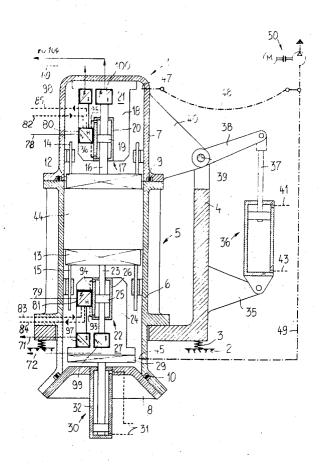
[45] Oct. 23, 1973

		ORY GRANULATE COMPACTING TUS FOR BLOCK MANUFACTURE	
[75]	Inventor:	Harry Blaser, Oensingen, Switzerland	
[73]	Assignee:	Von Roll A.G., Gerlafingen, Switzerland	
[22]	Filed:	Oct. 13, 1971	
[21]	Appl. No.: 188,715		
[30]	_	n Application Priority Data	
		70 Switzerland 15636/70	
	Nov. 9, 197	70 Switzerland 16671/70	
[52]	U.S. Cl	425/432, 425/167, 425/352	
[51]	Int. Cl	B28b 3/08	
[58]	Field of So	earch 425/352, 355, 167,	
		425/432	
[56]		References Cited	
	UNI	TED STATES PATENTS	
3,689,186 9/19		72 Winter 425/352	


3,050,809	8/1962	Kupka 425/352
3,616,495	11/1971	Lemelson 425/167 X
3,013,321	12/1961	McElroy 425/167 X
2,348,197	5/1944	Ernst et al 425/352 X

Primary Examiner—J. Spencer Overholser Assistant Examiner—B. D. Tobor Attorney—Flynn & Frishauf

[57] ABSTRACT

An essentially tubular shell has movable tops and bottoms, which are subjected to vibratory impacts in noncyclically recurring pulses; top or bottom may be subjected to a constant pressure, or both may be subjected to impacts which are synchronized and opposite each other. The impact pulses are controllable both as to frequency (which may be zero), amplitude and wave shape, the impulses being preferably controlled from an electrical programming source which controls application of pressure fluid to the top and bottom.

19 Claims, 3 Drawing Figures

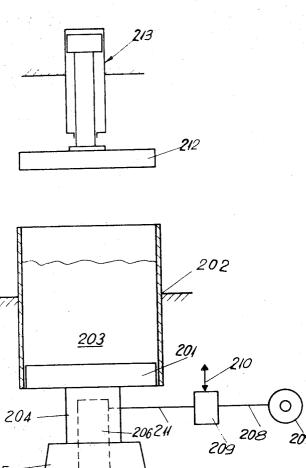


FIG.1

205 -

SHEET 2 OF 3

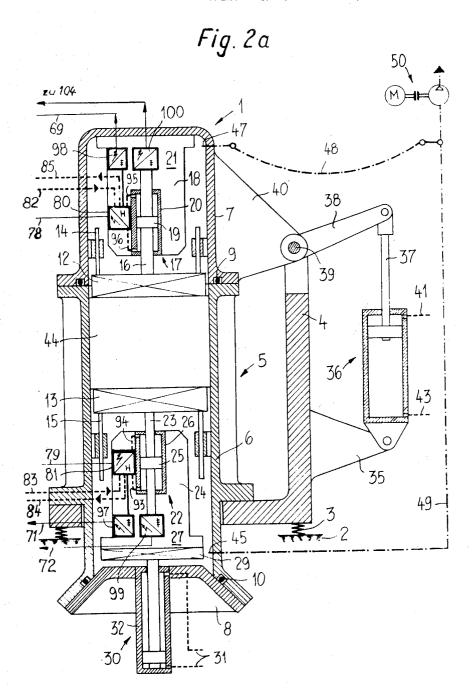


Fig. 2b zu 100 .70 -69 78 75 62 65 60/ -77 79 / 63 66 76 72 -71 - 85 91 Pressur<mark>e</mark> Tank 84 Radiator Filter 90' 89

VIBRATORY GRANULATE COMPACTING APPARATUS FOR BLOCK MANUFACTURE

The present invention relates to a vibratory compacting apparatus particularly to manufacture blocks from 5 granulates, such as block anodes, in which granulates are placed into a shell and subjected to vibration treatment, in which the granulates are compacted.

The manufacture of blocks from granulates by means of vibratory treatment is known. It has been proposed 10 to utilize resiliently supported tables, or the like, on which the form in which the granulates are filled, is mounted. Such a vibratory table usually has a pair of rotating, unbalanced weights applied thereto. The unbalanced weights may be so arranged that their hori- 15 subjected to pressure, for example hydraulic pressure. zontal components cancel each other. Small vibratory tables of this type can utilize an electric motor which is mounted directly on the vibratory table in order to drive the rotating unbalanced weights. Large vibratory tables, however, require remotely located electric mo- 20 tors. The drive to the unbalanced weights then is over shafts with universal joints therein, or otherwise flexible shafts. Rotation of the unbalanced weights results in an essentially harmonic oscillation of the vibratory table, the granulate within the form being vibrated into 25 one compact block. The compaction of the granulate upon vibration depends on the frequency and amplitude of vibrations.

Remotely located drives, transmitting power over shafts having universal joints, or the like therein are 30 practically always used for vibration tables of high power. Such an arrangement requires a substantial amount of space, since the shafts and the universal joints require a considerable length in order to compensate for the motion of the vibration table. The fre- 35 quency can be changed by changing the speed of rotation, and amplitude of vibration can be changed within small limits; the type of vibration is, however, always cyclically recurring, due to the drive from a constant speed, or essentially constant speed motor.

It has been found that vibration of granulates to provide compaction is not as effective as non-harmonic, that is non-cyclically recurring vibrations, such as pulses, impacts and abrupt blows, presenting a welldefined maximum of energy for a short period of time, that is, when looked at in an oscillograph representation, presenting sharply defined peaked pulses.

It is an object of the present invention to provide a compacting apparatus to compact granulates into blocks, which is compact, utilizes but small space for the energy source, and which is capable of providing energy for compaction which is non-cyclically recurring. By non-cyclical recurrance rate, as referred to in the present specification, a motion is meant which is nonharmonic in the sense of showing cyclically recurring oscillations.

Subject Matter of the Present Invention

Briefly, a shell is provided having movable top and bottom parts, which are connected to a power transfer device such as a pressure fluid operated piston-cylinder arrangement. The granulate to be compacted is placed within the shell, and energy pulses are applied to at least one of the top, or bottom parts in non-cylically recurring pulses. One of the parts may be subjected to a constant compaction pressure, while the other is subjected to impacts, so that blows will be transmitted to

the granulate to be compacted; or, both the top and bottom cover parts may be operated in synchronism, and in counter-acting directions so that compacting blows are delivered against the granulate within the shell, from both the top and the bottom.

In accordance with a feature of the invention, the blows are controlled from a programming source, which may be electrical, which provides a control for a transducer applying pressure fluid to the cylinderpiston arrangement. In addition to the cylinder-piston arrangements transmitting the blows, a steady compacting pressure may be exerted, for example by mounting one of the cylinder-piston arrangements transmitting the blow on a housing portion which is

In accordance with a feature of the invention, both the amplitude, wave form and frequency of the compacting impulses is changeable; the frequency of compacting pressure applied to one of the cylinder-piston arrangements may be zero, that is, provide a constant essentially unvarying compacting pressure.

By providing pressure fluid operated cylinderpistons, directly acting over movable parts of the container within which the granulate is placed, space for the apparatus is reduced and the source of energy may be located anywhere, connected to the apparatus itself merely by a fluid pressure line, such as a hydraulic pressure fluid line. Control of admission of the hydraulic pressure fluid is simple and can be carried out by means of electromagnetically operated valves, in accordance with an established program.

The invention will be described by way of example with reference to the accompanying drawings, wherein:

FIG. 1 is a highly schematic illustration of the apparatus to make blocks, and generally illustrating the application of the invention;

FIG. 2a is a schematic longitudinal sectional view through an apparatus to compact granulates; and

FIG. 2b is a schematic diagram illustrating control connections, and programming control for the apparatus of FIG. 2a.

Referring to FIG. 1: A press, or similar suitable arrangement has a movable bottom 201, slidable within a shell 202. Granulate, generally indicated at 203 is placed into the shell. The bottom 201 is connected to a stand 204 which bears against a base 205 in any suitable manner, and not illustrated in FIG. 1. The bearing connection between base 205 and bottom 204 can be fixed, or can be resilient, that is, can be over interposed 50 springs (not shown). An impacting apparatus 206, providing upward motion to the bottom 201 is located within base 204. Since the impacts can be recurring, the apparatus will be referred to as a "vibrator" although it is to be understood that the recurrence rate of vibrations applied to the bottom 201 on which the granulate 203 is located is non-cyclical. The vibrator, or impacting device 206 has an impacting transducer operable in only a single direction, namely axially with respect to the shell 202, and transmitting blows or impacts against the granulate. In FIG. 1, the direction of impacts is vertical. This permits utilization of a single vibrator, which has advantages based on economics and space availability. The vibrator apparatus 206 provides blows and impacts which are non-harmonic, that is, non-cyclically recurring.

An energy source 207 which may, for example, be a source of compressed air, hydraulic fluid, or electrical

energy, provides energy over line 208 to a control device 209. The controlled energy is then transmitted over line 211 to the vibrator. The interconnection of lines 208, 211, and the placement of the control apparatus 209 is variable in accordance with available space, and operating requirements.

Control apparatus 209, providing controlled application of energy over line 211 to the impacting apparatus 206 is itself controllable by means of a controller 210 which may be manually operated, or electrically, for 10 all mechanism enclosed therein from the shell 6, so that example by means of a programming source.

The vibrator itself is a cylinder-piston arrangement having masses movable relative with respect to each other, as controlled by the energy over lines 208, 211. One of these masses can be fixed with the bottom 201, 15 the top and bottom regions of the apparatus. Connecor can be elastically secured thereto.

The granulate can be vibrated entirely from the bottom. It is, however, preferred and increases the compacting effect when the top of the granulate is likewise vice 213 is provided, which can be lowered against the top of the granulate. The cylinder-piston arrangement 213 provides a steady constant pressure against the granulate or, as will appear hereafter, can likewise be controlled to provide impacts or blows against the 25 granulate, preferably in synchronism, and in opposite direction with the blows provided by device 206 and connected to the bottom. The top compacting arrangement is not strictly necessary, however, since the noncyclically recurring, that is the non-harmonic vibra- 30 tions transmitted from the device 206 already provide for substantial compaction.

A specific example of the apparatus is shown in FIG. 2a, wherein the device 1 is shown as a whole. A base 2 has a machine frame 4 supported thereon by means 35 of springs 3. A housing 5 is located within frame 4, the housing including a shell 6, a top cover 7 and a bottom cover 8, the parts 6, 7 and 8 being sealed with respect to each other by seals 9, 10.

The interior of shell 5 has a top part 12 and a bottom 40 part 13, parts 12, 13 being longitudinally guided by rods 14, 15, in the direction of the longitudinal axis of the housing 5.

Top part 12, which forms a pressure piston, has a piston rod 16 secured thereto; slidable within a pistoncylinder arrangement 17. The cylinder-piston arrangement 17 includes a cylinder portion 18 within which a cylinder 20 and a cylinder housing 21 are located. The cylinder housing 21 also carries control equipment to be described below. Cylinder housing 21 is secured to the inner wall of the upper cover 7.

A cylinder-piston arrangement which may be identical, or similar to the one just described, is located at the bottom of the shell, beneath a bottom part 13 forming a counteracting piston. Bottom part 13 has a piston rod 23 connected to the bottom part 13. It includes a cylinder portion 24 and a piston 25. Cylinder portion 24 has a cylinder 26 and a cylinder housing 27, the cylinder housing 27 carrying control equipment to control the piston drive 22, and which will be described below. Cylinder housing 27 is not connected to the bottom shell, as the top cylinder housing, but rather is connected to a table 29 of an additional cylinder-piston drive 30. The cylinder 32 of the additional cylinderpiston drive is secured to the lower portion 8, closing off the shell. Pressure lines 31 lead to the additional cylinder 32.

A bracket 35 extends from frame 4, and supports a further cylinder piston arrangement 36. The piston rod 37 is pivotally connected to a link 38 which is secured to a shaft 39, journalled on machine frame 4. An arm 40 is secured to the top cover 7 for the shell and is likewise connected to shaft 39. Upon application of differential pressure to lines 41, 43, into cylinder-piston drive 36, the piston rod 37 is lowered, thus swinging shaft 39 and permitting removal of the top cover 7 and granulate 44 can be introduced within the shell 6, for compaction therein.

Line connections 45, 47 are introduced above the top piston 12, and below the bottom piston 13, and in tions 45, 47 are connectable with lines 48, 49 which can be connected to a suction apparatus 50 of any suitable form.

The compactor 1 is operated by hydraulic pressure. loaded. A top cover 212, within a cylinder-piston de- 20 The hydraulic pressure, that is, the pressure pulses, are controlled from a programming source 60 (FIG. 2b), which is programmed to provide output signals which can vary as schematically indicated by boxes 61, 62, 63, 64. The programmer thus provides an output signal in which the feed of projection of any one of the pistons 12, 13 can be controlled (see box of diagram 61). Likewise, amplitude A (diagram 62); frequency, or duration of impact (diagram 63) and wave shape (diagram 64) are controllable. The signal provided from programmer 60 represents a command signal. It is applied over two parallel channels 65, 66 to comparator 67, 68, where the command signal is compared with actual position signals applied over lines 69, 70 and 71, 72, respectively. The error signal is applied over line 73, 74 to amplifier 75, 76, supplied from a power source 77, the amplified signal being conducted over lines 78, 79 to transducers and amplifiers 80, 81 (FIG. 2a). The transducer-amplifiers 80, 81 may be electro-hydraulic servo valves which apply pressure fluid, such as hydraulic pressure fluid to the piston-cylinder arrangement 17, 22, respectively.

> The valve may also control compressed air, or other pressure fluids; rather than utilizing valves, the control signals can be applied to magnetically operated impacting devices, over mechanical or solid state relays.

> The transducers 80, 81 as shown in FIG. 2a are supplied over lines 82, 83 with hydraulic fluid under high pressure; the fluid at low pressure is taken over lines 84, 85 back to a reservoir or sump 87 (FIG. 2b), preferably over a radiator 86 to cool the fluid, to be then picked up by a pump 88, driven by a motor 89, and supplied over a filter 90 to a pressure reservoir 91. The pressure at pressure reservoir 91 is controlled by means of a pressure regulating valve 92.

> Transducer-amplifiers 80, 81 are connected over lines 93, 94, 95, 96 with the two piston-cylinder arrangements 17, 22 respectively. Position transducers 97, 98 for the transducer amplifiers 80, 81, and position transducers 99, 100 for piston rods 16, 23 provide feedback signals which are conducted over lines 69, 70. 71, 72 to the comparators 67, 68 (FIG. 2b), to be there compared with the command signal from the programmer 60.

A completely closed control loop is provided. The arrangement need not, however, have the closed control loop, in which measured position signals are compared with command signals, and the motion is controlled by an error signal. Other arrangements are possible. In the particular example shown, the two piston-cylinder drives 17, 22 provide the same impacts to the granulate 44 within shell 5, that is, both piston-cylinder drives are controlled by a single programming source 500, acting in opposition from each other, so that pistons 12, 13 will have the same motion, directed towards each other, in synchronism. Different programming arrangements can be used, that is, each one of the pistons 12, 13 may be controlled by its own programmer, or a 10 single programmer can be used in a time-sharing arrangement. The feeback circuit described in detail is not necessary, but it provides for greater accuracy; direct connection of control signals from a programmer 60 to the respective pistons 12, 13 can likewise be used. 15

The pressure medium applied to the cylinder-piston combinations 17, 22 is either hydraulic, or pneumatic. Indicators 102, 104 (FIG. 2b) can be included in the feedback circuit 70, 72 which indicates the actual position of the pistons 12, 13 confining the granulate within 20 the shell. Other indicators, or controllers and recorders can be connected as is well known in the art.

In the described example, the position of the pistons 12, 13 is used as a feedback signal. It is also possible to measure pressure being exerted by the pistons and 25 compare the exerted pressure with a programming source providing pressure impacting signals.

The apparatus of the present invention can be used in accordance with various combinations of feed, steady pressure, impacts, and impacts superimposed on steady pressure or slowly varying pressure. At pressure variation with zero frequency, that is, at even or only very slowly changing pressure feed, the granulate is compacted by the pressure of the two piston-cylinder arrangements 17, 22 compressing the granulate. Superimposed non-cyclically recurring impacts provide additional energy for effective compaction of the granulate.

Various changes and modifications may be made within the inventive concept.

I claim:

- 1. Vibratory granulate compacting apparatus for the manufacture of blocks comprising
 - a housing;
 - a multi-part container having a bottom part, a top part and a shell part located between the bottom and top part and having a central axis, the granular material being placed within the container for compaction;
 - a piston means connected to at least one of the parts to move the connected part in axial direction for compaction of material located within the container by steady-state pressure and, selectively, vibratory motion;
- fluid energy means connected to said piston means and moving said piston means to provide compacting pressure and vibratory impacts in axial direction, the energy having parameters including amplitude, frequency, wave shape;
- a fluid energy source;
- electrical signal controlled fluid control means controlling application of fluid energy from said source to said energy means; and
- programmed electrical control means generating signals representative of at least one of said parameters, connected to and controlling said signalcontrolled fluid control means to apply said fluid energy controlled by one of said parameters.

- 2. Apparatus according to claim 1, wherein the energy means comprises a cylinder for the piston to form a piston-cylinder combination, the fluid energy being hydraulic pressure fluid.
- 3. Apparatus according to claim 1, comprising a pair of energy means, one each connected to the bottom and top part of the multi-part container, respectively; and the piston means comprises a top and a bottom piston, respectively connected to the top and bottom part.
- 4. Apparatus according to claim 3, wherein one of the energy means is controllable to provide steady compacting pressure, whereby the frequency of compaction is zero;
- and the other energy means is controllable to provide impacts at non-cyclically recurring intervals to prevent harmonic oscillations from being established.
- 5. Apparatus according to claim 3, wherein the energy means connected to both the top and bottom parts are controllable to provide, each, counter-acting synchronized impacts directed towards each other.
- 6. Apparatus according to claim 3, wherein the energy means comprises a cylinder for the piston to form a piston-cylinder combination;
 - one of the cylinder parts of one piston-cylinder combination is fixedly connected to the housing; the pistons of both said piston-cylinder combinations being connected to the bottom and top parts respectively; and the other cylinder part is slidably secured in the housing.
- 7. Apparatus according to claim 6, including an additional cylinder-piston combination supporting the other cylinder part.
- 8. Apparatus according to claim 7, wherein the housing closes the top and bottom parts and has a separable, removable top and bottom cover;
 - one of the cylinders being secured to the removable top cover, and the additional cylinder-piston combination being secured to the bottom cover.
- 9. Apparatus according to claim 8, wherein at least one of the top and bottom covers is removable from the housing as an entirety including the respectively connected piston-cylinder combination.
- 10. Apparatus according to claim 1, wherein the means applying energy to the parts, and the means controlling the frequency and amplitude parameter of application of energy comprises
 - a source of control signals;

40

- transducer and amplifier means controlled by the control signal;
- and means interconnecting the transducer means and the amplifier means with the energy means.
- 11. Apparatus according to claim 10, wherein the control signals derived from the source provide signals of opposite polarity;
 - and a pair of energy means are provided acting in opposite axial directions, one energy means each being controllable by one of the signals.
- 12. Apparatus according to claim 1, including resilient means supporting the housing.
- 13. Apparatus according to claim 1, wherein the housing is sealed;
- and suction outlet means are provided both at the upper and lower portions of the housing.
- 14. Compaction apparatus comprising a generally tubular shell (6);

top piston and bottom pistons (12, 13) slidable in said shell, the material to be compacted being placed in the shell between the pistons;

top and bottom housing covers (7, 8) secured to the shell (6) and enclosing said top and bottom pistons, 5 respectively;

hydraulic power means (17, 22) controlling movement of the pistons into the shell to compact granulate therein;

an electro-hydraulic control loop (**60,65–85**, 10 **93-100**);

and program means (60) connected to said control loop and controlling the power means (17, 22) applying hydraulic pressure by each said pistons (12, 13) with respect to at least one of: amplitude; frequency; and wave shape of applied power to provide for compacting and retracting movement of the pistons and vibratory impacts thereof to be transmitted from the pistons to the material within the shell, as controlled by said program means 20 (60).

15. Apparatus according to claim 14, wherein the program means controlling the power means comprises a random signal generator providing non-cyclically recurring power control signals.

16. Apparatus according to claim 14, wherein the program means controlling the power means comprises

a signal generator;

and the electro- hydraulic control loop comprises transducer means connected to the power means to transduce the signals from the signal generator to compression strokes by said top, and bottom piston, respectively.

17. Apparatus according to claim 16, wherein the signal controlling application of power to one of the pistons is a slowly, or unvarying compression signal and the signal controlling the other piston is a pulse-type signal providing impact, or blow-type excursions of the other piston at non-cyclically recurring rates.

18. Apparatus according to claim 15, wherein the signal from the signal generator controlling application of power controls both said pistons to move synchronously in opposition towards each other to provide counter-acting compression impacts against the material in the shell.

19. Apparatus according to claim 2, comprising hydraulic connection means connecting the fluid energy source and the cylinder-piston combination, the electrical signal controlled fluid control means being interposed in the connection means and being located on the cylinder of the piston-cylinder combination.

30

35

40

45

50

55

60