发明专利说明书

专利号 ZL 200610009613.7

[51] Int. Cl.
C23C 14/30 (2006.01)
C23C 14/54 (2006.01)
C21D 1/26 (2006.01)
C21D 11/00 (2006.01)

[45] 授权公告日 2009年5月27日

[22] 申请日 2006.1.10
[21] 申请号 200610009613.7
[73] 专利权人 哈尔滨工业大学
地址 150001 黑龙江省哈尔滨市南岗区西大直街92号
[72] 发明人 赫晓东 李垚 李晓孙跃
[56] 参考文献
US5614273A 1997.3.25
JP2005281819A 2005.10.13
审查员 姜鹏

[74] 专利代理机构 哈尔滨市松花江专利商标事务所
代理人 牟永林

权利要求书1页 说明书3页 附图1页

[54] 发明名称
超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法

[57] 摘要
超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法，本发明涉及一种硅钢片制备方法，它解决了现有的硅钢片不能产业化生产的问题。方法如下：在真空的环境下，利用电子束作为热源，轰击高硅硅钢片的原料，使高硅硅钢片的原料熔化为蒸汽状态，然后蒸汽状态的高硅硅钢片原料沉积到基板上，得到高硅硅钢片板材，把高硅硅钢片板材从基板上揭下来即可。本发明的方法能通过控制各组成材料蒸发的速度精确控制成品板材的成分和所制备成板材的厚度，各种材料在蒸发状态下进行原子级混合，因此成分均匀。而且沉积速率高，由于本发明的方法工作效率高，制备过程的工艺参数容易控制，产品的质量容易得到保证，因此极其适合产业化应用。
1. 一种超薄、大尺寸、高硅硅钢片电子束物理气相沉积法制备方法，其特征在于它通过下述步骤实现：一、制备高硅铁合金铸锭作为高硅硅钢片的原料，然后把高硅铁合金铸锭进行1000-1200℃的扩散退火处理，使高硅铁合金铸锭中硅的成分均匀；二、把高硅铁合金铸锭放入坩埚内，并在铸锭上表面上放置难熔的金属铝或金属钨和硅，使高硅铁合金铸锭上表面受电子束轰击时形成富硅的“热池”，在另一个坩埚内放置CaF₂粉末并压实；三、安装基板，调整基板与高硅铁合金铸锭的上表面间距离在300-500 mm之间，用丙酮擦洗基板的下表面，密封真空室；四、真空室内抽真空；五、使基板在其自身的平面内绕自身的中心线旋转，同时加热基板到500-800 ℃；六、用电子枪产生的电子束先蒸发坩埚内的CaF₂粉末，从而在基板的下表面上形成一层5-10 μm 的CaF₂涂层，用于剥离后续沉积在基板上的高硅钢片板材；七、用挡板挡住基板的下表面，用1.8-2.5 A的电子束流，轰击高硅铁合金铸锭的上表面，开始蒸发高硅铁合金铸锭，持续10-20分钟后，打开挡板，铁硅合金蒸汽沉积到基板的下表面形成板材；八、剥离板材。

2. 一种超薄、大尺寸、高硅硅钢片电子束物理气相沉积法制备方法，其特征在于通过下述步骤实现：一、把纯铁铸锭（1）和纯硅材料（2）分别放入一号坩埚（3）和二号坩埚（4）内，在纯铁铸锭（1）表面放一层 CaF₂粉末并压实；二、安装基板（5），调整基板（5）与纯铁铸锭（1）上表面间的距离在300-500 mm之间，用丙酮擦洗基板（5）下表面，密封真空室（6），真空室（6）内抽真空；三、使基板（5）在其自身的平面内绕自身的中心线旋转，同时加热基板（5）到500-800 ℃；四、用电子枪（7）产生的电子束先蒸发 CaF₂粉末，从而在基板（5）的下表面上形成一层5-10 μm 的CaF₂涂层，用于剥离后续沉积在基板上的高硅硅钢片板材；五、用两个电子枪（7）产生的电子束分别蒸发纯铁铸锭（1）和纯硅材料（2），通过控制每个电子束流的大小来控制板材的成分，其中纯铁铸锭（1）对应的电子束流是1.3-2.0A，纯硅材料（2）对应的电子束流是1.2-1.5A；六、蒸发完后，剥离板材。
超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法

技术领域

本发明涉及一种硅钢片制备方法，具体涉及硅钢片的电子束物理气相沉积制备方法。

背景技术

Fe-6.5wt. %Si硅钢具有优异的软磁性能，如：中高频铁损低、磁滞伸缩小、矫顽力小、磁导率和饱和磁感应强度高等，同时它还具有稳定性好的优点，是一种优秀的软磁材料。它特别适用于中高频的电动机、变压器以及声频变压器的铁芯。不过，由于此材料加工性差，传统的轧制工艺很难加工，国内一直没有进行产业化，只能在实验室中用快凝法等工艺做出尺寸很小的高硅硅钢片。电子束物理气相沉积方法可以精确控制材料的成分和所制备材料的厚度，可以做出直径1米的超薄板材，而且沉积速率高，非常适合制备韧性要求不高、大尺寸、超薄的板材，但前人主要用该方法制备涂层和厚膜，如授权公告号是CN1359112A的《一种用电子束物理气相沉积制备纳米多层高阻抗软磁材料及其方法》的专利，没有人用该方法来制备高硅硅钢片。

发明内容

本发明的目的是提供一种超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法，以解决现有的超薄、大尺寸、高硅硅钢片只能在实验室中制备而不能产业化生产的问题。本发明的方法如下：在真空的环境中，利用电子束作为热源，轰击高硅硅钢片的原料，使高硅硅钢片的原料熔化为蒸汽状态，然后蒸汽状态的高硅硅钢片原料沉积到基板上，得到高硅硅钢片板材，将高硅硅钢片板材从基板上揭下来即可。

一种超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法，它通过下述步骤实现：一、制备高硅铁合金铸锭作为高硅硅钢片的原料，然后把高硅铁合金铸锭进行1000-1200℃的扩散退火处理，使高硅铁合金铸锭中硅的成分均匀；二、把高硅铁合金铸锭放入坩埚内，并在铸锭上表面上放置难熔的金属铌或金属钨和硅，使高硅铁合金铸锭上表面受电子束轰击时形成富硅的“热池”，在另一个坩埚内放置CaF₂粉末并压实；三、安装基板，调整基板与高硅铁合金铸锭的上表面间距离在300-500 mm之间，用丙酮擦洗基板的下表面，密封真空室；四、真空室内抽真空；五、使基板在其自身的平面内绕自身的中心线旋转，
同时加热基板到 500-800 °C；六、用电子枪产生的电子束先蒸发坩埚内的 CaF₂粉末，从而在基板的下表面上形成一层 5-10 μm 的 CaF₂涂层，用于剥离后续沉积在基板上的高硅硅钢片板材；七、用挡板挡住基板的下表面，用 1.8-2.5 A 的电子束流，轰击高硅铁合金铸锭的上表面，开始蒸发高硅铁合金铸锭，持续 10-20 分钟后，打开挡板，铁硅合金蒸汽沉积到基板的下表面形成板材；八、剥离板材。

一种超薄、大尺寸、高硅硅钢片电子束物理气相沉积制备方法，通过下述步骤实现：一、把纯铁铸锭 1 和纯硅材料 2 分别放入一号坩埚 3 和二号坩埚 4 内，在纯铁铸锭 1 表面放一层 CaF₂粉并压实；二、安装基板 5 和纯铁铸锭 1 上表面间的距离在 300-500 mm 之间，用丙酮擦拭基板 5 下表面，密封真空室 6，真空室 6 内抽真空；三、使基板 5 在其自身的平面内绕自身的中心线旋转，同时加热基板 5 到 500-800 °C；四、用电子枪 7 产生的电子束先蒸发 CaF₂粉末，从而在基板 5 的下表面上形成一层 5-10 μm 的 CaF₂涂层，用于剥离后续沉积在基板上的高硅硅钢片板材；五、用两个电子枪 7 产生的电子束分别蒸发纯铁铸锭 1 和纯硅材料 2，通过控制每个电子束流的大小来控制板材的成分，其中纯铁铸锭 1 对应的电子束流是 1.3-2.0A，纯硅材料 2 对应的电子束流是 1.2-1.5A；六、蒸发完后，剥离板材。

本发明的方法能通过控制各组成材料蒸发的速度精确控制成品板材的成分和所制备成品板材的厚度，各种材料在蒸汽状态下进行原子级混合，因此成分均匀。而且沉积速率高，可以一次性制备出直径 1 米左右的超薄板材，非常适合制备韧性要求不高、大尺寸、超薄的板材，由于本发明的方法工作效率高，制备过程的工艺参数容易控制，产品的质量容易得到保证，因此极其适合产业化应用。本发明的方法工艺简单、设计合理，具有较大的推广价值。

附图说明
图 1 是本发明实施方式二的示意图。

具体实施方式

具体实施方式一：本实施方式的方法如下：在真空的环境下，利用电子束作为热源，轰击高硅硅钢片的原料，使高硅硅钢片的原料熔化为蒸汽状态，然后蒸汽状态的高硅硅钢片原料沉积到基板上，得到高硅硅钢片板材，把高硅硅钢片板材从基板上揭下来即可。所述高硅硅钢片的原料即高硅铁合金原料，可用硅钢片边角料（或纯铁）和纯硅通过真空冶炼获得。
本实施方式的具体步骤如下：一、制备硫化铁合金铸锭作为高硅硅钢片的原料：将纯铁和纯硅（也可以采用纯硅和硅钢片边角料）按照必要的成分比例，采用真空冶炼铸造成高硫铁合金铸锭，然后把高硫铁合金铸锭进行1000-1200℃的扩散退火处理，使高硫铁合金铸锭中硅的成分均匀。二、把高硫铁合金铸锭放入坩埚内，并在铸锭上表面上放置难熔的金属铌或金属钨和硅，使高硫铁合金铸锭上表面受电子束轰击时形成富硅的“热池”，在一个坩埚上放置CaF₂粉末，并压紧。三、安装基板，调整基板与高硫铁合金铸锭的上表面距离在300-500 mm之间，用丙酮擦洗基板的下表面，密封真空室。四、真空室内抽真空，一般抽至10⁻⁴ Pa；五、旋转基板，设定转速为5-30 rpm，并加热基板到500-800 ℃。六、用电子枪产生的电子束先蒸发坩埚内的CaF₂粉末，从而在基板的下表面上形成一层5-10 μm的CaF₂涂层，用于剥离后续沉积在基板上的高硫硅钢片板材。七、用挡板挡住基板的下表面，用1.8-2.5 A的电子束流，轰击高硫铁合金铸锭的上表面，开始蒸发高硫铁合金铸锭，持续10-20分钟后，打开挡板，铁硅合金蒸汽沉积到基板的下表面形成板材；八、剥离板材。

具体实施方式二：下面结合图1具体说明本实施方式。本实施方式的步骤如下：一、把纯铁铸锭1和纯硅材料2分别放入一号坩埚3和二号坩埚4内，在纯铁铸锭1表面放一层CaF₂粉并压实；二、安装基板5，调整基板5与纯铁铸锭1上表面间的距离在300-500 mm之间，用丙酮擦洗基板5下表面，密封真空室6，真空室6内抽真空，一般抽至真空度约10⁻⁴ Pa；三、使基板5在其自身的平面内绕自身的中心线旋转，设定转速为5-30 rpm，同时加热基板5到500-800 ℃；四、用电子枪7产生的电子束先蒸发CaF₂粉末，从而在基板5的下表面上形成一层5-10 μm的CaF₂涂层，用于剥离后续沉积在基板上的高硫硅钢片板材；五、用两个电子枪7产生的电子束分别蒸发纯铁铸锭1和纯硅材料2，通过控制每个电子束流的大小来控制板材的成分，其中纯铁铸锭1对应的电子束流是1.3-2.0A，纯硅材料2对应的电子束流是1.2-1.5A；六、蒸发完后，剥离板材。