METHODS AND APPARATUS FOR TRANSMITTING DATA BETWEEN DIFFERENT PEER-TO-PEER COMMUNICATION GROUPS

START

760

Determine if a wireless device is included in a group connected to a plurality of point-to-point communication groups (e.g., WiFi P2P groups).

704

Instantiate a first bridge interface between each point-to-point communication group if the wireless device is simultaneously connected to the plurality of point-to-point communication groups. The first bridge interface (e.g., WiFi P2P interface) is capable of terminating an interface between the instantiating device and the access point (e.g., WiFi P2P interface). The bridge interface does not support IP.

705

Determine if the access point includes a second bridge interface (e.g., WiFi router supports IP). If the access point supports IP, instantiate the second bridge interface. If the access point does not support IP, terminate the bridge interface.

710

Instantiate the second bridge interface between the two devices in a network infrastructure if the wireless device is simultaneously connected to the least instantiated point-to-point communication group and the access point, and if the access point includes the second bridge interface (e.g., use SSL/TLS encryption to establish network communication on the second bridge interface). Use the BLE link to establish a Bluetooth link between the devices.

END

FIG. 7

Abstract: Methods and apparatus for transmitting data between different peer-to-peer communication groups (104) are disclosed. A wireless device (102) determines (702) if it is simultaneously connected to a plurality of peer-to-peer communication groups (104) and instantiates (704) a bridge interface (404) at the wireless device (102) for communications between each peer-to-peer communication group (104). The wireless device (102) also determines (706) if it is simultaneously connected to at least one peer-to-peer communication device (102) and an access point (202). In such an instance, the wireless device (102) determines (708) if the access point (202) also includes a bridge interface (412). If the access point (202) does not include a bridge interface, the wireless device (102) runs (710) the bridge interface (404) at the wireless device (102) for communications between the at least one peer-to-peer communication device (102) and the access point (202). If the access point (202) does include a bridge interface (412), the wireless device (102) causes (712) the bridge interface (412) at the access point (202) to be instantiated for communications between the at least one peer-to-peer communication device (102) and the access point (202).
Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
METHODS AND APPARATUS FOR TRANSMITTING DATA BETWEEN DIFFERENT PEER-TO-PEER COMMUNICATION GROUPS

[0001] The present disclosure relates in general to wireless communication devices, and, in particular, to methods and apparatus for transmitting data between different peer-to-peer communication groups.

BACKGROUND OF THE INVENTION

[0002] Most modern wireless devices include some form of peer-to-peer wireless communication. For example, a cellular phone may exchange contact information with another cellular phone via a Bluetooth connection or execute a multiplayer game with another cellular phone via a peer-to-peer Wi-Fi connection (e.g., an 802.11 Wi-Fi connection without the need for a router).

[0003] However, these peer-to-peer mechanisms do not scale efficiently to a large number of devices. Attempts to scale these peer-to-peer mechanisms results in inefficient routing of data packets, which results in data delays and increased power consumption.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of an example peer-to-peer (P2P) neighborhood.

[0005] FIG. 2 is a block diagram of another example peer-to-peer (P2P) neighborhood.

[0006] FIG. 3 is a block diagram of an example electronic device.
FIG. 4 is a block diagram of an example electronic device for determining if a device will run a bridge.

FIG. 5 is a flowchart of an example process for transmitting data between different peer-to-peer communication groups.

FIG. 6 is a flowchart of another example process for transmitting data between different peer-to-peer communication groups.

FIG. 7 is a flowchart of yet another example process for transmitting data between different peer-to-peer communication groups.

FIG. 8 is a flowchart of still another example process for transmitting data between different peer-to-peer communication groups.

FIG. 9 is a flowchart of an example process for determining if a device will run a bridge to facilitate transmitting data between different peer-to-peer communication groups.

FIG. 10 is a flowchart of an example process for determining what interface a bridge utilizes.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Briefly, in a specific embodiment, a cellular phone or other computing device determines if it is simultaneously connected via Wi-Fi to two different peer-to-peer (P2P) Wi-Fi group owners. If so, the cellular phone instantiates a TRILL RBridge interface in the phone to facilitate communications between each, otherwise separate, peer-to-peer Wi-Fi group. The cellular phone also determines if it is simultaneously connected to at least one other peer-to-peer Wi-Fi device (e.g. another cellular phone) and a Wi-Fi
router. In such an instance, the cellular phone determines if the Wi-Fi router also includes a TRILL RBridge interface. If the Wi-Fi router does not include a TRILL RBridge interface, the cellular phone instantiates/runs its local TRILL RBridge interface for communications between the other peer-to-peer Wi-Fi device and the Wi-Fi router. If the Wi-Fi router does include a TRILL RBridge interface, the cellular phone causes the TRILL RBridge interface at the Wi-Fi router to be instantiated for communications between the other peer-to-peer Wi-Fi device and the Wi-Fi router. Among other features, wireless devices are able to discover each other and dynamically form very large peer-to-peer groups in manner that consumes very little power and scales efficiently.

[0015] More generally, methods and apparatus for transmitting data between different peer-to-peer communication groups are disclosed. In an embodiment, a wireless device determines if it is simultaneously connected to a plurality of peer-to-peer communication groups and instantiates a bridge interface at the wireless device for communications between each peer-to-peer communication group. The wireless device also determines if it is simultaneously connected to at least one peer-to-peer communication device and an access point. In such an instance, the wireless device determines if the access point also includes a bridge interface. If the access point does not include a bridge interface, the wireless device instantiates/runs the bridge interface at the wireless device for communications between the at least one peer-to-peer communication device and the access point. If the access point does include a bridge interface, the wireless device causes the bridge
interface at the access point to be instantiated for communications between
the at least one peer-to-peer communication device and the access point.

[0016] In an embodiment, a radio frequency transceiver is operatively
coupled to a controller (e.g., an 802.11 transceiver controlled by a
microprocessor). The controller is structured to connect to a first peer-to-peer
communication group via a first peer-to-peer group owner (e.g., connect to a
first Wi-Fi peer-to-peer communication group via another wireless device
acting as group owner). The controller is also structured to connect to a
second different peer-to-peer communication group via a second peer-to-peer
group owner (e.g., connect to a second Wi-Fi peer-to-peer communication
group via yet another wireless device acting as another group owner). The
controller is also structured to dynamically determine to instantiate a bridge
interface to transmit data between the first peer-to-peer communication group
and the second peer-to-peer communication group (e.g., run a TRILL RBridge
to connect the two separate peer-to-peer groups in to a peer-to-peer
"neighborhood"). The controller is also structured to filter peer-to-peer traffic
between the first peer-to-peer communication group and the second peer-to-
peer communication group based on a class of traffic (e.g., limit peer-to-peer
traffic to this peer-to-peer neighborhood).

[0017] In one example, a plurality of devices in the first peer-to-peer
communication group and a second different plurality of devices in the second
peer-to-peer communication group are each members of the same Internet
Protocol (IP) subnet. In one example, the controller is structured to connect to
the first peer-to-peer communication group by connecting to a Wi-Fi peer-to-
peer communication group owner. In one example, the controller is structured to instantiate the bridge interface by instantiating a Transparent Interconnection of Lots of Links (TRILL) Routing Bridge (RBridge) interface.

[0018] Turning now to the figures, a block diagram of certain elements of an example peer-to-peer (P2P) neighborhood system 100 is illustrated in FIG. 1. The illustrated system 100 includes a plurality of wireless devices 102 (e.g., cellular phone, portable computer, television, camera, etc.) in a plurality of peer-to-peer (P2P) groups 104. Each peer-to-peer group 104 typically includes one wireless device 102a, 102c, and 102f that acts as the peer-to-peer group owner 102a, 102c, and 102f and one or more other wireless devices 102 that are peer-to-peer (P2P) clients. Each peer-to-peer group owner 102a, 102c, and 102f operates like an access point (e.g., 802.11 Wi-Fi router) for clients in that peer-to-peer group 104, even though in this example, each peer-to-peer group owner 102a, 102c, and 102f does not have a direct connection to a network infrastructure.

[0019] A peer-to-peer group 104 may be wirelessly connected to one or more other peer-to-peer groups 104 via one or more of the wireless devices 102. In such an instance, a wireless device 102 connecting peer-to-peer groups 104 operates a bridge. For example, the connecting wireless device 102 may operate an RBridge. Wireless devices 102 operating a bridge may be peer-to-peer group owners and/or clients.

[0020] The example shown in FIG. 1 includes three peer-to-peer groups 104a, 104b, and 104c. The peer-to-peer group 104a includes a peer-to-peer group owner 102a and two peer-to-peer clients 102b and 102c. The
peer-to-peer group 104b includes a peer-to-peer group owner 102c and two peer-to-peer clients 102d and 102e. Wireless device 102c is a client of the group 104a and an owner of the group 104b. The peer-to-peer group 104c includes a peer-to-peer group owner 102f and two peer-to-peer clients 102g and 102e. Wireless device 102e is a client of the group 104b and a client of the group 104c.

[0021] The group owner 102a runs an RBridge, which forms one side of a connection between group 104a and group 104b. The group owner 102c runs another RBridge, which forms the other side of the connection between group 104a and group 104b. The client 102e runs an RBridge, which forms one side of a connection between group 104b and group 104c. The group owner 102f runs another RBridge, which forms the other side of the connection between group 104b and group 104c.

[0022] Collectively, these peer-to-peer groups 104, directly and/or indirectly connected by bridges 102a, 102c, 102e, and 102f, form a network "neighborhood." Any wireless device 102 in the neighborhood may communicate with any other wireless device 102 in the neighborhood. For example, wireless device 102b may send a message to wireless device 102g. In this example, the message travels from wireless device 102b to wireless device 102a. Wireless device 102a, acting as a group owner and a bridge, determines that the destination for the message is not in group 104a. Accordingly, wireless device 102a forwards the message to wireless device 102c. Wireless device 102c, acting as a group owner and a bridge, determines that the destination for the message is not in group 104b.
Accordingly, wireless device 102c forwards the message to wireless device 102e. Wireless device 102e is not a group owner. Accordingly, wireless device 102e forwards the message to wireless device 102f. Wireless device 102f, acting as a group owner and a bridge, determines that the destination for the message is in group 104c. Accordingly, wireless device 102f forwards the message to its final destination, wireless device 102g.

[0023] A block diagram of certain elements of another example peer-to-peer (P2P) neighborhood system 100 is illustrated in FIG. 2. The example system 200, like the example system 100 (which is included as a subset of example system 200), includes a plurality of wireless devices 102 (e.g., cellular phone, portable computer, television, camera, etc.) in a plurality of peer-to-peer (P2P) groups 104. Again, each peer-to-peer group 104 typically includes one wireless device 102a, 102c, and 102f that acts as the peer-to-peer group owner 102a, 102c, and 102f and one or more other wireless devices 102 that are peer-to-peer (P2P) clients. Each peer-to-peer group owner 102a, 102c, and 102f operates like an access point (e.g., 802.11 Wi-Fi router) for clients in that peer-to-peer group 104.

[0024] In addition, in this example, each peer-to-peer group owner 102a, 102c, and 102f has a wireless connection to an access point 202, which in turn has a direct connection to a network infrastructure 204. The network infrastructure 204 may be any suitable network infrastructure 204 such as the Internet and/or some other wired and/or wireless data network, including, but not limited to, any suitable wide area network or local area network.
As described above with reference to FIG. 1, each peer-to-peer group 104 may be wirelessly connected to one or more other peer-to-peer groups 104 via one or more of the wireless devices 102. In such an instance, a wireless device 102 connecting peer-to-peer groups 104 operates a bridge. For example, the connecting wireless device 102 may operate an RBridge. Wireless devices 102 operating a bridge may be peer-to-peer group owners and/or clients.

In addition, each peer-to-peer group 104 may be connected to one or more other peer-to-peer groups 104 via an access point 202 and the network infrastructure 204. In such an instance, a wireless device 102 connecting the group 104 to the access point 202 may operate the bridge or the access point 202 may operate the bridge. For example, the wireless device 102 and/or the access point 202 may operate an RBridge.

Collectively, these peer-to-peer groups 104, directly and/or indirectly connected by wireless devices 102, access points 202, and/or the network infrastructure 204, form a network "neighborhood." Any wireless device 102 in the neighborhood may communicate with any other wireless device 102 in the neighborhood. For example, wireless device 102b may send a message to wireless device 102h. In this example, the message travels from wireless device 102b to wireless device 102a. Wireless device 102a, acting as a group owner and a bridge, determines that the destination for the message is not in group 104a. Accordingly, wireless device 102a forwards the message to access point 202a. Access point 202a forwards the message to access point 202c via the network infrastructure 204. Access point 202c,
acting as a bridge, determines that the destination for the message is in group 104d. Accordingly, access point 202c forwards the message to its final destination, wireless device 102h.

[0028] Each of the devices illustrated in FIG. 1 and FIG. 2 (e.g., wireless device 102 and/or access point 204) may include certain common aspects of many electronic devices such as microprocessors, memories, peripherals, etc. A block diagram of certain elements of an example electronic device 300 is illustrated in FIG. 3. The example electrical device 300 includes a main unit 302 which may include, if desired, one or more physical processors 304 electrically coupled by an address/data bus 306 to one or more memories 308, other computer circuitry 310, and one or more interface circuits 312. The processor 304 may be any suitable processor or plurality of processors. For example, the electrical device 300 may include a central processing unit (CPU) and/or a graphics processing unit (GPU). In some embodiments, the physical processor(s) 304 are managed by a hypervisor executing a plurality of virtual processors and/or virtual machines.

[0029] The memory 308 may include various types of non-transitory memory including volatile memory and/or non-volatile memory such as, but not limited to, distributed memory, read-only memory (ROM), random access memory (RAM) etc. The memory 308 typically stores a software program that interacts with the other devices in the system as described herein. This program may be executed by the processor 304 in any suitable manner. The memory 308 may also store digital data indicative of documents, files,
programs, web pages, etc. retrieved from a server and/or loaded via an input device 314.

[0030] The interface circuit 312 may be implemented using any suitable interface standard, such as an Ethernet interface and/or a Universal Serial Bus (USB) interface. One or more input devices 314 may be connected to the interface circuit 312 for entering data and commands into the main unit 302. For example, the input device 314 may be a keyboard, mouse, touch screen, track pad, isopoint, camera, voice recognition system, accelerometer, global positioning system (GPS), and/or any other suitable input device.

[0031] One or more displays, printers, speakers, monitors, televisions, high definition televisions, and/or other suitable output devices 316 may also be connected to the main unit 302 via the interface circuit 312. The display 316 may be a cathode ray tube (CRTs), liquid crystal displays (LCDs), electronic ink (e-ink), and/or any other suitable type of display. The display 316 generates visual displays of data generated during operation of the device 300. For example, the display 316 may be used to display web pages and/or other content received from a server 106 and other device. The visual displays may include prompts for human input, run time statistics, calculated values, data, etc.

[0032] One or more storage devices 318 may also be connected to the main unit 302 via the interface circuit 312. For example, a hard drive, CD drive, DVD drive, and/or other storage devices may be connected to the main unit 302. The storage devices 318 may store any type of data used by the device 300.
The electrical device 300 may also exchange data with other network devices 322 via a connection to a network 110. The network connection may be any type of network connection, such as an Ethernet connection, digital subscriber line (DSL), telephone line, coaxial cable, wireless base station 330, etc. Users 114 of the system 100 may be required to register with a server 106. In such an instance, each user 114 may choose a user identifier (e.g., e-mail address) and a password which may be required for the activation of services. The user identifier and password may be passed across the network 110 using encryption built into the user's browser. Alternatively, the user identifier and/or password may be assigned by the server 106.

In some embodiments, the device 300 may be a wireless device 300. In such an instance, the device 300 may include one or more antennas 324 connected to one or more radio frequency (RF) transceivers 326. The transceiver 326 may include one or more receivers and one or more transmitters operating on the same and/or different frequencies. For example, the device 300 may include a blue tooth transceiver 316, a Wi-Fi transceiver 316, and diversity cellular transceivers 316. The transceiver 326 allows the device 300 to exchange signals, such as voice, video and data, with other wireless devices 328, such as a phone, camera, monitor, television, and/or high definition television. For example, the device 300 may send and receive wireless telephone signals, text messages, audio signals and/or video signals directly and/or via a base station 330. A receive signal strength indicator
(RSSI) associated with each receiver generates an indication of the relative strength or weakness of each signal being received by the device 300.

[0035] A block diagram of certain elements of an example electronic device 400 for determining if a device will run a bridge is illustrated in FIG. 4. The electronic device 400 may be implemented in hardware or a combination of hardware and hardware executing software. In one embodiment, the electronic device 400 includes a CPU executing software. Other suitable hardware includes one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), and/or digital signal processors (DSPs).

[0036] The example electronic device 400 includes simultaneous P2P connections detector 402 operatively coupled to a first bridge interface 404. In an example, the first bridge interface 404 is in a wireless device 102. If the simultaneous P2P connections detector 402 determines that the electronic device 400 is connected to two or more P2P connections at the same time, the simultaneous P2P connections detector 402 causes the electronic device 400 to instantiate the first bridge interface 404. For example, if a wireless device 102, such as a cellular phone, determines that it is associated with two different other wireless devices 102 that are both acting as P2P group owners, the wireless device 102 runs an RBridge.

[0037] The example electronic device 400 also includes a simultaneous P2P/access point detector 406 and an access point bridge interface detector 408. The simultaneous P2P/access point detector 406 and the access point bridge interface detector 408 are operatively coupled to an AND gate 410.
The AND gate 410 is operatively coupled to a second bridge interface 412. In an example, the second bridge interface 404 is in an access point 202.

[0038] If the simultaneous P2P/access point detector 406 indicates that the electronic device 400 is connected to a P2P connection and an access point 202 at the same time, and the access point bridge interface detector 408 indicates that the access point 202 includes a bridge interface, then the electronic device 400 causes the second bridge interface 404 to be instantiated. For example, if the wireless device 102, determines that it is associated with another wireless device 102 that is acting as a P2P group owner, and at the same time the wireless device 102 is associated with an access point 202 that is capable of running an RBridge interface, the wireless device 102 causes the access point 202 to run the RBridge interface.

[0039] If the simultaneous P2P/access point detector 406 does not indicate that the electronic device 400 is connected to a P2P connection and an access point 202 at the same time, or the access point bridge interface detector 408 does not indicate that the access point 202 includes a bridge interface, then the electronic device 400 does not cause the second bridge interface 404 to be instantiated. For example, if the wireless device 102, determines that it is not associated with another wireless device 102 that is acting as a P2P group owner, or the wireless device 102 determines that it is not associated with an access point 202 that is capable of running an RBridge interface, the wireless device 102 does not attempt to cause the access point 202 to run an RBridge interface.
A flowchart of an example process 500 for transmitting data between different peer-to-peer communication groups is illustrated in FIG. 5. The process 500 may be carried out by one or more suitably programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 500 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 500 is described with reference to the flowchart illustrated in FIG. 5, it will be appreciated that many other methods of performing the acts associated with process 500 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

In general, data packets are transmitted between different peer-to-peer communication groups using RBridges. More specifically, the process 500 begins when a first RBridge determines that a data packet destination is outside of its local P2P group 104 (block 502). For example, in FIG. 2, P2P group owner and RBridge 102a determines that a data packet destination is outside of its local P2P group 104a. In response, the first RBridge forwards the data packet to a second RBridge (block 504). For example, RBridge 102a forwards the data packet to access point and RBridge 202c via access point 202a and network 204.

When the second RBridge receives the data packet, the second RBridge determines that the data packet destination is inside of its local P2P
group 104 (block 506). For example, RBridge 202c determines that the data packet destination is inside of its local P2P group 104d. Accordingly, the second RBridge forwards the data packet to its destination within the local P2P group 104. For example, RBridge 202c forwards the data packet to wireless device 102h.

[0043] A flowchart of another example process 600 for transmitting data between different peer-to-peer communication groups is illustrated in FIG. 6. The process 600 may be carried out by one or more suitably programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 600 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 600 is described with reference to the flowchart illustrated in FIG. 6 it will be appreciated that many other methods of performing the acts associated with process 600 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

[0044] In general, a wireless device 102 connects to two different peer-to-peer communication groups 104 via two different peer-to-peer group owners 102/202. The wireless device 102 then instantiates a bridge interface between the two communication groups 104 and uses the bridge interface to route and filter peer-to-peer traffic between the two communication groups based on a class of traffic.
More specifically, the process 600 begins when a wireless
device 102 connects to a first peer-to-peer communication group 104 via a
first peer-to-peer group owner 102/202 (block 602). For example, in Fig. 2,
wireless device 102e connects to peer-to-peer communication group 104b via
peer-to-peer group owner 102c. The wireless device 102 also connects to a
second peer-to-peer communication group 104 via a second peer-to-peer
group owner 102/202 (block 604). For example, wireless device 102e also
connects to peer-to-peer communication group 104c via peer-to-peer group
owner 102f.

Once the wireless device 102 is connected to two or more
different peer-to-peer communication groups 104, the wireless device 102
instantiates a bridge interface between the first peer-to-peer communication
group 104 and the second peer-to-peer communication group 104 (block
606). For example, the wireless device 102e instantiates a TRILL RBridge
interface between peer-to-peer communication group 104b and peer-to-peer
communication group 104c. The wireless device 102 then uses the bridge
interface to route and filter peer-to-peer traffic between the first peer-to-peer
communication group and the second peer-to-peer communication group
based on a class of traffic (block 608). For example, the wireless device 102e,
running the RBridge between group 104b and group 104c, may allow local
traffic to be routed, but filter network infrastructure traffic.

A flowchart of yet another example process 700 for transmitting
data between different peer-to-peer communication groups is illustrated in
Fig. 7. The process 700 may be carried out by one or more suitably
programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 700 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 700 is described with reference to the flowchart illustrated in FIG. 7 it will be appreciated that many other methods of performing the acts associated with process 700 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

[0048] In general, a wireless device 102 determines if it is simultaneously connected to a plurality of peer-to-peer communication groups 104 and instantiates a bridge interface at the wireless device 102 (e.g., TRILL RBridge) for communications between each peer-to-peer communication group 104. The wireless device 102 also determines if it is simultaneously connected to at least one peer-to-peer communication device and an access point 202. In such an instance, the wireless device 102 determines if the access point 202 also includes a bridge interface. If the access point 202 does not include a bridge interface, the wireless device 102 instantiates/runs the bridge interface at the wireless device 102 for communications between the at least one peer-to-peer communication device 102 and the access point 202. If the access point 202 does include a bridge interface, the wireless device 102 causes the bridge interface at the access point 202 to be instantiated for
communications between the at least one peer-to-peer communication device 102 and the access point 202.

[0049] More specifically, the process 700 begins when a wireless device 102 determines if it is simultaneously connected to a plurality of peer-to-peer communication groups 104 (block 702). For example, wireless device 102e determines if it is simultaneously connected to peer-to-peer communication group 104b and peer-to-peer communication group 104c. The wireless device 102 instantiates a first bridge interface between each peer-to-peer communication group 104 in the plurality of peer-to-peer communication groups 104 if the wireless device 102 is simultaneously connected to the plurality of peer-to-peer communication groups 102, the first bridge interface being at the wireless device 102 (block 704). For example, wireless device 102e runs a TRILL RBridge.

[0050] The wireless device 102 then determines if the wireless device 102 is simultaneously connected to at least one peer-to-peer communication device and an access point 202 (block 706). In one example, wireless device 102e is connected to peer-to-peer communication devices 102c and 102f. However, wireless device 102e is not connected to an access point 202. In another example, wireless device 102f is connected to peer-to-peer communication devices 102e and 102g, and wireless device 102f is also connected to an access point 202b.

[0051] As an example of how the order of many of the operations may be changed, the wireless device 102 may determine if the wireless device 102 is simultaneously connected to at least one peer-to-peer communication
device and an access point 202 (block 706) before, after, simultaneously, or substantially simultaneously with determining if the wireless device 102 is simultaneously connected to a plurality of peer-to-peer communication groups 104 (block 702). Accordingly, the wireless device 102 may instantiate one bridge interface before, after, simultaneously, or substantially simultaneously with instantiating another bridge interface.

[0052] The wireless device 102 then determines if the access point 202 includes a second bridge interface (block 708). For example, wireless device 102f determines if access point 202b has an RBridge capability. The wireless device 102 instantiates the first bridge interface between the at least one peer-to-peer communication device 102 and the access point 202 if (i) the wireless device 102 is simultaneously connected to the least one peer-to-peer communication device 102 and the access point 202, and (ii) the access point 202 does not include the second bridge interface (block 710). For example, wireless device 102f runs a TRILL RBridge locally because access point 202b does not support RBridge.

[0053] The wireless device 102 instantiates the second bridge interface between the wireless device 102 and a network infrastructure 204 if (i) the wireless device 102 is simultaneously connected to the least one peer-to-peer communication device 102 and the access point 202, and (ii) the access point 202 includes the second bridge interface (block 712). For example, if access point 202b included an RBridge like access point 202c, wireless device 102f would not run the RBridge. Instead, the hypothetical RBridge in access point
202b would be used in order to conserve the battery life of wireless device 1021

[0054] A flowchart of still another example process 800 for transmitting data between different peer-to-peer communication groups is illustrated in FIG. 8. The process 800 may be carried out by one or more suitably programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 800 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 800 is described with reference to the flowchart illustrated in FIG. 8 it will be appreciated that many other methods of performing the acts associated with process 800 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

[0055] The process 800 begins when an access point 202 broadcasts a message indicative of a peer-to-peer group owner functionality from an access point 202 (block 802). In an example, an 802.11 wireless router broadcasts a message indicating that it supports TRILL RBridge by setting the RBridge enabled bit in the P2P capability, device capability bitmap. The access point 202 then instantiates a bridge interface between a first wireless device 102 and a network infrastructure 204 (block 804). For example, the 802.11 wireless router runs a TRILL RBridge between a wireless phone and the Internet. The access point 202 then filters peer-to-peer traffic from a
second different wireless device 102 not directly associated with the access point 202 (block 806). For example, the 802.11 wireless router uses TRILL traffic filters to limit Internet access to wireless devices 102 indirectly connected to an access point 202 via P2P connections.

[0056] A flowchart of an example process 900 for determining if a device will run a bridge is illustrated in FIG. 9. The process 900 may be carried out by one or more suitably programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 900 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 500 is described with reference to the flowchart illustrated in FIG. 9, it will be appreciated that many other methods of performing the acts associated with process 900 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

[0057] The process 900 begins when a wireless device 102 determines if the wireless device 102 is connected to two or more P2P groups 104 at the same time (block 902). If the wireless device 102 is connected to two or more P2P groups 104 at the same time, the wireless device 102 runs a bridge interface (block 904). For example, if a wireless device 102, such as a cellular phone, determines that it is associated with two different other wireless
devices 102 that are both acting as P2P group owners, the wireless device 102 runs an RBridge.

[0058] If the wireless device 102 is not connected to two or more P2P groups 104 at the same time, the wireless device 102 determines if the wireless device 102 is associated with a P2P group 104 and an access point 202 (block 906). If the wireless device 102 is not associated with a P2P group 104 and an access point 202 at the same time, the wireless device 102 does not run a bridge interface (block 908).

[0059] If the wireless device 102 is associated with a P2P group 104 and an access point 202 at the same time, the wireless device 102 determines if it is able to negotiate having the access point 202 run the bridge interface (block 910). If the access point 202 is going to run the bridge, the wireless device 102 does not run the bridge (block 912). If the access point 202 is not going to run the bridge, the wireless device 102 runs the bridge instead (block 914).

[0060] A flowchart of an example process 1000 for determining what interface a bridge utilizes is illustrated in FIG. 10. The process 1000 may be carried out by one or more suitably programmed processors such as a CPU executing software (e.g., block 304 of FIG. 3). The process 1000 may also be carried out by hardware or a combination of hardware and hardware executing software. Suitable hardware may include one or more application specific integrated circuits (ASICs), state machines, field programmable gate arrays (FPGAs), digital signal processors (DSPs), and/or other suitable hardware. Although the process 500 is described with reference to the
flowchart illustrated in FIG. 10, it will be appreciated that many other methods of performing the acts associated with process 1000 may be used. For example, the order of many of the operations may be changed, and some of the operations described may be optional.

[0061] The process 1000 begins when a bridge interface (e.g., an RBrige) determines if it is connected to an access point 202 (block 1002). If the bridge interface is connected to an access point 202, the bridge uses an infrastructure interface (block 1004). However, if the bridge interface is not connected to an access point 202, the bridge uses a Wi-Fi P2P interface (block 1006).

[0062] In summary, persons of ordinary skill in the art will readily appreciate that methods and apparatus for transmitting data between different peer-to-peer communication groups have been provided. Among other features, wireless devices using the disclosed methods and apparatus are able to discover each other and dynamically form very large peer-to-peer groups in manner that consumes very little power and scales efficiently.

[0063] The foregoing description has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the exemplary embodiments disclosed. Many modifications and variations are possible in light of the above teachings. It is intended that the scope of the invention be limited not by this detailed description of examples, but rather by the claims appended hereto.
CLAIMS

We claim:

1. A method (700) of transmitting data between different peer-to-peer communication groups (104), the method (700) comprising:

 determining (702) if a wireless device (102) is simultaneously connected to a plurality of peer-to-peer communication groups (104);

 instantiating (704) a first bridge interface (404) to transmit data between each peer-to-peer communication group (104) in the plurality of peer-to-peer communication groups (104) if the wireless device (102) is simultaneously connected to the plurality of peer-to-peer communication groups (104), the first bridge interface (404) being at the wireless device (102);

 determining (706) if the wireless device (102) is simultaneously connected to at least one peer-to-peer communication device (102) and an access point (202);

 determining (708) if the access point (202) includes a second bridge interface (412); and

 instantiating the first bridge interface (404) to transmit data between the at least one peer-to-peer communication device (102) and the access point (202) if (i) the wireless device (102) is simultaneously connected to the least one peer-to-peer communication device (102) and the access point (202) and (ii) the access point (202) does not include the second bridge interface.
2. The method of claim 1 further comprising instantiating the second bridge interface to transmit data between the wireless device and a network infrastructure if (i) the wireless device is simultaneously connected to the least one peer-to-peer communication device and the access point and (ii) the access point includes the second bridge interface.

3. The method of claim 2 wherein instantiating the second bridge interface includes instantiating a Transparent Interconnection of Lots of Links Routing Bridge interface.

4. The method of claim 2 wherein the access point is assigned at least two Internet Protocol addresses.

5. The method of claim 1 wherein determining if the access point includes the second bridge interface includes receiving a message indicative of a peer-to-peer group owner functionality from an access point.

6. The method of claim 5 wherein determining if the access point includes the second bridge interface includes accessing an RBridge-enabled bit set by the access point.
7. The method of claim 1 wherein a plurality of devices in the plurality of peer-to-peer communication groups are each members of the same Internet Protocol subnet.

8. The method of claim 1 wherein the plurality of peer-to-peer communication groups include Wi-Fi peer-to-peer communication groups.
START

500

RBRIDGE 1 DETERMINES DATA PACKET DESTINATION IS OUTSIDE OF ITS LOCAL P2P GROUP

502

RBRIDGE 1 FORWARDS DATA PACKET TO RBRIDGE 2

504

RBRIDGE 2 DETERMINES DATA PACKET DESTINATION IS WITHIN ITS P2P GROUP

506

RBRIDGE 2 FORWARDS DATA PACKET TO DESTINATION WITHIN LOCAL P2P GROUP

508

END

FIG. 5
START

600

CONNECT TO A FIRST POINT-TO-POINT COMMUNICATION GROUP VIA A FIRST POINT-TO-POINT GROUP OWNER (E.G., WIFI P2P 1)

602

CONNECT TO A SECOND DIFFERENT POINT-TO-POINT COMMUNICATION GROUP VIA A SECOND POINT-TO-POINT GROUP OWNER (E.G., WIFI P2P 2)

604

DYNAMICALLY INstantiate A BRIDGE INTERFACE BETWEEN THE FIRST POINT-TO-POINT COMMUNICATION GROUP AND THE SECOND POINT-TO-POINT COMMUNICATION GROUP (E.G., TRILL BRIDGE)

606

ROUTE AND FILTER PEER-TO-PEER TRAFFIC BETWEEN THE FIRST PEER-TO-PEER COMMUNICATION GROUP AND THE SECOND PEER-TO-PEER COMMUNICATION GROUP BASED ON A CLASS OF TRAFFIC (E.G., ALLOW LOCAL TRAFFIC, BUT FILTER INFRASTRUCTURE TRAFFIC)

608

END

FIG. 6
START

DETERMINE IF A WIRELESS DEVICE IS SIMULTANEOUSLY CONNECTED TO A PLURALITY OF POINT-TO-POINT COMMUNICATION GROUPS (E.G., TWO WIFI P2P GROUPS)

INSTANTIATE A FIRST BRIDGE INTERFACE BETWEEN EACH POINT-TO-POINT COMMUNICATION GROUP IN THE PLURALITY OF POINT-TO-POINT COMMUNICATION GROUPS IF THE WIRELESS DEVICE IS SIMULTANEOUSLY CONNECTED TO THE PLURALITY OF POINT-TO-POINT COMMUNICATION GROUPS, THE FIRST BRIDGE INTERFACE BEING AT THE WIRELESS DEVICE (E.G., ENABLE TRILL RBRIDGE)

DETERMINE IF THE WIRELESS DEVICE IS SIMULTANEOUSLY CONNECTED TO AT LEAST ONE POINT-TO-POINT COMMUNICATION DEVICE AND AN ACCESS POINT (E.G., WIFI P2P AND WIFI ROUTER)

DETERMINE IF THE ACCESS POINT INCLUDES A SECOND BRIDGE INTERFACE (E.G., WIFI ROUTER SUPPORTS TRILL RBRIDGE)

INSTANTIATE THE FIRST BRIDGE INTERFACE BETWEEN THE AT LEAST ONE POINT-TO-POINT COMMUNICATION DEVICE AND THE ACCESS POINT IF (I) THE WIRELESS DEVICE IS SIMULTANEOUSLY CONNECTED TO THE AT LEAST ONE POINT-TO-POINT COMMUNICATION DEVICE AND THE ACCESS POINT, AND (II) THE ACCESS POINT DOES NOT INCLUDE THE SECOND BRIDGE INTERFACE (E.G., USE TRILL RBRIDGE IN PHONE BECAUSE ACCESS POINT DOES NOT SUPPORT RBRIDGE)

INSTANTIATE THE SECOND BRIDGE INTERFACE BETWEEN THE WIRELESS DEVICE AND A NETWORK INFRASTRUCTURE IF (I) THE WIRELESS DEVICE IS SIMULTANEOUSLY CONNECTED TO THE AT LEAST ONE POINT-TO-POINT COMMUNICATION DEVICE AND THE ACCESS POINT, AND (II) THE ACCESS POINT INCLUDES THE SECOND BRIDGE INTERFACE (E.G., USE TRILL RBRIDGE IN ACCESS POINT TO SAVE BATTERY LIFE OF PHONE)

END

FIG. 7
START

802

BROADCAST A MESSAGE INDICATIVE OF A POINT-TO-POINT GROUP OWNER FUNCTIONALITY FROM AN ACCESS POINT (E.G., 802.11 WIRELESS ROUTER INDICATES THAT IT SUPPORTS TRILL RBridge BY SETTING RBridge ENABLED BIT IN THE P2P CAPABILITY, DEVICE CAPABILITY BITMAP)

804

INSTANTIATE A BRIDGE INTERFACE BETWEEN A FIRST WIRELESS DEVICE AND A NETWORK INFRASTRUCTURE (E.G., RUN A TRILL RBridge BETWEEN A WIRELESS PHONE AND THE INTERNET)

806

FILTER POINT-TO-POINT TRAFFIC FROM A SECOND DIFFERENT WIRELESS DEVICE NOT DIRECTLY ASSOCIATED WITH THE ACCESS POINT (E.G., USE TRILL TRAFFIC FILTERS TO LIMIT INTERNET ACCESS TO DEVICES INDIRECTLY CONNECTED TO AN ACCESS POINT VIA P2P CONNECTIONS)

END

FIG. 8
START

902

CONNECTED TO MORE THAN ONE P2P GROUP?

YES

906

ASSOCIATED TO A P2P GROUP AND AN ACCESS POINT?

YES

910

ABLE TO NEGOTIATE ACCESS POINT RUNNING RBRIDGE?

YES

912

RUN RBRIDGE

914

RUN RBRIDGE

NO

908

DO NOT RUN RBRIDGE

NO

900

RUN RBRIDGE

END

FIG. 9