wo 2017/003587 A1 [N I P00 OO OO0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

5 January 2017 (05.01.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/003587 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 21/56 (2013.01) HO4L 29/06 (2006.01)
GO6F 21/57 (2013.01)

International Application Number:
PCT/US2016/033977

International Filing Date:
25 May 2016 (25.05.2016)

Filing Language: English
Publication Language: English
Priority Data:

14/752,901 27 June 2015 (27.06.2015) US

Applicant: MCAFEE, INC. [US/US]; 2821 Mission Col-
lege Boulevard, Santa Clara, California 95054-1838 (US).

Inventors: EDWARDS, Jonathan L.; 2535 NE 46th Av-
enue, Portland, Oregon 97213 (US). SPURLOCK, Joel
R.; 3153 NE Hoyt Street, Portland, Oregon 97232 (US).

Agent: PEMBERTON, John D.; Patent Capital Group,
c¢/o CPA Global, 900 Second Avenue South, Suite 600,
Minneapolis, Minnesota 55402 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: DETECTION OF MALWARE

(57) Abstract: Particular embodiments described herein provide for an elec-
tronic device that can be configured to monitor a process, determine if the

300

302~J A PROCESS BEGINS TO RUN |

SHOULD
THE PROCESS BE
MONITORED?

ISTHE
PROCESS MANUALLY
LOOKING FOR A SYSTEM
FUNCTION?

THE PROCESS 15
NOT FLAGGED

| N
908 _| THE PROCESS 18 FLAGGED | 310

FIG. 3

process is parsing to look for one or more system functions, and flag the pro-
cess if the process is parsing to look for one or more system system func-
tions. In an example, the process can be determined to be parsing to look for
one or more system functions if the process parses portable executable head-
ers to tind and interpret dynamic link library tables. In another example, the
process can be determined to be parsing to look for one or more system
functions if the process calls GetProcAddress.

WO 2017/003587 A1 W] 00T 00 A

Published:
— with international search report (Art. 21(3))

WO 2017/003587 PCT/US2016/033977

DETECTION OF MALWARE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of and priority to U.S. Nonprovisional
(Utility) Patent Application No. 14/752,901 filed 27 June 2015 entitled, “DETECTION OF

MALWARE”, which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] This disclosure relates in general to the field of information security, and more

particularly, to the detection of malware.

BACKGROUND

[0003] The field of network security has become increasingly important in today’s
society. The Internet has enabled interconnection of different computer networks all over
the world. In particular, the Internet provides a medium for exchanging data between
different users connected to different computer networks via various types of client devices.
While the use of the Internet has transformed business and personal communications, it has
also been used as a vehicle for malicious operators to gain unauthorized access to computers
and computer networks and for intentional or inadvertent disclosure of sensitive information.

[0004] Malicious software ("malware") that infects a host computer may be able to
perform any number of malicious actions, such as stealing sensitive information from a
business or individual associated with the host computer, propagating to other host
computers, and/or assisting with distributed denial of service attacks, sending out spam or
malicious emails from the host computer, etc. Hence, significant administrative challenges
remain for protecting computers and computer networks from malicious and inadvertent

exploitation by malicious software and devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] To provide a more complete understanding of the present disclosure and

features and advantages thereof, reference is made to the following description, taken in

WO 2017/003587 PCT/US2016/033977

conjunction with the accompanying figures, wherein like reference numerals represent like
parts, in which:

[0006] FIGURE 1 is a simplified block diagram of a communication system for the
detection of malware in accordance with an embodiment of the present disclosure;

[0007] FIGURE 2 is a simplified block diagram of a portion a communication system
for the detection of malware in accordance with an embodiment of the present disclosure;

[0008] FIGURE 3 is a simplified flowchart illustrating potential operations that may be
associated with the communication system in accordance with an embodiment;

[0009] FIGURE 4 is a simplified flowchart illustrating potential operations that may be
associated with the communication system in accordance with an embodiment;

[0010] FIGURE 5 is a block diagram illustrating an example computing system that is
arranged in a point-to-point configuration in accordance with an embodiment;

[0011] FIGURE 6 is a simplified block diagram associated with an example ARM
ecosystem system on chip (SOC) of the present disclosure; and

[0012] FIGURE 7 is a block diagram illustrating an example processor core in
accordance with an embodiment.

[0013] The FIGURES of the drawings are not necessarily drawn to scale, as their
dimensions can be varied considerably without departing from the scope of the present

disclosure.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

EXAMPLE EMBODIMENTS

[0014] FIGURE 1 is a simplified block diagram of a communication system 100 for the
detection of malware in accordance with an embodiment of the present disclosure. As
illustrated in FIGURE 1, an embodiment of communication system 100 can include electronic
device 102, cloud services 104, and a server 106. Electronic device 102 can include an
operating system (OS) 110, memory 112, a processor 114, a hypervisor 116, a security module
118, and at least one application 120. OS 110 can include OS functions 122 and OS variables
124. Memory 112 can include a shared library 126. Security module 118 can include a system

process monitoring module 128, a whitelist 130, and a blacklist 132. Cloud services 104 and

WO 2017/003587 PCT/US2016/033977

server 106 can each include a network security module 134. Network security module 124
can include whitelist 130 and blacklist 132. Electronic device 102, cloud services 104, and
server 106 can be in communication using network 108. In an example, malicious device 136
may attempt to use network 108 or some other means (e.g., a physical connection) to infect
electronic device 102 with malicious code 138.

[0015] In example embodiments, communication system 100 can be configured to
monitor threads of a process and determine if a thread is trying to lookup a function that the
process should already know. Generally, code that is a part of legitimate software or a
legitimate application does not need to look for common functions to interact with the
operating system because the common functions are available in published libraries and
linked against export libraries and a dynamic link library (DLL) loader can resolve addresses
automatically. However, malicious code often does not know the location of various function
calls and the malicious code must first find the functions before it can execute. By marking
certain files and regions related to system functions unreadable, the system can analyze what
is reading the files and regions to locate the system function and make a determination if the
code is trusted or malicious.

[0016] Elements of FIGURE 1 may be coupled to one another through one or more
interfaces employing any suitable connections (wired or wireless), which provide viable
pathways for network (e.g., network 108) communications. Additionally, any one or more of
these elements of FIGURE 1 may be combined or removed from the architecture based on
particular configuration needs. Communication system 100 may include a configuration
capable of transmission control protocol/Internet protocol (TCP/IP) communications for the
transmission or reception of packets in a network. Communication system 100 may also
operate in conjunction with a user datagram protocol/IP (UDP/IP) or any other suitable
protocol where appropriate and based on particular needs.

[0017] For purposes of illustrating certain example techniques of communication
system 100, it is important to understand the communications that may be traversing the
network environment. The following foundational information may be viewed as a basis from
which the present disclosure may be properly explained.

[0018] Malicious code 138 may be malware or malicious software that infects a host

computer (e.g., electronic device 102) to perform any number of malicious actions, such as

WO 2017/003587 PCT/US2016/033977

4

stealing sensitive information from a business or individual associated with the host
computer, propagating to other host computers, and/or assisting with distributed denial of
service attacks, sending out spam or malicious emails from the host computer, etc. One
common malware feature is to use shellcode to exploit a vulnerability in software running on
a machine. Shellcode is a piece of code used as the payload in the exploitation of the software
vulnerability. It is called "shellcode"” because it typically starts a command shell from which
the attacker can control the compromised machine. Before the shellcode can effectively
infect a machine, it needs to find OS functions or routines (e.g., LoadLibrary, CreateFile, etc.)
to execute its payload. In order to find OS routines, the shell code can call GetProcAddress or
parse portable executable (PE) headers to find and interpret DLLs” import and export tables.
What is needed is a security solution that provides a system and method to detect the
shellcode and identify malicious activity.

[0019] A communication system for the detection of malware, as outlined in FIGURE
1, can resolve these issues (and others). Communication system 100 may be configured to
use hypervisor (e.g., hypervisor 116) memory based monitoring to monitor code as it is
executing and accessing data. For example, memory read monitoring can be used on the data
structures that malware needs to read in order to find the OS functions that the malware may
need before it can execute. When a DLL exports some function to a process, the information
about the location of the start of the function can be found as well as the name of the function
that is stored in tables (e.g., export tables) which are pointed to by well know structures at
the beginning of the DLL. Communication system 100 can be configured to use the hypervisor
to make those structures and tables unreadable so that when a process does read them, the
system can analyze the process and look at the pattern of the accesses and the code that is
accessing the structures or tables. From the pattern and the bytes being accessed the system
can determine what function is being looked for and can determine if the code is a malicious
attempt to find the functions.

[0020] For example, system process monitoring module 128 can be configured to
analyze code (e.g., from application 120) that is looking up OS functions (e.g., OS functions
122) and OS variables (e.g., OS variables 124). In a shared library of the system (e.g., shared
library 126), only the structures that indicate where to find the OS functions or OS variables

are made unreadable as there is no benefit in making the code unreadable. Areas of memory

WO 2017/003587 PCT/US2016/033977

that may be protected and marked unreadable can include the import and export tables, DLL,
PE files, etc.

[0021] Turning to the infrastructure of FIGURE 1, communication system 100 in
accordance with an example embodiment is shown. Generally, communication system 100
can be implemented in any type or topology of networks. Network 108 represents a series of
points or nodes of interconnected communication paths for receiving and transmitting
packets of information that propagate through communication system 100. Network 108
offers a communicative interface between nodes, and may be configured as any local area
network (LAN), virtual local area network (VLAN), wide area network (WAN), wireless local
area network (WLAN), metropolitan area network (MAN), Intranet, Extranet, virtual private
network (VPN), and any other appropriate architecture or system that facilitates
communications in a network environment, or any suitable combination thereof, including
wired and/or wireless communication.

[0022] In communication system 100, network traffic, which is inclusive of packets,
frames, signals, data, etc., can be sent and received according to any suitable communication
messaging protocols. Suitable communication messaging protocols can include a multi-
layered scheme such as Open Systems Interconnection (OSI) model, or any derivations or
variants thereof (e.g., Transmission Control Protocol/Internet Protocol (TCP/IP), user
datagram protocol/IP (UDP/IP)). Additionally, radio signal communications over a cellular
network may also be provided in communication system 100. Suitable interfaces and
infrastructure may be provided to enable communication with the cellular network.

[0023] The term “packet” as used herein, refers to a unit of data that can be routed
between a source node and a destination node on a packet switched network. A packet
includes a source network address and a destination network address. These network
addresses can be Internet Protocol (IP) addresses in a TCP/IP messaging protocol. The term
“data” as used herein, refers to any type of binary, numeric, voice, video, textual, or script
data, or any type of source or object code, or any other suitable information in any
appropriate format that may be communicated from one point to another in electronic
devices and/or networks. Additionally, messages, requests, responses, and queries are forms

of network traffic, and therefore, may comprise packets, frames, signals, data, etc.

WO 2017/003587 PCT/US2016/033977

[0024] In an example implementation, electronic device 102, cloud services 104, and
server 106 are network elements, which are meant to encompass network appliances,
servers, routers, switches, gateways, bridges, load balancers, processors, modules, or any
other suitable device, component, element, or object operable to exchange information in a
network environment. Network elements may include any suitable hardware, software,
components, modules, or objects that facilitate the operations thereof, as well as suitable
interfaces for receiving, transmitting, and/or otherwise communicating data or information
in a network environment. This may be inclusive of appropriate algorithms and
communication protocols that allow for the effective exchange of data or information.

[0025] In regards to the internal structure associated with communication system
100, each of electronic device 102, cloud services 104, and server 106 can include memory
elements for storing information to be used in the operations outlined herein. Each of
electronic device 102, cloud services 104, and server 106 may keep information in any suitable
memory element (e.g., random access memory (RAM), read-only memory (ROM), erasable
programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM),
application specific integrated circuit (ASIC), etc.), software, hardware, firmware, or in any
other suitable component, device, element, or object where appropriate and based on
particular needs. Any of the memory items discussed herein should be construed as being
encompassed within the broad term ‘memory element. Moreover, the information being
used, tracked, sent, or received in communication system 100 could be provided in any
database, register, queue, table, cache, control list, or other storage structure, all of which
can be referenced at any suitable timeframe. Any such storage options may also be included
within the broad term ‘memory element’ as used herein.

[0026] In certain example implementations, the functions outlined herein may be
implemented by logic encoded in one or more tangible media (e.g., embedded logic provided
in an ASIC, digital signal processor (DSP) instructions, software (potentially inclusive of object
code and source code) to be executed by a processor, or other similar machine, etc.), which
may be inclusive of non-transitory computer-readable media. In some of these instances,
memory elements can store data used for the operations described herein. This includes the
memory elements being able to store software, logic, code, or processor instructions that are

executed to carry out the activities described herein.

WO 2017/003587 PCT/US2016/033977

[0027] In an example implementation, network elements of communication system
100, such as electronic device 102, cloud services 104, and server 106 may include software
modules (e.g., security module 118, system process monitoring module 128, and network
security module 134) to achieve, or to foster, operations as outlined herein. These modules
may be suitably combined in any appropriate manner, which may be based on particular
configuration and/or provisioning needs. In example embodiments, such operations may be
carried out by hardware, implemented externally to these elements, or included in some
other network device to achieve the intended functionality. Furthermore, the modules can
be implemented as software, hardware, firmware, or any suitable combination thereof.
These elements may also include software (or reciprocating software) that can coordinate
with other network elements in order to achieve the operations, as outlined herein.

[0028] Additionally, each of electronic device 102, cloud services 104, and server 106
may include a processor that can execute software or an algorithm to perform activities as
discussed herein. A processor can execute any type of instructions associated with the data
to achieve the operations detailed herein. In one example, the processors could transform
an element or an article (e.g., data) from one state or thing to another state or thing. In
another example, the activities outlined herein may be implemented with fixed logic or
programmable logic (e.g., software/computer instructions executed by a processor) and the
elements identified herein could be some type of a programmable processor, programmable
digital logic (e.g., a field programmable gate array (FPGA), an EPROM, an EEPROM) or an ASIC
that includes digital logic, software, code, electronic instructions, or any suitable combination
thereof. Any of the potential processing elements, modules, and machines described herein
should be construed as being encompassed within the broad term ‘processor.’

[0029] Electronic device 102 can be a network element and includes, for example,
desktop computers, laptop computers, mobile devices, personal digital assistants,
smartphones, tablets, or other similar devices. Cloud services 104 is configured to provide
cloud services to electronic device 102. Cloud services may generally be defined as the use
of computing resources that are delivered as a service over a network, such as the Internet.
Typically, compute, storage, and network resources are offered in a cloud infrastructure,
effectively shifting the workload from a local network to the cloud network. Server 106 can

be a network element such as a server or virtual server and can be associated with clients,

WO 2017/003587 PCT/US2016/033977

customers, endpoints, or end users wishing to initiate a communication in communication
system 100 via some network (e.g., network 108). The term ‘server’ is inclusive of devices
used to serve the requests of clients and/or perform some computational task on behalf of
clients within communication system 100. Although security module 118 is represented in
FIGURE 1 as being located in electronic device 102, this is for illustrative purposes only.
Security module 118 could be combined or separated in any suitable configuration.
Furthermore, security module 118 could be integrated with or distributed in another network
accessible by electronic device 102 such as cloud services 104 or server 106.

[0030] Turning to FIGURE 2, FIGURE 2 is a simplified block diagram of a portion of a
communication system 100 for the detection of malware. As illustrated in FIGURE 2,
electronic device 102 can include OS 110, memory 112, security module 118, and application
120. 0S 110 can include OS functions 122 and OS variables 124. Memory 112 can include a
DLL 140, import and export tables 142, one or more PE file 144, and GetProcAddress 148.
Security module 118 can include system process monitoring module 128, whitelist 130, and
blacklist 132. Application 120 can include shell code 146. Each PE file 144 can include a
header 150. GetProcAddress 148 can retrieve the address of an exported function or variable
from DLL 140.

[0031] If application is malicious or includes malicious code 138, before shellcode 146
can effectively infect a machine, it needs to find operating system functions or routines (e.g.,
example LoadLibrary, CreateFile, etc.) to execute its payload. In order to find OS routines, the
shell code can call GetProcAddress 148 or parse to look for PE headers from PE files 144 to
find and interpret DLLs’ or import and export tables 142. For example, when DLL 140 exports
some functions to a process, the information about the start of the function can be found as
well as the name of the function. The name of the function can be stored in import and export
tables 142 which are pointed to by well know structures at the beginning of DLL 140. Whitelist
122 can include entries of known clean or trusted applications, code, strings, etc. and can be
used to reduce false positives. Blacklist 124 can include entries of known malicious or
untrusted applications, code, strings, etc.

[0032] Turning to FIGURE 3, FIGURE 3 is an example flowchart illustrating possible
operations of a flow 300 that may be associated with the detection of malware, in accordance

with an embodiment. At 302, a process begins to run. At 304, the system determines if the

WO 2017/003587 PCT/US2016/033977

process should be monitored. If the process should not be monitored, then the process is not
flagged as in 310. For example, the process may be found in whitelist 130 and may be
classified as trusted. In addition, the process may be a process that is not typically monitored
for malware. If the process should be monitored (e.g., the application is unknown or is found
in blacklist 132), then the system determines if the process is manually looking for (e.g.,
parsing to look for) a system function, as in 306. If the process is not manually looking for
(e.g., parsing to look for) a system function, then the process is not flagged as in 310. If the
process is manually looking for (e.g., parsing to look for) a system function, then the process
is flagged, as in 308. By flagging the process, the process may be analyzed for malware by
security module 118 or sent to a network element for further analysis (e.g. by network
security module 134).

[0033] Turning to FIGURE 4, FIGURE 4 is an example flowchart illustrating possible
operations of a flow 400 that may be associated with the detection of malware, in accordance
with an embodiment. At 402, an application begins to execute. At 404, the application begins
to parse PE files to manually (e.g., parsing to) find and interpret DLL tables. At 406, the
application is flagged for further analysis to determine if the application is malicious. For
example, the process may be analyzed for malware by security module 118 or sent to a
network element for further analysis (e.g. by network security module 134).

[0034] FIGURE 5 illustrates a computing system 500 that is arranged in a point-to-
point (PtP) configuration according to an embodiment. In particular, FIGURE 5 shows a
system where processors, memory, and input/output devices are interconnected by a
number of point-to-point interfaces. Generally, one or more of the network elements of
communication system 100 may be configured in the same or similar manner as computing
system 500.

[0035] Asillustrated in FIGURE 5, system 500 may include several processors, of which
only two, processors 570 and 580, are shown for clarity. While two processors 570 and 580
are shown, it is to be understood that an embodiment of system 500 may also include only
one such processor. Processors 570 and 580 may each include a set of cores (i.e., processor
cores 574A and 574B and processor cores 584A and 584B) to execute multiple threads of a
program. The cores may be configured to execute instruction code in a manner similar to

that discussed above with reference to FIGURES 1-5. Each processor 570, 580 may include at

WO 2017/003587 PCT/US2016/033977

10

least one shared cache 571, 581. Shared caches 571, 581 may store data (e.g., instructions)
that are utilized by one or more components of processors 570, 580, such as processor cores
574 and 584.

[0036] Processors 570 and 580 may also each include integrated memory controller
logic (MC) 572 and 582 to communicate with memory elements 532 and 534. Memory
elements 532 and/or 534 may store various data used by processors 570 and 580. In
alternative embodiments, memory controller logic 572 and 582 may be discreet logic
separate from processors 570 and 580.

[0037] Processors 570 and 580 may be any type of processor and may exchange data
via a point-to-point (PtP) interface 550 using point-to-point interface circuits 578 and 588,
respectively. Processors 570 and 580 may each exchange data with a chipset 590 via
individual point-to-point interfaces 552 and 554 using point-to-point interface circuits 576,
586, 594, and 598. Chipset 590 may also exchange data with a high-performance graphics
circuit 538 via a high-performance graphics interface 539, using an interface circuit 592, which
could be a PtP interface circuit. In alternative embodiments, any or all of the PtP links
illustrated in FIGURE 5 could be implemented as a multi-drop bus rather than a PtP link.

[0038] Chipset 590 may be in communication with a bus 520 via an interface circuit
596. Bus 520 may have one or more devices that communicate over it, such as a bus bridge
518 and I/O devices 516. Via a bus 510, bus bridge 518 may be in communication with other
devices such as a keyboard/mouse 512 (or other input devices such as a touch screen,
trackball, etc.), communication devices 526 (such as modems, network interface devices, or
other types of communication devices that may communicate through a computer network
560), audio I/O devices 514, and/or a data storage device 528. Data storage device 528 may
store code 530, which may be executed by processors 570 and/or 580. In alternative
embodiments, any portions of the bus architectures could be implemented with one or more
PtP links.

[0039] The computer system depicted in FIGURE 5 is a schematic illustration of an
embodiment of a computing system that may be utilized to implement various embodiments
discussed herein. It will be appreciated that various components of the system depicted in
FIGURE 5 may be combined in a system-on-a-chip (SoC) architecture or in any other suitable

configuration. For example, embodiments disclosed herein can be incorporated into systems

WO 2017/003587 PCT/US2016/033977

11

including mobile devices such as smart cellular telephones, tablet computers, personal digital
assistants, portable gaming devices, etc. It will be appreciated that these mobile devices may
be provided with SoC architectures in at least some embodiments.

[0040] Turning to FIGURE 6, FIGURE 6 is a simplified block diagram associated with an
example ARM ecosystem SOC 600 of the present disclosure. At least one example
implementation of the present disclosure can include the detection of malware features
discussed herein and an ARM component. For example, the example of FIGURE 6 can be
associated with any ARM core (e.g., A-7, A-15, etc.). Further, the architecture can be part of
any type of tablet, smartphone (inclusive of Android® phones, iPhones®), iPad®, Google
Nexus®, Microsoft Surface®, personal computer, server, video processing components, laptop
computer (inclusive of any type of notebook), Ultrabook™ system, any type of touch-enabled
input device, etc.

[0041] In this example of FIGURE 6, ARM ecosystem SOC 600 may include multiple
cores 606-607, an L2 cache control 608, a bus interface unit 609, an L2 cache 610, a graphics
processing unit (GPU) 615, an interconnect 602, a video codec 620, and a liquid crystal display
(LCD) I/F 625, which may be associated with mobile industry processor interface (MIPI)/ high-
definition multimedia interface (HDMI) links that couple to an LCD.

[0042] ARM ecosystem SOC 600 may also include a subscriber identity module (SIM)
I/F 630, a boot read-only memory (ROM) 635, a synchronous dynamic random access memory
(SDRAM) controller 640, a flash controller 645, a serial peripheral interface (SPI) master 650,
a suitable power control 655, a dynamic RAM (DRAM) 660, and flash 665. In addition, one or
more example embodiments include one or more communication capabilities, interfaces, and
features such as instances of Bluetooth™ 670, a 3G modem 675, a global positioning system
(GPS) 680, and an 802.11 Wi-Fi 685.

[0043] In operation, the example of FIGURE 6 can offer processing capabilities, along
with relatively low power consumption to enable computing of various types (e.g., mobile
computing, high-end digital home, servers, wireless infrastructure, etc.). In addition, such an
architecture can enable any number of software applications (e.g., Android®, Adobe® Flash®
Player, Java Platform Standard Edition (Java SE), JavaFX, Linux, Microsoft Windows

Embedded, Symbian and Ubuntu, etc.). In at least one example embodiment, the core

WO 2017/003587 PCT/US2016/033977

12

processor may implement an out-of-order superscalar pipeline with a coupled low-latency
level-2 cache.

[0044] FIGURE 7 illustrates a processor core 700 according to an embodiment.
Processor core 700 may be the core for any type of processor, such as a micro-processor, an
embedded processor, a digital signal processor (DSP), a network processor, or other device
to execute code. Although only one processor core 700 is illustrated in Figure 7, a processor
may alternatively include more than one of the processor core 700 illustrated in Figure 7. For
example, processor core 700 represents one example embodiment of processors cores 574a,
574b, 584a, and 584b shown and described with reference to processors 570 and 580 of
FIGURE 5. Processor core 700 may be a single-threaded core or, for at least one embodiment,
processor core 700 may be multithreaded in that it may include more than one hardware
thread context (or “logical processor”) per core.

[0045] FIGURE 7 also illustrates a memory 702 coupled to processor core 700 in
accordance with an embodiment. Memory 702 may be any of a wide variety of memories
(including various layers of memory hierarchy) as are known or otherwise available to those
of skill in the art. Memory 702 may include code 704, which may be one or more instructions,
to be executed by processor core 700. Processor core 700 can follow a program sequence of
instructions indicated by code 704. Each instruction enters a front-end logic 706 and is
processed by one or more decoders 708. The decoder may generate, as its output, a micro
operation such as a fixed width micro operation in a predefined format, or may generate
other instructions, microinstructions, or control signals that reflect the original code
instruction. Front-end logic 706 also includes register renaming logic 710 and scheduling logic
712, which generally allocate resources and queue the operation corresponding to the
instruction for execution.

[0046] Processor core 700 can also include execution logic 714 having a set of
execution units 716-1 through 716-N. Some embodiments may include a number of
execution units dedicated to specific functions or sets of functions. Other embodiments may
include only one execution unit or one execution unit that can perform a particular function.
Execution logic 714 performs the operations specified by code instructions.

[0047] After completion of execution of the operations specified by the code

instructions, back-end logic 718 can retire the instructions of code 704. In one embodiment,

WO 2017/003587 PCT/US2016/033977

13

processor core 700 allows out of order execution but requires in order retirement of
instructions. Retirement logic 720 may take a variety of known forms (e.g., re-order buffers
or the like). In this manner, processor core 700 is transformed during execution of code 704,
at least in terms of the output generated by the decoder, hardware registers and tables
utilized by register renaming logic 710, and any registers (not shown) modified by execution
logic 714.

[0048] Although not illustrated in FIGURE 7, a processor may include other elements
on a chip with processor core 700, at least some of which were shown and described herein
with reference to FIGURE 5. For example, as shown in FIGURE 5, a processor may include
memory control logic along with processor core 700. The processor may include 1/O control
logic and/or may include I/O control logic integrated with memory control logic.

[0049] Note that with the examples provided herein, interaction may be described in
terms of two, three, or more network elements. However, this has been done for purposes
of clarity and example only. In certain cases, it may be easier to describe one or more of the
functionalities of a given set of flows by only referencing a limited number of network
elements. It should be appreciated that communication system 100 and its teachings are
readily scalable and can accommodate a large number of components, as well as more
complicated/sophisticated arrangements and configurations. Accordingly, the examples
provided should not limit the scope or inhibit the broad teachings of communication system
100 as potentially applied to a myriad of other architectures.

[0050] It is also important to note that the operations in the preceding flow diagrams
(i.e., FIGURES 3-5B) illustrate only some of the possible correlating scenarios and patterns
that may be executed by, or within, communication system 100. Some of these operations
may be deleted or removed where appropriate, or these operations may be modified or
changed considerably without departing from the scope of the present disclosure. In
addition, a number of these operations have been described as being executed concurrently
with, or in parallel to, one or more additional operations. However, the timing of these
operations may be altered considerably. The preceding operational flows have been offered
for purposes of example and discussion. Substantial flexibility is provided by communication
system 100 in that any suitable arrangements, chronologies, configurations, and timing

mechanisms may be provided without departing from the teachings of the present disclosure.

WO 2017/003587 PCT/US2016/033977

14

[0051] Although the present disclosure has been described in detail with reference to
particular arrangements and configurations, these example configurations and arrangements
may be changed significantly without departing from the scope of the present disclosure.
Moreover, certain components may be combined, separated, eliminated, or added based on
particular needs and implementations. Additionally, although communication system 100
has been illustrated with reference to particular elements and operations that facilitate the
communication process, these elements and operations may be replaced by any suitable
architecture, protocols, and/or processes that achieve the intended functionality of
communication system 100

[0052] Numerous other changes, substitutions, variations, alterations, and
modifications may be ascertained to one skilled in the art and it is intended that the present
disclosure encompass all such changes, substitutions, variations, alterations, and
modifications as falling within the scope of the appended claims. In order to assist the United
States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent
issued on this application in interpreting the claims appended hereto, Applicant wishes to
note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph
six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words
"means for" or "step for" are specifically used in the particular claims; and (b) does not intend,
by any statement in the specification, to limit this disclosure in any way that is not otherwise

reflected in the appended claims.

OTHER NOTES AND EXAMPLES

[0053] Example C1 is at least one machine readable medium having one or more
instructions that when executed by at least one processor, cause the at least one processor
to monitor a process, determine if the process is parsing to look for one or more system
functions, and flag the process if the process is parsing to look for one or more system
functions.

[0054] In Example C2, the subject matter of Example C1 can optionally include
where the process is determined to be parsing to look for one or more system functions if the

process parses portable executable headers to find and interpret dynamic link library tables.

WO 2017/003587 PCT/US2016/033977

15

[0055] In Example C3, the subject matter of any one of Examples C1-C2 can
optionally include where the process is determined to be parsing to look for one or more
system functions if the process calls GetProcAddress.

[0056] In Example C4, the subject matter of any one of Examples C1-C3 can
optionally include where the process includes shellcode.

[0057] In Example C5, the subject matter of any one of Examples C1-C4 can
optionally include where the one or more instructions that when executed by the at least one
processor, further cause the at least one processor to analyze the process for malware.

[0058] InExample C6, the subject matter of any one of Example C1-C5 can optionally
include where the one or more instructions that when executed by the at least one processor,
further cause the at least one processor to remove the flag if the process is found in a
whitelist.

[0059] In Example Al, an apparatus can include a system process monitoring
module. The system process monitoring module can be configured to monitor a process,
determine if the process is parsing to look for one or more system functions, and flag the
process if the process is parsing to look for one or more system functions.

[0060] In Example, A2, the subject matter of Example Al can optionally include
where the process is determined to be parsing to look for one or more system functions if the
process parses portable executable headers to find and interpret dynamic link library tables.

[0061] In Example A3, the subject matter of any one of Examples A1-A2 can
optionally include where the process is determined to be parsing to look for one or more
system functions if the process calls GetProcAddress.

[0062] In Example A4, the subject matter of any one of Examples A1-A3 can
optionally include where the process includes shellcode.

[0063] In Example A5, the subject matter of any one of Examples Al-A4 can
optionally include where the system process monitoring module is further configured to
analyze the process for malware.

[0064] In Example A6, the subject matter of any one of Examples A1-A5 can
optionally include where the system process monitoring module is further configured to

remove the flag if the process is found in a whitelist.

WO 2017/003587 PCT/US2016/033977

16

[0065] Example M1 is a method including monitoring a process, determining if the
process is parsing to look for one or more system functions, and flagging the process if the
process is parsing to look for one or more system functions.

[0066] In Example M2, the subject matter of Example M1 can optionally include
where the process is determined to be parsing to look for one or more system functions if the
process parses portable executable headers to find and interpret dynamic link library tables.

[0067] In Example M3, the subject matter of any one of the Examples M1-M2 can
optionally include where the process is determined to be parsing to look for one or more
system functions if the process calls GetProcAddress.

[0068] In Example M4, the subject matter of any one of the Examples M1-M3 can
optionally include where the process includes shellcode.

[0069] In Example M5, the subject matter of any one of the Examples M1-M4 can
optionally include analyzing the process for malware.

[0070] Example S1 is a system for detecting malware, the system can include a
system process monitoring module. The system process monitoring module can be
configured for monitoring a process, determining if the process is parsing to look for one or
more system functions, and flagging the process if the process is parsing to look for one or
more system functions.

[0071] InExample S2, the subject matter of Example S1 can optionally include where
the process is determined to be parsing to look for one or more system functions if the
process parses portable executable headers to find and interpret dynamic link library tables.

[0072] In Example S2, the subject matter of any one of Examples S1 and S2 can
include where the process is determined to be parsing to look for one or more system
functions if the process calls GetProcAddress.

[0073] Example X1 is a machine-readable storage medium including machine-
readable instructions to implement a method or realize an apparatus as in any one of the
Examples A1-A6, or M1-M5. Example Y1 is an apparatus comprising means for performing of
any of the Example methods M1-M5. In Example Y2, the subject matter of Example Y1 can
optionally include the means for performing the method comprising a processor and a
memory. In Example Y3, the subject matter of Example Y2 can optionally include the memory

comprising machine-readable instructions.

WO 2017/003587 PCT/US2016/033977

17

CLAIMS:

1. At least one machine readable medium comprising one or more instructions
that when executed by at least one processor, cause the at least one processor to:

monitor a process;

determine if the process is parsing to look for one or more system functions; and

flag the process if the process is parsing to look for one or more system functions.

2. The at least one machine -readable medium of Claim 1, wherein the process is
determined to be parsing to look for one or more system functions if the process parses

portable executable headers to find and interpret dynamic link library tables.

3. The at least one machine -readable medium of any of Claims 1 and 2, wherein
the process is determined to be parsing to look for one or more system functions if the

process calls GetProcAddress.

4. The at least one machine-readable medium of any of Claims 1-3, wherein the

process includes shellcode.

5. The at least one machine-readable medium of any of Claims 1-4, further
comprising one or more instructions that when executed by the at least one processor,
further cause the at least one machine readable medium to:

analyze the process for malware.

6. The at least one machine-readable medium of any of Claims 1-5, further
comprising one or more instructions that when executed by the at least one processor,
further cause the at least one machine readable medium to:

remove the flag if the process is found in a whitelist.

WO 2017/003587 PCT/US2016/033977

18

7. An apparatus comprising:
a system process monitoring module, wherein the system process monitoring module
is configured to:
monitor a process;

determine if the process is parsing to look for one or more system functions;

and

flag the process if the process is parsing to look for one or more system
functions.
8. The apparatus of Claim 7, wherein the process is determined to be parsing to

look for one or more system functions if the process parses portable executable headers to

find and interpret dynamic link library tables.

9. The apparatus of any of Claims 7 and 8, wherein the process is determined to

be parsing to look for one or more system functions if the process calls GetProcAddress.

10. The apparatus of any of Claims 7-9, wherein the process includes shellcode.

11. The apparatus of any of Claims 7-10, wherein the system process monitoring
module is further configured to:

analyze the process for malware.

12. The apparatus of any of Claims 7-11, wherein the system process monitoring
module is further configured to:

remove the flag if the process is found in a whitelist.

13. A method comprising:
monitoring a process;
determining if the process is parsing to look for one or more system functions; and

flagging the process if the process is parsing to look for one or more system functions.

WO 2017/003587 PCT/US2016/033977

19

14. The method of Claim 13, wherein the process is determined to be parsing to
look for one or more system functions if the process parses portable executable headers to

find and interpret dynamic link library tables.

15. The method of any of Claims 13 and 14, wherein the process is determined to

be parsing to look for one or more system functions if the process calls GetProcAddress.

16. The method of any of Claims 13-15, wherein the process includes shellcode.

17. The method of any of Claims 13-16, further comprising:

analyzing the process for malware.

18. A system for detecting malware, the system comprising:
a system process monitoring module, wherein the system process monitoring module
is configured for:
monitoring a process;

determining if the process is parsing to look for one or more system functions;

and

flagging the process if the process is parsing to look for one or more system
functions.
19. The system of Claim 18, wherein the process is determined to be parsing to

look for one or more system functions if the process parses portable executable headers to

find and interpret dynamic link library tables.

20. The system of any of Claims 18 and 19, wherein the process is determined to

be parsing to look for one or more system functions if the process calls GetProcAddress.

WO 2017/003587 PCT/US2016/033977

1/6

100

ELECTRONIC DEVICE 102 Yo o sences”
OPERATING SYSTEM 110 NETWORK 134 104
122 | SECURITY MODULE |
0S FUNCTIONS
130~ WHITELIST
124~ os variaBLES ,
139~ BLACKLIST
MEMORY 112
126+ SHARED LIBRARY 15:‘6
MALICIOUS
PROCESSOR | | HYPERVISOR DEVICE
7 S NETWORK MALICIOUS
114 118 | CO[\?E
SECURITY MODULE 138
SYSTEM PROCESS
el MONITORING
128 MODULE
SERVER
130~ WHITELIST NETWORK
SECURITY MODULE
132~ BLACKLIST WHITELIST 130
120 ™ BLACKLIST 106
N 118 132
APPLICATION <
134

FIG. 1

WO 2017/003587

2/6 102

s

PCT/US2016/033977

ELECTRONIC DEVICE

OPERATING SYSTEM

122 OS FUNCTIONS

124~ OS VARIABLES

MEMORY

140~] DYNAMIC
LINK LIBRARY

142~ IMPORT AND
EXPORT TABLES

144~ HEADER 150

PORTABLE

EXECUTABLE FILES:

HEADER 150

144-") " PORTABLE
EXECUTABLE FILES

GET PROCESS
148~ ADDRESS

SECURITY MODULE
SYSTEM PROCESS
e~ MONITORING
128 MODULE
118"
130~ WHITELIST
1391 BLACKLIST
APPLICATION
120~ 1461 SHELL CODE

FIG. 2

WO 2017/003587 PCT/US2016/033977

3/6
GD 90
START |
‘ i '/
302~ 4 PROCESS BEGINS TO RUN

7 sHouD
THEPROCESSBE >
“_MONITORED?

< ISTHE N
~" PROCESS MANUALLY ™\
“\LOOKING FOR A SYSTEM .~

. FUNCTION? .~

306

THE PROCESS IS

o NOT FLAGGED
L YES N
308 - THE PROCESS IS FLAGGED 310
: 400
FIG. 3 | _y /
402~J" AN APPLICATION BEGINS TO EXECUTE

v

THE APPLICATION BEGINS TO PARSE
PORTABLE EXECUTABLE FILES TO

404-7 MANUALLY FIND AND INTERPRET

DYNAMIC LINK LIBRARY TABLES

'

THE APPLICATION IS FLAGGED FOR
406" FURTHER ANALYSIS TO DETERMINE
IF THE APPLICATION IS MALICIOUS

FI1G. 4

PCT/US2016/033977

WO 2017/003587

C HHOMLIN)

(4% 4
; N
825~ |
3000 09¢g . ; ;
SI0A30 | -928 I/ON |- Z1S
0L5 JOVHOLS VIVd NOLLYOINNAINOD JIVOBATN
- b _
0zS v1S~J onoianv szonaaon 99 [aoamasna 84S
- b .
o g 96917 26512 V| Navon
D 065 869 \[44 138dIHO V65 g 688 —
vmm/H H\ 726G 8ES
ogc] &4 n_\,n_ > n_.m +d N.gs6
: _ 0gq :
iy i gg8s | | 8us s oS
INTWTT INIATT3
Ew%: TN | a0 FHOVO amovo | Lo |] T \éommg
_ gy 1 188 1S] _ N
peC arep — - 8wis 780
HOSSIO0Nd HOSSIO0Nd
\ 085 W @MNH 045

009

PCT/US2016/033977

WO 2017/003587

5/6

G89
N

gs9

IHIM 11208

089

Sd9

W3ACW 9¢

(
619

H1Q0L3N8

‘
0.9

/
T0YLNOD
G99~ Hevd nvug ——099 H3MOd
! } '
059 b9 ﬁ h 099 g9 09
h N / i /
walsvw | [wamiournoo | [wamounoo | [,
s ooy ANQS woy 1008 | | 1w
LOINNODYILN
(
¢0
019 609
5 / Z
& 525 | | = | | [(3rovoz1) (unn3ovaminisne)
4/ 03aIA 519 —
a1 93000 | | o 800 TOMINOD 3HOVOZ1
030IA — —
109 809
) 3000 30D
WaH |1
| 9 'DId
a1 X

009

WO 2017/003587 PCT/US2016/033977

6/6

—-{ CODE 704 MEMORY 702

|

i 1

i

| +

|

| REGISTER SCHEDULING

-} DECODER(S) RENAMING LOGIC LOGIC

| 708 710 712

| . :

| FRONT-END LOGIC

1

| ng 714

! : ¥ i/

| EXECUTION LOGIC

|

|| execuTion EXECUTION EXECUTION

| UNIT UNIT oo UNIT

: 716-1 716-2 716-n

|

: ¥

| RETIREMENTLOGIC 720

i BACKENDLOGIC 718
PROCESSORCORE 700

FIG. 7

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/033977

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 21/56(2013.01)I, GO6F 21/57(2013.01)I, HO4L 29/06(2006.01)1

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 21/56; GOGF 21/20; HO4L 29/06; GOGF 21/00; GO6F 21/57

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & keywords: malware detection, system function, process monitoring, GetProcAddress, shellcode, dynamic
link library (DLL)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 8307432 Bl (HSIANG-AN FENG) 06 November 2012 1-20
See column 7, lines 43-45, column 9, lines 65-67; claims 1-2;
and figures 1, 56.

A US 8931074 B2 (DELL PRODUCTS L.P.) 06 January 2015 1-20
See column 4, line 12 - column 6, line 8; claims 1, 9; and figures 2-3.

A US 2014-0150101 A1 (XECURE LAB CO., LTD.) 29 May 2014 1-20
See paragraphs [0015]-[0027]; and claims 1-3.

A US 8407787 Bl (VIC LOU et al.) 26 March 2013 1-20
See column 2, line 62 - column 5, line 27; and claims 1-6.

A US 2012-0260304 A1 (MELVYN MORRIS et al.) 11 October 2012 1-20
See abstract; and claims 1-7.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
01 September 2016 (01.09.2016) 02 September 2016 (02.09.2016)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office CHIN, Sang Bum
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2016/033977

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 8307432 Bl 06/11/2012 None

US 8931074 B2 06/01/2015 US 2014-0101748 Al 10/04/2014

US 2014-0150101 A1 29/05/2014 None

US 8407787 Bl 26/03/2013 None

US 2012-0260304 Al 11/10/2012 AU 2012-217181 Al 05/09/2013
CA 2827385 Al 23/08/2012
CN 103493061 A 01/01/2014
EP 2676219 Al 25/12/2013
EP 2750070 A2 02/07/2014
EP 2750070 A3 27/08/2014
EP 2750071 A2 02/07/2014
EP 2750071 A3 27/08/2014
HK 1199521 Al 03/07/2015
HK 1199522 Al 03/07/2015
JP 2014-509007 A 10/04/2014
MX 2013009373 A 14/04/2014
US 2012-0260340 Al 11/10/2012
US 2012-0266208 Al 18/10/2012
US 2014-0304800 Al 09/10/2014
WO 2012-110501 Al 23/08/2012

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report

