁷ A01N 25/34
(87) Date publication PCT/PCT Publication Date: 2004/07/22	
(85) Entrée phase nationale/National Entry: 2005/05/26	(71) Demandeur/Applicant:
(86) N° demande PCT/PCT Application No.: US 2003/038853	ANSELL HEALTHCARE PRODUCTS LLC, US
(87) N° publication PCT/PCT Publication No.: 2004/060064	(72) Inventeurs/Inventors:
(30) Priorité/Priority: 2002/12/17 (10/321,897) US	LOO, LIONG YU, MY;
	MENG, LAI HEE, MY;
	ZAIN, NOORZANITA BINTI MUHAMMAD, MY;
	KASSIM, ADELI, MY
	(74) Agent: RIDOUT & MAYBEE LLP

(54) Titre : GANT TRAITE A LA CAMOMILLE/A L'ALOE VERA
(54) Title: CAMOMILE/ALOE VERA TREATED GLOVE

(57) Abrégé/Abstract:
The present invention is directed to a glove wherein the interior surfaces of the glove contain a film which includes water, glycerol and a botanical extract. Further embodiments of the invention are directed to the composition of the film and the process for applying the film onto the interior surfaces of the glove.
(51) International Patent Classification: A01N 25/34

(21) International Application Number: PCT/US2003/038853

(22) International Filing Date: 8 December 2003 (08.12.2003)

(25) Filling Language: English

(26) Publication Language: English

(30) Priority Data:

(72) Inventors: LOO, Liong, Yu; No. 87 Persiaran Sari 26, Taman Cempaka 31400, Ipoh, Perak (MY). MENG, Lai, Hoc; No. 40, Taman Desa Baru, 753 Melaka (MY). ZAIN, Noorzanit, Rinti, Muhammad; No. 72, Manal Jaya, 17500 Tanah Merah, Kelantan (MY). KASSIM, Adeli; No.12, Jalan Seri Aman 1, Taman Muazzafar Syah, Ayer Keroh 75450 Melaka (MY).

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CAMOMILE/ALOE VERA TREATED GLOVE

(57) Abstract: The present invention is directed to a glove wherein the interior surfaces of the glove contain a film which includes water, glycerol and a botanical extract. Further embodiments of the invention are directed to the composition of the film and the process for applying the film onto the interior surfaces of the glove.
CAMOMILE/ALOE VERA TREATED GLOVE

FIELD OF THE INVENTION

This invention relates to a disposable glove treated with a composition containing water, glycerol and a botanical extract and the process for applying the composition onto the interior surfaces of the glove.

BACKGROUND OF THE INVENTION

Disposable gloves are widely used as a protective measure to insulate hands from microorganisms and irritants. Many workers, especially those working in the health care, chemical and food handling industries, rely on disposable gloves to provide a protective barrier from harmful microorganisms and irritants. Additionally, the increasing threat of exposure to bio-terrorism has prompted many individuals to wear disposable gloves to protect themselves against deadly microorganisms. Consequently, more individuals are wearing disposable gloves for much longer periods of time than in the past.

Disposable gloves are typically made from latex and vinyl materials which tend to dry and irritate human skin. With the increased use of disposable gloves comes a need to provide a disposable glove that is comfortable to wear and will not dry and irritate the hands of the wearer.

Many botanical extracts have been found to soften and soothe dry and irritated skin. Aloe vera is a well known extract from the aloe plant. Aloe vera is commonly used to treat burns because of its healing, cooling, and moisturizing effects. Camomile is also a well known herb commonly used in teas, but has been found to exhibit anti-inflammatory properties when applied topically.

U.S. Patent 6,274,154 is directed to a disposable glove containing a film of dehydrated aloe vera on the interior surface of the glove. This patent describes applying a solution of aloe vera to the interior surface of a glove, then heating the glove until the water is dehydrated, leaving a film of dehydrated aloe vera on the interior surface of the glove. Since the water is completely dehydrated, the interior surfaces of the glove do not contain any significant amount of moisture. Since no moisture is present, the dehydrated aloe vera peels off as powder thereby minimizing any moisturizing effect.

The present invention fills a present need of providing a glove that is non-irritating to the skin and moisturizes the skin as it is worn.
BRIEF SUMMARY OF THE INVENTION

The present invention is directed to a glove wherein the interior surfaces of the glove contain a film which includes water, glycerol and a botanical extract, the water present in an amount ranging from about 30 mg to about 90 mg per glove.

Another embodiment of the invention is directed to a method of applying a film to the interior surfaces of a glove which includes washing a cured glove, drying the washed glove in a tumbler dryer at a temperature of about 50 to about 55°C, spraying a solution into the tumbler dryer while the washed glove is drying and is partially wet, and drying the washed glove until a film forms on the interior surfaces of the washed glove.

A further embodiment of the invention is directed to a composition containing water, glycerol, camomile, a thickener, an anti-blocking wax, a wetting agent, a fragrance, a silicone emulsion and a preservative.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates wet gloves drying in a tumble dryer after being washed.

Figure 2 shows spraying the moisturizing mixture into the tumble dryer while the gloves are drying.

Figure 3 illustrates the continued spraying of the moisturizing mixture and tumbling of the gloves in the tumble dryer.

Figure 4 shows the drying process for the gloves.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a glove which has a film on the interior surfaces of the glove. The film is formed by spraying an untreated glove with a composition containing water, glycerol, and a botanical extract while drying in a tumbler dryer. As the glove is tumbled in a tumbler dryer, the tumbling mechanism allows the composition to creep inside the glove when the glove is partially wet. The water from the surface of the glove acts as a carrier for the composition, enabling the composition to form a film throughout the interior surfaces of the glove. The glove is further dried in the tumbler dryer, however, the resulting interior surfaces are moist to the touch. The embodiments of the instant invention are directed to the treated glove, the composition that is sprayed onto the glove, and the process of forming the film onto the interior surfaces of the glove.

An untreated glove, i.e. a glove that has not been treated with the composition of the present invention, is made from natural rubber latex, polyvinyl chloride, polychloroprene rubber, polyisoprene rubber, butyl rubber, acrylonitrile butadiene rubber
(NBR), carboxylated nitrile, polyurethane rubber, polyacrylate, latices of styrene-butaadiene rubber and blends of natural rubber latex with synthetic latices.

A preferred untreated glove is a single layer glove manufactured by dipping a heated former into Powder-Free Coagulant (PFC), which is then partially dried in an oven, followed by a single latex dip. A single latex layer is formed on the glove former.

It has been discovered that the composition of the present invention containing the combination of water, glycerol and a botanical extract has hygroscopic properties when applied to the surface of a disposable glove. The hygroscopic nature of the composition is responsible for the treated glove surface retaining moisture when the composition is sprayed on an untreated glove while drying in a tumbler dryer. The amount of moisture retained on the treated surfaces of the glove is between 30 and 90 mg/glove, preferably about 60 mg per glove.

Water is present in the composition of the present invention in an amount ranging from about 75 to about 98 weight percent, preferably from about 85 to about 95 weight percent, based on the total weight of the composition.

Glycerol is a humectant that is commonly used in cosmetics, liquid soaps, and confectioneries for its moisturizing properties. Many botanical extracts are soluble in glycerol; however, glycerol must be present in the composition of the present invention in an amount sufficient to bind the botanical extract onto the interior glove surface and attach to the human skin while wearing the glove. The effective amount of glycerol in the composition ranges from about 1 to about 14 weight percent, preferably from about 1 to about 7 weight percent, based on the total weight of the composition. Relative to a rubber glove weight of 7 to 10 g, the glycerol is present at a range of about 5 to 30 mg inside and 10 to 40 mg outside.

Suitable botanical extracts present in the composition of the present invention may include, but are not limited to, camomile, aloe vera, jojoba, aloe barfadenis extract, passion flower extract, cucumber extract, comfrey leaf extract, saponaria, officinalis extract, myrrh extract, eucalyptus extract, seaweed extracts, and combinations thereof.

A preferred botanical extract is camomile. Another preferred botanical extract is aloe vera. A more preferred embodiment is a combination of camomile and aloe vera. The botanical extract is present in an amount of from about 0.01 to about 2.0 weight percent, preferably from about 0.05 to about 0.5 weight percent, based on the total weight of the composition.
The composition of the present invention may also contain thickeners, anti-blocking polypropylene waxes, wetting agents, fragrances, preservatives, and combinations thereof. The function of a coating thickener is to increase the viscosity of the moisturizer mixture, thereby allowing moisturizers to remain evenly on the glove surface during the tumbling and drying process.

Thickeners include, but are not limited to carboxymethyl cellulose and polysaccharide (xanthan) gum, hydroxyethyl cellulose, polyacrylate, polyvinyl alcohol, and combinations thereof. A preferred thickener is carboxymethyl cellulose. Another preferred thickener is xanthan gum. The thickener is present in an amount from about 0.05 to about 0.6 weight percent, preferably from about 0.1 to about 0.3 weight percent, based on the total weight of the composition.

An anti-blocking wax is present to prevent any blocking phenomenon due to the hygroscopic properties of the composition of the present invention. Anti-blocking waxes include, but are not limited to, paraffin wax, microcrystalline wax, polypropylene wax, and combinations thereof. A preferred anti-blocking wax is polypropylene wax. The anti-blocking polypropylene wax is present in an amount ranging from about 1.0 to about 8.0 weight percent, preferably from about 2 to about 5 weight percent, based on the total weight of the composition.

Wetting agents include, but are not limited to, fatty alcohol ethoxylate, ethyl phenol ethoxylate, nonyl phenol ethoxylate, sodium alkyl sulphate, sulphated methyl oleate, and combinations thereof. A preferred wetting agent is fatty alcohol ethoxylate or nonyl phenol ethoxylate. The wetting agent is present in an amount ranging from about 0.1 to about 1.0 weight percent, preferably from about 0.3 to about 0.9 weight percent, based on the total weight of the composition.

Preservatives include, but are not limited to, citric acid, sodium benzoate, potassium sorbate, methyl paraben, sodium sulphite and sodium metabisulphite, and combinations thereof.

Preferred preservatives are citric acid and sodium benzoate. Preservatives are present in an amount ranging from about 0.01 to about 0.5 weight percent, preferably from about 0.05 to about 0.2 weight percent, based on the total weight of the composition.

Fragrances include, but are not limited to, vanilla, lilac, jasmine, rose, lemon floral, strawberry, gardenia, apple spice, banana, pumpkin spice, carnation, honey kiwi, tangerine, mandarin, peppermint, mango, violet, ylang-ylang, cassis, bergamot,
grapefruit, rosemary, combinations of the above mentioned fragrances and a complete range of Nivea fragrances.

A preferred fragrance is Nivea scent. Fragrances are present in an amount ranging from about 0.5 to about 10 weight percent, preferably from about 2 to about 8 weight percent, based on the total weight of the composition.

Another embodiment of the invention is directed to a method of applying a film containing the moisturizing composition of the present invention to the interior surfaces of a glove. A cured glove ex-machine is first washed in a tumble washer for a total of two cycles according to the following parameters:

<table>
<thead>
<tr>
<th>Medium</th>
<th>Volume</th>
<th>Gloves (Qty)</th>
<th>Time per cycle</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh clean water</td>
<td>1200 liters per tumble washing. Two washing per cycle.</td>
<td>14,000 pcs per cycle</td>
<td>34.5 minutes</td>
<td>Ambient</td>
</tr>
</tbody>
</table>

After washing the cured gloves, the wet gloves are partially dried in an AMBI™ Challenger dryer (available from Texchine Incorporated, USA) or a COSMOS dryer (available from COSMOS Engineering, Malaysia) at a temperature ranging from about 40 to about 70°C, preferably from about 48°C to about 55°C for about 10 to about 50 minutes. While the gloves are partially wet and still drying, an aqueous solution of the moisturizing composition of the present invention is sprayed into the dryer. The amount of moisturizing solution sprayed into the dryer varies from 18 liters to 36 liters per sample of gloves, depending on the moisturizing effect needed for end users. A sample of gloves contains about 14,000 pieces. For optimum moisturizing effect, the preferred amount of moisturizing solution is 36 liters.

A silicone emulsion may also be sprayed into the dryer along with the moisturizing solution. This allows the glove’s outer surface to be siliconised. Silicone is used to ensure that the gloves do not block and the glove’s outer surface does not become tacky. A preferred silicone emulsion is Silicone LE 45. Silicone emulsion is present in an amount ranging from about 0.5 to about 4.0 weight percent, preferably from about 1.0 to about 2.0 weight percent, based on the total weight of the moisturizing composition.

The gloves are further dried at a temperature of about 48°C to about 52°C for another 3 to 5 hours. The amount of moisturizing composition retained on the surfaces of
the glove ranges from about 0.1 to 2.0 mg/glove, preferably from about 0.5 to about 1.5 mg/glove. The size of the gloves ranges from about size 6 to about size 8.

The tumbling mechanism allows the moisturizing composition to coat the glove and creep inside the glove during the initial stage of drying when the gloves are still partially wet. The water on the gloves acts both as a carrier and lubricating medium. Further drying after the spraying of the moisturizing composition causes some, but not all of the water to evaporate, leaving a moist coating formulation on the treated glove surface.

The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

COMPARATIVE EXAMPLE 1

The moisture content of standard PFC gloves (available from Ansell (Kedah) Sdn Bhd, Kulim Industrial Estate, Kulim, Kedah, Malaysia) was measured according to the following method. Each sample contained ten pieces of size 8 gloves. The ten pieces of gloves were weighed, oven dried at 100°C for 30 minutes, and weighed after drying. The moisture content was calculated based on the weight of the water lost during drying, calculated by subtracting the weight of the sample after drying from the weight of the sample before drying. The percentage of water lost from drying was calculated as a percentage by the following equation:

\[
\text{Weight of sample before drying} - \text{Weight of sample after drying} \times 100\%
\]

The results are shown in Table 1. All weights are expressed as grams.

Table 1. Results for Standard PFC Gloves

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wt. Before drying</th>
<th>Wt. After drying</th>
<th>Difference in wt.</th>
<th>Percent water lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84.0879</td>
<td>83.8730</td>
<td>0.2149</td>
<td>0.2556</td>
</tr>
<tr>
<td>2</td>
<td>84.9364</td>
<td>84.7228</td>
<td>0.2136</td>
<td>0.2515</td>
</tr>
<tr>
<td>3</td>
<td>84.8714</td>
<td>84.5871</td>
<td>0.2843</td>
<td>0.3350</td>
</tr>
<tr>
<td>4</td>
<td>84.5961</td>
<td>84.3361</td>
<td>0.26</td>
<td>0.3073</td>
</tr>
</tbody>
</table>

As shown by this comparative example, the weight of the gloves after drying was less than the weight of the gloves before drying, showing that untreated standard PFC gloves contain small amounts of moisture.
EXAMPLE 2

The moisture content of gloves containing a full strength mixture of the moisturizing composition of the present invention was measured by the following method. A moisturizing composition was prepared by mixing the ingredients listed in Table 2 below.

Table 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>Batch Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>75 to 100 L*</td>
</tr>
<tr>
<td>Aloe Vera / Camomile powder</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>Sodium Benzoate</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>Glycerol / Glycerin</td>
<td>7.0 kg</td>
</tr>
<tr>
<td>Fatty Alcohol Ethoxylate / Nonyl Phenol Ethoxilate</td>
<td>0.875 kg</td>
</tr>
<tr>
<td>Polypropylene Wax ME 43040</td>
<td>5.0 kg</td>
</tr>
<tr>
<td>Silicone LE45</td>
<td>2.0 kg</td>
</tr>
<tr>
<td>Nivea Scent</td>
<td>5.5 kg</td>
</tr>
<tr>
<td>Hydroxyethyl cellulose / Carboxymethyl cellulose / Polysaccharide (Xanthan) gum</td>
<td>0.3 kg</td>
</tr>
</tbody>
</table>

*Note: Top up solution with water until volume is 100 liters

Ex-machine cured gloves (14,000 pieces of size 7 gloves) were washed in a tumble washer for a total of two cycles according to the following parameters:

<table>
<thead>
<tr>
<th>Medium</th>
<th>Volume</th>
<th>Gloves (Qty)</th>
<th>Time per cycle</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh clean water</td>
<td>1200 liters per tumble washing, Two washing per cycle</td>
<td>14,000 pcs per cycle</td>
<td>34.5 minutes</td>
<td>Ambient</td>
</tr>
</tbody>
</table>

The washed gloves were then dried in an AMBI™ dryer at a temperature ranging from about 50° to about 55°C at ambient pressure. A full strength mixture of the above moisturizing composition (a volume of 18 liters) was sprayed into the dryer after one sample of gloves (about 14,000 pieces of size 7 gloves) was dried for about 25 minutes. The gloves were further dried for about 3 hours.

The treated gloves were then weighed, oven dried at 100°C for 30 minutes, and weighed after drying. As in Comparative Example 1, each sample contained ten gloves. The moisture content was calculated by the same method in Comparative Example 1. The results are shown in Table 3 below. Weights are expressed in grams.

Table 3. Results for Gloves Containing Full Strength Composition

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wt. before drying</th>
<th>Wt. After drying</th>
<th>Difference in Wt.</th>
<th>Percent water loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.0115</td>
<td>75.4251</td>
<td>0.5864</td>
<td>0.7715</td>
</tr>
<tr>
<td>2</td>
<td>75.2132</td>
<td>74.5835</td>
<td>0.6297</td>
<td>0.8372</td>
</tr>
</tbody>
</table>
Table 2 shows that gloves containing a full strength composition contain significantly greater amounts of moisture (as shown by the percent water loss) than standard PFC gloves (Comparative Example 1.).

EXAMPLE 3

Example 2 was repeated, but with only a 50% moisturizing composition. The volume of mixture was the same (i.e. 18 liters) but the moisturizing composition of Example 2 was diluted 50/50 with water.

The results are illustrated in Table 4. Weights are expressed in grams.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wt before drying</th>
<th>Wt. after drying</th>
<th>Difference in wt.</th>
<th>Percent water loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.0052</td>
<td>75.6772</td>
<td>0.328</td>
<td>0.4315</td>
</tr>
<tr>
<td>2</td>
<td>74.8594</td>
<td>74.5576</td>
<td>0.3018</td>
<td>0.4032</td>
</tr>
</tbody>
</table>

Table 4 shows that, even when only a 50% moisturizing solution is sprayed onto the gloves, the amount of moisture on the treated gloves is twice as much as the standard PFC untreated glove (Comparative Example 1.).

EXAMPLE 4

This example demonstrates the coverage of the composition of the present invention as a film on the interior surface of the glove and the percentage of moisturizers remaining on the glove after the drying process. For measurement purposes, soda ash (sodium carbonate) was introduced into the 36 liters (Trial 1) and 18 liters (Trial 2) of moisturizing solution at a concentration of 200 grams per liter of moisturizing solution.

The moisturizing solution with the soda ash was then sprayed into the dryer containing a sample of gloves (14,000 pieces of size 7 gloves) during the drying process.

Two sets of test samples, each consisting of four pieces of wet gloves, were taken from the dryer after 15 minutes of tumbling. Another two sets of test samples, each consisting of four pieces of dried gloves, were taken from the dryer after the drying process was completed. One set of samples was tested on extraction for the whole glove surface and another set was tested on extraction for inner surface only. Each glove was extracted with 100 ml of de-ionized water. Results are expressed as the average value of four pieces of gloves.

The quantity of soda ash on the glove was determined by the following titration.

A glove was tied and placed in an extraction bottle containing 100ml of de-ionized water. The extraction bottle was fixed to an overhead mixer and agitated for about 30 minutes. The extraction was charged into a 250 ml conical flask. Three drops of phenolphthalein
were added to the extract. 0.1 M of HCL was added until the pink color disappeared. This is the end point. The results are shown in Table 5.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Volume of moisturizers</th>
<th>Type of glove</th>
<th>Quantity of soda ash remaining on the whole glove per quantity of soda ash applied per glove (%)</th>
<th>Quantity of soda ash inside the glove per soda ash on whole glove (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wet Glove (after 15 min tumbling)</td>
<td>Dry Glove (after complete cycle)</td>
</tr>
<tr>
<td>Trial 1</td>
<td>36L</td>
<td>Camomile/ Aloe Exam Glove</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>Trial 2</td>
<td>18L</td>
<td>Camomile/ Aloe Exam Glove</td>
<td>24</td>
<td>29</td>
</tr>
</tbody>
</table>

The results show that out of the total moisturizer mixture applied into the tumbler dryer, about one third of the moisturizer mixture remained on the gloves after the complete drying process. The coverage of moisturizer mixture inside the glove is about the same as outside surface i.e., 50% on each side. The results also show that the moisturizer mixture was able to reach up to the inner/inside fingertip area.

Example 5

The moisturizing effect was determined using the following hand touch assessment method. A total of eight subjects tested gloves from different sub-lots made with 50% strength moisturizing solution and full strength moisturizing solution. Both hands of a subject were washed, rinsed with cold water, and dried. The hands were further air dried by waving the hands in the air for 30 seconds. The treated gloves were then placed on the hand and warmed for 10 minutes. The subject was then asked to rate the moisturizing effect and scent of the gloves, using the following numbers:

1 = No moisturizing effect / No smell of Nivea scent
2 = perceivable moisturizing effect / good smell of Nivea
3 = good moisturizing effect / excellent smell of Nivea

Results are shown in Tables 6 and 7.
Table 6.

Nivea scented gloves with 50% strength of moisturizing solution

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Moisturizing Effect</th>
<th>Scent level</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Passed</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Passed</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Table 7.

Unscented gloves with full strength of moisturizing solution

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Moisturizing Effect</th>
<th>Scent level</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Not available</td>
<td>Accept</td>
</tr>
</tbody>
</table>

As shown in Tables 6 and 7, the gloves treated with full strength moisturizing solution were rated as having good moisturizing effect. Even gloves treated with only a 50% moisturizing solution were rated as having a perceivable moisturizing effect.

The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations of those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
WHAT IS CLAIMED IS:

1. A treated glove comprising a film containing a film on the interior surfaces of the
glove, the film comprising water, glycerol and a botanical extract, wherein the water
is present in an amount ranging from about 30 mg to about 90 mg per glove.

2. The treated glove of claim 1, wherein the botanical extract is selected from the group
consisting of camomile, aloe vera, and combinations thereof.

3. The treated glove of claim 2, wherein the botanical extract is camomile.

4. The treated glove of claim 2 wherein the botanical extract is aloe vera.

5. The treated glove of claim 1, wherein the film further comprises a thickener, an anti-
blocking wax, a wetting agent, a fragrance, a preservative, and combinations thereof.

6. The treated glove of claim 2, wherein the botanical extract is a combination of aloe
vera and camomile extract.

7. The treated glove of claim 5, wherein the thickener is selected from the group
consisting of carboxymethylcellulose, hydroxyethylcellulose, and polysaccharide
(xanthan) gum.

8. The treated glove of claim 5, wherein the anti-blocking wax is polypropylene wax.

9. The treated glove of claim 5, wherein the wetting agent is nonylphenol ethoxylate or
fatty alcohol ethoxylate.

10. The treated glove of claim 1, wherein the glove is made from natural rubber latex,
acrylonitrile, polyvinyl chloride, polychloroprene, polyisoprene, carboxylated nitrile,
polyurethane, styrene-butadiene and blends of natural rubber latex with synthetic
lattices.

11. The treated glove of claim 5, wherein the fragrance is Nivea scent.

12. The treated glove of claim 5, wherein the preservative is a combination of citric acid
and sodium benzoate.

13. A method of applying a film to the inside surfaces of a glove comprising:

(a) washing a cured glove;

(b) drying the washed glove of step (a) in a tumbler dryer at a temperature of
about 48 to about 55°C;

(c) spraying a solution into the tumbler dryer while the washed glove is drying
and partially wet;

(d) drying the washed glove until a film forms on the interior surfaces of the
washed glove.
14. The method of claim 13, where in the solution comprises water, glycerol, and a botanical extract.

15. The method of claim 14 wherein the solution further comprises a thickener, an anti-blocking wax, a wetting agent, a fragrance, a silicone emulsion and a preservative.

16. The method of claim 14, wherein the botanical extract is selected from the group consisting of camomile, aloe vera, jojoba, aloe barbadensis extract, passion flower extract, cucumber extract, comfrey leaf extract, saponaria, officinalis extract, myrrh extract, eucalyptus extract, seaweed extracts and combinations thereof.

17. The method of claim 16, wherein the botanical extract is camomile.

18. The method of claim 16 wherein the botanical extract is aloe vera.

19. The method of claim 16 wherein the botanical extract is a combination of aloe vera and camomile extract.

20. The method of claim 19 wherein the solution further comprises a thickener, an anti-blocking polypropylene wax, a wetting agent, a fragrance and a preservative.

21. A solution comprising water, glycerol, camomile, a thickener, an anti-blocking polypropylene wax, a wetting agent, a fragrance, a silicone emulsion and a preservative.

22. The solution of claim 21 further comprising aloe vera.

23. The solution of claim 21, wherein the silicone emulsion is present in amount ranging from about 1.0 to about 2.0 wt %, based on the total weight of the solution.

24. The solution of claim 21, wherein the water is present in amount ranging from about 85 to about 95 wt % based on the total weight of the solution.

25. The solution of claim 21, wherein the glycerol is present in an amount ranging from about 1 to about 7 wt % based on the total weight of the solution.

26. The solution of claim 21, wherein the camomile is present in an amount ranging from about 0.05 to about 0.5 wt % based on the total weight of the solution.

27. The solution of claim 21, wherein the thickener is present in an amount ranging from about 0.1 to about 0.3 wt % based on the total weight of the solution.

28. The solution of claim 21, wherein the anti-blocking polypropylene wax is present in an amount ranging from about 2 to about 5 wt % based on the total weight of the solution.

29. The solution of claim 21, wherein the wetting agent is present in an amount ranging from about 0.3 to about 0.9 wt. % based on the total weight of the solution.
30. The solution of claim 21, wherein the Nivea fragrance is present in an amount ranging from about 2 to about 8 wt. % based on the total weight of the solution.

31. A method of moisturizing a hand of a human comprising wearing a glove that has a film on inside surfaces of the glove wherein the film comprises water, glycerol, and a botanical extract, and wherein the water is present in an amount ranging from about 30 mg to about 90 mg per glove.

32. The method of claim 31 wherein the botanical extract is camomile.

33. The method of claim 31, wherein the botanical extract is aloe vera.

34. The method of claim 31, wherein the botanical extract is a combination of camomile and aloe vera.

35. A moisturizing glove made by the process according to claim 13.

36. A moisturizing glove made by the process according to claim 14.

37. A moisturizing glove made by the process according to claim 15.

38. A moisturizing glove made by the process according to claim 16.

39. A moisturizing glove made by the process according to claim 17.

40. A moisturizing glove made by the process according to claim 18.

41. A moisturizing glove made by the process according to claim 19.

42. A moisturizing glove made by the process according to claim 20.