wo 2014/035410 A1 I}] A0 00O O R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/035410 A1

6 March 2014 (06.03.2014) WIPOIPCT
(51) International Patent Classification: (74) Agents: COXE, Angela Mae et al.; Hewlett-Packard
GO6F 15/16 (2006.01) GO6F 9/30 (2006.01) Company, Intellectual Property Administration, 3404 E.
H R Mail Stop - 35, Fort 1li !
(21) International Application Number: 8(?§m2801(11338) oad, Mail Stop > Fort Collins, Colorado
PCT/US2012/053212 ’
. re) (81) Designated States (uniess otherwise indicated, for every
(22) International Filing Date: 30 A 2012 (30.08.2012 kind of national protection available). AE, AG, AL, AM,
ugust 2012 (30.08.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Lo . DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(71) Applicant (for all designated States except US): HEW- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
LETT-PACKARD DEVELOPMENT COMPANY, L.P. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
[US/US]; 11445 Compag Center Drive W., Houston, Texas NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
77070 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(72) Inventors; and ZW.
(75) Inventors/Applicants (for US ornly): SHANI, Inbar

[IL/IL]; Altalef St., Altalef St. No. 5, 56100 Yehud (IL).
NITSAN, Amichai [IL/IL]; Altalef St., Altalet St. No. 5,
56100 Yehud (IL). MANOR, Lior [IL/IL]; Shabazi 19,
56100 Yehud (IL).

(84)

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: GLOBAL FEATURE LIBRARY USEABLE WITH CONTINUOUS DELIVERY

(57) Abstract: A method to manage a global feature library is provided
herein. The method provides a global feature library with a plurality of fea-
tures detined therein. The global feature library includes a feature switch for
each of the plurality of features. The feature switch is useable with an applic-

GLOBAL SERVER

120

GLOBAL FEATURE
LIBRARY

160

- 166
RE SWITCH
DATA STORE F&Nukw WITCH
i 182
180
FEATURE

ACCESS CODE

CLIENT DEVICE
148

LOCAL FEATURE
LIBRARY
142

ation code. The feature switch is linked to an application code. The feature
switch includes a feature value that turns a feature associated with the feature
switch on and off based on a global value rule. The global rule is transmitted
to a client device capable of storing the feature value in-memory.

WO 2014/035410 A1 WK 00T 000N X A0 AR

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Published:
— with international search report (Art. 21(3))

Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

WO 2014/035410 PCT/US2012/053212

GLOBAL FEATURE LIBRARY USEABLE WITH CONTINUOUS DELIVERY

BACKGROUND
[0001] Software development life cycles use continuous delivery to
reduce the time code changes spend in a production line. Continuous delivery
includes continuous integration (Cl) and continuous deployment (CD)
Continuous integration automates the process of receiving code changes from a
specific source configuration management (SCM) tool, constructing deliverable

assemblies with the code changes, and testing the assemblies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Non-limiting examples of the present disclosure are described
in the following description, read with reference to the figures attached hereto
and do not limit the scope of the claims. In the figures, identical and similar
structures, elements or parts thereof that appear in more than one figure are
generally labeled with the same or similar references in the figures in which they
appear. Dimensions of components and features illustrated in the figures are
chosen primarily for convenience and clarity of presentation and are not
necessarily to scale. Referring to the attached figures:

[0003] FIG. 1 illustrates a network environment to manage a global
feature library in a continuous delivery software lifecycle according to an
example;

[0004] FIG. 2illustrates a block diagram of an apparatus and system to

manage the global feature library according to an example;

WO 2014/035410 PCT/US2012/053212

[0005] FIG. 3 illustrates block diagram of a system useable with the
network environment of FIG. 1 to manage the global feature library according to
an example;

[0006] FIG. 4 illustrates a block diagram of a computer readable
medium useable with the apparatus of FIG. 2 according to an example; and

[0007] FIG. 5 illustrates a flow chart of a method to manage the global
feature library according to an example.

DETAILED DESCRIPTION

[0008] In the following detailed description, reference is made to the
accompanying drawings which form a part hereof, and in which is illustrated by
way of specific examples in which the present disclosure may be practiced. Itis
to be understood that other examples may be utilized and structural or logical
changes may be made without departing from the scope of the present
disclosure.

[0009] Continuous integration (Cl) and continuous deployment (CD)
automate the construction, testing, and deployment of code assemblies with a
code change. Continuous integration automates the process of retrieving code
changes from a source configuration management (SCM) tool, constructing
deliverable assemblies, such as executing a build and unit testing the
assemblies. The automation begins after a code change is committed to the
SCM tool. When the code change is committed to the SCM tool, the code
change is assigned to a particular continuous deployment pipeline (CD pipeline
or deployment pipeline). The code change moves through the continuous
deployment pipeline as the code change is tested as part of a code base or an
assembly of code.

[0010] Continuous deployment extends continuous integration by
automatically deploying the assemblies into a test environment and executing
testing on the assemblies. A core practice of continuous deployment is to
develop all the code on one repository, such as a SCM tool, without branching
the code repository. While this practice reduces code mergers and ensures the
code is “in production” from the time of deployment, at times the code is “in

production” prematurely. For example, the code may pass the tests in the test

2

WO 2014/035410 PCT/US2012/053212

environment but does not have full functionality or stability in production.

Feature switches have been developed and used to turn a feature on and/or off
in production. Feature switches place source code that performs a feature within
an “if then” clause and uses the "if statement” to determine when the feature
should be active. A feature value is used to determine when the feature is active
is typically a local value that must be defined within the application code on each
local device. For example, if a company runs a website on one thousand local or
distributed client devices across the country and wants to remove a feature, the
feature value must be updated on each of the devices since there is not a global
on or off switch for the feature that can be distributed to all of the client devices.

[0011] In examples, a method to manage a global feature library is
provided. The method provides a global feature library with a plurality of features
defined in the library. The global feature library includes a feature switch for
each of the plurality of features. The feature switch is useable with an
application code. The feature switch is linked to an application code. The
feature switch includes a feature value that turns a feature associated with the
feature switch on and off based on a global value rule. The global rule is
transmitted to a client device capable of storing the feature value in-memory. By
storing the feature value in-memory on the client device, the feature provides a
global and scalable solution yet be efficiently accessed at runtime.

[0012] The phrase “application code” refers to source code for a
software application.

[0013] The phrase “continuous deployment pipeline” or “deployment
pipeline” refers to a set of actions executed serially and/or in parallel on a queue
to approve source code (or code) for the software application. For example, the
continuous deployment pipeline may include building the code, executing unit
tests, deploying the code, running automated tests, staging the code, running
end-to-end tests, and deploying the code to production.

[0014] The phrase “feature library” refers to a feature switch or feature
name that identifies the “function” of the feature or flag. The feature library
provides the ability to define feature values to each feature switch. A global

feature library provides global access to a feature library for client devices and

3

WO 2014/035410 PCT/US2012/053212

applications. A client device may store a copy of the feature library locally on the
client device or a data store connected thereto. The local copy of the feature
library is synchronized with the global feature library and contains local
information for quick access

[0015] The term “feature or flag” refers to code that performs a specific
function. The term feature is used hereinafter to refer to a feature or a flag. The
feature is stored within the application code (or a local library associated with the
application code) and is in the same programming language as the application
code.

[0016] The phrase “feature switch” refers to the term used in the global
feature library to identify the feature.

[0017] The phrase “feature value” refers to the actual value assigned
to the feature switch that turns the feature on or off in each application code.
The actual value is stored locally, i.e., on the client device.

[0018] The phrase “feature access code” refers to a generic computer
code that is used to access the global feature library and return access to the
value of the feature. The feature access code may access the global version of
the global feature library or a local or in-memory version of the global feature
library. The features in the feature library may be accessed in multiple
programming languages depending on the programming language of the
application code. For example, the feature access code may be a generic code
that accesses the feature in multiple programming languages such as, Ruby,
PHP, SQL, Javascript, Java, C++, and C#.

[0019] FIG. 1 illustrates a network environment 100 to manage a
global feature library in a continuous delivery software lifecycle according to an
example. The network environment 100 includes a link 110 that connects a
global server 120, a client device 140, a global feature library 160, and a data
store 180. The global server 120 represents generally any computing device or
combination of computing devices that manages a global feature library 160.
The global server 120 provides a centralized location to update client devices

140 and manage features from a global feature library 160.

WO 2014/035410 PCT/US2012/053212

[0020] The global feature library 160 is a central repository for features
for an application code 146. The global feature library 160 represents generally
any database that stores a feature switch 162. Each feature switch 162 defines
a feature in the application code, such as code, application configuration, or
database that is turned on and off based on conditions. The global feature
library 160 also includes a feature access code 164 to access that feature in the
application code. The global features defined by the features switch 162 may be
incorporated into an application code 146 deployed in a continuous delivery
environment using, for example, a continuous deployment pipeline.

[0021] For example, a developer may access, add, and/or remove
feature switches 162 to the global feature library 160 using, for example, a
macro. The macro that can quickly embed a feature switch 162 into an
application code 146 from a list of features existing and/or in development, such
as an application lifecycle management tool. The feature may be selected after
the macro is activated and an “if then” clause is generated in the application
code 146. The macro adds the feature switch 162 to the global feature library
160 and available to others via interfaces, such as through the global server 120.
Similarly when the feature switch 162 is removed from an application code 146,
the developer may use a macro to automatically remove the feature switch 162
from the global feature library and provide a notification that the feature switch
162 is no longer available.

[0022] The developer sets defaults and initializes the features and the
feature switches 162 using, for example an interface on the global server 120
that is integrated into a developer’s integrated development environment. The
developer may use the interface to view definitions of the feature and the feature
switches 162. The developer may also use the interface to initialize the
conditions and defaults of the feature switch 162. To make the initialization
process more efficient, the developer can use a configuration file, a database, an
application programming interface call such as, REpresentational State Transfer
(REST), or custom applications to make modifications in real-time.

[0023] The developer can also restrict access to the features. For

example, specific access right or user credentials may be needed to add,

5

WO 2014/035410 PCT/US2012/053212

remove, update or change a feature switch 162. The access rights may be
determined by user and/or machines based on pre-defined criteria.

[0024] The client device 140 represents a computing device and/or a
combination of computing devices configured to interact with the global server
120 and via the link 110. The interaction may include transmitting and/or
receiving data related to an application code 146 and/or a feature switch 162.
The client device 140 may be, for example, a local server or a personal computer
which includes a software application managed by the global server 120. The
client device 140 stores the application code 146 for the software application and
run the software application for the user. The client device 140 also includes
local data relating to the global feature library 160.

[0025] For example, the client device 140 receives local feature library
142 from the global server 120. The local feature library 142 includes data from
the global feature library 160, such as a copy of the feature switches 162, the
feature access code 164, and/or the global value rule 124 distributed through the
global server 120. The client device 140 stores a portion of the local feature
library 142 in-memory including the feature value 144 that is used to turn the
feature switch 162 on or off based on a global value rule 124. The global rule
value 124 is received with the local feature library 142 from the global server
120.

[0026] Use of the local feature library 142 to locally or in-memory store
features values 144, for example, optimizes the performance of the client device
140 at runtime because the client device 140 does not need to query the global
server 120 during execution of the application code. Instead a distributed and
scalable system of client devices 140 with local or in-memory storage are
provided to efficiently obtain feature data and avoid loss of efficiency due to a
centralized server that is slow. On start-up or initialization, the client device 140
take advantage of the local feature library 142 and efficiently query the global
server 120 and update the local feature library 142 to be synchronized with the
global feature library 160, while the application programs are loading to ensure

quick access at runtime.

WO 2014/035410 PCT/US2012/053212

[0027] Moreover, the use of a global feature library 160 that centrally
stores the data and distributes it to the local feature library 142 provides a
scalable solution that enables usage of the feature switches 162 across servers,
domains, networks, and/or data centers, including usage in cloud computing.
For example, the local feature library 142 may be used to efficiently distribute
updates or access to the features to all the client devices 140 and/or a subset of
the client devices 140. When only a subset of the client devices 140 receive an
update or access to a feature, the global server 120 may strategically limit or
control the number of users of a feature based on, for example, domains,
machine addresses, and/or characteristics of the machine to test the feature
under specific conditions in production.

[0028] The data store 180 represents generally any memory, such as
data repository, configured to store data that can be accessed by the global
server 120, the client device 140, and/or the global feature library 160 in the
performance of its function. The global server 120 functionalities may be
accomplished via the link 110 that connects the global server 120 to the client
device 140, the global feature library 160, and the data store 180.

[0029] The link 110 represents generally one or more of a cable,
wireless, fiber optic, or remote connections via a telecommunication link, an
infrared link, a radio frequency link, or any other connectors or systems that
provide electronic communication. The link 110 may include, at least in part, an
intranet, the Internet, or a combination of both. The link 110 may also include
intermediate proxies, routers, switches, load balancers, and the like.

[0030] FIG. 2illustrates a block diagram of an apparatus 200 to
manage a global feature library 160 according to examples. The apparatus 200
is useable with a continuous deployment pipeline and includes the global server
120, a memory 222, and a processor 224. The global server 120 manages a
global feature library 160. The memory 222 stores a set of instructions. The
processor 224 is coupled to the memory 222 to execute the set of instructions.

[0031] The set of instructions provide the global feature library 160 with
a plurality of features defined in the library. The global feature library 160

WO 2014/035410 PCT/US2012/053212

includes a feature switch 162 for each of the plurality of features. The feature
switch 162 is useable with an application code 146 on a client device 140.

[0032] The set of instructions link the feature switch 162 to an
application code 146. The feature switch 162 includes a feature value 144
associated therewith. The feature value 144 turns a feature associated with the
feature switch 162 on and off based on a global value rule 124.

[0033] The set of instructions transmit the global value rule 124 to a
client device 140 capable of storing the feature value 144 in-memory thereon.
The client device 140 creates a distributed system of local devices that enable
quick access to the feature values 144 without having to access the global server
120 each time a value is needed.

[0034] The apparatus 200, when combined with the global feature
library 160, provides a system 250 for management of the global feature library
160. The system 250 is usable with a client device 140, that for example, has
application code 146 deployed through a deployment pipeline. The system 250
distributes data from the global feature library 160 to the client devices 140 via a
local feature library 142 that contains copies of a portion of the global feature
library 160. The local feature library 142 corresponds to the client device 140
and is stored locally or in-memory on the client device 140.

[0035] Asillustrated in FIG. 2, the global server 120 receives the global
feature library 160 data from the global feature library 160. The global server
120 then transmits a local feature library 142 to a plurality of client devices 140.
FIG. 2 illustrate the global server 120 connected to three client devices 140, e.g.,
client devices 1-3, and three local feature libraries 142, e.g., local feature library
1-3. The local feature library 142 includes a portion of the global feature library
160 stored locally or in-memory, such that the local feature library 142 is actually
on the client device 140 and/or accessible via a local database connected
thereto. Data stored in the local feature library 142 may include the, the feature
value 144, feature switch 162, and/or the feature access code 164.

[0036] FIG. 3 illustrates a block diagram of a system 250 useable with
the environment 100 of FIG. 1 according to an example. The system 250

manages a global feature library. The system 250 includes the global server

8

WO 2014/035410 PCT/US2012/053212

120, the global feature library 160, and the data store 180. As illustrated in FIG.
1, the global server 120, the global feature library 160, and the data store 180
are connected via the link 110.

[0037] The global feature library 160 has a plurality of features defined
therein. The global feature library 160 includes a feature switch 162 for each of
the plurality of features. The feature switch 162 is useable with an application
code 146. The feature switch 162 is linkable to an application code 146. The
global feature library calls the feature access code 164 associated with the
feature switch 162, and the feature access code 164 calls the feature in the
programming language of the application code 146.

[0038] The global feature library 160 supports multiple programming
languages and provides similar user experiences relating to the feature switches
162 and code macros across the programming languages. For example,
developers are able to use the global feature library 160 in a preferred
development setting and streamline the use of the feature switches 162 across
server several technologies in a tiered and/or composite application. Examples
of programming languages include Ruby, PHP, SQL, Javascript, Java, C++, and
C#.

[0039] The feature switch 162 includes a feature value 144 associated
therewith. The feature value 144 turns a feature associated with the feature
switch 162 on and off based on a global value rule 124. The global value rule
124 is transmittable to a client device 140 capable of storing the feature value
144 in-memory thereon.

[0040] The global server 120 is connected to the global feature library
160 and manages the global feature library 160. The global server 120 is
connected to the client device 140 and provides the client device 140 with the
feature value to store in-memory. The client device 140 stores the feature value
in-memory to enable quick access via a distributed system instead of requiring
the client device 140 to query the global server 120 each time a feature value is
needed. However, when the feature value changes, the global server 120
transmits an update to the local feature library 142, which updates the feature

value 144 in-memory on the client device 140. The update transmission is

9

WO 2014/035410 PCT/US2012/053212

triggered when, for example, a request is made to change the global value rule
124. The update may occur due to scheduled or periodical polling of the global
server 120 for updates. The local code library may also be robust and identify

the most recent data from the global server 120 and give that data priority.

[0041] The global server 120 is illustrated as including a library engine
320. The library engine 320 represents generally a combination of hardware
and/or programming that provides the global feature library to the client device(s)
140 and manages the global feature library for the client device(s) 140. For
example, the library engine will manage the feature definitions, initialization,
dynamic settings, efficiency issues, synchronization of the client devices 140,
formulating conditions and execution, and collection of usage data 382. The
library engine 320 also links feature switches of the global feature library 160 to
an application code 146 and transmits the global value rule 124 to the client
device(s) 140.

[0042] The client device 140 is illustrated as including a feature engine
342, a value engine 344, and a code engine 346. The feature engine 342
represents generally a combination of hardware and/or programming that
manages the features from the global server 120 for the application code 146 on
the client device 140. The data used by the feature engine 342 is provided by
the global server 120 and used to update the local feature library 142. The
feature engine 342 may also collect usage data 382 corresponding to the
features and feature switches 162 utilized. The usage data 382 may be provided
to or obtained by the global server 120, evaluated, and/or saved in a data store
180, such as a global repository or the global feature library 160.

[0043] The value engine 344 represents generally a combination of
hardware and/or programming that stores and updates the feature value 144 in-
memory for the client device 140. The feature value 144 may be determined
based on the global value rule 124. The code engine 346 represents generally a
combination of hardware and/or programming that manages the application code
146. The code engine 346 may use the feature access code 164 to access the

code from the application code 146 library associated with the feature.

10

WO 2014/035410 PCT/US2012/053212

[0044] The data store 180 may store data accessible by the global
server 120 and/or the client device 140. The data store 180 is, for example, a
database or a combination of databases that stores at least one of the following
a global feature library 160 including the global value rule 124, the local feature
library, the feature value 144, the application code 146, the feature switch 162,
the feature access code 164, the usage data 382, and an instruction 384, such
as an instruction to be performed by a processor 224. For example, the data
store 180 may include a global data repository to collect and store the usage
data 382 for the feature switch 162, the initialization data, and/or configuration
file.

[0045] FIG. 4 illustrates a block diagram of a computer readable
medium 400 useable with the apparatus 200 of FIG. 2 according to an example.
In FIG. 4, the global server 120 is illustrated to include a memory 222, a
processor 224, and an interface 410. The processor 224 represents generally
any processor configured to execute program instructions stored in memory 222
to perform various specified functions. The interface 410 represents generally
any interface enabling the global server 120 to communicate with the client
device 140 and/or the global feature library 160 via the link 110, as illustrated in
FIGS. 1 and 3.

[0046] The memory 222 is illustrated to include an operating system
430 and applications 450. The operating system 430 represents a collection of
programs that when executed by the processor 224 serve as a platform on which
applications 450 may run. Examples of operating systems 430 include various
versions of Microsoft's Windows® and Linux®. Applications 450 represent
program instructions that when executed by the processor 224 function as an
application that manages a global feature library usable with continuous delivery.
For example, FIG. 4 illustrates a library module 420 as executable program
instructions stored in memory 222 of the global server 120.

[0047] Referring back to FIG. 3, the library engine 320 of global server
120 and the feature engine 342, the value engine 344, and the code engine 346
of the client device 140 are described as combinations of hardware and/or

programming. As illustrated in FIG. 4, the hardware portions may include the

11

WO 2014/035410 PCT/US2012/053212

processor 224. The programming portions may include the operating system
430, applications 450, and/or combinations thereof. For example, the library
module 420 represents program instructions that when executed by a processor
224 cause the implementation of the of the library engine 320 of FIG. 3. The
feature module 440 represents program instructions that when executed by a
processor 224 cause the implementation of the of the feature engine 342 of FIG.
3. The value module 460 represents program instructions that when executed
by a processor 224 cause the implementation of the of the value engine 344 of
FIG. 3. The code module 480 represents program instructions that when
executed by a processor 224 cause the implementation of the of the code engine
346 of FIG. 3. Additional functionality may be performed by the library module
420, the feature module 440, the value module 460, and/or the code module 480
or by additional module(s).

[0048] The programming of the library module 420, the feature module
440, the value module 460, and/or the code module 480 may be processor
executable instructions stored on a memory 222 that includes a tangible memory
media and the hardware may include a processor 224 to execute the
instructions. The memory 222 may store program instructions that when
executed by the processor 224 cause the processor 224 to perform the program
instructions. The memory 222 may be integrated in the same device as the
processor 224 or it may be separate but accessible to that device and processor
224,

[0049] In some examples, the program instructions may be part of an
installation package that can be executed by the processor 224 to perform a
method using the system 250. The memory 222 may be a portable medium
such as a CD, DVD, or flash drive or a memory maintained by a server from
which the installation package can be downloaded and installed. In some
examples, the program instructions may be part of an application or applications
already installed on the server. In further examples, the memory 222 may
include integrated memory, such as a hard drive.

[0050] FIG. Sillustrates a flow diagram 500 of a method, such as a

processor implemented method, to manage a global feature library usable with a

12

WO 2014/035410 PCT/US2012/053212

continuous delivery environment. In block 520, a global feature library is
provided with a plurality of features defined therein. The global feature library
including a feature switch for each of the plurality of features. The feature switch
is useable with an application code. The global feature library stores the feature
switch in a plurality of programming languages such that the feature switch
causes the global feature library to call the feature access code associated with
the feature switch, and the feature access code calls the feature in the
programming language of the application code. Examples of programming
languages include Ruby, PHP, SQL, Javascript, Java, C++, and C#.

[0051] The feature switch is linked to an application code in block 540.
The feature switch may be linked and/or unlinked from the application code using
at least one of a macro and a user interface. The feature switch includes a
feature value associated with it. The feature value may be initialized by the
global server and/or the global feature library. In block 560, the feature value
turns a feature associated with the feature switch on and off based on a global
value rule. The global value rule is transmitted to a client device capable of
storing the feature value in-memory or locally.

[0052] By storing the feature value in-memory of the client device, the
client device avoids delays due to communications with the global server. The
feature value on the client device is updated by the global server, which
transmits updates relating to the feature value to the client device. One way an
update is triggered is when the global server makes a request to change the
global value rule. At that time the global server transmits an update to the
feature value on the client device. The feature value may be modified in real-
time using for example, a configuration file, an application programming interface
call such as REpresentational State Transfer (REST), or custom applications.

[0053] Access to each of the plurality of feature switches may also be
based on a user credential that determines the feature value. For example, the
user credentials may be used to change the feature value, and/or limit access to
the feature switch to, for example, a specific machine or group of machines for
testing and/or management or based on condition such as location of the user,

as defined in a repository or the global feature library.

13

WO 2014/035410 PCT/US2012/053212

[0054] The method may also collect usage data for the feature switch.
The usage data includes at least one of where the feature switch is embedded in
the application code, when the feature switch is embedded into the application
code, who embedding the feature switch, when the feature is on, when the
feature switch is off, conditions of when the feature switch is accessed, and the
performance effect of the feature switch on the application code’s runtime. The
usage data may be collected asynchronously and stored in a data store, such as
a global data repository accessible by the global server and/or the client
device(s).

[0055] FIGS. 1-5 aid in illustrating the architecture, functionality, and
operation according to examples. The examples illustrate various physical and
logical components. The various components illustrated are defined at least in
part as programs, programming, or program instructions. Each such component,
portion thereof, or various combinations thereof may represent in whole or in part
a module, segment, or portion of code that comprises one or more executable
instructions to implement any specified logical function(s). Each component or
various combinations thereof may represent a circuit or a number of
interconnected circuits to implement the specified logical function(s).

[0056] Examples can be realized in any computer-readable media for
use by or in connection with an instruction execution system such as a
computer/processor based system or an ASIC (Application Specific Integrated
Circuit) or other system that can fetch or obtain the logic from computer-readable
media and execute the instructions contained therein. "Computer-readable
media" can be any media that can contain, store, or maintain programs and data
for use by or in connection with the instruction execution system. Computer
readable media can comprise any one of many physical media such as, for
example, electronic, magnetic, optical, electromagnetic, or semiconductor media.
More specific examples of suitable computer-readable media include, but are not
limited to, a portable magnetic computer diskette such as floppy diskettes or hard
drives, a random access memory (RAM), a read-only memory (ROM), an

erasable programmable read-only memory, or a portable compact disc.

14

WO 2014/035410 PCT/US2012/053212

[0057] Although the flow diagram of FIG. 5 illustrates specific orders of
execution, the order of execution may differ from that which is illustrated. For
example, the order of execution of the blocks may be scrambled relative to the
order shown. Also, the blocks shown in succession may be executed
concurrently or with partial concurrence. All such variations are within the scope
of the present invention.

[0058] The present disclosure has been described using non-limiting
detailed descriptions of examples thereof and is not intended to limit the scope of
the present disclosure. It should be understood that features and/or operations
described with respect to one example may be used with other examples and
that not all examples of the present disclosure have all of the features and/or
operations illustrated in a particular figure or described with respect to one of the
examples. Variations of examples described will occur to persons of the art.
Furthermore, the terms "comprise,” "include,"” "have" and their conjugates, shall
mean, when used in the present disclosure and/or claims, "including but not
necessarily limited to."

[0059] Itis noted that some of the above described examples may
include structure, acts or details of structures and acts that may not be essential
to the present disclosure and are intended to be exemplary. Structure and acts
described herein are replaceable by equivalents, which perform the same
function, even if the structure or acts are different, as known in the art. Therefore,
the scope of the present disclosure is limited only by the elements and limitations

as used in the claims.

15

WO 2014/035410 PCT/US2012/053212

CLAIMS
WHAT IS CLAIMED IS:

1. A processor implemented method to manage a global feature
library usable with a continuous delivery environment, the method
comprising:

providing a global feature library with a plurality of features
defined therein, the global feature library including a feature switch
for each of the plurality of features, the feature switch is useable
with an application code;

linking the feature switch to an application code, the feature
switch includes a feature value associated therewith, the feature
value turns a feature associated with the feature switch on and off
based on a global value rule; and

transmitting the global value rule to a client device capable

of storing the feature value in-memory thereon.

2. The method of claim 1, further comprising updating the feature
value on the client device by transmitting updates relating to the
feature value from a global server to the client device.

3. The method of claim 1, further comprising configuring the feature
switch to be useable with a plurality of programming languages,
the global feature library calls the feature access code associated
with the feature switch, and the feature access code calls the

feature in the programming language of the application code.

4, The method of claim 1, further comprising collecting a usage data
for the feature switch,
the usage data includes at least one of where the feature
switch is embedded in the application code, when the feature
switch is embedded into the application code, who embedding the

feature switch, when the feature is turned on, when the feature

16

WO 2014/035410

10.

PCT/US2012/053212

switch is turned off, conditions of when the feature switch is
accessed, the performance effect of the feature switch on the

application code’s runtime.

The method of claim 4, further comprising:
collecting the usage data asynchronously; and

storing the usage data in a global data store.

The method of claim 1, further comprising linking and unlinking the
feature switch from the application code using at least one of a

macro and a user interface.

The method of claim 1, further comprising limiting access to each

of the plurality of features based on a user credential.

The method of claim 1, further comprising modifying the feature

value in real-time.

The method of claim 1, further comprising providing a portion of
the global feature library to a local feature library in-memory on a

client device.

A system to manage a global feature library usable with a
continuous delivery environment, the system comprising:

a global feature library with a plurality of features defined
therein, the global feature library including:

a feature switch for each of the plurality of features,
the feature switch is useable with an application code, the feature
switch is linkable to an application code,

the feature switch includes a feature value
associated therewith, the feature value turns a feature associated

with the feature switch on and off based on a global value rule,

17

WO 2014/035410

11.

12.

13.

14.

15.

PCT/US2012/053212

the global value rule is transmittable to a client

device capable of storing the feature value in-memory thereon;

and
a global server connected to the global feature library to:
manage the global feature library; and
provide a client device with the feature value to store
in-memory.

The system of claim 11, further comprising a global data store to

collect and store a usage data for the feature switch.

The system of claim 11, wherein the global feature library stores
the feature switch such that the feature switch is useable with a
plurality of programming languages, the global feature library calls
the feature access code associated with the feature switch, and
the feature access code calls the feature in the programming

language of the application code.

The system of claim 11, wherein the global server transmits an
update to the feature value in-memory on the client device when a

request is made to change the global value rule.

The system of claim 11, wherein the global server provides a
portion of the global feature library to a local feature library in-

memory on a client device.

An apparatus usable with a continuous delivery environment, the
apparatus comprising:

a global server to manage a global feature library;

a memory to store a set of instructions; and

a processor coupled to the memory to execute the set of

instructions to:

18

WO 2014/035410

PCT/US2012/053212

provide the global feature library with a plurality of features
defined therein, the global feature library including a feature switch
for each of the plurality of features, the feature switch is useable
with an application code;

link the feature switch to an application code, the feature
switch includes a feature value associated therewith, the feature
value turns a feature associated with the feature switch on and off
based on a global value rule; and

transmit the global value rule to a client device capable of

storing the feature value in-memory thereon.

19

WO 2014/035410

DATA STORE
180

1/5

GLOBAL SERVER
120

GLOBAL VALUE RULE
124

PCT/US2012/053212

GLOBAL FEATURE
LIBRARY

160

FEATURE SWITCH
162

FEATURE
ACCESS CODE
164

CLIENT DEVICE
140

LOCAL FEATURE

LIBRARY
142

FEATURE VALUE
144

APPLICATION CODE
146

Fig. 1

PCT/US2012/053212

WO 2014/035410

2/5

Z ‘b4

v3l
4000 §5300V
JdNivdd

Z91
HOLMS FdNLvEd

091

AdvHal
JuLvdd WE0o

i o i
¢ 30IA30 ININD & AOIAS0 INSTD L EOIASC LNSITD
75 77 5
¢ AHYHEN g AHYHEIN L AdYegl
JHELYE4 TYo0T JHENLYE4 TYo0T SN LYE4 TYOoOT
777 777
HOSSID0MA AHONIIN
0zl it
HAAMES WEOTD
%

WO 2014/035410

P2
L

3/5

PCT/US2012/053212

GLOBAL SERVER

120

110~

CLIENT DEVICE
140

FEATURE ENGINE
342

VALUE ENGINE
J44

CODE ENGINE
346

""'"""L'"T"""'"

LIBRARY ENGINE

320

180
/_

/
\

T
7

GLOBAL FEATURE
LIBRARY

160

FEATURE SWITCH

1862

FEATURE
ACCESS CODE

164

GLOBAL VALUE RULE

124

LOCAL FEATURE
LIBRARY

142

FEATURE VALUE

144

APPLICATION CODE

146

USAGE DATA

382

\

INSTRUCTION

384

—

Fig. 3

WO 2014/035410 PCT/US2012/053212

4/5
GLOBAL SERVER
400 14
= MEMORY
222
OPERATING SYSTEM
430
APPLICATIONS |LL
450
LIBRARY MODULE ’NTE;%ACE
420 L
PROCESSOR ||
224
!
|
CLIENT DEVICE i
MEMORY i
= | 110
OPERATING SYSTEM F/\
430 :
APPLICATIONS :
450 = i
FEATURE MODULE i
%10 2 | I 1 I [S— _
VALUE MODULE
460 INTERFACE
coemonute |||[] 2
480
PROCESSOR i
224

Fig. 4

WO 2014/035410 PCT/US2012/053212

5/5

31
k3
L

PROVIDE THE GLOBAL FEATURE LIBRARY WITH A

PLURALITY OF FEATURES DEFINED THEREIN, THE

GLOBAL FEATURE LIBRARY INCLUDING A FEATURE
SWITCH FOR EACH OF THE PLURALITY OF FEATURES

520

'

LINK THE FEATURE SWITCH TO AN APPLICATION CODE
BASE, THE FEATURE SWITCH INCLUDES A FEATURE
VALUE ASSOCIATED THEREWITH TO TURN THE FEATURE
SWITCH ON AND OFF

540

'

TRANSMIT THE GLOBAL VALUE RULE TO A CLIENT

DEVICE CAPABLE OF STORING THE FEATURE VALUE
IN-MEMORY THEREON

560

Fig. 5

International application No.

PCT/US2012/053212

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 15/16(2006.01)i, GO6F 9/30(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
GO6F 15/16; GO6F 17/50;, GO6F 17/30; GO6F 9/46, GO6F 15/163

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: “LIBRARY” , “APPLICATION” , “SWITCH” , “CLIENT”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See abstract, page 6 line 13 – page 15 line 4 and figure 1.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2012-0191760 Al (KAUFMAN MICHAEL PHILIP et al.) 26 July 2012 1-15
See abstract, paragraphs [0026] — [0239] and figure 5.
A US 2008-0295045 Al (AKTOUF CHOUKI) 27 November 2008 1-15
See abstract, paragraphs [0075] — [0116] and figure 10.
A US 2009-0319472 Al (JAIN RAMESH et al.) 24 December 2009 1-15
See abstract, paragraphs [0028] — [0094] and figure 9.
A WO 99-60487 Al (TRIDIUM, INC.) 25 November 1999 1-15

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be

e

e
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

29 March 2013 (29.03.2013)

Date of mailing of the international search report

29 March 2013 (29.03.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

YUN, Byeong Soo

Telephone No. 82-42-481-8530

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2012/053212

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2012-0191760 A1 26.07.2012 None

US 2008-0295045 At 27.11.2008 AT 440291 T 15.09.2009
DE 602005016079 D1 01.10.2009
EP 1716425 A1 02.11.2006
EP 1716425 B1 19.08.2009
FR 2866435 A1 19.08.2005
FR 2866435 B1 04.04.2008
JP 04-654203 B2 24.12.2010
JP 2007-522574 A 09.08.2007
JP 2007-522574 T 09.08.2007
JP 4654203 B2 16.03.2011
US 8010918 B2 30.08.2011
WO 2005-083454 A1 09.09.2005

US 2009-0319472 Al 24.12.2009 None

WO 99-60487 A1 25.11.1999 AU 1999-39931 A1l 06.12.1999
AU 1999-39931 B2 20.03.2003
BR 9910512 A 02.01.2001
CA 2332009 Al 25.11.1999
CA 2332009 C 07.08.2007
CN 1305611 AO 25.07.2001
CN 1305611 B 02.06.2010
EP 1082669 A1 14.03.2001
EP 1082669 A4 03.05.2006
HK 1038970 A1 04.03.2011
JP 04-330799 B2 26.06.2009
JP 2002-516432 A 04.06.2002
JP 2002-516432 T 04.06.2002
JP 2002-516432 T 04.06.2002
JP 4330799 B2 16.09.2009
KR 10-0563291 B1 27.03.2006
WO 99-60487A1 25.11.1999
WO 99-60487A9 01.03.2001

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

