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VIRTUAL MEMORY ADDRESS TRANSLATION MECHANISM
WITH CONTROLLED DATA PERSISTENCE
BACKGROUND OF THE INVENTION
Field of the Invention
5 The present invention relates generally to computer
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memory subsystems and more particularly to such

a memory subsystem organized into what is known

in the art as a virtual memory. Still more
particularly, the invention relates to an apparatus
for converting virtual addresses into real

memory addresses and for effecting certain unique
control functions within the memory hierarchy.

In most modern computer systems, when a program is
executing, it frequently attempts to access data

or code which resides somewhere in the system (that
is, in some level of the cache/main store/Direct
Access Storage Device (DASD) storage hierarchy'or
even at another node in a distributed system
network). For the most primitive system, consider
what the program must understand in order to make

this access.

- Where is the data (or code)? The location
will generally determine what kind of address must
be used for the access (e.g. main storage address
of 24 bits, or sector address on a disk track, or
node address in a network). The location will
also determine what kinds of instructions must

be used to accomplish thé access (e.g. Load/Store/
Branch for main storage accesses, channel commandA
words for disk accesses, communication protocols

for network accesses).
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2
- Is this data shared with other program
executions? If it is, the access cannot proceed
unless certain locks are held. If the changes
which this program is about to make to data are
5 not to be seen by others at this time, the Store

instruction must be to some private address.

- Is this data to be recoverable? If it is, *
some "journalling" strategy must be implemented
so that a consistent prior state of the data

10 can be retrieved when necessary.

~Suppose, in this very primitive system, the program
was in fact required to make these distinctions
at each access. Then the following would result:

- If the program is to be generally applicable
15 the accesses would be very slow, even for the

most frequent occurrences of "trivial, safe"

requests, namely, for private, unrecoverable data

in main storage.

- If the program were to perform well it would

20 be locked into one accessing mode, so that it
would not run correctly against data with different
characteristics.

- The program would be complex, large and prone
to error.

W

25 Modern systems have addressed these problems in
varying degrees. For instance:

af

- Relocate architectures generally allow private,
unrecoverable, nonpersistent data and programs
to be addressed uniformly, with an address size

30 of 16 to 32 bits - (ﬁsually adequate for temporary
computational requirements). When these
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architectures are implemented with proper "look-
aside" hardware, the vast majority of such
accesses are accomplished at cache or main
storage speeds. Only when this look-aside
hardware fails (less than one in one hundred
attempts) does the system pay the cost of
accessing the relocation table structure. And
only when the relocation tables fail (i.e. the
data is not in main storage) does the system
pay the significant "page fault" overhead. Thus
the penalties are paid only when they are really
necessary, which is surely the goal of a good

architecture and implementation.

- When the data is to persist beyond this
execution of this program, most modern systems
require that, instead of Load/Store/Branch instruc-
tions, access be made by explicit requests to
software-implemented "access methods." These acceés
methods generally support data which are organized
into certain defined aggregates, called "records"
and files." The "instructions" to access are

usually called "read/write" or "get/put."

This data is not shared or recoverable. It may in
fact be in main storage (in some buffer area).
But for every access, the program must pay the
overhead of these explicit "read/write" calls.
Thus access methods, when suitably defined, have
resulted in programs which are less complex and
more generally usable than in primitive systems,
but the performance of these accesses are
uniformly poorer than Load/Store, and the data
accessed must have been structured into the
appropriate aggregate type.
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- When the data is to be shared or recovered,
most modern systems require that explicit requests
be made to software-implemented "data-base
subsystems.” These accesses are generally much
slower than those for access methods, not only
because of the additional functions of lock and
journal management, but also because the kinds of
aggregates which these subsystems support (e.g.
relations, hierarchies) are themselves more

complex;

Again, the data may in fact be more simply
structured and in a buffer in main storage, but

the overhead must be paid on every access request.

Some systems support the recovery of nonépeISistent
data with a facility called "checkpointing." Now
the programmer who wishes to write a recoverable
application must deal with three different
facilities - checkpointing for computational

data, explicit backup for files, and "commit"

instructions for data base.

- The IBM System/38 has gone farther than most
systems in providing at least a uniform addressing
structure for all data. But it has done this at
the cost of making all addresses very large,

many accesses very slow, much storage and hardware
required to implement the architecture, and has
not yet provided a uniform approach to sharing

or recovery.

Various techniques are known in the art whereby
a number of computer programs, whether executed
by a single essential processing unit or by a
plurality of such a processing units, share a
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single memory. The memory being shared by programs
in this manner requires an extremely large
parent storage capacity, which capacity is often
much larger than the actual capacity of the
memory. If, for example, a system employs a 32-bit
addressing scheme, 232 addressable bytes of virtual
storage are available. This virtual storage space is
conventionally thought of as being divided into a
predetermined number of areas or segments each of
which is in turn divided into pages with each page
consisting of a predetermined number of lines each
in turn having a predetermined number of bytes. Thus
segment and page designations or addresses assigned
to virtual storage are arbitrary programming
designations and are not actual locations in
main storage. Therefore, virtual segments and
pages are usually randomly located throughout
main storage and swap in and out of main storage
from backing store as they are needed.

The random location of segments and pages in main
storage necessitates the translation of virtual
addresses to actual or real addresses using a set of
address translation tables that are located in

main storage conventionally referred to as page

frame tables. In a large virtual system a great

many such address translation tables are employed.
These may be organized in a number of different

ways. The essential feature of any such organization
is thét the particular virtual address must logically
map to a memory location in said tables which will

contain the real address for said virtual address

(if one exists).

Functionally, the operation of such address conversion
tables is as follows: the high order bits of the

particular virtual address are used to access a
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specific section of said translation tables, which
relate to a particular frame or segment, where upon
a search is then performed on the lower bits to see
if a particular virtual address is contained therein
and, if so, what real address is associated therewith.
Each page table pointed to by a virtual frame address
contains the real locations of all of the pages
in one of the frames. Therefore if a particular
frame is divided into for example, 16 pages there
would be 16 pége tables, for each frame, and a
separate frame table which would have the entries
pointing to a particular set of individual page
tables. It should be understood that the above
description is generalized in nature and that thefe
are many different ways of organizing the address
conversion utilizing the page tables, as well as the
means for addressing same, starting with the CPU -
produced virtual address. In the subséquent descrip~
tion of the preferred form of the invention as set
forth and disclosed in the embodiment there will be
a detailed description of therhash address tables
(HAT) and the inverted page tables (IPT) which, in
essence, are functionally organized as set forth

above.

When making the actual address translation, regard-
less of the details of the overall system organization

~and use of the page tables, the proper entry point

into the page-frame tables is made and the page tables
are accessed using the presented virtual address as
the argument and, usually after a plurality of

memory accesses, the desired entry in the page

tables is found. At this point a check is usually
made to determine if all system protocols have

been followed and if so, the real address of the
requested page in memory is accessed from the page
table. The byte portion of the virtual address or

SUSSTITUTE SHEET
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"byte offset" is essentially a relative address
and is the same in the virtual page as in the real
page whereby once the desired real page address
portion of the virtual address has been translated,
the byte offset portion is concatenated onto the
real page address location to provide the real byte

address in main storage.

As is well known in current virtual memory systems,
in order to avoid having to translate a virtual
address each time the memory is accessed, current
translations of recently used virtual addresses to
real addresses are retained in a special set of
rapidly accessible tables or high speed memories
referred to as Directory Look-Aside Tables (DLAT)
or Translation Look-Aside Buffers (TLBs) as used in
the present invention. These tables or buffers

are conventionally special high speed or rapidly
accessible memories which may be -accessed much
faster than the previously described page frame
tables whereby frequently used virtual addresses may
be stored in this table and accessed very rapidly
with the resultant saving of a great deal of
execution time within the computer. The efficiency
of such TLB address translation systems is
predicated upon the fact that, subsequent to the
first access to a particular virtual page, there
will be a great many accesses to the same page
during a given program execution. As indicated
above, even though subsequent accesses are to
different lines and bytes within a page, the virtual
to real page address translation is the same for
that page regardless of which line or byte is being

addressed.

The use of the TLBs significantly reduces the number
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8
translations that must be made (in the page frame
tables) and thus has a considerable effect on
the performance of the overall virtual memory
system.

Another problem with such prior art relocation systems
is handling the problem of journalling. That is,
maintaining a copy of data in back up storage while

a current program is running and using the data.

Thus in the event of some hardware or software failure
a valid copy of the original data will still be
available. This function has been accomplished

in the past by complex and time consuming hardware
and software routines to provide the requisite
journalling function again at the cost of slowing
down memory performance.

PRIOR ART

As stated previously, virtual memory systems have
been known in the computer arts for many years.

It is also well known that the virtual addresses
must be translated into real addresses via some
sort of relocation or address translation means
wherein the translatability of the virtual
address into the real memory address must be
assured. While it would be impossible to list
all patents and articles relating to this subject,
the following prior art is intended to be exemplary
of typical address translation mechanisms and
represents the closest prior art known to the
inventors.

U. S. Patent No. 3,828,327 of Berglund et al
describes a prior storage control technique for
extending the memory by means of adding a high
order bit to the address which high order bit
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is not part of the program apparent address but
is controlled by the different system modes, such
as interrupt mode, I/O mode, etc. This patent
relates to a memory extension system but is provided
together with appropriate address translation hard-
ware. U. S. Patent No. 4,042,911 of Bourke et al
also discloses a system for extending main storage
and explicitly includes address translation means
therewith. Neither of these two patents disclose
the virtual address expansion concept nor the
provision of special lock bits in both the TLBs

and page frame tables.

An article entitled "The 801 Minicomputer," by
George Radin, published in ACM SIGPLAN NOTICES,
Vol. 17, No. 4, April 1982, pages 39-47, includes
a general description of an experimental computer
whose operational characterisitics depend to a
large extent on a very fast memory subsystem

in which the present relocation mechanism would

have particular utility.

U. S. Patent No. 4,050,094 of Bourke et al discloses
a memory organization including an address
relocation translator which includes among other
things stack segmentation registers. The

particular segmentation registers disclosed in

this patent are for the purpose of storing a

real assigned address of a physical block in the
main memory rather than for storing an expanded
virtual address as utilized with the present

invention.

U. S. Patent 4,251,860 of Mitchell et al, discloses
a memory addressing system including virtual
addressing apparatus for implementing a large
virtual address memory. The patent describes -
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a splitting of virtual address into a segment
and offset portion however, the segment portion and
associated segment registers are used as a convenient
way of splitting the address and do not operate
in any analogous manner to the address translation

scheme of the present invention.

U. S. Patent 4,037,215 of Birney et al, discloses
a system very similar to that of the previously
referenced patent 4,050,094, in that a series of
segmentation registers are utilized for pointing
to specific real memory blocks. This patent
additionally shows the use of 'read only' validity
bits tied into the specific segmentation
registers. These bits have little analogy to the
special purpose lock bits provided in the hardware

of the present relocation mechanism.

U. S. Patent No. 4,077,059 of Cordi et al,
discloses a hierarchical memory system which
includes the provision of special controls to
facilitate journalling and copyback. A plurality
of dual memories is involved in this patent wherein
the current version of data is kept in one of

the memories and changes are noted in the other to
facilitate subsequent journalling and copyback
operations. The hardware and controls of this
patent bear little resemblance to the lock bit
system of the present invention.

U. S. Patent No. 4,053,948 of Hogan et al, discloses
an address translation system in which special
provisions including a counter are included with
each entry in a Directory Look-Aside Table (DLAT).

SUDCTITUTE SHEET

i



»

WO 84/02784

10

15

20

25

30

PCT/US82/01829

11
U. S. Patent No. 4,218,743 of Hoffman et al is
exemplary of a number of patents listed below
which relate to the IBM System/38 relocation
architecture. This particular patent illustrates
a simplification of the manner in which I/O handles
addressing in a virtual storage computer system.
Other patents related to the subject of the virtual
storage system are: 4,170,039, 4,251,860, 4,277,,862,
4,215,402,

U. S. Patent 4,020,466 of Cordi et al also
discloses a memory system which incorporates

a special facilities to facilitate journalling
and copyback procedures. The patent has no
relationshin to the locking bit control means

of the present invention.

U. S. Patent 3,942,155 of Lawlor discloses

a form of segment partitioning in a virtual

memory system, however, the segmenting used in
this patent is quite different from the segmenting
operation of the present invention which is

utilized to expand the virtual address.

U. S. Patent No. 4,215,402 is cited as exemplary
of the use of various hashing schemes for accessing

a virtual memory translation mechanism.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present
invention, a virtual memory subsystem is provided
which takes a pervasive hardware-software approach
to the address translation and overall memory
control function. All data and programs in the
system are addressed uniformly regardless of

where they reside, whether they are temporary,
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catélogued, shared or private, recoverable or
not. This means, for example, that the accessing
of private, non-recoverable, computational data
which is in the cache may be recovered at cache-
access speed. However, a further result is that
even though data is shared, access by a particular
program which holds the key is also at cache speeds.

Thus, the architectural organization of the herein
disclosed memory subsystem which permits this type

of uniform or "one-level store" addressing includes
the provision within the system of a 32-bit

virtual address which is issued by the CPU of which
address, 4-bits point to a set of sixteen 12-bit
segment registers. The contents of the selected
segment register are concatenated onto the remaining
28-bits of the virtual address to form a 40-bit
effective address. Thus, it may be readily seen

that each segment can contain up to 228 bytes of
data. It should be noted that this new 40 bit
address is still a virtual address. It is translated
by first accessing a high speed partially associative
Translation Look-Aside Buffer to determine if the
real address is present and if not, the system, as
with other translation systems, then refers to the
page tables to effectuate the address translation.

Another unique feature of the present organization
is the provision within both the Translation .
Look-Aside Buffers and also the page frame table of
special purpose lock-bits to check locking,
journalling and authorization. It is particularly
to be noted that a plurality (16 in the present
embodiment) of such lock bits are provided with
each real address both the Translation Look-Aside
Buffers and also in the page frame tables. One
lock bit is provided for each line within a page
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and is utilized for the purpose of controlling
journalling within the system. Accessing and
software means are also provided in the system
whereby these bits are accessible to software as

well as hardware.

It is a primary object of the present invention
to provide a virtual memory subsystem having an

extremely large virtual address space.

Tt is a further object of the invention to provide
such a memory subsystem which functions as a
"one-level store" for all memory operations.

It is another object of the invention to provide
such a memory subsystem which is less prone to
addressing errors due to the use of incorrect

translation tables.

Tt is another object of the invention to provide a
control mechanism within such a virtual memory
subsystem which greatly facilitates journalling

and related data protection.

It is another object of the invention to provide
such a control mechanism which is available
to both the software and hardware.

The foregoing and other objects, features and
advantages of the present invention will be

apparent from the following description of the
preferred embodiment of the invention as illustrated

in the accompanying drawings.

SUTSTITUTE SHEET




WO 84/02784

10

15

20

25

PCT/US82/01829

14
DESCRIPTION OF THE DRAWINGS

FIG. 1 comprises a functional block diagram of the
major portions of the address translation and access
control system of the present invention.

FIG. 2 is a diagrammatic illustration of the format
of the Segment Registers used in the present
address translation mechanism.

FIG. 3 is a combination functional block diagram
and data flow diagram illustrating the conversion of
an effective address to a virtual address.

FIG. 4 is a combination functional block diagram
and data flow diagram illustrating the complete
address translation mechanism from an effective
address to real address.

FIG. 5 is a diagram illustrating the organization
and contents of the organization of the Translation
Look-Aside Buffers as used in the overall address

translation mechanism of the present invention.

FIG. 6 is a conceptual illustration of the combined
Hash Anchor Table/Inverted Page Table and a data
flow diagram therefore illustrating the operation of
these tables when no TLB entry is found for a given
virtual address.

(4]

FIG. 7 comprises an illustrative diagram of the
structure and contents of the actual Hash Anchor N

Table/Inverted Page Table as it is stored in memory.

FIG. 8 illustrates the format of the reference and
change bits as utilized with each I/0 address.

SUSCTITUTE SHEET
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FIG. 9 is a diagrammatic illustration of the
I/0 Base Address Register configuration.

FIG. 10 is a diagrammatic illustration of the
format of the RAM Specification Register.

FIG. 11 is a diagrammatic illustration of the
format of the ROS Specification Register.

FIG. 12 is a diagrammatic illustration of the

format of the Translation Control Register.

FIG. 13 is a diagrammatic illustration of the

format of the Storage Exception Register.

PIG. 14 is a diagrammatic illustration of the

format of the Storage Exception Address Register.

FIG. 15 is a diagrammatic illustration of the
format of the Translated Real Address Register.

FIG. 16 is a diagrammatic illustration of the

format of the Transaction Identifier Register.

FIG. 17 is a diagrammatic illustration of the
contents of one of the sixteen Segment Registers.

FIGS. 18.1, 18.2 and 18.3 illustrate diagrammatically
the format of three of the fields utilized for

each page reference in each of the Translation
Look-Aside Buffers. It is noted that there are

two separate Translation Look-Aside Buffers in the
presently disclosed émbodiment and that there are
sixteen real page references stored at any one time

in each of said buffers.
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Description of the Preferred Embodiment

- The objects of the present invention are
accomplished in general by the herein disclosed
storage controller that attaches to a host CPU

[0

5 Storage Channel which implements the address

translation architecture described in general terms

i

previously, and which will be described in greater
detail subsequently. The translating mechanism
contains the logic required to interface with up to
10 16M bytes of storage. Storage can be interleaved
or non-interleaved, and static or dynamic. The
translation mechanism is functionally divided
into three sections (see FIG. 1). The CPU storage
channel interface (CSC) 10 logic consists of the
15 Common Front End (CFE), section 12 which provides
the proper protocol from the storage channel
to the Address Translation.Logic 14 and Storage
Control Logic 16. All communication to and from the
storage channel is handled by this logic. The
20 Address Translation Logic provides the translation
from a virtual address received from the storage
channel to a real address used to access storage.
This logic contains a translation look-aside
buffer (TLB) organized as 2-way set associate
25 with 16 congruence classes. Logic is provided
that automatically reloads TLB entries from
page tables in main storage as required. The
Storage Control logic 16 provides the interface
from the Address Translation Logic 14 to storage.

[y

30 Dynamic memory refresh control is also provided

4

by this logic.
It should be noted at this point that the present

invention relates primarily to the novel structural

combination and functional operation of well-known
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computer circuits, devices and functional units and
not in the specific detailed structure thereof.
Accordingly, the structure, control, and the
arrangement of these well-known circuits, devices
and blocks are illustrated in the drawings by the
use of readily understandable block representation
and functional diagrams that show only these specific
details pertinent to the present invention. This
is done in order not to obscure the invention
with structural details which would be readily
apparent to those skilled in the art in view
of the functional description of same. Also,
various portions of these systems have been
appropriately consolidated and functionally
described to stress those features pertinent to
the present invention. The following description
will allow those skilled in the art to appreciate
the possibilities and capabilities of the disclosed
memory subsystem and further would allow its ready
incorporation into any one of a variety of computer

architectures.

FIG. 1 illustrates the above described functional
portions of the present address translation system
which would be appropriately located on a single

logic chip in a very large scale integrated circuit

technology.

Whether an address is translated (treated as
virtual) or treated as real in the present system
is controlled by the value of a Translate Mode

bit (Tbit) on the CPU Storage Channel (CSC). Each
device which places a requestron the CSC controls
the value of the Translate Mode bit for each
request. The T bit is taken from the appropriate
field of memory access instruction provided by

the CPU. For storage accesses generated by I/0
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devices, the T bit value is generated by the
attaching adapter. When the T bit is one, storage
addresses (instruction fetch, data load, data store)
are subject to translation. When the T bit is zero,

storage addresses are treated as real.

L

Within the herein disclosed architecture, storage

17}

protection is not effective for storage requests
which are not subject to translation.

Reference and change recording is effective for
all storage requests, regardless of whether they
are subject to translation.

For addresses subject to translation, the
translation operation logically proceeds as follows.

Various implementations may perform different parts
of this function in parallel rather than in strict
logical sequence as described subsequently.

The present address translation mechanism implements
a "single level storage" addressing structure. The
address translation mechanism provides support for
the following in the herein disclosed preferred
embodiment:

1. Multiple indépendent virual address
spaces.

©

2. Address space size of 4 gigabytes.

=

3. Demand paging.
4. Page size of 2048 or 4096 bytes.

5. Storage protection.
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6. Shared segments, for instructions and

data.
7. Journalling and locking of 128 byte lines.

8. Real storage addressability of up to 16
megabytes.

9. Reference and change bits for each real

page.

10. Hardware assist for load real address,
invalidate TLB entries, and storage

exception address.

Storage is treated as if it were mapped onto a
single-40-bit virtual address space consisting

of 4096 segments of 256 megabytes each. The 32-bit
address received from the CSC is converted to a
40-bit ("long form virtual") address by using the
four high-order bits to select one of sixteen
segment registers, the 12-bit contents of which
are concatenated with the remaining 28 bits of

the effective address. The translation mechanism
then converts the 40-bit virtual address to a real
address for storage access. As will be readily
appreciated the size of the virtual address can

be changed by minor changes to the hardware.

At any given instant, only 4 gigabytes of storage
is addressable, namely the sixteen 256 megabyte
segments specified by the sixteen segment registers.
This fact allows the operating system to create
multiple independent virtual address spaces by
loading appropriate values into the segment
registers. As a limiting case, 256 completely
independent 4 gigabyte address spaces could be
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created in this manner, although it is more likely
that some segments (such as nucleus code) would
be shared across multiple address spaces.

103

Storage protection similar to that of the IBM

W

5 System 370 is provided on a 2K or 4K byte page
basis. Store protect and fetch protect are
supported, with the protect key (equivalent to
the key in the 5/370 PSW) specified independently
for each 256 megabyte segment.

10 Support for a Persistent Storage class is
provided by a set of "lock bits" associated with
each virtual page. The lock bits effectively
extend the storage protection granularity to
"lines" of storage (128-bytes for 2K pages, or

15 256-bytes for 4K pageS) and allow the operating
system to detect and automatically journal changes
to Persistent variables. Persistent Storage
class as used herein means storage which may reside

permanently on disk file storage.

20 The following terms are used throughout this
document and are defined here for clarity and

convenience.
Byte Index A number in the range 0 to 2047
(11 bits) for 2KB pages [or 0 to )
25 4095 (12 bits) for 4KB pages] which )

identifies a byte within a page

w

or page frame. The Byte Index
is taken from the low-order 11 bits
[12 bits] of the Effective Address.
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A bit associated with each Page
Frame which is set to "1" whenever
a successful storage reference
(write only) is made to that Frame.

Effective Address

Line

Lockbit

The 32-bit storage channel address
generated by devices on the
storage channel. This can be

an address generated by the host

‘CPU for instruction fetch, data

load, or data store. It can also
be an address generated by an I/O
device on the storage channel, such

as a DMA address.

A 128-bit portion of a page on a
128-byte boundary. This is the
amount of storage controlled by one
lockbit.

One of a set of 16 bits associated
with each page of a Persistent
Storage segment. Each lockbit is
associated with one Line of storage.
The combination of Transaction ID,
the Write bit, and the Lockbit wvalue
for a Line determine whether a
storage access request is granted or
denied in a Persistent Storage

segment.

SUCSTITUTE SHEET




WO 84/02784 : PCT/US82/01829

22
Page 2048 bytes [or 4096 bytes] of
storage on a 2048-byte [4096-byte]
boundary. "Page" properly refers

to virtual storage while "page
5 frame" refers to real storage, but

[()

historically the term "page™ has
been used for both virtual and
real.

Page Frame 2048 bytes [or 4096 bytes] of
10 storage on a 2048-byte [4096-byte]
boundary. Pages reside in Page

Frames or on external storage (i.e.,

disk).
Paéé Table The combined hash anchor table
15 inverted page table entries in main

storage that are used for transla-
tion of a virtual address to the
corresponding real address (also
referred to herein as HAT/IPT).

20 Protection Key
A 1-bit value in each Segment
Register which indicates the level
of authority of the currently-
executing process with respect to
25 accessing the data in the given
segment. This key is similar in

function to the System/370 PSW Key, '

but is applied individually to each

segment rather than globally to all ®
30 of addressable memory.
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Real Address The result of the translation
operation: the Real Page Index
(10 to 13 bits) concatenated with
the low-order 11 bits [or 12 bits]
5 of the Effective Address. (Real
Page Index || Byte Index.)

Real Page Index
A number in the range 0 to 8192

(13 bits) which identifies a page

10 frame in real storage. Some
implementations may limit this value
to as few as 10 bits, thereby
restricting the maximum amount of
real storage supported to 2MB of

15 2KB pages.

Reference Bit A bit associated with each Page Frame
which is set to "1" whenever a
successful storage reference (read
or write) is made to that Frame.

20 Segment ID A number in the range 0 to 4095
(12 bits) which identifies a 256MB
virtual storage segment. The Segment
ID concatenated with the Virtual
Page Index uniquely specifies a

25 page in the 40-bit virtual address

space.
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A 2-bit value in each TLB entry which
indicates the level of protection
associated with one particular page.
This key is similar in function to
the Storage Key associated with
each System/370 memory page.

Translation Lookaside Buffer. The
TLB is the hardware containing the
virtﬁal-to-real mapping (in some
implementations the TLB may contain
only a portion of this mapping at
any given time). 1In addition to

the mapping each TLB entry contains
other information about its
associated page, such as Translation
ID, Storage Key and Lockbits.

A number in the range 0 to 255 (8

bits) which identifies the "owner"
of the set of Lockbits currently.

loaded in a TLB entry.

Virtual Address

The 40-bit address value formed
inside the present address
translation mechanism by concatena-
tion of the Segment ID with the

710Whorder 28 bits of the Effective

Address. (That is, Segment ID ||
Virtual Page Index || Byte Index.)

@
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Virtual Page Index

A number in the range 0 to 131,072
(17 bits) for 2KB pages [or 0 to
65,536 (16 bits) for 4KB pages] which

5 identifies a page within a virtual
storage segment. The Virtual Page
Index is taken from bits 4-20 [4-19]
of the Effective Address.

| Concatenation.

10 The hardware required to support the present address
translation mechanism is described below. Note
that some field widths may vary with different

implementations.

The TLB consists of an arbitrary number of entries,
15 with each entry controlling the translation of the
virtual address of one page to its real address.

Details of the organization of the TLB are
implementation dependent. Two implementations are
possible. A content addressable memory (CAM)

20 which would be addressed by Segment ID || Virtual
Page Index and which would contain one entry per
real storage frame. The index (ordinal number)
of the CAM entry would be equal to the Real Page
Index. A set associative TLB which would be

25 addressed by some number of the low-order bits of the
Virtual Page Index. The Real Page Index would be

contained within a field in the TLB entry.

The only constraint on TLB shape is that a non-CAM
implementation must be at least two-way set

30 associative. Each TLB entry can be read and
written individually from the CPU using IOR and
IOW instructions. TLB entries contain the following
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The incoming 32-bit effective address (from the

CPU or an I/O device) is first expanded to a

40-bit virtual address by concatenating a segment

identifier to the effective address. The virtual

address is then presented to the translation

hardware for conversion to the equivalent real

address.

Virtual addresses are translated to a

real storage address by the process described

below.

The high-order four bits of the incoming effective

address are used to index into the segment table

to select one of sixteen segments.

A 12-bit

segment identifier, a "special segment" bit, and

a key bit are obtained from the selected segment

register.

The 12-bit segment identifier is used

for formation of the virtual address. The special

segment bit and the key bit are used for access

validation as described subsequently. FIG. 2

shows the segment table format.

The 12-bit segment identifier is concatenanted with

bits 4 through 31 of the incoming effective address
to form a 40-bit virtual address.

The low order

11 bits for 2k pages, or 12 bits for 4k pages, of

the effective address are used as the byte address

for the selected real éage. These

altered by the translation process.

bits are not
The remaining

29(28) bits of the virtual address are then
presented to the translation hardware. FIG. 3

shows the generation of the virtual address using

the segment identifier and the storage effective

address.
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The herein disclosed address translation system
utilizes a Translation Look-aside Buffer (TLB) to
contain translations of the most recently used
virtual addresses (32 in the present embodiment).

5 Hardware is used to automatically update TLB entries
from main storage page tables as new virtual
addresses are presented to the TLBs for translation.
A simplified data-flow of the translation hardware
is shown in FIG. 4 and the format of each TLB is

10 shown in FIG. 5.

The system utilizes two two TLBs with 16 entries
per TLB (2-way set associative with 16 congruence
classes). The low-order 4 bits of the virtual
page index are used to address both TLBs in

15 parallel. The Address Tag entry in each TLB is
compared with the segment identifier concatenated
with the remaining bits of the virtual page index
(25 bits for 2K pages, or 24 bits for 4K pages).
If either of the two compares are equal and the TLB

20 entry is valid (as indicated by the Valid Bit),
the associated TLB contains the translation
information for the given virtual address.

The Real Page Number field (RPN) in the selected
TLB entry contains the number of the real page

25 in main storage that is mapped to the given
virtual address. If this is not a special segment,
the access is checked for storage protect
violations using the Key Bits from the TLB entry
and the Key Bit from the Segment Register before

30 the access is allowed. If this is a special
segment, as indicated by the Special Bit in the
segment register, lockbit processing is performed
before the access is allowed. The storage protect
facility is described subsequently as is special

35 segment processing. If the access is permitted,
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main storage is then accessed and the reference
and change bits associated with the page are
updated. The setting of the reference and change
bits is also described subsequently.

If no match is obtained from the two TLB compares,
the address translation logic will attempt to
reload the faulting TLB entry from the page table
entries in main storage. The main storage page
table is resident in real storage and logically
consists of two parts, a Hash Anchor Table (HAT)
and an Inverted Page Table (IPT). The HAT allows
the mapping of any virtual address, through a
hashing function, to any real page.

The Inverted Page Table (IPT) specifies the virtual
address (if any) which is associated with each
real page frame. It is organized as an array

of entries indexed by Real Page Number, with each
entry containing its associated Segment ID and
Virtual Page Number.

Determining the Virtual Address for a given Real
Address is trivial, since the IPT is indexed by
Real Page Number. To determine efficiently the
Real Address for a given Virtual Address requires
a hashing function to map the Virtual Address

to an anchor point and a chain of entries to
resolve hash collisions as will be well understood
by those skilled in the art.
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The Hash Anchor Table (HAT) is logically separate
from the IPT (though it is physically incorporated
into the IPT for hardware efficiency reasons). As
shown in FIG. 6, a hash function converts a Virtual
Address into the index of an entry in the HAT,
which in turn points to the first of a chain of
IPT entries (real pages) with the same HAT index.
A search of the chain of IPT entries for a match
on Virtual Address will yield the IPT index (thus
Real Address) for the desired Virtual Address,
or will terminate with no match found (page not
mapped). In the present embodiment there is one
HAT and IPT entry for each page of real storage.

Translation of a virtual to a real address is
accomplished by first exclusive or-ing selected
low-order bits of the effective address with bits
from the segment identifier. This "hashed"
address is then used to index into the HAT. The
selected HAT entry is a pointer to the beginning
of a list of IPT entries to be searched for the
given virtual address. Entries in the list of
IPT entries to be searched are linked together by
a -pointer in each entry that points to the next
IPT entry to be searched. A flag bit in the IPT
entry is used to indicate the end of the search
chain. Note that since the hashing function can
produce the same HAT address for several different
effective addresses, there can be several virtual

address entries in the IPT chain to be searched.

For hardware efficiency reasons, the HAT and IPT
are combined into one structuire which can be
addressed by one indexing structure. There is
one entry in the combined HAT and IPT for each
page of real storage. For example, 1 megabyte
of real storage organized as 2K-byte pages
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requires 512 entries and 512k bytes organized as
4K-pages requires 128 entries. The format of the
combined HAT and IPT entries is shown in FIG. 7.
The HAT/IPT contains 16 bytes for each entry and
starts on an address that is a multiple of the

]

table size.

w,

The first word in each entry contains the address
tag which is composed of the segment identifier
concatenated with (]|) the virtual page index. Note

~that for 2K pages the address tag is 29 bits, and

for 4K pages it is 28 bits. If a page size 4K is
used, the 28-bit address tag is stored in bits '

[3 thru 30]. Bit 2 is reserved. The first word also
contains a 2-bit key which is used for storage
protection as described later.

The second word contains the HAT pointer, IPT
pointer, and valid bits for each pointer. Use of
the pointer is described subsequently.

- The third word contains the write protect, lock

20

25

30

bits, and TID for special segments. Use of these

fields is described subsequently also.

The fourth word is not used for TLB reloading and

is reserved for possible future use.

The HAT/IPT base address isra field in the
Translation Control Register (described subsequently),

o

and is used for computing the beginning address of

the main storage page table. The value contained in #
the HAT/IPT base address is multiplied by the amount

shown in Table 1 depending on storage and page size to

obtain the starting address of the main storage page

table. Also shown in Table 1, is the size of

the HAT/IPT for each storage size and page size.
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Storage Page Size HAT/IPT HAT/IPT Base
SIZE Bytes [Entries/ Address
Bytes Bytes] Multiplier
64K 2K 32/512 512
5 64K 4K 16/256 256
128K 2K 64/1K 1024
128K 4K 32/512 512
256K 2K 128/2K 2048
256K 4K 64/1K 1024
10 512K 2K 256/4K 4096
512K 4K 128/2K 2048
M 2K 512/8K 8192
1M 4K 256/4K 4096
2M 2K 1024/16K 16384
15 2M 4K 512/8K 8192
4M 2K 2048/32K 32768
4M 4K 1024/16K 16384
8M 72K 4096/64K 65536
8M 4K 2048/32K 32768
20 16M 2K 8192/128K 131072
16M 4K 4096/64K 65536
TABLE I

HAT/IPT Base Address Multiplier
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HAT ADDRESS GENERATION

As stated previously the HAT index is computed by
exclusive or-ing selected bits from the segment
identifier with bits from the effective address. The
number of bits used is chosen so that the resulting

1)

index will select one of n entries in the HAT/IPT.

1.2

This hashing operation is shown in FIG. 6. The bits
used for generation of the HAT index are listed

in Table II. The storage address of the selected
HAT entry is computed as: HAT/IPT Base Address +
HAT Index || 0100.

The selected HAT entry is accessed and the Empty
Bit checked to determine if the IPT search chain is
empty. If the Empty Bit is one, there is no page
mapped to the ‘given virtual address and a "page
fault" is reported as described later. If the
Empty Bit is zero, entries in the IPT search chain
exist and entries in the IPT are searched. The

HAT Pointer field of the selected HAT entry is then
used as a pointer to the start of the IPT search

chain.
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Storage Page Segment Effective Index
Size Size Register Address [# Bits]
Bytes Bytes Bits Bits
64K 2K 7:11 16:20 5
5 64K 4K 8:11 16:19 4
128K 2K 6:11 15:20 6
128K 4K 7:11 15:19 5
256K 2K 5:11 14:20 7
256K 4K 6:11 14:19 6
10 512K 2K 4:11 13:20 8
512K 4K 5:11 13:19 7
M 2K 3:11 12:20 9
M 4K 4:11 12:19 8
2M 2K 2:11 11:20 10
15 2M 4K 3:11 11:19 9
aM 2K 1:11 10:20 11
“4M 4K 2:11 10:19 10
8M 2K 0:11 9:20 12 .
8M 4K 1:11 9:19 11
20 16M 2K 0 |] 0:11 8:20 13
16M 4K 0:11 8:19 12
TABLE II

HAT/IPT Index Generation Source Fields
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The HAT pointer previously accessed is used as the
starting index into the IPT. The storage address
of the first IPT entry is computed as: HAT/IPT
Base Address + HAT Pointer || 0000.

An access is made to the first entry in the IPT
and the address tag compared to the given virtual
address. If the two are equal, the real page
assigned to the virtual address has been located
and the faulting TLB entry can be reloaded.
Reloading of the TLB entry will be described sub-
sequently. If the two are not equal, the IPT search
continues by accessing the IPT pointer. The IPT
pointer address is computed as: HAT/IPT Base
Address + HAT Pointer || 0100. The IPT pointer
is then accessed and the Last Bit checked to
determine if there are additional entries in the
IPT search chain. If the Last Bit is a zero,
there are additional entries and the search
process continues. If the Last bit is a one,
there are no additional IPT entries to be

searched, and a "page fault" is reported.

If there are additional IPT entries to be
searched, the address of the next IPT entry for
searching is computed as: HAT/IPT Base Address

+ IPT Pointer || 0000. This address is used

to access the next entry in the IPT search

chain and the address tag contained in the
selected entry is compared to the given virtual
address. If the two are equal, the real page
assigned to the virtual address has been located
and the faulting TLB entry can be reloaded. If the
two are not equal, the search process continues by
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accessing the pointer to the next entry to be
searched. The address of the pointer to the next
entry is computed as: HAT/IPT Base Address + IPT
Pointer || 0100. This word is then accessed and the
Last Bit is checked to determine if there are
additional entries in the IPT search chain. If the
Last Bit is a one, there are no additional IPT
entries to be searched, and a "page fault" is
reported. If the Last Bit is a zero, there are
additional entries and the search process continues.
The current IPT Pointer is used to access subsequent
entries using the previously described process, until
either the address tag in the IPT entry is equal to
the given virtual address, or no match is found and
the Last Bit indicates no further entries exist in

the search chain.

The following is a synopsis of the steps to be
followed to convert a Virtual Address to the index
of its IPT entry (and thus to its corresponding
Real Address).

(1) Select the low-order 13 bits of the Virtual Page
Number. This will be bits 7-19 of the
Effective Address if 4KB pages are used, or
bits 8-20 if 2KB pages are used.

(2) Select the 12-bit contents of the Segment
Register specified by bits 0-3 of the
Effective Address. Concatenate a '0' bit
on the left to form a 13-bit field.

(3) Exclusive-OR the two 13-bit fields from steps

(1) and (2) to form a 13-bit Hash Anchor Table

entry number.
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Shift the value from step (3) left 4 bits.
This forms the byte offset of the start of
the IPT entry which physically contains the
desired HAT entry.

(W

Compute the address of the HAT/IPT entry. This

is done by adding the result of step (4) to ®
the starting address of the IPT. If the IPT

is constrained to start on an appropriate

power-of-two byte boundary, the "ada" may be

replaced by OR or concatenation.

Check for empty IPT chain. Investigate the "E"
("empty") bit in the HAT/IPT entry. If E=1
then the IPT chain is empty (HAT pointer is
invalid): the search terminates unsuccessfully;
the virtual page is not mapped.

If the IPT chain is not empty, select the HAT
Pointer from the addressed HAT/IPT entry.
This 13-bit value is the index of the first
IPT entry in the chain of entries having the
same hash result [step (3)].

Shift the IPT index value left 4 bits. This
forms the byte offset of the start of an IPT
entry which is to be checked for a match

on Virtual Address.

Iy

Compute the address of the IPT entry. This is
done by adding the result of step (8) to the
starting address of the IPT. If the IPT is
constraiﬁed to start on an appropriate
power-of-two byte boundary, the "add" may be
replaced by OR or concatenation.
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(10) Compare for Virtual Address match. Compare
the Segment ID || Virtual Page Number from
the IPT entry (28 or 29 bits) with the segment
register contents specified by the Effective
Address [step (2)] concatenated with the
Virtual Page Number in the Effective Address.

(11) If a match, search has completed successfully.
This entry is the one corresponding to the
desired Virtual Address; its index number is
equal to the required Real Page Number.

(12) If not a match, check for end-of-chain.
Investigate the "L" ("last") bit in the IPT
entry. If L=1 then this is the last IPT entry
in this chain: the search terminates
unsuccessfully; the virtual page is not mapped.

(13) If not end-of-chain, slect the IPT Pointer
field from the IPT entry. This 13-bit value
is the index of the next IPT entry to be

investigated.
(14) Go to step (8).
TLB Reload

If an IPT entry is found with an address tag field
equal to the given virtual address, the faulting
TLB entry is reloaded. Reloading consists of
selecting the least recently used TLB entry for
the congruence class of the faulting virtual
address, and loading the selected entry with

the given virtual address tag field, the
corresponding real page number and the key bits.
If this is a special segment as indicated by

the Special Bit in the segment register, then
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the Write Bit, TID, and LOCK bits are also

reloaded.

Hardware is used to determine the least recently

used TLB entry in each congruence class. Since

()

the low-order bits of the virtual address
determine the congruence class, the only decision
to be made is which TLB should have the selected
entry replaced. One of the two TLBs will then
be selected based on which TLB contained the
entry in the given congruence class that was
least recently referenced.

Once the least recently used TLB entry for the
given congruence class has been determined, the
selected TLB entry can be reloaded. The Address
Tag field and Key bits are reloaded from the

IPT entry contained in main storage. The address
of this entry was previously computed in theVIPT
search process. Since the IPT index computed

in the search process is equal to the real page
number, this value is used to reload the Real
Page Number field in the TLB. If this is a special
segment, as indicated by the Special Bit in the
segment register, the TID and Lock Bits are also
reloaded. The TID and Lock Bits are reloaded by
accessing the third word in the selected IPT
entry.

(1]

STORAGE ACCESS CONTROL

The present address translation mechanism provides %
two access control facilities. The first

facility applies to non-special segments and

provides read/write protection for each page of

real storage. The second facility applies only

to special segments and is used to support

suBs
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Protect Access Permitted
Key in Key in

TLB Seg Reg Load Store

00 0 Yes Yes

5 1 ~ No No

01 0 Yes Yes

Yes No

10 0 Yes Yes

Yes Yes

10 11 0 Yes No

Yes No

TABLE III

Protection Key Processing
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If the access is not allowed, then the translation
is terminated, and a Protection exception is
reported to the CPU.

LOCKBIT PROCESSING

O]

Lockbit processing is applied only to special
segments as indicated by the Special bit in the
selected segment register. Special segments

are used to support Persistent data. Lockbit
processing allows the operating system to
automatically monitor changes to Persistent
variables and to journal changes, create shadow
pages, and perform other processing required

for data base consistency. Lockbits also extend
the protection from the page size resolution
(either 2K or 4K-bytes) provided by the storage
protect facility to lines of either 128 or 256 bytes.
A resolution of 128 bytes is provided for 2K pages,
and 256 bytes for 4K pages. The individual line
lockbit is selected by bits [21:24] of the
effective address for 2K pages, and bits [20:23]
for 4K pages.

Access control is a function of the one-bit write
key in the selected TLB entry, the lockbit value
of the selected line, the TID compare, and
whether the access is a load or store operation.

Access is controlled as shown in Table IV following.

iy

L
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Lockbit Access Permitted

Value

for

Selected

Line Load Store
1 Yes Yes
0 Yes No
1 Yes No
0 No No
- No No

TABLE IV

Lockbit Processing
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The Data storage exception is used to report a
7 lockbit violation. This violation may not
represent an error; it may be simply an indication
that a newly modified line must be processed by
5 the operating system.

(Y

Reference and change bits are provided for each page

12

of real storage. These bits are in arrays
external to the present address translation
mechanism and are updated as required for each
10 storage access. The reference bit is set to one
if the corresponding real page is accessed for
either a read or write operation. The change

bit is set if the corresponding page is written.

Reference and change bits are accessible via I/0
15 read and write instructions (IOR and IOW) from
the associated CPU. Reference and change bits
for each page of real storage start at the I/0O
address specified by the I/O Base Address Register
plus X'1000'. The I/O address of the reference
20 and change bits for a given page is given by the
following expression.

I/0 Address = Address Specified by I/O Base
Address Register
+ X'1001° |
25 + Page Number

(L]

Each I/0 address contains the reference and change
bits for one page of real storage. The format

of the reference and change bits is shown in ®
FIG. 8.
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Data transferred by accesses to reference and

change bits is defined as follows:

Bits 0:29 Zeros.

Bit 30 Reference Bit. Set to one when the
corresponding real page is accessed

for a read or write operation.

Bit 31 Change Bit. Set to one when the
corresponding real page is accessed

for a write operation.

Reference and changerbits are not initialized by
hardware. They are initialized and cleared by
system software via IOW instructions. Since
reference and change bits can be set by execution
of a program to set or clear the reference and
change bits, a write to clear or set reference
and change bits followed by a read, will not
necessarily read the same data which was written.

CONTROL REGISTERS

There are a number of control registers used for
defining the storage configuration, page table
address, and I/O base address. These registers

are initialized (loaded) by system software via I/O
read and I/0 write (IOR and IOW) instructions from
the CPU. Their organization and format are shown
in FIGS. 9 through 18. These registers are
accessible only from supervisor state.

The I/O Base Address Register specifies which
64K block of I/0 addresses are assigned to the
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translation system. The I/O base address is equal
to the value contained in the I/O Base Address
Register multiplied by 65536 (x'10000'). The
format of the I/0O Base Address Register is shown
in FIG. 9.

i3

The I/0 Base Address Register is defined as follows:
Bits 0:23 Reserved.

Bits 24:31 I/0 Base Address. This 8-bit value
defines which 64K byte block of
I/0 addresses are assigned to the
translation system (i.e. these 8 bits
are the most significant 8 bits) in
the I/0 address recognized by the

translation system.

The "RAM Specification Register" defines the RAM
size, RAM starting address, refresh rate, and
whether parity checking or Error Correcting Code
(ECC) is used. ECC and parity checking features

do not form a part of the present invention and,
other then mentioning facilities provided for
their handling, will not be described further. The
format of the RAM Specification Register is

shown in FIG. 10.

The RAM Specification Register is defined as follows:

&

Bits 0:10 Reserved.

Bits 10:18 Refresh Rate. This 9-bit quantity
determines the refresh cycle rate.
The refresh cycle rate is equal to

the value contained in bits [10:18]
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multiplied by the CPU clock
frequency. A Refresh Rate of zero
disables refresh. The refresh rate
value can be computed by dividing
the required memory refresh rate
by the CPU clock frequency. For
example, in a system with dynamic
memory that requires refreshing 128
rows every 2 msec., the refresh
interval per row is 128/2msec.,
which is 15.6 usec. For a 200 nsec.
CPU clock, the required refresh
rate count is 15.6 usec/200 nsec.,
which is 78 (X'04E'). This requires
loading the Refresh Rate with X'04E'.

The Refresh Rate is initialized to
X'0l1A' as part of the POR sequence.

RAM Starting Address. This eight-bit
field defines the starting address

of RAM for both translated and
non-translated accesses. For
translated accesses, RAM will be
selected if the translated address

is within the range specified by the
RAM Starting Address and RAM Size.
For non-translated accesses, the

RAM Starting Address is used in
conjunction with RAM Size to
determine if an address is within the
address range specified for this
storage controller. The starting
address of RAM is defined to be a
binary multiple of the RAM size, and
is computed by multiplying the bits
indicated in Table V below by the

SUBSTITUTE SHEET

»




WO 84/02784 PCT/US82/01829

47
value specified by RAM Size.

(%

TABLE V

Bits e
RAM Multi-
5 Size20 21 22 23 24 25 26 27 ©plier.
64K X X X X X X X X 64K
128K X X X X X X X - 128K
256K X X X X X X - - 256K
512K X X X X X - - - 512K
10 M X X X X - - - - 1M
2M X X X - - - - - 2M
aM X X - - - - - - aM
8M X - - - - - - - 8M
16M - - - - - - - - 16M

15 X = bit used in address calculation

bit not used in address calculation

For example, if a storage size of 256K is specified,
bits [20:25] specify which one of 64 256K-byte
boundaries is the RAM starting address. If bits

20 [20:25] are 011101, the RAM starting address is
X'00740000'. If a RAM size of 1M byte is
specified, bits [20:23] specify which one of sixteen
1M-byte boundaries is the RAM starting address. If
bits [20:23] are 1001, the RAM starting address is

25 X'00900000".

Bits 28:31 RAM Size. This four-bit field defines
 the size of the RAM attached to the
present translation system. RAM size
is selectable from 64K bytes to 16M.
30 bytes as defined in Table VI below.
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TABLE VI
Bits 28:31 " RAM Size
0000 No RAM
0001
thru
0111 64K
1000 128K
1001 256K
1010 512K
1011 1M
1100 2M
1101 aM
1110 8M
1111 : 16M

ROS SPECIFICATION REGISTER

The ROS Specification Register defines the ROS
starting address, ROS size, and whether parity
is provided by ROS. ROS can be accessed in both
translated and non-translated mode. The format
of the ROS Specification Register is shown in
FIG. 11.

The ROS Specification Register is defined as follows:

Bits 0:19 Reserved.

Bits 20:27 ROS Starting Address. This eight-bit
field defines the starting address
of ROS for both translated and
non-translated accesses. For
translated accesses, ROS will be
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selected if the translated address
is within the range specified
by the ROS Starting Address and
ROS Size. For non-translated
5 ~ accesses, the ROS Starting Address

[

is used in conjunction with ROS

Size to determine if an address is

()

within the address range specified
for this storage controller. The

10 starting address of ROS is defined to
be a binary multiple of the ROS
size, and is computed by multiplying
the bits indicated in Table VII below
by the value specified by ROS Size.

15 : TABLE VII
- Bits
ROS Multi-
Size 20 21 22 23 24 25 26 27 plier

64K X X X X X X X X 64K

20 128K X X X X X X X - 128K
256M X X X X X X - - 256K

512K X X X X X - - - 512K

1M X X X X - - - - 1M

2M X X X - - - - - 2M

25 4M X X - - - - - - 4M
8M X - - - - - - - 8M

l6M - - - - - - - - 16M

L]

X = bit used in address calculation

bit not used in address calculation

30 For example, if a ROS size of 64K is specified, bits
[20:27] specify which one of 256 64K~-byte boundaries
is the ROS starting address. If bits [20:27] are
110010, the ROS starting address is X'00C80000°'.
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Bits 28:31 ROS Size. This four bit field
defines the size of ROS attached to
the translation system. ROS size
is selectable from 64K bytes to
5 64M bytes as defined in Table VIII
below. If ROS is not used, bits

[28:31] are set to zero.

TABLE VIII
Bits 28:31 ROS Size

10 0000 No ROS
0001
thru
0111 64K
1000 128K

15 1001 256K
1010 512K
1011 iM
1100 ' 2M
1101 4M

20 1110 8M
1111 16M

TRANSLATION CONTROL REGISTER

The Translation Control Register (TCR) specifies if
interrupts are generated on successful hardware TLB
25 reload, if parity is used on the reference and
change array, the size of each page (either 2K or
4R-bytes), and the starting address of the main
storage page table (combined HAT and IPT). The
format of the Translation Control Register is

30 shown in FIG. 12.
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The Translation Control Register is defined as

follows:

Bits 0:20 Reserved.

(")

Bit 21 Enable Interrupt on Successful TLB
Reload. This bit is used to enable

0N

reporting of successful hardware TLB
reloading. When set to one, a
successful hardware TLB reload will
cause an exception reply to be
generated, and the TLB Reload bit
(bit 22) in the SER to be set to
one. When Enable Interrupt On
Successful TLB Reload is set to
zero, successful hardware reloading
of TLB entries is not reported.
This facility can be used for
software performance measurement
of the TLBs. |

Bit 22 Reference and Change Array Parity
Enable. This bit is used to indicate
if parity is used on the external
reference and change array. If this
bit is set to one, parity is
used on the reference and change
array. If this bit is set to zero,
parity is not used on the reference

and change array. g

i

Bit 23 Page Size. A value of zero is used
for 2K-byte pages, and a value of
one is used for 4K-byte pages.
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Bits 24:31 HAT/IPT Base Address. This 8-bit
field is used to specify the
starting address of HAT/IPT entries
in main storage. The value contained
in this field is multiplied by a
constant determined by the size of
real storage and the page size, to
determine the starting address of
the HAT/IPT éntries. For a page
size of 2K bytes, the base address
is specified by bits [24:31], and
for 4K pages by bits [25:31]. The
constant for each storage size
and page size configuration is
listed in Table I.

The Storage Exception Register (SER) is used to
report errors in the translation process, and
system errors, for a storage access; Individual
bits are provided to report each error condition
detected by the translation system. In the

case of multiple errors, each error is reported

by the setting of the appropriate bit. Bits which
were set by previous errors are not reset by

subsequent errors.

The SER is initialized to zero by the POR sequence.
Once an exception is reported, system software is
responsible for clearing the SER after the
exception has been processed. The format of the

Storage Exception Register is shown in FIG. 13.

The Storage Exception Register is defined as follows:
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Bits 0:21 Reserved.

Bit 22 Successful TLB Reload. This bit
is set to one when Interrupt On
Successful TLB entry is successfully
5 reloaded,

W

¥

Bit 23 Reference And Change Array Parity
Error. This bit is set to one
when a parity error is detected
in the reference and change array.

10 Bit 24 Write to ROS Attempted. This bit
is set to one when an attempt is
made to write to an address
contained in the ROS address space.

Bit 25 IPT Specification Error. This bit

15 is set to one when an infinite loop
is detected in the IPT search chain.
An infinite loop can be created by
a system software error which
incorrectly specifies IPT pointer

20 ' values that result in an IPT pointer
pointing to a previous entry in the
current IPT search chain (an infinite

loop).
Bit 26 External Device Exception. This bit
25 is set to one when an exception is

caused by a device on the RSC other
than ROMP. ®
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Bit 27 Multiple Exception. This bit is set
to one when more than one exception
(IPT Specification Erxror, Page
Fault, Specification, Protection, or

5 Data) has occurred before the

exception indication has been cleared
in the Storage Exception Register.

This ‘bit normally indicates that
system software has failed to process
10 an exception. However, if an
exception is caused by a Load
Multiple (LM) or Store Multiple
(STM) instruction, this bit can be
set since the LM or STM instruction
15 will attempt to load or store all of
the registers specified in the
instruction before the instruction is
terminated due to an exception.

Bit 28 Page Fault. This bit is set to one
20 when translation is terminated
because no TLB entry or main
storage page table entry contains
the translation for a virtual

address.

25 Bit 29 Specification. This bit is set to
one when translation is terminated
because two TLB entries were found

for the same virtual address.
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Bit 30 Protection. This bit is set to one
when translation is terminated
because Stofage Protection processing
for a non-special segment determines

that a storage access is not allowed.

Bit 31 Data. This bit is set to one when
translation is terminated because
Transaction ID/Lockbit processing
for a special segment determines

that a storage access is not allowed.

The Storage Exception Address Register (SEAR) contains
the effective storage address causing the exception
reported by the Storage Exception Register (SER) .~

for data load and store requests from the CPU. The
SEAR is not loaded for exceptions caused by ROMP
instruction fetches, or by external device. The
format of the Storage Exception Address Register is
shown in FIG. 14.

The Storage Exception Address Register is defined
as follows:

Bits 0:31 Storage Exception Address. The
- 32-bit effective storage address
causing the exception reported by
the SER. In the case of multiple
errors (bit 27 of the SER set to one),
the address contained in the SEAR is
the address of the oldest exception.

The Translated Real Address Register (TRAR) contains
the real storage address determined by the Compute
Real Address operation. The Compute Real Address |
function is used to determine if a virtual address
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is currently mapped in real storage, and the
corresponding real address if the virtual address
is mapped. The Compute Real Address function is
described subsequently. The format of the
5 Translated Real Address Register is shown in FIG.

15.

The Translated Real Address Register is defined as

follows:

Bit O Invalid Bit. This bit is set to one
10 if the translation failed, and is
set to zero if the translation is

successful.

Bits 1:7 Zeros. This seven-bit field is

always zero.

15 Bits 8:31 Real Storage Address. This 24-bit
field contains the real storage
address mapped to the given virtual
address if translation was
successful. This field is set to

20 zero if translation failed.

The Transaction Identifier Register (TID) contains
the eight-bit identifier of the task currently
defined as the "owner" of special segments. If a
segment is defined as a special segment by the

25 Special Bit in the selected segment register, then
lockbit processing as described in Section 6.2
applies to the storage access. Lockbit processing
uses the value contained in the TID and compares
it against the TID entry in the TLB to determine

30 if the storage access is permitted. The format of
the Transaction Identifier Register is shown in
FIG. 1l6.
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The transaction Identifier Register is defined
as follows:

Bits 0:23 Reserved.

Bits 24:31 Transaction Identifer. This eight-bit
value specifies the owner of special

segments.

The sixteen Segment Registers provided contain the
Segment Identifier, Special Bit, and Key Bit. The
12-bit Segment Identifier specifies one of 4096
256M-byte virtual storage segments. The Special
Bit indicates that this is a special segment and
lockbit processing applies. The Key Bit indicates
the level of access authority associated with the
currently executing task with respect to storage
accesses within the given segment. The format of

each Segment Register is shown in FIG. 17.

‘The content of each Segment Register is defined as

follows:

Bits 0:17 Reserved.

Bits 18:29 Segment Identifier. This 12-bit
quantity specifies one of 4096
256M-byte virtual storage segments.

Bit 30 Special Bit. This bit is set to one

for special segments, and set to

zero for non-special segments.

T
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Bit 31 Key Bit. This bit determines the
level of access authority of the
currently executing task for accesses
within the given segment. Use of
this bit for storage access control

is described in Section 6.1.

In the herein disclosed embodiment, each of the

two TLBs contain sixteen entries which provide the
necessary translation and control information for the
conversion of a virtual address to a real address.
In addition, each TLB entry contains additional
information used for storage access control. Since
the TLB contents are automatically updated from

the main storage page table by hardware, writing of
a TLB entry followed by a read will not necessarily
read the same data which was written. Also,
altering TLB entries can cause unpredictable
results since the correspondence between virtual
and real addresses will be destroyed. Access

to the TLB contents is provided for diagnostic
purposes only, and should only be made in
non-translated mode. A write to a TLB entry in
non-translated mode with all other translated
accesses disabled, followed by a read, will read

the same data that was written.

Each TLB entry is logically a 66-bit quantity
(excluding reserved bits) composed of a 25-bit
address tag, a 13-bit real page number, a valid

bit, a 2-bit key, a write bit, an 8-bit transaction
ID, and 16 lockbits. Each TLB entry is partitioned
into three fields which are individually addressable.
The format for each of the TLB fields are described

below.
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The "TLB Address Tag" field contains the high-order
25 bits of the segment identifier || virtual page
index for 2K pages, and the high-order 24 bits
fof 4K pages. The format of the Address Tag field
for each TLB entry is shown in FIG. 18.1. N

The content of each TLB Address Tag field is defined
as follows:

»

Bits 0:2 Reserved.

Bits 3:27 Address Tag. This field contains
high-order 25 bits of the segment
identifier || virtual page index
for 2K pages, and the high-order 24
bits for 4K pages. For 4K pages,
the Address Tag is contained in bits
[3:26].

Bits 28:31 Reserved.

The "TLB Real Page Number, Valid bit (V), and Key
bits (key)" field contains the real page number
assigned to the virtual address contained in the
Address Tag Field of the TLB entry. This field also
includes a Valid Bit to indicate the given TLB entry
contains valid information, and Key Bits for the
access authority required for a given page. The
format of this field for each TLB entry is shown in
FIG. 18.2. |

w

The content of the Real Page Number, Valid, and ®
Key Bits field is defined as follows:

Bits 0:15 Reserved.
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Bits 16:28 Real Page Number. This 13-bit field
specifies one of 8192 real pages.
If less than 8192 pages are
implemented, only those low-order
bits required to address the number

of implemented pages are used.

Bit 29 valid Bit. This bit is a one when
the selected TLB entry contains
valid information. This bit is a
zero if the TLB entry contains

invalid information.

Bits 30:31 Key Bits. This 2-bit field defines
the access authority for each page.
Use of the Key bits are described

in Section 6.1.

The "TLB Write Bit, Transaction ID, and Lockbits"
field contains the Write Bit, Transaction ID,

and Lockbits assigned to the virtual address
contained in the Address Tag field of the TLB
entry, if the TLB entry is for a special segment.
The format of this field for each TLB entry is
shown in FIG. 18.3.

The content of each TLB Write Bit, Transaction ID,
and Lockbit field is defined as follows:

Bits 0:6 Reserved.

Bit 7 Write Bit. This bit defines the
access authority associated with
each page for special segments. Use
of this bit in lockbit processing

is described in Section 6.2.
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Bits 8:14 Transaction Identifier. This 8-bit
field defines the task which
currently owns the sélected page
within a special segment. Use
of these bits in lockbit processing R

are described previously.

W

Bits 15:31 Lockbits. This 16-bit field defines
the access authority for each "line"
within a 2K or 4K page for special
segments. A line is 128 bytes for
2K pages, and 256 bytes for 4K pages.
Use of these bits in lockbit processing
are described in Section 6.2.

The present translation mechanism provides hardware
support for frequently required translation
functions. This hardware provides the ability to
selectively invalidate TLB entries, and to perform
a "load real address" function similar to that
provided by the IBM System/370 family of computers.

As changes to the virtual-to-real address mapping
are made, it is necessary for system software to
synchronize the contents of the TLBs with the
contents of the page table in main storage. Entries
in both the TLBs and page frame tables must be
purged (invalidated) to ensure that obsolete

mapping information is not used for a subsequent

)

translation.

The present system provides three functions to =
assist in the synchronization of TLB entries with

the contents of the page table in main storage.

These functions can be used to invalidate the

entire TLB contents, or to invalidate only selected

TLB entries. These functions are invoked by I/0
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write instructions (IOW) directed to specific I/0
addresses within the 64K byte block of I/0
addresses recognized by the system. Address
assignments for each of these functions will be given

to the system as required.

An "Invalidate Entire TLB" function causes all TLB
entries to be invalidated. This will force the
TLB contents to be updated from page tables in

main storage for subsequent translations.

An I/O write to the address associated with this
function causes all TLB entries to be invalidated.
The data transferred by the I/0 write instruction

is not used.

An "Invalidate TLB Entries in Specified Segment”
function causes all TLB entries with the specified
segment identifier to be invalidated. Subsequent
translations using this segment identifier will
cause the TLB contents to be updated from page

tables in main storage.

An I/O write to the address associated with this
function causes TLB entries with the specified
segment identifier to be invalidated. Bits [0:3]

of the data transferred by the I/0 write instruction
are used to select the segment identifier. All

TLB entries containing this segment identifier

are invalidated. Subsequent translations with

an effective address within the invalidated segment
will cause the TLB contents to be updated from

the page table in main storage.
The "Invalidate TLB Entry for Specified Effective

Address" function causes the TLB entry with the
specified effective address to be invalidated.
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Subséquent translations with an effective address
within the page containing the specified effective
address will cause the TLB contents to be updated
from the page table in main storage.

An I/O write to the address associated with this
function causes the TLB entry with the specified
effective address to be invalidated. Bits [0:31]

of the data transferred by the I/0 write instruction

¢}

‘are used as the effective address. The normal

translation process is applied using the segment
register contents contained in the present address

translation mechanism.

The "Compute Real Address" function is used by

system software to determine if a givén virtual
address is currently mapped in real storage, and what
real address is assigned to the virtual address

if it is mapped.

If a virtual address is not mapped, fhen its use
would cause a page fault; this information may be
important to the system routines running with
interrupts disabled. The result of the virtual-to-

real translation is required by system I/O routines,

since most I/0 operations are performed using real

storage addresses.

The compute Real Address function is invoked by an

I/0 write to the address associated with this
function. Bits [0:31] of the data transferred

by the I/0 write instruction are used as the effective
address. This effective address is then used for

the normal translation process, except the results

of translation are loaded into the Translated Real
Address Register (FIG. 15) (TRAR), rather than being
used to access storage. The TRAR contains a bit
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indicating whether the translation was successful,
and the corresponding real storage address if the
translation was successful. Normal storage
protection processing and lockbit processing are
included in the indication of successful translation.
Results of the Compute Real Address function are
obtained by an I/O read of the TRAR.

A 64K-byte block of I/0 addresses are assigned to
the translation system. This 64K-byte block begins
at an I/0 address specified by the I/O Base Address
Register. The I/0 base address is defined to be on
64K boundaries. The I/0 address assignments listed
in Table IX are displacements in the specified
64K-byte block. The absolute I/0 address is

equal to the I/O base address plus the displacement.
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0000
thru
00Q0F
0010

0011

0012
0013

QOl4
0015
0016
0017
0018
0019
thru
001F
0020

thru
002F

cUBSTITUTE SHEET

PCT/US82/01829

P 2%

65
TABLE IX
Assignment

Segment Registers 0 through 15.

I/0 Base Address Register

"

Storage Exception Register

Storage Exception Address
Register

Translated Real Address
Register

Transaction ID Register
Translation Control Register
RAM Specification ﬁegister
ROS Specification Register

RAS Mode Diagnostic Register

Reserved

7

TLBO Address Tag Field for TLBO
entries 0 through 15.
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0030
thru
003F TILB1l Address Tag Field for TLBO
entries 0 through 15.
5 0040
thru
004F TLBO Real Page Number, Valid
Bit, and Key Bits for TLBO
entries 0 through 15.
10 0050
thru
005F TLBl Real Number, Valid Bit,
and Key Bits for TLBO entries
0 through 15.
15 0060
thru
006F TLBO Write Bit, Transaction ID,
and Lockbits for TLBO entries
0 through 15.
20 0070
thru
007F TLBl1 Write Bit, Transaction ID,
and Lockbits for TLBO entries
0 through 15.
25 0080 Invalidate Entire TLB.
0081 Invalidate TLB Entries in
Specified Segment.
0082 Invalidate TLB Entry for

Specified Effective Address.
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0083

0084
thru
OFFF

1000
thru
2FFF

3000
thru
FFFF

(4}
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Load Real Address.

Reserved.

Reference and Change bits for
pages 0 through 8191.

Reserved.
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CONCLUSIONS

It will be apparent from the above description

of the preferred embodiment of the invention, that
many changes in the form and details of the system
hardware and software may readily be made by

those skilled in the art without departing from
the spirit and scope of the present invention,
which includes the usual segmenting scheme and

the provision of lockbits in both the TLBs and in
the page frame tables. These changes could
obviously include, but are not limited to changes
in the memory size, register sizes and control
field designation, address size, page frame table
accessing methods and organization, and hash

addressing methods to name but a few.

It is included that the scope of the invention
be limited only by the following claims in

which:
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CLAIMS

Having thus described our invention, what we

claim as new, and desire to secure by Letters

Patent is:

1.

A method for converting virtual memory

]

addresses supplied by an associated central
processing unit into real memory addresses
within a large hierarchical memory system
wherein the virtual memory address space

is significantly larger than the actual
memory which method comprises; the CPU
generating a first virtual address comprising
a segment identifier field, a page offset
field, and a byte offset field,

utilizing the segment identifier field to
access a set of segment registers pointed to
by the segment identifier field,

accessing the contents of the addressed segment
register and concatenating the contents of

same with the page offset and byte offset fields
of said first virtual address to form a
significantly larger second virtual address,
wherein portions of said second virtual

address obtained from said segment registers
and the page offset portion of said first
virtual address comprise a virtual page

)

address to be utilized as a search argument
in a subsequent address translation procedure 2

which procedure comprises
utilizing a subset of said virtual page address

as the search argument in a set of high speed
translation-look~aside buffers,
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comparing a complete virtual address stored
at an accessed location of said translation
look-aside buffers with the complete virtual
address utilized as the search argument and
accessing an associated real page address

in the main memory from the translation
look-aside buffers if the virtual address

comparison is successful,

in the event of an unsuccessful search for the

virtual address in said translation look-aside
buffers, continuing the search in a specified
segment of storage in main memory (page

frame tables) including
hashing said virtual page address,

accessing the page frame tables in main
memory as a function at said hashed address,
determining if the desired virtual address

is at the hashed address and if not

determining if the hashed address is the
initial member of a linked list of virtual

addresses, all of which would produce the same

hashed address,

continuing the search for the desired virtual
address in said linked address list in said
page frame tables until either the desired
complete virtual address is found or it is

determined that no such address is present,

syUBSTITUTE SHEET




WO 84/02784

10

15

20

25

30

PCT/US82/01829

71
accessing the real page address associated
with said complete virtual page address, if
found, in said page frame tables and utilizing
said real page address as the requested real

memory address.

An address translation method as set forth
in Claim 1, including accessing additional
access control bits stored in both said
translation look-aside buffers and in the
page frame tables associated with each
translation entry for every virtual to real

address translation stored therein,

accessing a plurality of lock bits stored in
either said translation look-aside buffers
or in the page frame tables associated with
each successfully translated page, said
plurality of lock bits comprising a bit for
each line within an associated real page

and utilizing said lockrbits to control
copy back and journalling operations when
the current version of data stored in

memory is accessed by the CPU.

In a data processing system, includihg a CPU
and a large hierarchical memory a method
for translating virtual memory addresses into

real memory address which comprises:

the CPU generating a first virtual address
comprising a segment identifier portion, a
page offset portion and a byte offset portion
(within the page),
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using the segment identifier to access one of
a plurality of segment registers pointed to
by the segment identifier, each of which
contains a second virtual address pointing to

a large virtual block of data,

combining said second virtual address with the
page offset and byte offset portions of said
first virtual address to form a third virtual
address wherein said third virtual address

is substantially larger than said first

virtual address,

utilizing said second virtual address and said
page offset portion of said first virtual
address as a virtual page search argument in a
translation look-aside buffer (TLB) which
comprises a very high speed searching mechanism
for searching for a limited number of virtual
addresses and for accessing real addresses
stored therein which are translations of

each related virtual address,

accessing said TLBs utilizing a subset of the

search argument as an address,

comparing the virtual page search argument
with the contents of a selected field of
the accessed TLB,

upon a successful comparison, utilizing a

real page address stored therein as the
translation of said virtual address and,
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accessing additional fields at the accessed
location in said TLB for accessing and data
persistence control information relevant
to the data stored at the translated real

page address,

and if unsuccessful initiating a search in

@

the page frame tables in main memory,

which contain the real address corresponding
to all virtual addresses utilized in the

memory system at any point in time,

generating an address in the page frame tables
as a function of the virtual page search

argument,

accessing said page frame table at said
generated address which address identifies

the initial member of a linked list of entries
and comparing said virtual page search
argument with a virtual page identifier

stored at each entry storage location in

said page frame tables until a successful

comparison occurs.

“y
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An address translation method as set forth in
claim 3 including: retrieving the real page
address, stored in and associated with a
successful search, from the page frame tables
together with the access and data persistence
control information stored therewith and
transferring said translation and control
information to an appropriate storage location

in the TLBs.

An address translation method as set forth in
Claim 4 wherein said step of generating an
address in the page frame tables includes
generating a hash function of the virtual

page search argument and

utilizing said hash function as at least a
portion of the address to a particular subset

of said page frame tables.

In a high speed electronic data processing
system including a central processing unit
(CPU) and a iarge hierarchical memory system
provided with a virtual addressing space
significantly larger than the actual memory,
the improvement which comprises an address
translation mechanism for converting virtual
addresses into real memory addresses including,

means for generating a first virtual address
which comprises a segment identifier field, a
page offset field and a byte offset field,
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a plurality of segment registers and means
for loading same under program control with
a second virtual address identifying a large
virtual block of data}

®

means for accessing one of said segments

registers specified by said segment identifier

€]

field of said first virtual address,

means for concatenating the virtual address from
the specified segment register with the page
offset and byte offset fields of said first
virtual address to form a large virtual

effective address comprising an effective page

- address portion and a byte offset portion,

a high speed translation look-aside buffer
system for storing address translation data
for most recently used virtual accesses

to the memory hierarchy,

means for utilizing at least a portion of said
effective page address to access the translation
look-aside buffer system to determine if said
effective page address has been previously
translated and, if so,

means for accessing the real page address

from the translation look-aside buffer as

the result of the translation process. B
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An address translation mechanism as set
forth in Claim 6 wherein said translation
look-aside buffer system includes a plurality
of storage locations each of which -includes
means for storing; the complete virtual
page address for a particular translation,
the complete real page address, and memory
access and data persistence control data
relevant to the particular real page of data,

means for comparing the complete effective

page address which caused access of a
particular storage location of the translation
look-aside buffer with the virtual page address

stored therein, and

in the page frame tables in main memory
which contain all of the virtual to real
address translations in the memory hierarchy
if the search in the translation look-aside

buffer system was unsuccessful.

An address translation mechanism as set forth
in Claim 7 including means for accessing the
translation look-aside buffer system at an
address computed from a subset of said
effective page address whereby it is possible
for many effective addresses to cause access
of the same storage locations in said
translation look-aside buffer.
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An address translation conclusion as set
forth in Claim 7 wherein the means for
continuing the search for a particular
translation in the page frame tables includes
means for hashing the effective page address

@

to obtain an access address into the page

frame tables,

[¢73

means for linking together all entries in the
page frame tables which represent the
virtual to real address translations of all
those virtual page addresses which would hash
to the same address,

means for continuing the search for a
particular effective page address in the
linked list until either the address

 is found or it is determined not to be present,

and

means for transferring predetermined data
relating to translation and memory control
functions from the page frame tables to the
appropriate location in the translation
look-aside buffers concurrently with a
successful translation which required using
the page frame tables.

[
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An address translation mechanism as set forth
in Claim 9 including means in
said translation look-aside buffers and
the page frame tables for storing N-lock bits
in each storage location wherein N is the
number of lines in a page of data stored

in said memory system,

means for accessing said lock bits under
program control whenever an address translation

operation occurs and

means for utilizing said lock bits to

control copy back and journaling operations
when the lock bits indicate that the particular
line(s) of data must be retained in an original

form for at least a predetermined period.

A high speed translation look-aside buffer
(TLB) mechanism for use with a virtual

to real address translation system
comprising as many addressable storage
locations therein as there are virtual to
real address translation data entities,

means in each storage location for storing;

the virtual address tag for comparison with

a virtual address to be translated,

the real address in memory of the data
contained in the above virtual address,

access control and identifier data
associated with the real page data,
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a series of N lock bits for use in
insuring data persistence for the
particular page wherein N is the number

of lines in the page,

means operable under program control for
accessing or altering the contents of any
storage location in said TLB based omn a

subset of the virtual address to be translated.

A translation look-aside buffer mechanism

as set forth in Claim 11 wherein said

means for accessing includes means for
selectively accessing a given storage location
for purposes of address translation and for
replacing the contents of the storage location
with a different and more recent translation
having the same address in the translation
look-aside buffer as determined from the

effective page address subset.

A translation look-aside buffer as set forth
in Claim 12 including means for processing
the lock bits accompanying any real page

of data which is the subject of a successful
translation operation to assure that copies
of designated lines of data in the page are
retained in storage in unaltered form for

a predetermined period of time.
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