Abstract: The invention is based on the discovery that STM/Hop promotes proliferation of human glioblastoma-derived cells but not of normal astrocytes and that the proliferation requires the binding of STM/Hop to PrP\(^{\text{c}}\). The invention is directed to methods for treating cancer which rely on interfering with the Hop-PrP\(^{\text{c}}\) interaction and to peptides, and antibodies raised against the peptides, which directly provide that interference. The invention is further based on the discovery that STI125,245 peptide and its human homologue Hop230-245 provide the desired interference with the STI/Hop-PrP\(^{\text{c}}\) interaction and inhibit the STI 1/Hop-induced proliferation of glioma and glioblastoma cells. The invention is thus further directed to methods of treating cancer that employ these peptides and functional derivatives thereof, and antibodies directed to the peptides and derivatives. The invention is further directed to means of treating cancer which involve reducing the effective amount of Hop or reducing the expression of Hop. The invention is further directed to means of alleviating or eliminating the side effects of drug therapy and radiotherapy used in treating patients with brain cancers.
Declaration under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:
— with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
PEPTIDES AND METHODS FOR THE TREATMENT OF GLIOMAS AND OTHER CANCERS

This application claims the benefit of U.S. Provisional Application No. 60/972,958, filed September 17, 2007.

BACKGROUND OF THE INVENTION

Gliomas are tumors derived from glia or their precursors within the central nervous system. Malignant gliomas, the most common subtype of primary brain tumors, are aggressive, highly invasive and neurologically destructive. Clinically, gliomas are divided into four grades and the most aggressive of these, grade IV astrocytoma or glioblastoma multiforme (GBM), is also the most common in humans (Kleihues 2000; Maher et al. 2001). Despite maximum treatment efforts, median survival of patients diagnosed with GBM ranges from 9 to 12 months, a statistic that has changed very little in decades. Primary brain tumors, like all cancers, share a relatively restricted set of characteristics crucial to their phenotype: proliferation in the absence of external growth stimuli, avoidance of apoptosis and no limits to replication, escape from both external growth-suppressive forces and the immune response, formation of new blood vessels and the ability to invade normal tissues (Hanahan and Weinberg 2000). Furthermore, despite their striking heterogeneity, common alterations in specific cellular signal transduction pathways occur within most GBMs. Deregulation of signal transduction, which accounts for aberrant responses to distinct soluble factors, is also a common feature of these tumors, and modulation of signaling pathways has become an option for targeted therapies (Sebolt-Leopold and Herrera 2004).

Previous work from our group (Zanata et al. 2002) identified the co-chaperone stress-inducible phosphoprotein 1 (STM) as a cell-surface ligand for the membrane glycosylphosphatidylinositol (GPI) anchored cellular prion (PrP^c), which leads to the activation of several signal transduction pathways, some of which modulate cell survival. Stress-inducible phosphoprotein 1 (STM), also referred to, in the case of the human homologue, as Hop (Hsp70/Hsp90
organizing protein), is a 66kDa protein first identified in yeast and originally described as a co-chaperone that binds to both Hsp70 and Hsp90, and regulates their activities (Chen and Smith 1998; Nicolet and Craig 1989; Song and Masison 2005). Due to the 98% sequence homology between the mouse (STM) and human (Hop) molecules (Table 1), the term STI1/Hop will be used throughout this disclosure as the designation for the protein. In cases where the intention is to specify either the mouse or human homologue, the respective designation STM or Hop alone will be made.

STI1/Hop is present in diverse cellular locations, exists within nuclear transcription complexes, is able to move dynamically between the cytoplasm and the nucleus (Odunuga et al. 2004) and although it lacks a transmembrane domain or a signal peptide for membrane transport, it is also present at the cell surface (Martins et al. 1997; Zanata et al. 2002). In fact, many proteins expected to be confined in the cytoplasm are also at the cell surface where they play specific functions, in particular as receptors for plasma proteins (Nickel 2005).

Previous work had already showed that STM/Hop involvement in Hsp90-independent complexes relates to diverse cellular events such as transcription, protein folding and translocation, viral replication, signal transduction and cell division (Odunuga et al. 2004). STI1/Hop was shown to be secreted by normal astrocytes (Lima et al. 2007) and by HT-1080 fibrosarcoma cells together with other chaperones and co-chaperones, suggesting that these proteins may form extracellular active Hsp90 complexes related to MMP2 (metalloproteinase 2) activation and consequent tumor invasiveness (Eustace and Jay 2004; Eustace et al. 2004). Another study also related the activity of Hsp90, an STI1/Hop partner, to a molecular mechanism of tumor response selectivity to geldanamycin (Kamal et al. 2003).

Previous work from our group showed that a cellular phon-binding peptide designed on the basis of the complementary hydropathy theory (Boquet et al. 1995; Brentani 1988; Martins et al. 1997), later identified as a domain of STI1/Hop (Zanata et al. 2002), was able to activate the PKA and Erk signaling pathways, with the former being associated with cell survival in retinal explants (Chiarini et al. 2002). In addition, recombinant STI1/Hop was reported to modulate retinal proliferation and cell death (Arruda-Carvalho et al. 2007), to trigger neuroprotection and neurogenesis in hippocampal neurons through
PKA and MAPK pathways, respectively (Lopes et al. 2005) and to induce endocytosis-dependent MAPK signaling (Americo et al. 2007; Caetano et al. 2008).

BRIEF SUMMARY OF THE INVENTION

The invention is based on the discovery that STM promotes proliferation of human glioblastoma-derived cells but not of normal astrocytes and that the proliferation requires the binding of STI1/Hop to PrP\(^c\). The invention is directed to methods for treating cancer which rely on interfering with the STI1/Hop-PrP\(^c\) interaction and to peptides, and antibodies raised against the peptides, which directly provide that interference.

The invention is further based on the discovery that STI1\(_{230-245}\) peptide and its human homologue H0P\(_{230-245}\) provide the desired interference with the STI1/Hop-PrP\(^c\) interaction and inhibit the STI1/Hop-induced proliferation of glioma and glioblastoma cells. The invention is thus further directed to methods of treating cancer that employ these peptides and functional derivatives thereof, and antibodies directed to the peptides and derivatives.

The invention is further directed to means of treating cancer which involve reducing the effective amount of STM/Hop or reducing the expression of STI1/Hop.

The invention is still further directed to use of the disclosed peptides in diminishing and even eliminating the side effects of standard treatments given patients with brain cancer.
BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1 D depict the results of experiments showing secretion of Hop by A172 cells and the consequent proliferation of cells.

Figures 2A-I depict the results of experiments showing the involvement of the MAPK and PI3K pathways in STM-induced glioma-cell proliferation.

Figure 3 is a graphic depiction of STM-induced proliferation in distinct glioma cell lines.

Figures 4A-D depict the results of experiments showing that STM does not induce proliferation of normal glia.

Figures 5A and B are graphic depictions of experimental results showing that the PrP^c binding site of STM is necessary for STM-induced proliferation.

Figure 6 is a graphic depiction of experimental results showing that ST11\textsubscript{230-245} peptide does not promote proliferation of A172 cells.

Figures 7A and B are graphic depictions of experimental results showing that ST1\textsubscript{1230-245} peptide abrogates STM-induced proliferation of glioma cell lines.

Figure 8 is a graphic depiction of experimental results showing that Hop\textsubscript{230-245} peptide inhibits STM-induced proliferation of A172 cells.

Figure 9 is a graphic depiction of the results of experiments designed to test the therapeutic efficacy of TAT-conjugated forms of STM\textsubscript{230-245} and Hop\textsubscript{230-245} peptides in inhibiting STM-induced proliferation.

Figure 10 shows by fluorescence microscope imaging, tests of the ability of dansylated TAT-ST1\textsubscript{1230-245} and TAT-ST1\textsubscript{1422-437} peptides to cross the cell membrane.

Figure 11 is a graphic depiction of the results of experiments designed to test the effect of ST1\textsubscript{1230-245}, Hop\textsubscript{230-245} and their TAT-associated forms on memory formation and to test the efficacy of the peptides as neuroprotective agents.

Figure 12 is a graphic depiction of the results of monitoring Hop gene expression in various glioblastoma samples and normal brain tissue.
DETAILED DESCRIPTION OF THE INVENTION

MATERIALS AND METHODS

Chemicals

U0126, LY294002 and Forskolin were obtained from Sigma (USA). Some of the drug preparations were made in cell-culture-grade dimethylsulfoxide (DMSO) (Sigma, USA). The final concentrations of DMSO in the culture medium in all experiments were a maximum of 0.4% (v/v). [3H]-thymidine was obtained from IPEN/CNEN (Brazil). Rabbit IgG was obtained from Sigma (USA). Polyclonal antibodies recognizing total Akt, phosphorylated Akt (Ser 473), phosphorylated p44/p42 MAPK, tubulin and peroxidase-conjugated anti-rabbit IgG secondary antibody were obtained from Cell Signaling (USA). Polyclonal antibody recognizing Erk2 was obtained from Santa Cruz (USA). Polyclonal antibody recognizing STM/Hop was obtained from Bethyl (USA) (Zanata et al. 2002). Polyclonal antibody recognizing GFAP was obtained from Dako (USA). A polyclonal antibody recognizing PrPc raised in Prnp knock-out mice was produced at Ludwig Institute for Cancer Research, Sao Paulo (Brazil) (Lee et al. 2001). Chemicals and reagents were analytical grade or better.

Maintenance of cell lines

The A172, U87-MG, C6 and MCF7 tumor-cell lines were obtained from ATCC (American Type Culture Collection) and were grown and maintained in Dulbecco’s modified Eagle medium-F12, supplemented with glucose (33mM, Merck), glutamine (2mM, Calbiochem), sodium bicarbonate (3mM, Merck), penicillin/streptomycin (0.5 mg/ml), Fungizone (2.5 ug/ml, Squibb) and fetal bovine serum 10% (v/v) (Gibco). Culture flasks were maintained at 37° C in 5% CO2 and 95% air. Exponentially growing cells were detached from the culture flasks with 0.25% trypsin/ethylenediaminetraacetic acid (EDTA) and seeded at different densities depending on the assay.
Astrocyte cultures

Primary astrocytes were obtained from Wistar rats. The cerebral hemispheres were dissected and the meninges carefully removed. During dissection the tissue was maintained in a PBS-0.6% glucose solution. Thereafter the tissue was mechanically dissociated and centrifuged in a clinical centrifuge. The supernatant was removed, the pellet resuspended in DMEM-F12 with 10% FBS and the cells seeded in flask cultures. The culture media was changed every other day. Once the cultures became semi-confluent, they were washed with PBS, detached from the culture flasks with 0.25% trypsin/ethylenediaminetetraacetic acid (EDTA) and seeded at different densities depending on the assay.

Western blotting

After the treatments described herein, cells were washed twice with cold phosphate-buffered saline (PBS) and lysed in 1% NP40, 1% Triton X-100, 1% Sodium Deoxycholate, 10mM Ths-HCl pH 7.5, 100mM NaCl, 0.1% SDS, 5mM EDTA, supplemented with Complete protease and phosphatase inhibitory cocktails (Roche, USA). Samples (30-40 µg) were resolved by SDS-PAGE and transferred to a nitrocellulose membrane. The membranes were blocked with 5% nonfat milk in Tris-buffered saline, 0.1% Tween-20 (TBS-T) for one hour, incubated with primary antibodies (STI1/Hop 0.5 µg/ml purified IgG, phospho-Erk 1:1000, phospho-Akt 1:1000, Erk2 1:5000, Akt 1:1000, tubulin 1:1000) overnight at 4°C, washed with TBS-T and incubated with horseradish peroxidase-conjugated secondary antibodies (1:2000) for one hour. The reactions were developed using enhanced chemiluminescence (Pierce, USA). The conditioned media (CM) from A172 cells were filtered to remove cell debris and concentrated in an Amicon apparatus (Amicon, USA) before electrophoresis. Western blotting assays for CM were conducted using anti-STM/Hop (0.5µg/ml) antibody.

Immunodepletion assay

A172-CM was incubated with rabbit anti-STI1/Hop antibody (4µg/ml) overnight at 4°C, mixed with CL-4B Sepharose (Pharmacia, USA) for 2h at 4°C
and then centrifuged. The pellet and the supernatant (CM depleted of STH/Hop) were analyzed for the presence of STH/Hop.

Immunocytochemistry

A172 tumor cells and rat astrocytes were seeded at 5 x 10⁴ cells per well on glass slides in 24-well plates and cultured for 24 hours in serum-free culture media. Then the culture media was removed and the cells were fixed with 4% paraformaldehyde in phosphate buffer for 30 seconds. Fixed cells were washed with PBS and then incubated with a solution of 1% bovine serum albumin (BSA) in PBS for 1 hour. Thereafter, the cells were incubated with serum anti-STI1/Hop (1:200 in 1%BSA) or anti-GFAP (1:1000 in 1% BSA) antibodies for 16 hours at 4°C, washed again with PBS and incubated with the Cy-3- or FITC-conjugated secondary antibodies (1:500 in PBS) for 3 hr. Then the cells were washed with PBS, stained with DAPI (Sigma), washed again and mounted. For negative controls, cells received similar treatment but the primary antibodies, anti-STI1/Hop or anti-GFAP, were omitted.

Flow cytometry assay

Cells were grown and detached as described above. Then at least 10⁶ cells were collected, centrifuged, resuspended in a PBS/BSA 0.5% solution and incubated with a polyclonal antibody anti-PrP c (Lee et al. 2001) (1:100) for 1 hr at room temperature (RT). Thereafter cells were washed three times with PBS, incubated with a secondary antibody for 1 hr at RT, and assayed in a BD FACScan using the Lysis II program.

Conditioned media

Semi-confluent A172 cell cultures maintained in 75cm² culture flasks were washed once with PBS and three times with serum-free media. Cells were cultured for 48 hr in serum-free culture media. After this period the conditioned media was collected and subjected to 5 min. centrifugation at 1500 rpm in a standard clinical centrifuge. The supernatant was collected and stored at -70°C.
Cell viability

Cells were cultured for 24 hr in 24-well plates in serum-free media and subjected to identical treatments as in [³H]-thymidine incorporation assays. Thereafter, the culture media was removed; the cells were incubated with Trypan Blue 0.2% (v/v) in PBS for 1 min. and then washed with PBS. A minimum of 5 x 10² cells per well in randomly selected fields were counted.

Expression and purification of STM

Recombinant wild-type and mutant STM were obtained as previously described (Lopes et al. 2005; Zanata et al. 2002). Briefly, protein expression was induced by 1.5mM isopropyl- β-D-thiogalactopyranoside (IPTG) for 4hr in Escherichia Coli DH-5α cells (Stratagene) containing the expression vector His6-STI1. Cells were resuspended in lysis buffer (Na₂HPO₄ SOmM, NaCl 30OmM, pH 8.0) containing protease inhibitors, and subjected to freeze-thawing cycles. Protein was purified using Ni-NTA-agarose (Qiagen) in accord with manufacturer’s instructions.

Treatments

For ³H-thymidine incorporation and cell viability assays, U0126 (10 μM), LY294002 (5 μM), Forskolin (10 μM) (Chen et al. 2003, Lee et al 2005, Shingu et al. 2003), recombinant STM (170 nM) and DMSO (0.4%) were added at the beginning of the 24-hr period. For western blots, cells were subjected to STM/Hop, U0126 and LY294002 treatments as indicated in the figure legends. For co-treatments, the inhibitors were added 10 minutes prior to STM.

Densitometries

Densitometry analyses of the immunoblots were performed using the ImageQuant software. The ratio between phospho-specific bands and their respective loading controls was calculated and the results were normalized to the respective control groups.
Proliferation Assays

Proliferation assays were conducted using $[^3]H$-thymidine incorporation or BrdU incorporation.

a. $[^3]H$-thymidine incorporation assays

Tumor cells were subjected to a “starvation period,” i.e., they were seeded at 10^4 cells per well in DMEM-F12 serum-free in 48-well plates. Rat astrocytes were seeded at 4×10^4 cells per well in DMEM-F12 serum-free or 5% FBS in 48-well plates. After 3 hours, the different compounds with which the cells were to be treated were added. After 18 hours of treatment, a $[^3]H$-thymidine 6-hour pulse was added. At the end of this 24-hour period, the medium was carefully removed and 300 µl of ice-cold 10% trichloroacetic acid was added. Cells were harvested and $[^3]H$-thymidine incorporation was measured with a scintillation counter.

b. BrdU incorporation assays

b.1 A172 cell line

Cells were plated overnight on 24-well plates with glass coverslips, at a density of 1×10^4 cells per well, in DMEM high glucose plus 10% FCS at 37°C. Plates were washed 3 times with PBS and were maintained in DMEM without FCS for 30 hours. Cells were then treated for 18 hours with DMEM/10% FCS or DMEM plus mouse recombinant STM (17OnM); STM (17OnM) plus STM 230-26 peptide (17OnM); or STM (17OnM) plus STM 61-76 irrelevant peptide (17OnM). Thirty minutes before the end of treatment, cells received a pulse of BrdU (35µM) and were fixed with 4% paraformaldehyde.

b.2 U87MG cell line

Cells were plated overnight on 24-well plates with glass cover slips, at a density of 1.5×10^4 cells per well, with DMEM with 10% FCS at 37°C. Plates were washed 3 times with PBS and were maintained in DMEM F12 for 48 hours. Cells were then treated for 24 hours with DMEM/10% FCS or DMEM plus mouse recombinant STM (17OnM); recombinant STM (17OnM) plus mouse
peptide STI1\textsubscript{230-245} (ELGNDAYKKDFDKAL) or its human homologue peptide Hop\textsubscript{230-245} (ELGNDAYKKDFDTAL) (17OnM or 8\(\mu\)M); STH (17OnM) plus STI1/Hop\textsubscript{176} (GCKTVDLKPDWGKYS) irrelevant peptide (17OnM or 8\(\mu\)M); or each one of the peptides alone. Two hours before the end of treatment, cells received a pulse of BrdU (35\(\mu\)M) pulse and were fixed with 4\% paraformaldehyde.

b.3 Immunofluorescence assay for BrdU incorporation

Coverslips were treated with 2N HCl for 30 minutes. The reagent was then removed and borate buffer applied (boric acid 0.1 M, sodium hydroxide 0.15M), pH 8.4, for 10 minutes. Then, cells were treated with PBS plus 0.2\% Triton X-100 for 15 minutes. The blocking step was made with PBS/0.2\% Triton with 20\% horse serum, for 1 hour. Primary anti-BrdU biotinylated antibodies (1:100) were applied overnight (diluted in PBS/0.2\% Triton with 1\% horse serum). Coverslips were washed 3 times with PBS and incubated for one hour with Strepta-Alexa 488 and DAPI reagents (1:1000), washed more 3 times with PBS and assembled to slides.

Cell counting

There were taken at least four microscopic fields of each treatment on WB filter, ranging from 330-385nm (DAPI), plus their respective BrdU images, on WIB filter, 450-480nm using DP controller software, Olympus. Picture files were analyzed on ImageJ software, and the percentage of BrdU positive nuclei in respect to total nuclei number (DAPI) was calculated using the Analyze Particles tool.

Tissue samples

Fresh surgical samples of glioblastoma and of non-tumor tissue of the CNS (temporal lobectomy from epilepsy surgeries) were macrodissected and immediately snap-frozen in liquid nitrogen upon surgical removal. Necrotic and non-neoplastic areas were removed from the frozen block and the tumor tissue was microdissected prior to the RNA extraction procedure.
For quantitative real time RT-PCR, 17 samples of non-tumor and 76 glioblastomas from humans were evaluated.

Total RNA isolation and cDNA synthesis

Total RNA was extracted from normal and tumor tissues using guanidine isothiocyanate. Conventional reverse transcription was performed to obtain single-strand cDNA for real time RT-PCR.

Quantitative real-time RT-PCR

The STM/Hop expression levels were determined by real time PCR analysis. Primers were designed to amplify a DNA fragment of 101-bp length. Primer sequences were as follows (5' to 3'):

F: CCTGGGCGACGAAACTACAAGA, R: GCAATCTCTTCTCCTCCTCATCC. All primers were synthesized by Sigma.

The minimum concentration of primers was determined by the lowest threshold cycle and maximum amplification efficiency while minimizing nonspecific amplification. Analysis of DNA melting curves demonstrated a single peak for both primers. The reactions consisted of: 3μl of primer mixture (final concentration of 10OnM), 3μl of cDNA sample, and 6μl SYBR Green I Master Mix (Applied Biosystems). Reactions were run on an ABI Prism 5700 sequence detector (Applied Biosystems). DNA melting curve analysis showed a single peak for the STM/Hop amplified product. Quantitative data was normalized relative to the internal housekeeping control (BCRP- Breast cancer resistance protein; HPRT-hypoxanthine-guanine phosphoribosyltransferase and GUSβ - β-glucuronidase).

The 1,73^ΔΔCt^ equation was applied to calculate the relative expression of Hop in tumor samples versus the median of normal CNS tissues, where ΔCt = Ct gene - Ct normal, and ΔΔCt = ΔCt tumor - mean ΔCt normal tissues.

Behavioral training of animals in long-term memory tests

Rats were trained in a one-trial, step-down IA paradigm, a hippocampal-dependent learning task in which stepping down from a platform present in a given context is associated with a foot shock, resulting in an increase in step-
down latency when the animal is brought back to the training chamber for a
retention test (Cammarota et al., 2004). The IA apparatus was a 50 X 25 X 25
cm Plexiglas box with a 5-cm-high, 8-cm-wide and 25-cm-long platform on the
left end of a series of bronze bars that constitutes the floor of the box. During
training, each animal was gently placed on the platform facing the left rear
corner of the training box. When an animal stepped down and placed all four of
its paws on the grid, it received a 2-s, 0.5-mA foot shock and was then
immediately withdrawn from the training box. Animals were replaced in the IA
box for retention testing 90 min (for short-term memory (STM)), or 24 h later
(for long-term memory (LTM)); their latency to step down onto the grid was
recorded. The difference between the training and test-session step-down
latencies was taken as a measure of retention. Better memory for the training
was inferred from longer retention latencies (Bernabeu et al., 1997; Izquierdo et
al., 1997). The maximum retention latency allowed was 180 s, at which time
the animal was taken out of the IA box if it had not stepped down and given a
score of 180 s. Full details of the experimental protocols can be found in
Coitinho et al., 2007.

Statistical analysis

The number of experimental replicates for each of the studies shown in
Figures 1-6 is given in the respective figure legends. Data were analyzed by
Student's t-test when two groups are compared or ANOVA followed by *post-
hoc* comparisons (Tukey's test) when multiple groups are compared.

In proliferation assays, the mean values of at least three independent
datasets are shown in the figures; the error bars represent standard error of
measurement (SEM). ANOVA followed by Tukey-HSD or Dunnets tests were
used for multiple comparisons. Results were considered statistically significant
when p was < 0.05.

For quantitative RT-PCR statistical analysis was applied to gene
expression data obtained from both glioblastomas and normal CNS tissues.
The Mann-Whitney test was used and the results were considered statistically
significant when p was < 0.05.

The data obtained in tests of the effect of peptides on rat long-term
memory are presented as medians ± interquartile range and were analyzed by
the Kruskal-Wallis nonparametric test followed by Dunn's post-hoc (n=10 to 13 animals for each treatment group). In all comparisons, p< 0.05 was taken as a significant difference.

RESULTS

Hop is secreted by A172 human glioblastoma cell line and induces proliferation.

We first tested for the expression of Hop in the A172 human GBM cell line. Western blot assays of A172 total lysates probed for Hop showed a single band at the expected molecular weight (66kDa) (Fig. 1A), and immunocytochemistry of cells cultured in serum-free media and fixed with paraformaldehyde showed extensive Hop immunolabeling (Fig. 1S).

The cellular secretion of Hsp-90 as well as STM/Hop has been previously described (Eustace and Jay 2004; Eustace et al. 2004) and results from our group (Lima et al. 2007) demonstrated that STI1/Hop is secreted from primary astrocyte cultures. We conducted western blots and immunoprecipitation assays and demonstrated the presence of Hop in conditioned medium from A172 cells (Fig. 1C; CM). Hop was immunoprecipitated from CM using specific antibodies (Fig. 1C pellet) and depleted from the immunoprecipitation supernatant material (Fig. 1C; depleted). The lack of CD44 in the conditioned medium also confirmed the absence of cell lysis. Therefore, these data demonstrated that Hop is secreted from the A172 glioma cell line.

To test whether STM/Hop modulates proliferation of a GBM cell line, we assayed [³H]-thymidine incorporation in A172 cells cultured in serum-free media. Proliferation was determined by quantitative measurement of [³H]-thymidine incorporation (6.7 µCi/ml, 6-hour pulse) and the results were normalized with respect to the rate of proliferation (100%) in serum-free media (CTR). A172 cells treated with recombinant STM (170 nM) showed a marked increase in the uptake of thymidine, as compared with control (Fig. 1D), indicating that STM/Hop induces proliferation of this cell line. Dose- response curves demonstrated that the STI1/Hop effect was maximum at 170 nM (Fig. 5A).
MAPK and PI3K signaling pathways are involved in the STH-induced proliferation of glioma cells.

MAPK and PI3K signaling pathways commonly relate to cell proliferation and are often deregulated in cancer. In order to investigate the involvement of these pathways in STM-induced proliferation, A172 cells were treated with STM in the presence of either U0126, an inhibitor of the Erk-activating kinase MEK, or LY294002, an inhibitor of PI3K. These drugs completely abolished STM-induced proliferation, which suggests the involvement of both pathways (Fig. 2A) in this phenotype. Cell viability was always higher than 95%, ruling out possible cytotoxic effects of the inhibitors as the cause of the proliferation blockade (Fig. 2B).

Western blots of lysates from A172 cells cultured in serum-free media confirmed that treatment with STM induced activation of Erk and Akt and that this effect was abolished by co-treatment with U0126 or LY294002, respectively (Figs. 2C, D and 2E, F). Interestingly, STM co-treatment with LY294002 led to an increase in the phosphorylation of Erk (Figs. 2C, D; lane 4) as compared with cells treated only with STM (Fig. 2C, D; lane 2).

Paradoxical effects of MAPK activation regarding not only its intensity, but also its duration have already been described (Marshall 1995; Sebolt-Leopold and Herrera 2004; Sewing et al. 1997; Sharrocks 2006). In this context, we assayed for Erk activation induced by treatment with STM alone, STM in the presence of LY294002 and LY294002 alone for 5, 35 and 60 minutes (Figs. 2G, H). Although the levels of Erk activation in cells treated for 5 min. with LY294002 (lane 8) were similar to those in cells treated with STM (lane 2), Erk activity induced by the PI3K inhibitor was much more durable, lasting for at least one hour (lanes 8-10), as opposed to that seen in STM-treated cells (lanes 2-4). STM treatment in the presence of the PI3K inhibitor led to an increase in the intensity and duration of Erk activity (lanes 5-7) as compared to that seen in cells treated with STM alone (lanes 2-4).

STM/Hop-induced neuroprotection was previously related to PKA pathway activation (Chiarini et al. 2002; Lopes et al. 2005). In this context we tested for the effect of forskolin, an activator of adenylyl cyclase, upon
incorporation of thymidine by A172 cells (Fig. 21). Even when cultured in serum-free media, cells treated with forskolin showed a marked decrease in DNA synthesis, as compared to control group. This result suggests that the involvement of PKA in STI1/Hop-induced proliferation is unlikely.

STI1/Hop modulates the proliferation of distinct glioma cell lines.

Although gliomas are classified in different groups based on histological features, it is known that these tumors are constituted by a heterogeneous set of cell populations, which renders each tumor a unique pathologic process and prevents the development of broadly effective therapeutic regimens. To address the generality of the effect of STM/Hop, we treated distinct tumor cell lines with STM and assayed for thymidine incorporation (Fig. 3). Similarly to A172 cells, both C6 and U87-MG cell lines, respectively, a rat glioma and a human GBM, were responsive to STM treatment, although with different intensities. On the other hand, the MCF-7 cell line, a breast adenocarcinoma, was insensitive to STM treatment.

STH/Hop does not induce proliferation of normal astrocytes.

To compare with the response of the GBM cell line, normal astrocytes obtained from neonate rats cultured in serum-free media (Fig. AA) or in media supplemented with FBS 5% (Fig. AB) were treated with STM, and assayed for thymidine incorporation. STM had no effect upon the low level of proliferation of the astrocytes cultured in serum-free medium. However, STM treatment produced a small but statistically significant decrease in the proliferation of astrocytes cultured in FBS 5%. The effect of FBS 5% upon astrocyte proliferation is shown in Fig. AC. Immunocytochemistry assays confirmed the expression of GFAP in these astrocytes (Fig. AD).

The PrP^c binding site of STI1/Hop is necessary for STM-induced proliferation of A172 cells

Cellular prion (PrP^c) was previously described as an STM/Hop receptor and also related to STM/Hop-induced neuroprotection and differentiation (Chiarini et al. 2002; Lopes et al. 2005; Zanata et al. 2002). To investigate a possible role of PrP^c in the proliferative effect of STM/Hop, we performed
thymidine incorporation assays in A172 cells treated with distinct concentrations of a mouse STH mutant lacking residues 230-245 (STH Δ230-245) (Lopes et al. 2005) whose deleted domain was previously characterized as the PrP c binding site (Zanata et al. 2002). While wild-type STM promoted proliferation of glioma cells, the mutant STM did not promote proliferation (Fig. 5A). Flow cytometry confirmed the presence of PrP c at the surface of viable A172 cells (Fig. 5S). These data indicate a role for PrP c in STM/Hop-induced proliferation of A172 cells.

The use of STH230-245 peptide to block STI1/Hop-dependent glioma proliferation

In light of the observations disclosed above, we have identified mouse STM Δ30-245 and other related peptides as candidates for effectively inhibiting the proliferation of human gliomas and other cancers triggered by the interaction between STM/Hop and PrP c. Accordingly, we undertook various additional investigations into the effect of such peptides on glioma-cell proliferation.

The proliferation was assessed by bromodeoxyuridine (BrdU) incorporation, followed by immunofluorescence imaging and cell counting. The "starvation" period confers a better interval for observation of the effects of the studied factor (STM/Hop) and the hypothetical inhibitors STI1_230-245 and Hop 230-245 peptides. Additionally, the BrdU assay affords a more reliable proliferation evaluation, in which it is possible to observe the morphology and integrity of cells, and documentation (microscope imaging). While a thymidine incorporation assay best exhibits speed of DNA synthesis, by indirect CPM counting, a BrdU incorporation assay is more objective, allowing the measurement of the number of cells synthesizing DNA and deduction of the percentage of cells under proliferation. For these reasons, we selected the BrdU/DAPI ratio of positive nuclei as the analysis method.

STM 230-245 peptide abrogates STM-induced proliferation

Similarly to the previously described findings (Erlich et al., 2007), STM was observed to produce a 1.5-fold increase on A172 cell proliferation. On the other hand, mouse STM 230-245 peptide (ELGNDAYKKDFDKAL) at the same
concentration of STM (17OnM) inhibited STM-induced proliferation, while N-terminus irrelevant STH/Hop peptide (STI1/Hop_{61-76}) had no effect on ST11-mediated proliferation (Fig. 7A).

Figure 6 depicts the results of what served as a control study; the effect of STI1_{230-245} alone on proliferation of A172 cells was monitored. As can be seen from this figure, STM_{230-245} was unable by itself to promote proliferation of A172 cells. It can also be seen in Figure 6 that N-terminal irrelevant peptide STM_{61-76} did not enhance proliferation.

We observed that STM treatment promoted a 3-fold increase of U87MG proliferation, which was blocked by the STI1_{230-245} peptide at 17OnM and 8µM but not by the irrelevant STI1/Hop_{61-76} peptide. The sequences of the STI1_{61-76} and Hop_{61-76} peptides are the same (see Table 1). Experimental data are summarized in Figure 7B.

U87MG cells presented a slower doubling time (48 hours) than A172 and were very sensitive to serum starvation. Thus they were starved in DMEM F12 for this purpose (Brockmann et al., 2003).

HOP_{230-245} peptide inhibits STM-induced proliferation

Furthermore, we addressed whether the human homologue of mouse STI1_{230-245} peptide — Hop_{230-245} (ELGNDAYKKKDFDTAL) — could modulate proliferation in U87MG cells. The homology between STM and Hop peptides is shown in the side-by-side comparison of the two full sequences in Table 1.

The data in Figure 8 show that Hop_{230-245} peptide, as well as its mouse counterpart (STH_{230-245}), were able to abrogate the cell proliferation mediated by STM. The N-terminal irrelevant peptide, STI1/Hop_{61-76}, had no effect upon proliferation mediated by STM.

Taken together, these data validate the use of the human counterpart of STI1_{230-245} peptide (Hop_{230-245}) to block STI1-induced proliferation.
Table 1

Homology between STM and Hop amino acid sequences (98%)

HUMAN - Hop
MOUSE - STM

1 MEQVNELKEK GNKALSVGNI DDALQCYSEA IKLDPHNHVL
YSNRSAAYAK KGDYQKAYED
1 MEQVNELKEK GNKALSAGNI DDALQCYSEA IKLDPQNHVL
YSNRSAAYAK KGDYQKAYED
61 GCKTVDLKPDD WKGYSRKAA ALEFLN RFEE ARKTYEELKL
HEANNPQLKE GLQNMARLA
61 GCKTVDLKPDD WKGYSRKAA ALEFLNRFEE ARKTYEELKL
HEANNNLQLKE GLQNMARLA
121 ERKFMNPFFMN PNLYQKLESDD PRTRTLSSDP TYRELIEQLR
NKPSDLGTQKQDPRVMTTLS
121 ERKFMNPFFML PNLYQKLEND PRTRSSLLSDP TYRELIEQLQ
NKPSDLGTQKQDPRVMTTLS
181 VLLGVDLGSMD DEEEIE IATPP PPPPPKKEPK PEPEMEEEDLP
NKQALKKEFELGNDAYKKKD
181 VLLGVDLGSMD DEEEIAATPP PPPPPKKEPK PEPEMEEEDLP
NKQALKKEFELGNDAYKKKD
241 HTIKHYDK AKELDPTNMT YITNQAVYEFFKGDYNKCRE
LCEKAIEVGR ENREDYRQIA
211 iikIIKHYDR AKELDPTNMT YITNQAVYHF EKGDYNKCRE
LCEKAIEVGR ENREDYRQIA
301 KAYARIGNSY FKEEYKDAI HFYN KSAEH RTPDVKSKCQ
QAEEKILKEQ RELAIKNDPLA
301 KAYARIGNSY FKEEYKDAI HFYN KSAEH RTPDVKSKCQ
QAEEKILKEQ RELAIKNDPLA
361 LEEKNKGNEC FOKGDYPQAM KHYTEAIKRNPKDAKLYSNR
AAPYTKLQF QLALKDCEEC
361 LEEKNKGNEC FOKGDYPQAM KHYTEAIKRNPKDAKLYSNR
AAPYTKLQF QLALKDCEEC
421 IQLEPTFIFKGVYTRKAAALEA MKDYTKAMDVP YQKALDDLSS
CKEADGYYQR CMMAQNYRHD
421 IQLEPTFIFKGVYTRKAAALEA MKDYTKAMDVP YQKALDDLSS
CKEADGYYQR CMMAQNYRHD
481 SPEDVKRRAM ADPEVQIMS DPAMRLILEQ MKQDPQALSE
HLKNPVIQAK IQKLMVGLI
481 SPEDVKRRAM ADPEVQIMS DPAMRLILEQ MKQDPQALSE
HLKNPVIQAK IQKLMVGLI
541 AIR
541 AIR
Therapeutic use of STH/H0P230-245 peptide to treat GBM.

TAT-ST1\textsubscript{1230-245} and TAT-H\textsubscript{OP230-245} peptides are able to block cell proliferation mediated by STM

Since a primary objective was to implicate STI1/Hop230-245 peptides as candidates for a therapeutic approach to GBM, an alternative method for attaining optimal distribution on the brain and for reaching tumor cells became crucial. Therefore, for this purpose, STM and Hop peptides were conjugated to a TAT peptide sequence (YGRKKRRQRRR), a membrane transduction domain of the HIV-1 Tat protein which permits proteins or peptides to cross the blood-brain barrier (Fawell et al., 2006; Cai et al., 2006). The biological activity of the TAT-ST1\textsubscript{1230-245} (YGRKKRRQRRRELGNDAYKKKDFDKAL) and TAT-Hop\textsubscript{230-245} (YGRKKRRQRRRELGNDAYKKKDFDTAL) peptides on U87 proliferation mediated by STM/Hop was tested. Figure 9 shows that similarly to the STI1\textsubscript{230-245} and Hop\textsubscript{230-245} peptides, TAT-ST1\textsubscript{1230-245} and TAT-Hop\textsubscript{230-245} peptides were able to block cell proliferation mediated by STM. Indeed, it was observed that the fusion of TAT peptide to the STI1\textsubscript{230-245} and Hop\textsubscript{230-245} peptides did not change their inhibitory activity on STM-mediated glioblastoma-cell proliferation.

The TAT peptide allows the STM\textsubscript{230-245} peptide to cross the cell membrane

Another requirement for \textit{in vivo} validation of TAT-ST1\textsubscript{230-245} peptide effects on tumor xenografts is the study of peptide bioavailability, tissue distribution and half-life. To observe this and, especially, to confirm that TAT-STI1\textsubscript{230-245} is diffusible and crosses the cell membrane, we conjugated a dansyl chloride fluorophore (Aarts et al., 2002; Brebner et al., 2005) to the TAT-STH230-245 peptide.

We assessed the U87MG-cell staining pattern of the dansyl-TAT-STI1\textsubscript{230-245} peptide and the irrelevant dansyl-TAT-ST1\textsubscript{1422-437} peptide, as demonstrated in Figure 10. The peptides were able to cross the cell membrane and they labeled cells efficiently.
STI1/Hop 3o-245 peptide and its TAT-associated forms promote increase in memory formation and can be used as neuroprotective agents against cognitive deficits in patients with brain tumors.

The improvement in treatments of patients with brain cancer has led to a higher survival rate. However, it has also increased cognitive deficits, particularly because of side effects of drugs and radiotherapy. The use of agents designed to protect neurons against apoptosis or neurodegeneration is an interesting approach to be considered (Gehring et al., 2008). Previous studies suggested that STI1 3o-245 peptide was able to promote neuronal survival (Chiahni et al., 2002; Zanata et al., 2002), neuronal differentiation (Lopes et al., 2005) and long-term memory (LTM) consolidation in rats (Coitinho et al., 2007). As demonstrated in the present studies, while inhibiting proliferative activity in tumors derived from glia cells (Figures 7 to 9), the peptides STI1 23o-245 and Hop 23o-245, as well as their counterparts associated to TAT peptide (TAT- STI1 23o-245 and TAT-Hop 23o-245), have a potent effect in memory consolidation in rats (Figure 11) due to their ability to protect neurons.

Therefore, the STI1/Hop 23o-245 peptides can have a dual effect in the treatment of glioblastomas. The first one is to decrease tumor proliferation mediated by secreted STM/Hop and the second one is its protective effects in neurons and improvement in patients’ cognition.

Hop is highly expressed in GBM patients

Additionally, we investigated the Hop gene expression profile from 76 human glioblastoma samples using quantitative RT-PCR. It was observed that glioblastoma multiforme (GBM) expressed higher Hop levels (Figure 12) when compared to normal tissue. These results are particularly significant because they demonstrate the connection between STM/Hop expression and cancerous states in vivo, i.e., in human tissue samples and not just in cancer cell lines growing in culture.

Besides the TAT peptide described above, other molecules that allow drugs to cross the blood-brain barrier (BBB) have been proposed. These molecules can bind to receptors which are responsible for maintaining the integrity of the BBB and brain homeostasis. One important receptor in this
regard is the lipoprotein receptor-related protein (LRP), which possesses the ability to mediate transport of ligands across endothelial cells of the BBB (Shibata et al., 2000, and Ito et al., 2006). The peptide called Angiopep-2 (TFFYGGCRGKRNNFKTEEY), an aprotinine-derived peptide, is able to bind LRP and promote drug delivery in the CNS (Demeule et al., 2008). Angiopep-2 has been recently conjugated to paclitaxel, and improved therapeutic efficacy was observed in orthotopic models of primary and metastatic brain cancer (Regina et al., 2008). Conjugation of STM230-245 and Hop230-245 with Angiopep-2 and other peptides involved in transport across the BBB would also provide enhanced bioavailability of the peptides of the present invention to the site(s) of brain cancer in a patient.

It is also known that peptide cyclization can enhance stability without the loss of biological activity. (Pakkala et al., 2007; Yokoyama et al., 2004). This approach can be used with STM230-245 and Hop230-245 peptides and their conjugates as disclosed herein to enhance their stability.

In addition, we have established a colony of nude (immunosuppressed) mice that is currently under expansion. These animals will be used to perform glioblastoma-cell engraftment and to evaluate the role of STI1230-245 and Hop230-245 peptides, and their TAT-associated counterparts, on tumor growth and survival. Due to the fact that they are more readily accepted in xenograft models and due to their capacity for tumohgenesis, U87MG cells will be used instead of A172 cells for these studies. It is anticipated that the results from these studies will provide further support for the notion that the inventive peptides have use as agents for the treatment of brain cancers and other cancers linked with the interaction between PrPc and STM/Hop.

Our studies showed that: 1) Hop is secreted by a glioblastoma cell line; 2) STM induces proliferation of distinct glioma cell lines; 3) the Erk and Akt signaling pathways mediate STI1-induced proliferation; 4) STM does not induce proliferation in normal astrocytes; 5) STI1-induced proliferation of A172 cells depends on its PrPc binding domain; 6) both STI1230-245 and Hop230-245 peptides inhibit STM-induced proliferation of A172 and U87MG cells; 7) the TAT-conjugates of STI1230-245 and Hop230-245 also inhibit glioblastoma cell proliferation; 8) conjugation of the peptides with TAT allows them to cross the cell membrane, most importantly the blood-brain barrier; 9) the STI1230-245
peptide and its TAT conjugate enhance cognition in vivo; and 10) high expression of the Hop gene is associated with glioblastoma tissue.

Pharmacological blockade of the protein kinases Mek and PI3K abolished activation of Erk and Akt, respectively, and STM/Hop-induced proliferation of A172 cells. In addition, treatment with STI1/Hop activated Erk and Akt, indicating the involvement of these signaling pathways in the proliferative effect. Treatment with LY294002 induced an increase in the phosphorylation levels of Erk, a finding that suggests the existence of crosstalk between these pathways (Corradetti and Guan 2006). Although activation of MAPK pathways is commonly related to an increase in proliferation, paradoxical effects of MAPK activation regarding its duration and intensity have already been described (Marshall 1995; Sewing, Wiseman et al. 1997; Sebolt-Leopold and Herrera 2004; Murphy and Blenis 2006; Sharrocks 2006). In addition, previous studies showed that Akt activation may cause downregulation of the MAPK pathway (Guan et al. 2000; Moelling et al. 2002; Zimmermann and Moelling 1999).

We showed that STM/Hop imposes a small and transient activation of Erk, which leads to increased proliferation. On the other hand, when PI3K was inhibited, STI1/Hop-induced activation of Erk was more intense and durable, possibly because in this situation Erk pathway activity was not counterbalanced by Akt. In fact, this pattern of Erk activation may cause cell cycle arrest (Bottazzi et al. 1999; Pumiglia and Decker 1997). Cells subjected to treatment solely with LY294002 or STI1/Hop showed a similar increase in Erk activation as assayed after a 5-minute treatment. However, as opposed to the effect of STI1/Hop treatment on cells, the PI3K inhibitor induced a much more durable Erk activation, which persisted for at least one hour and was not related to increase in proliferation. Together, these data indicate that parallel activation of both the Erk and Akt pathways is required for the proliferative effects of STM/Hop and that the intensity and duration of Erk activation may ultimately determine the final effect of STM/Hop on proliferation. A direct involvement of the PKA pathway in the proliferative effect of STI1/Hop is unlikely, because a) upregulation of the cAMP/PKA pathway inhibits proliferation in A172 cells (Chen et al. 1998) and b) our experiments showed that forskolin induces a marked decrease in the incorporation of thymidine.
We showed that distinct tumor-cell lineages respond in distinct ways to STH treatment. It is noteworthy that MCF7 cells, the only non-glial tumor cell line tested, in which PTEN function is not disrupted, was not affected by STM. It is reasonable to conclude that at least part of the distinct STM effects on different types of tumor-cell lines are correlated to distinct mechanisms of cell signaling regulation.

The contrast in effect of STM/Hop upon proliferation in tumor-cell lines and normal glia proliferation is pivotal. These data suggest that drugs capable of disrupting proliferation induced by STM/Hop would present some kind of selectivity towards tumor cells. In a completely distinct context, Kamal et al. (2003) showed that the increased activity of Hsp90, commonly observed in cancers, and probably responsible for an observed tumor response selectivity to the antibiotic geldanamicin, is explained by the formation of multi-chaperone complexes (including STI1/Hop) in tumors but not in normal tissues.

Prions are proteins identified as the etiologic agents of transmissible spongiform encephalopathies, a group of rare neurodegenerative diseases (Prusiner 1998). Although the precise mechanism that leads to the characteristic neurodegeneration observed in these diseases is not fully understood, abundant evidence supports the idea that the expression of cellular prion (PrP\(^c\)), the nonpathological isoform of the protein, and its conversion to a pathological conformer, are necessary for development of the disease (Bueeler et al. 1993). The neurotoxic property acquired by the pathological isoform compared to the normal protein raised the gain-of-function hypothesis. However, loss of function of the normal PrP\(^c\), caused by its conversion to the pathological isoform, may also contribute to the pathogenesis of prion diseases (Aguzzi and Weissmann 1997; Hetz et al. 2003; Samaia and Brentani 1998). In the last decade, many studies have related PrP\(^c\) to distinct physiological functions (Aguzzi and Polymenidou 2004; Martins et al. 2001; Linden et al. 2008).

It has been demonstrated that PrP\(^c\) is overexpressed in gastric cancer tissues, and its levels are positively correlated to the process of invasiveness and metastasis (Pan et al. 2006). In gastric cancer cell lines, PrP\(^c\) promotes invasion and metastasis through activation of the Mek/Erk pathway and consequent transactivation of MMP11 (Pan et al. 2006). Moreover, PrP\(^c\)
ectopic expression promotes tumorigenesis, proliferation and G1/S transition in gastric cancer cells (Liang et al. 2007).

Our data showed that, as opposed to the wild-type recombinant protein, a deletion mutant STM which does not bind PrPc (Lopes et al. 2005) was unable to promote glioma proliferation. These data indicate that endogenous PrPc is involved in STI1/Hop-induced proliferation of gliomas.

As shown by the disclosure herein, STM induces the proliferation of glioma cells but not of normal astrocytes. Furthermore, the PrPc binding site of STM/Hop is necessary to achieve this effect. Still further, a mutant STM missing the PrPc binding site fails to induce proliferation.

Our studies have further demonstrated that peptides STI1_{161-176} and Hop_{230-245}, and their TAT-conjugates, inhibit the previously demonstrated ability of STM to enhance proliferation of glioma cells. The extension of the significance of these effects beyond the context of cell cultures, particularly in connection with the TAT-conjugated peptides, was performed in experiments testing the diffusion and ability of the conjugates to cross the cell membrane. The experiments summarized in Fig. 11 suggested that the peptides did cross the BBB, thus indicating the potential of the peptides in an in vivo context.

Further studies on trained rats treated with STH_{230-245} and TAT-STI1_{230-245} showed that these peptides greatly enhanced long-term memory; animals treated with these peptides showed significantly longer retention latencies than were seen for control animals and those treated with (irrelevant) TAT-STI1_{161-176} peptide.

Accordingly, one aspect of the present invention is a method for treating gliomas which involves interfering with the interaction between STM/Hop and PrPc. In one embodiment, this could involve administration of a peptide that mimics the PrPc binding site of STI1/Hop. Another embodiment would involve reduction of the effective amounts of STI1/Hop, either by a) administering a compound that targets STM/Hop and interferes with its proliferative function or b) administering a molecule such as an siRNA that interferes with expression of STM/Hop.

Among the peptides to be used in the practice of the invention are ELGNDAYKKDFDTAL, ELGNDAYKKDFDKAL,
YGRKKRRQRRRELGNNDAYKKKDFDTAL and
YGRKKRRQRRRELGNNDAYKKKDFDKAL (ST1 1230-245, Hop23o-245 and their
respective TAT conjugates). However, the invention is by no means limited to
these exemplary peptides. For example, additional peptides to be used in the
practice of the invention are cyclized versions of the ones recited above. Still
further examples are TFFYGGCRGKRNNFKTEEYELGNNDAYKKKDFDTAL and
TFFYGGCRGKRNNFKTEEYELGNNDAYKKKDFDKAL (the STM 230-245 and
Hop 230-245 peptides conjugated to Angiopep-2) and cyclized forms thereof. The
invention also encompasses functional variants of these peptides and other
peptides capable of mimicking the PrP c binding site of STI1/Hop. By functional
variants are meant, for example, derivatives of the peptides, and their cyclized
forms, containing one or more amino-acid additions, deletions, insertions or
substitutions, or combinations of these changes. The invention is not limited to
STM /Hop peptides and functional variants thereof conjugated to TAT or
Angiopep-2. It is expected that the invention can also be practiced with any
STM /Hop conjugate, wherein the peptide conjugated to the STM /Hop enables
crossing of the BBB. The peptides of the invention can be produced by any of
the means of synthesis well known to those of skill in the art (see, e.g.,
Merrifield and Stewart 1965).

Another aspect of the invention concerns antibodies raised against
peptides that mimic the PrP c binding site of STI1/Hop. Such antibodies could
be raised against, for example, the peptides disclosed above, as well as
against functional variants of these peptides and other peptides capable of
mimicking the PrP c binding site of STI1/Hop. Such antibodies could also be
used in the treatment of cancers triggered by the interaction between STM /Hop
and PrP c. Such antibodies may be produced by any of the techniques well
known to one of skill in the art. (See, for example, Monoclonal Antibodies:
Methods and Protocols, R. Rose and M. Albitar, Eds., Humana Press, 1st
Spring Harbor Laboratory Press (2003).) Although monoclonal antibodies are
preferred for the practice of the invention, the invention also encompasses
polyclonal antibodies of suitable specificity.

The invention is not limited to the treatment of gliomas. It is well known
that STM /Hop is also overexpressed in, for example, the colon and the
stomach. Thus, the methods of the present invention, and the compounds to
be used to practice the methods, are applicable also to the treatment of such
cancers as colon cancer, colorectal cancer, gastric cancer, glioblastoma,
medulloblastoma and astrocytoma.

The invention is not limited to conditions brought about by
overexpression of STI1/Hop. As disclosed earlier, it would be expected that the
reduction of normal levels of STM/Hop would lead to the reduction of cancer-
cell proliferation and, hence, alleviation of the cancer itself.

Another embodiment of the invention is directed to methods employing
the peptides of the present invention for diminishing and even eliminating the
side effects of drug therapy and radiotherapy used in treating patients with
brain cancers. Such side effects include neuronal death and loss of neuronal
differentiation. They further include diminished cognitive function, for example
reduced long-term memory consolidation.

Yet another aspect of the invention concerns methods for identifying
compounds suitable for the treatment of cancers regulated by the binding of
STM/Hop to PrPC. Such methods involve monitoring test compounds for their
ability to reduce STI1/Hop-PrPC interaction directly, to reduce the amount of
endogenous STM/Hop that is functional and/or to reduce the amount of
STM/Hop expressed in cancer cells or potentially cancerous cell lines.

References
and Tymianski M (2002) Treatment of ischemic brain damage by
perturbing NMDA receptor- PSD-95 protein interactions. Science 298:
846-850.
Aguzzi A, Polymenidou M. 2004. Mammalian prion biology: one century of
Americo TA, Chiarini LB, Linden R. 2007. Signaling induced by hop/STI1
Hop/STI1 modulates retinal proliferation and cell death independent of PrPc. Biochem Biophys Res Commun In press.

Lima FR, Trentin AG, Rosenthal D, Chagas C, Moura Neto V. 1997. Thyroid hormone induces protein secretion and morphological changes in

Nicolet CM, Craig EA. 1989. Isolation and characterization of STM, a stress-
inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 9(9):3638-
46.

Odunuga O0, Longshaw VM, Blatch GL. 2004. Hop: more than an
kallikrein-2-specific linear and cyclic peptide inhibitors. J Peptide Sci

others. 2006. Cellular prion protein promotes invasion and metastasis of

Pumiglia KM, Decker SJ. 1997. Cell cycle arrest mediated by the
MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S
A 94(2):448-52.

Regina A, Demeule M, Che C, Lavallee i, Poirier J, Gabathuler R, Beliveau R,
between paclitaxel and the new brain delivery vector Angiopep-2. Br J

causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17(9):5588-
97.

Sharrocks AD. 2006. Cell cycle: sustained ERK signalling represses the

Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman
of Alzheimer’s amyloid-ss (1-40) peptide from brain by LDL receptor-
related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489-
99.

- 31 -

FIGURE LEGENDS

Figure 1: Hop is secreted by A172 human glioblastoma cell line and induces proliferation. A. Western blot from A172-cell lysate probed against STI1/Hop antibody (Bethyl) reveals a single band at the expected molecular weight (66kDa). As an isotype control, A172-cell lysate was also probed against an irrelevant IgG. B. A172 cells cultured in serum-free culture media for 24 hr were fixed and immunolabeled with an anti-STI1/Hop antibody (Bethyl) (Left panel). The right panel represents a negative control for the anti- STH/Hop antibody to exclude unspecific staining from the secondary antibody. Nuclei in both panels were stained with DAPI. Bar, 100µm. C. Western blot of A172 conditioned media (CM) probed with anti-STI1/Hop (Bethyl) antibody shows a band at the expected molecular weight range. The identity of the band is confirmed by its disappearance after Hop immunodepletion of CM. The pellet resulting from immunodepletion was subjected to a western blot assay that shows Hop (Pellet). CM, integral conditioned media; depleted, immunodepleted CM. The lanes are representative of equivalent starting cell numbers. Lower bands observed in the CM and Pellet lanes correspond to protein degradation and IgG heavy chain respectively. D. A172 cells were cultured in serum-free media and subjected to STM treatment (17OnM) for 24 hr. Proliferation was determined as described herein. Values are mean ± standard error; n=15; *P<0.001 versus control.

Figure 2: MAPK and PI3K pathways are involved in STM-induced proliferation of glioma cells. A. A172 cells were cultured in serum-free media and subjected to distinct treatments for 24 hr. Inhibitors were added 10 minutes before STM and abolished the STM effect. Proliferation was determined as described herein; n=9. *P<0.05 versus control. Values are mean ± standard error. B. Trypan blue cell viability assay. A172 cells were cultured in serum-free media, subjected to distinct treatments for 24 hr and assayed for viability. Results are expressed as the percentage of dead cells in different experimental groups; n=9. Values are mean ± standard error.
C. A172 cells were subjected to STM treatment for 5 minutes. D. Densitometry of phospho-Erk western blots as shown in Fig. 2 C; n=3. Values are mean ± standard error, normalized to untreated cells. E. A172 cells were subjected to STM treatment for 1 minute. F. Densitometry of phospho-Akt western blots as shown in Fig. 2 E; n=3. Values are mean ± standard error, normalized to untreated cells. G. A172 cells were subjected to distinct treatments for the indicated times. H. Densitometry of phospho-Erk western blots as shown in Fig. 2 G; n=3. Values are mean ± standard error, normalized to untreated cells.

In co-treatments, inhibitors were added 10 minutes prior to STM. / A172 cells were cultured in serum-free media and subjected to forskolin treatment for 24 hr. Proliferation was determined as described herein. n=9. *P<0.001 versus control. Values are mean ± standard error.

Figure 3: STM induces proliferation in distinct glioma cell lines. Cells were cultured in serum-free media and subjected to STM treatment for 24 hr. Proliferation was determined by quantitative measurement of [3H]-thymidine incorporation (6.7uCi/ml, 6-hour pulse). The results are respectively normalized to the rate of proliferation (100%) in serum-free media. (CTR); n=9; C6, rat glioma; MCF7, human breast adenocarcinoma; U87, human glioblastoma. *P<0.01 versus control. Values are mean ± standard error.

Figure 4: STM does not induce proliferation in normal glia. Astrocytes obtained from neonate rats were cultured in serum-free media (A) or in 5% fetal bovine serum (FCS) (S) and subjected to STM treatment for 24 hr. C. FCS 5% effect upon astrocyte proliferation. Proliferation was determined as described herein. n=15; *P<0.05 versus control; **P<0.001 versus control. Values are mean ± standard error. D. Astrocytes cultured in serum-free media for 48 hr were fixed and immunolabeled for GFAP (Left panel). The right panel represents a negative control for the anti-GFAP antibody to exclude unspecific staining from the secondary antibody. Nuclei in both panels were stained with DAPI. Bar, 50μm.

Figure 5: STM-induced proliferation depends on its PrPc binding site.

A. STMΔ230-245 does not promote proliferation. Cells were cultured in serum-
free media and subjected to wild-type (STM) or mutant (STI1 Δ230-245) treatment at distinct concentrations for 24 hr. Proliferation was determined as described herein. n=9; *P<0.001 versus control. Values are mean ± standard error. B. Cells were incubated with an anti-PrP c antibody raised in Prnp-null mice or with an irrelevant mouse IgG for negative control. Flow cytometry assay shows PrP c expression at the cell surface (anti-PrP c) as compared to negative control (irrel).

Figure 6: STH230-245 peptide that represents the binding site at the PrP 0 molecule is unable to promote proliferation in A172 glioblastoma cell line. Cells were cultured in serum-free media and subjected to ST1 1230-245 (ELGNDAYKKDFDKAL) or STI1/Hop 61-76 (GCKTVDLKPDWKGYS) peptide treatment at the indicated concentration for 24 hr. Proliferation was determined by quantitative measurement of [3H]-thymidine incorporation (6.7uCi/ml, 6-hour pulse). The results are respectively normalized to the rate of proliferation (100%) in serum-free media. (CTR); n=4. Values are means ± standard error.

Figure 7A: Treatment of A172 cells with STM 230-245 peptide abrogates cell proliferation mediated by STM. A172 human glioblastoma cells were plated at 1x10^4 confluence on glass cover slips of 12mm. After overnight adherence, cells were starved on serum-free media for 30 hours. Cells were subjected to distinct treatments (see picture), for 18 hours, and a BrdU pulse of 32µM was performed on the last 30 minutes of treatment. Immunofluorescence and cell imaging were done in order to permit absolute cell counting. Values represent percentage of BrdU positive cell nuclei from total number of cell nuclei (DAPI staining) on at least four different images of each condition. FCS (fetal calf serum), STM (17OnM) and/or STM 230-245 peptide (17OnM) or STI1/Hop 61-76 (irrelevant N-terminus STM/Hop peptide, 17OnM). *Statistically significant from control (without treatment), p<0.05. Values Bars shown as mean values ± SEM.
Figure 7B: Treatment of U87MG cells with STM 230-245 peptide abrogates cell proliferation mediated by STH. LJ87MG human glioblastoma cells were plated at 1.5x10^4 confluence on glass cover slips of 12mm. After overnight adherence, cells were starved on serum-free media for 48 hours. Cells were subjected to distinct treatments (see picture) for 24 hours, and a BrdLJ pulse of 32µM was performed on the last 2 hours of treatment. Immunofluorescence and cell imaging were done in order to permit absolute cell counting. Values represent percentage of BrdLJ positive cell nuclei from total number of cell nuclei. FCS (fetal calf serum), STI1/Hop (0.1 7µM or δµM) and/or STM 230-2 (0.1 7µM or δµM) and/or STI1/Hop6i-76 (irrelevant N-terminus STI1/Hop peptide, 0.1 7µM or δµM). *Statistically significant from control (without treatment), p<0.01. Bars shown as mean ± SEM.

Figure 8: HOP 230-245 peptide inhibits the U87MG cell proliferation mediated by STM. U87MG human glioblastoma cells were plated at 1.5x10^4 confluence on glass cover slips of 12mm. After overnight adherence, cells were starved on serum-free media for 48 hours. Cells were subjected to distinct treatments (see picture) for 24 hours, and a BrdLJ pulse of 32µM was performed on the last 2 hours of treatment. Immunofluorescence and cell imaging were done in order to permit absolute cell counting. Values represent percentage of BrdLJ positive cell nuclei from total number of cell nuclei. STM (0.1 7µM) and/or Hop 230-245 (0.1 7µM or δµM) and/or STI1/Hop6i-76 (irrelevant STI1/Hop peptide, 0.1 7µM or δµM). *Statistically significant from control (without treatment), p<0.01. Bars shown as mean ± SEM.

Figure 9: Treatment of U87MG cells with TAT-ST1 1230-245 and TAT-HOP 230-245 peptides inhibits cell proliferation mediated by STH. U87MG human glioblastoma cells were plated at 1.5x10^4 confluence on glass cover slips of 12mm. After overnight adherence, cells were starved on serum-free media for 48 hours. Cells were subjected to distinct treatments (see picture) for 24 hours, and a BrdLJ pulse of 32µM was performed on the last 2 hours of treatment. Immunofluorescence and cell imaging were done in order to permit absolute cell counting. STM (0.1 7µM) and/or TAT-ST1 1230-245 (0.1 7µM) and/or
TAT-Hop23o-245 (0.17 µM). Values represent percentage of BrdU positive cell nuclei from total number of cell nuclei. *Statistically significant from control (without treatment), p<0.01. Dunnets test. Bars shown as mean ± SEM.

Figure 10: Dansyl TAT-STH230-145 peptide effectively labeled U87MG cells. Images exhibit fluorescence microscope imaging of U87MG cells that received a 2-hour treatment of Dansyl TAT-ST11230-245 (left panel) and Dansyl TAT-ST11422-437 irrelevant (right panel) peptides. Insets show negative controls.

Figure 11: STH230-245 peptide and TAT-ST11230-245 peptides are capable of increasing long-term memory. The latency to step down before treated rats was recorded (Training) and immediately after training animals received a bilateral hippocampal infusion of saline, STM230-245 peptide, TAT-ST11230-245 or TAT-STM61-76 irrelevant peptide at the concentration of 15 ng/µl in a total volume of 0.5 µl/side. The latency to step down was tested again 24 hours later (LTM test) and measures long-term memory (LTM). Data are shown as mean ± S.E of step-down latencies (n=12 rats in each group). *p<0.05 vs control.

Figure 12: Hop expression in glioblastomas and normal tissue. The mRNA was extracted from normal brain and glioblastomas tissues and RT-PCR was performed to produce cDNA. Total cDNA obtained from 17 normal brain tissues and 76 glioblastoma samples were evaluated for Hop relative expression in both tissues using Real time-PCR. *Statistically significant from normal tissues, p<0.05. Bars represent mean values.
We claim:

1. A method for the treatment of cancer, which comprises administering to a patient in need thereof an effective amount of a peptide that inhibits the interaction between PrPc and Hop, thus inhibiting the Hop-induced proliferation of the cancer cells.

2. The method according to claim 1, wherein the cancer is selected from glioma, glioblastoma, medulloblastoma, astrocytoma, colon cancer, colorectal cancer and gastric cancer.

3. The method according to claim 2, wherein the cancer is a glioma.

4. The method according to any one of claims 1-3, wherein the peptide is selected from the group consisting of ELGNDAKYKKDFDKAL, ELGNDAKYKKDFDTAL, YGRKKRRQRRRELGNDAKYKKDFDTAL, YGRKKRRQRRRELGNDAKYKKDFDKAL, TFFYGGRGKRNFKEYYELGNDAKYKKDFDTAL, TFFYGGRGKRNFKEYYELGNDAKYKKDFDKAL, a cyclized form of any one of the peptides or a functional derivative of any one of the peptides or cyclized forms thereof.

5. A method for the treatment of cancer, which comprises administering to a patient in need thereof an effective amount of a compound that targets endogenous Hop or reduces expression of Hop.

6. The method according to claim 5, wherein the cancer is a glioma.

7. A peptide selected from the group consisting of ELGNDAKYKKDFDTAL, YGRKKRRQRRRELGNDAKYKKDFDTAL, YGRKKRRQRRRELGNDAKYKKDFDKAL, TFFYGGRGKRNFKEYYELGNDAKYKKDFDTAL, TFFYGGRGKRNFKEYYELGNDAKYKKDFDKAL, a cyclized form of any one of the peptides or a functional derivative of any one of the peptides or cyclized forms thereof.
8. An antibody raised against a peptide selected from the group consisting of ELGNDAYKKDFDKAL, ELGNDAYKKDFDTAL, YGRKKRRQRRRELGNDAYKKDFDTAL, YGRKKRRQRRRELGNDAYKKDFDKAL, TFFYGCCRGRNNFKTEEYLEGNDAYKKDFDTAL, TFFYGCCRGRNNFKTEEYLEGNDAYKKDFDKAL, a cyclized form of any one of the peptides or a functional derivative of any one of the peptides or cyclized forms thereof.

9. A method for the treatment of cancer, which comprises administering to a patient in need thereof an effective amount of an antibody according to claim 8.

10. The method according to claim 9, wherein the cancer is a glioma.

11. A method for alleviating or eliminating the side effects of drug therapy and radiotherapy used in treating patients with brain cancers, which comprises administering to such a patient an effective amount of a peptide that inhibits the interaction between PrPc and Hop.

12. The method according to claim 11, wherein the cancer is selected from glioma, glioblastoma, medulloblastoma and astrocytoma.

13. The method according to claim 12, wherein the cancer is a glioma.

14. The method according to any one of claims 11-13, wherein the peptide is selected from the group consisting of ELGNDAYKKDFDKAL, ELGNDAYKKDFDTAL, YGRKKRRQRRRELGNDAYKKDFDTAL, YGRKKRRQRRRELGNDAYKKDFDKAL, TFFYGCCRGRNNFKTEEYLEGNDAYKKDFDTAL, TFFYGCCRGRNNFKTEEYLEGNDAYKKDFDKAL, a cyclized form of any one of the peptides or a functional derivative of any one of the peptides or cyclized forms thereof.
FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

FIG. 2E

FIG. 2F
Figure 2
(continued)

G

<table>
<thead>
<tr>
<th></th>
<th>CTR</th>
<th>STI1</th>
<th>STI1+LY</th>
<th>LY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5'</td>
<td>35'</td>
<td>60'</td>
<td>5'</td>
</tr>
<tr>
<td>2</td>
<td>35'</td>
<td>60'</td>
<td>5'</td>
<td>35'</td>
</tr>
<tr>
<td>3</td>
<td>60'</td>
<td>5'</td>
<td>35'</td>
<td>60'</td>
</tr>
</tbody>
</table>

- p-ERK
- ERK2

H

p-Erk bands intensities

I

% CPM 3H-Thymidine

CTR
FORSKOLYN

*
Figure 3
Figure 4

A

% CPM

SFM | ST11

B

% CPM

FCS 5% | ST11

C

% CPM

SFM | FCS 5%

D

Image of cell cultures
Figure 7A

% BrdU positive cells

- - + - - - -

FCS
STI1
STI1_{230-245}
STI1_{61-76}

- - + + + -
- - - + - -
- - - - + +
Figure 7B

![Bar graph showing % BrdU positive cells for different conditions](image)

<table>
<thead>
<tr>
<th>Condition</th>
<th>% BrdU positive cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS</td>
<td>- + - - - - - - - - -</td>
</tr>
<tr>
<td>STI1 (0.17μM)</td>
<td>- - + + + + + - - - -</td>
</tr>
<tr>
<td>STI1_230-245 (0.17μM)</td>
<td>- - - + - - - + - - -</td>
</tr>
<tr>
<td>STI1_230-245 (8μM)</td>
<td>- - - - + - - - - - -</td>
</tr>
<tr>
<td>STI1_61-76 (0.17μM)</td>
<td>- - - - - - - + - - -</td>
</tr>
<tr>
<td>STI1_61-76 (8μM)</td>
<td>- - - - - - - - - - -</td>
</tr>
</tbody>
</table>

* indicates significant difference from FCS
Figure 8

![Graph showing % BrdU positive cells with different concentrations of STI1, Hop230-245 (μM), and Hop61-76 (μM). The graph indicates significant differences (*).]
Figure 11
Figure 12
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K38/04 A61K38/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. RELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBASE, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C

D See patent family annex

* Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

See patent family annex

14 January 2009

Date of the actual completion of the international search

26/01/2009

Date of mailing of the international search report

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel (+31-70) 340-2040,

Fax (+31-70) 340-3016

Authorized officer

Schnack, Anne
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ZANATA SILVIO M ET AL: "Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection." THE EMBO JOURNAL 1 JUL 2002, vol. 21, no. 13, 1 July 2002 (2002-07-01), pages 3307-3316, XP002510161 ISSN: 0261-4189 cited in the application abstract page 3315, column 1, paragraph 5</td>
<td>1-6,8-14</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
</tr>
</tbody>
</table>

ISSN: 0021-9258 abstract