
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0205666 A1

Pernia

US 20100205666A1

(43) Pub. Date: Aug. 12, 2010

(54)

(75)

(73)

(21)

(22)

(63)

(60)

ELECTRONIC COMPUTER SYSTEM
SECURED FROM UNAUTHORIZED ACCESS
TO AND MANIPULATION OF DATA

Inventor: Marcos Benjamine Pernia,
Redwood City, CA (US)

Correspondence Address:
OSHALIANGL.L.P.
TWO HOUSTON CENTER,909 FANNIN, SUITE
35OO
HOUSTON, TX 77010 (US)

EXOBOXTECHNOLOGIES
CORP. Houston, TX (US)

Assignee:

Appl. No.: 12/703,508

Filed: Feb. 10, 2010

Related U.S. Application Data

Continuation of application No. 1 1/237,035, filed on
Sep. 27, 2005, now Pat. No. 7,690,033.
Provisional application No. 60/613,768, filed on Sep.
28, 2004, provisional application No. 60/675,613,
filed on Apr. 28, 2005.

PERIPHERAL
DEVICES

OTHER
INTERNAL
FEATURES

Publication Classification

(51) Int. Cl.
G06F2L/02 (2006.01)
G06F2L/00 (2006.01)
G06F2L/06 (2006.01)
G06F 2L/22 (2006.01)

(52) U.S. Cl. .. 726/16

(57) ABSTRACT

In general, the invention relates to a method for securing a
computer system. The method includes monitoring an oper
ating system in the computer system and trapping, in response
to the monitoring, a process system call where the process
system call originated in a host executing in the computer
system. Responsive to the trapping, an isolated user environ
ment (IUE) is created in the computer system. Creating the
IUE includes allocating memory and persistent storage for
the IUE. In addition, the IUE includes a file system filter
driver (FSFD) configured to redirectInput/Output (I/O) calls
originating from the IUE to the persistent storage, and a
network interface/NDIS hook component configured to con
trol network traffic originating from the IUE and destined for
the IUE. The method further includes, after creating the IUE,
loading the process system call into the IUE and executing the
process system call in the IUE.

Patent Application Publication Aug. 12, 2010 Sheet 1 of 23 US 2010/0205666 A1

FIG. 1
PERIPHERAL
DEVICES

INTERNAL
FEATURES

2E

AUTHENTICATION
SERVICES

ENVIRONMENT
HANDLER

2B2

JOBOUBECT WINDOWS
MANAGER LOADER

Patent Application Publication Aug. 12, 2010 Sheet 2 of 23 US 2010/0205666 A1

40a

Vonitor

40C

2O

Fig. 2

Patent Application Publication Aug. 12, 2010 Sheet 3 of 23 US 2010/0205666 A1

Coene) Board a 14
Printer

Node

(onto)-1-1- m 16
22

4OC w

TE. Execution Cal

CPU

N . 20

28

Fig. 3

Patent Application Publication Aug. 12, 2010 Sheet 4 of 23 US 2010/0205666 A1

40a

so I /O Ports Core)
r

120 Bubble Memory
28

Fig. 44

Patent Application Publication Aug. 12, 2010 Sheet 5 of 23 US 2010/0205666 A1

40a

Key Corne) O Ports 14

126a

12O Bubble Memory

Patent Application Publication Aug. 12, 2010 Sheet 6 of 23 US 2010/0205666 A1

Core)
Node

N-16

120 Bubble Memory

Fig. 4C

Patent Application Publication Aug. 12, 2010 Sheet 7 of 23 US 2010/0205666 A1

Printer
-p- Node

Monitor

20

120

Patent Application Publication Aug. 12, 2010 Sheet 8 of 23 US 2010/0205666 A1

40a

Key
t I/O Ports

Printer

(onto)-- ||

126a

120 Bubble Memory

28

Patent Application Publication Aug. 12, 2010 Sheet 9 of 23 US 2010/0205666 A1

40a

Key
Board

20

Patent Application Publication Aug. 12, 2010 Sheet 10 of 23 US 2010/0205666 A1

40a

Corne) Board 14

Priter
Node

16
22

40C

J-E * S-2 Process
Execution call

CPU - 11

28

Fig. 5D

Patent Application Publication

40a

Key

Printer

(Monitor

20

120

Aug. 12, 2010 Sheet 11 of 23 US 2010/0205666 A1

Tw- - -

- - - - -

Patent Application Publication Aug. 12, 2010 Sheet 12 of 23 US 2010/0205666 A1

40a

Board 14

Printer

Node
Monitor
Y 16

\ 22
4OC

CPU

20 h

13OC

126a

12O Bubble Memory

RAM

Fig. 74

Patent Application Publication Aug. 12, 2010 Sheet 13 of 23 US 2010/0205666 A1

40a

Patent Application Publication Aug. 12, 2010 Sheet 14 of 23 US 2010/0205666 A1

pan.
Monitor

16

40c

1- 2,

Fig. 7C

Patent Application Publication Aug. 12, 2010 Sheet 15 of 23 US 2010/0205666 A1

40a

Key - --- Cerne)
Board I/O Ports 14

Printer
Node

WOrtoft -m-m- 16

4OC

2O

126a

12O Bubble Memory

RAM

Fig. 7D

Patent Application Publication Aug. 12, 2010 Sheet 16 of 23 US 2010/0205666 A1

AUTHENTICATION MODULE
EXECUABLE

ENVIRONMENT HANDLER

JOBOBJECT MANAGER

USER DATA BASE

USER MODE

KERNE MODE

FIG.8

Patent Application Publication Aug. 12, 2010 Sheet 17 of 23 US 2010/0205666 A1

3. A

E x e cu t e H o o k

Patent Application Publication Aug. 12, 2010 Sheet 18 of 23 US 2010/0205666 A1

EXECUTE
HOOK

JOBOBJECT
MANAGER

3B

ENVIRONMENT
HANDLER

FIG. 10

4C

ENVIRONMENT
HANDLER

AUTHENTICATION
SERVICES
MANAGER

4B 4B. 1

US 2010/0205666 A1

HG

Patent Application Publication

XOOH SIGIN

NOLIWOLINEIHIf?\/

Patent Application Publication Aug. 12, 2010 Sheet 20 of 23 US 2010/0205666 A1

File System Filter Driver

File Systern Filler
-- Driver
Redirection. Copy-on-Write.

lO Manager Read First priority etc

Fig. 13

Patent Application Publication Aug. 12, 2010 Sheet 21 of 23 US 2010/0205666 A1

NOS Hook

Of Interface

NOS Protocol Driver

Protocol interface

NOIS Wrapper

AMiniport interface

NDS Adapter Driver

Hardware frterface

Fig. 14

Patent Application Publication Aug. 12, 2010 Sheet 22 of 23 US 2010/0205666 A1

System Call Hook

SUEZ
Environment

Application Hardier

6.
Trap instruction Use Mode

Kernei Mode

SUEZ Systern Cal Registry System
Driver Call

5.

Systern Call Array

Windows System Call
Handler s

SUEZ proprietary
Registry Systern

Call

2. 3.O
4.

Fig. 15

US 2010/0205666 A1 Aug. 12, 2010 Sheet 23 of 23 Patent Application Publication

500

540

542

NATIME PROCESS
CREATION

OB OBJECT
COMPONENT

544

FILE SYSTEM FILTER
DRMER

US 2010/0205666 A1

ELECTRONIC COMPUTER SYSTEM
SECURED FROM UNAUTHORIZED ACCESS

TO AND MANIPULATION OF DATA

0001. The present application is a continuation of U.S.
patent application Ser. No. 1 1/237,035 and, accordingly,
claims benefit under 35 U.S.C. S 120 to U.S. patent applica
tion Ser. No. 1 1/237,035, which is incorporated by reference.
U.S. patent application Ser. No. 1 1/237,035 claims the benefit
of prior filed U.S. Provisional Application Ser. No. 60/613,
768 filed 28 Sep. 2004 and Ser. No. 60/675,613 filed 28 Apr.
2005, both of which are incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention is in the field of support for
electrical computers and digital processing systems. More
specifically, the present invention relates to security software
and processes for protecting a computer system's hardware,
Software and data from malicious caused destruction, unau
thorized modification or unauthorized disclosure.

BACKGROUND OF THE INVENTION

0003. As the online community grows with the develop
ment of high bandwidth, high speed, and high availability
connectivity to the public internet, we are seeing an ever
increasing proliferation of malicious content and identity/
data theft and destruction, perpetrated right in our own home
and office computers. Malignant and poisonous web content
administered through data mining tools, Add-Ware con
tent, activeX, java Script, misleading download queries, Tro
jan content and virus infected data is responsible for extraor
dinary, quantifiable, monetary losses to the enterprise every
year. There is no measure, however, for the loss off privacy,
intimate data and criminal violations these intrusions prey
upon our families. Passive, after the fact, behindhand
screening for Trojan and virus content, such as that provided
by modern virus scanning Software, has proven itself an inad
equate bastion of defense to the cyber theft and data corrup
tion mechanisms rampant in the global cyberspace. The com
puter security industry has made attempts to address these
failings by implementing solutions such as execution protec
tion products that only allow the execution of White-listed
applications on any given computer; but Such products
require constant centralized administration and customiza
tion to fit withina divers enterprise community, and are unrea
sonable solutions for home users due to their management
needs and lack of transparency. Though restricting execution
can greatly improve the protection of local computer data, a
more flexible solution is to virtualize execution in an isolated
environment. This methodology has been proven by software
implemented virtual machines such as those presented by
VMWareC). However, such solutions are not practical, nor
were they designed for, implementation as computer security
software. Such solutions require the full installation of a
secondary operating system within each virtual environment.
Implementing Such environments requires a higher level of
computer understanding than the average user and presents
management/administration and storage complications to
implementations across an enterprise environment. Even
Solutions as common to modern computer environments as
advanced statefull firewall protection, host security, and
access control management is beyond the average computer

Aug. 12, 2010

owner, let alone the peers and loved ones sharing their com
puter space. Microsoft's Windows architecture does not pro
vide inherent user or group isolation robust enough to protect
low privileged users from the actions of malicious code
should it find its way onto their computer, nor the prolifera
tion of damage or theft throughout all the computer's user and
administrator space. Current third party solutions have
proven themselves inadequate to protect a computer from the
transgressions of its operators or malicious attack. This begs
the questions, is it possible to split a Windows computer into
secure virtual environments with as much isolation as pos
sible between each one, looking like individual computers
without the cumbersome implementation of classic virtual
machine environments? To isolate disk space, virtualize
execution, make user data inaccessible and unreadable to
other users; yet share some/most/all common tasks (monitor
ing, backup, ups, hardware configuration and libraries etc)
and still allow the individual evolution of each virtual envi
ronment? Can this be done transparently, unobtrusively?

SUMMARY OF THE INVENTION

0004. The present invention is software for use with a
PC-type computer, either standing alone or connected to a
network. The present inventive software, when used in con
junction with a typical PC-type computer, prevents the unau
thorized export of data from the computer, corruption/loss of
data due to malwear or local action. This protection from the
unauthorized export of data is accomplished by running the
present Isolated/Secure User Environment Software (IUE/
SUEZ) as a process component of the computer system. The
SUEZ application provides a bubble from which a user can
operate the computer, access all of the computer's applica
tions and freely brows the Internet, but not have any of the
computer systems files accessed for export by a trojan or like
malicious code. The result of providing a SUEZ enhanced
computer system is that, malicious code from an external data
source, such as a file downloaded from the Internet or
imported from an external data source, cannot steal data or
eves-drop on a SUEZ user on the computer.
0005. The present invention is a secured Windows OS
electronic computer system having a Software based isolated
User environment protected from unauthorized access to and
manipulation of data on the system. The software of the
present invention on a Windows(R OS computer system
implements an isolated User file system and provides pro
cess/IPC isolation, Windows(R registry isolation, network
interface isolation, and isolated administrative control on the
computer system. Interactive components of the system
include an execution hook component, a job object compo
nent, a system call hook component, a file system block
device driver, a file system/filter driver, a network interface/
NDIS hook component, and an environment handler.
0006. The execution hook component traps system calls
requesting process execution. It also initiates creation of the
isolated User environment (IUE) and manages assignment of
Successive process execution requests to the appropriate
method of execution. To provide appropriate isolated process
execution control, the execution hook traps all calls to load an
executable image and tests them for anassigned User context.
All execution requests without a User context are either
assigning an administrative context and passed on for pro
cessing in the manner native to a Host computer system or
assigning a User context by interrogating the environment
handler for User authentication and credentials etc. Addition

US 2010/0205666 A1

ally, the execution hook is responsible for triggering requests
to the environment handler, upon new User context assign
ments, to create a new User environment. New User environ
ments include an isolated file system, network connection,
Windows registry hive and execution environment. The cur
rent requested process and all Subsequent processes with User
context are bound to this environment. Trapped process
execution requests with existing User context are assigned to
their associated User specific job object. All filtering done by
the execution hook is based on metadata described by the
Software and environment handler.
0007. The job object component is responsible for creat
ing, destructing, managing and manipulating job objects. It
provides an alternative process creation mechanism to that
native to the Host computer system by starting User processes
in a restricted state. Additionally, it implements User creden
tial based security descriptors that define the restrictions of
User processes and provides isolated process/IPC and
memory control. All based on appropriate metadata described
by the software and the environment handler.
0008. The system call hook component traps and filters all
Windows registry I/O requests. This facilitates file systemand
memory isolation by filtering calls based on their User con
text and redirecting User registry I/O requests to the User's
isolated file system. The system call hook processes User
specific credentials, prescribed by the environment handler,
to define what registry hives or keys or subset thereof will be
abstracted from Host computer systems native registry. All
filtering is done based on appropriate metadata described by
the software and environment handler.
0009. The file system block device driver component is
responsible for mounting and unmounting the isolated User
file system. This facilitates isolating the file system from the
Host computers file system namespace.
0010. The file system filter driver component filters all file
system I/O requests to accomplish isolation of the User file
system. The driver redirects file system I/O requests associ
ated with a User context to that User's isolated file system. By
providing granular proxy of all file system I/O, the file system
filter driver facilitates the redirection of all or some subset of
I/O based on request type, requested file system and object
credentials or type. All filtering is done based on appropriate
metadata described by the software and environment handler.
0011. The network interface/NDIS hook component is
responsible for abstracting the User's network interface from
the Host computer system's network interface. Additionally,
it provides bridging, packet filtering and other services typi
cal of network interface control. All filtering done by the
NDIS driver is based on metadata described by the software
and environment handler.
0012. The environment handler provides environment
management services for all the software components mak
ing up the IUE. It reveals an administrative configuration
interface allowing the definition of rules and general configu
ration data. The environment handler also managing and
defines User authentication and credentials for all the IUE
Software components. This includes prescribing filter meta
data and periodically obtaining log statistics from the Soft
ware components as well as revealing other controls typical
of Software management systems.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 is a block diagram of a general interconnect
scheme for certain internal components of a typical computer
and its connection to the Internet.

Aug. 12, 2010

0014 FIG. 2 is a block diagram depicting the configura
tion of a typical PC-type computer upon installation of an
application comprising the present Secure User Environment
Software (SUEZ) onto a PC-type computer system of FIG.1.
0015 FIG. 3 is a block diagram depicting the Ready State
configuration of the computer upon the trapping of the first
process execution call after its initial activation on the com
puter.
0016 FIG. 4A is a block diagram depicting an Active State
configuration of the computer of FIG.3 at a point after a first
trigger has been detected and a proper "context has been
assigned or recognized for a triggering execution call, but
before the associated thread has been passed to the comput
er's CPU.
0017 FIG. 4B is a block diagram depicting an Active State
configuration of the computer at a point after that of FIG.5A,
at which point the associated thread has been passed to the
computer's CPU and executed, which has caused certain pro
cesses (e.g., a browser application) to be loaded into bubble
memory and a connection to be established to certain periph
eral devices.
0018 FIG.4C is a block diagram depicting an Active State
configuration of the computer at a point after that of FIG. 4B,
at which point a connection to the Internet has been estab
lished.
0019 FIG. 5A is a block diagram depicting a configura
tion of the computer running the present SUEZ at a point after
that of FIG. 4B, at which point additional process are loaded
into bubble memory, which processes are derived from an
external data source Such as the Internet and some portion of
which may be saved to bubble storage.
0020 FIG.5B is a block diagram depicting a configuration
of the computer running the present SUEZ at a point where
the downloaded modules in bubble memory are attempting to
write, but all write calls originating in bubble memory can
only be sent to bubble storage.
0021 FIG.5C is a block diagram depicting a configuration
of the computer running the present SUEZ at a point in the
shut-down process where the user has logged-off, causing the
connection to the Internet to close and bubble memory to be
killed. However, any write call executed during the session to
bubble storage remains isolated in bubble storage, unless
otherwise deleted, e.g., by a "clean-up' function.
0022 FIG. 5D is a block diagram depicting a configura
tion of the computer running the present SUEZ at a point in
the shut-down process where the SUEZ data storage space
(bubble storage) is unmounted and appears to the operating
system to be configured as a single encrypted flat file stored
on a data storage device.
0023 FIG. 6 is a block diagram similar to FIG. 4C, but
depicting an Active State configuration of the computer on a
subsequent initiation of the SUEZ environment. In this con
figuration, when the stored SUEZ data space is mounted, it
contains the data written to it in previous SUEZ sessions, and
illustrates the persistence of certain data created in the previ
ous SUEZ session.
0024 FIG. 7A is a block diagram depicting a configura
tion of the computer running the present SUEZ at a point in
the active state where a module containing a trojan has been
downloaded into bubble memory and copied into bubble stor
age (the SUEZ data storage space) prior to its execution.
0025 FIG.7B is a block diagram depicting a configuration
of the computer running the present SUEZ at a point in the
active state where a file in bubble storage containing a trojan

US 2010/0205666 A1

is called from bubble storage and executed in bubble memory.
On execution, the trojan attempts to write to a primary system
file (e.g., the system registry), but instead is caused by the
SUEZ application to be written to the storage bubble.
0026 FIG.7C is a block diagram depicting a configuration
of the computer running the present SUEZ at a point in the
shut-down process where the user has logged-off, causing the
connection to the Internet to close and bubble memory to be
killed. However, any writing executed during the session to
bubble storage remains isolated in bubble storage, unless
otherwise deleted as shown, e.g., by a "clean-up' function.
0027 FIG.7D is a block diagram depicting an Active State
configuration of the computer at a point on boot-up after a
SUEZ session as depicted in FIG.7C has been previously run
on the computer. In this case, when bubble storage is
mounted, it contains the data written to it in previous SUEZ
sessions, including the trojan file (unless the file was identi
fied as malicious and eliminated by the cleanup function at the
close of the prior SUEZ session). However, because the mali
cious files created by the trojan were isolated in bubble stor
age where they were not executed by a reboot or upon mount
ing of bubble storage.
0028 FIG. 8 is a block diagram illustrating an overview of
the relationship of the various Software and data components
of the SUEZ system.
0029 FIG. 9 is a block diagram of the relationship
between the Execute Hook module and the other modules of
the SUEZ software application.
0030 FIG. 10 is a block diagram of the relationship
between the Job Object Manager module and the other mod
ules of the SUEZ software application.
0031 FIG. 11 is a block diagram of the relationship
between the Authentication Services module and the other
modules of the SUEZ software application.
0032 FIG. 12 is a block diagram of the relationship
between the Environment Handler module and the other mod
ules of the SUEZ software application.
0033 FIG. 13 is a block diagram of the relationship of the
File System Filter Driver to the operating system and its
native file system driver.
0034 FIG. 14 is a block diagram of the relationship of the
NDIS Hook driver to the operating system and its native
NDIS driver.
0035 FIG. 15 is a block diagram of the relationship of the
System Call Hook to the operating system and its native
system call handler.
0036 FIG. 16 is a high level flow chart diagramming the
major components the isolated User environment of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

0037. The following detailed description presents an
embodiment of the invention providing isolation of a User
(User being the computer operator bound by the conditions of
the preferred embodiment) environment to the extent that all
User interactions with the computer system, including pro
cess execution, interprocess communication (IPC), file sys
tem I/O (input/output), Windows registry I/O and network I/O
are isolated from the hosting computer systems operating
environment (referred to below as Host), in such a way as to
protect Host from User transgressions, such as maliciously
caused destruction, unauthorized modification, or unautho
rized disclosure of data.

Aug. 12, 2010

0038. The preferred embodiment will be described with
reference to the accompanying drawings and broken into 3
sections to better describe the present invention. Section one
will describe the hardware and Host computer system envi
ronment across multiple operating states with the preferred
embodiment implemented. Section two will provide a system
level overview of the embodiment. Section three will be a
description of use cases.
0039 Referring now to the drawings, the details of pre
ferred embodiments of the present invention are graphically
and Schematically illustrated. Like elements in the drawings
are represented by like numbers, and any Sub-components of
the same element are represented by like numbers with a
different lower case letter suffix.

Operating States
0040. The description of FIGS. 1 through 7D will provide
a comprehensive view of the preferred embodiment at mul
tiple states of operation on a preferred type computer system
and hardware, but is not intended to limit the applicable
environments. One of ordinary skill in the art will recognize
that the present invention can be implemented with the
accompaniment of other electrical computer system configu
rations; multi processor systems, main frame computers,
hand held devices, consumer electronics and embedded sys
tems are examples of such. One can appreciate that the
present invention can also be practiced in combination with
remote processing and or data storage, whether over a distrib
uted network or via removable hardware or media directly
interfacing the hosting computer system.
0041 As shown in FIG. 1, the Internet 14 is typically
accessed by a computer 20 via an Internet node 16. Depend
ing on the configuration of the computer 20, the node 16
represents a device or devices such as a modem, a network
card, a router and other interface hardware for connecting the
computer 20 to a network such as the Internet 14 via an I/O
port 22. Other external data sources, such as floppy drives,
optical disk drives and other external data storage devices are
also connectable to the computer 20 via an I/O port 22 as a
peripheral device 40.
0042 Preferable, the computer system 20 can be of any
configuration or manufacture running a Microsoft WIN
DOWS(R) operating system (preferably WINDOWS 2000R),
XPR) or compatible operating system). These include desk
tops, lap-tops or other devices having a CPU, storage and
connectivity to an external data source, e.g., the Internet 14. In
a preferred simple embodiment as exemplified in FIG. 1, the
present system comprises a computer 20 to which is con
nected certain peripheral devices 40. Such as a keyboard,
monitor, and printer (and optionally, to an external data Stor
age device) through a number of input/output (I/O) ports 22.
Also connected to the computer via an I/O port 22 is an
Internet node 16. The node device 16 can be any of a number
of such devices known in the art and compatible with the
configuration of the computer 20 to which it is attached to
accomplish this purpose. Such as modems, routers, etc.
Although the peripheral devices 40 and the node 16 are illus
trated in the example of FIG. 1 as external to the computer 20,
it is intended and is appreciable by one of ordinary skill in the
art that these elements can be incorporated into or share the
same housing as the computer 20 to one degree or another.
The structure and function of the other computer components
and their connectivity and communication interrelationships
are typical of the field and known to one of ordinary skill in

US 2010/0205666 A1

the art. Control of the Internet node 16 and other peripheral
devices 40 is typically accomplished in the usual manner via
the computer 20 to which they are attached. In addition to
the I/O ports 22, the computer 20 comprises the other internal
features and components typical of a PC. Such as a central
processing unit (CPU) 24, one or more data storage devices
26, volatile memory (e.g., RAM) 28, and other internal fea
tures and components 30.
0043. The present Isolated User Environment (IUE or
SUEZ) system is installable on a typical computer system as
illustrated in FIG. 2. FIG. 2 depicts the Installation State or
the configuration of the computer system 20 upon installation
of the IUE components. In a preferred embodiment, an exter
nal data source (not shown) was used to install the IUE
components into data storage on a PC type computer 20.
Installation of the IUE application caused certain new files or
sets of files 100 to be written to the data storage device (i.e.,
the internal disk drive) 26 of the computer 20. Additionally,
installation of the IUE software caused the modification of
certain of the computer's pre-existing files 116. The combi
nation of these two file sets 100 & 116 comprise the IUE
software. In the embodiment illustrated, the installation con
dition persisted in data storage even though the IUE applica
tion was not activated until after the computer's operating
system (OS) was rebooted.
0044) The Ready State configuration of the computer
occurs on every start-up of the computer 20, i.e., upon every
reboot after installation of the present IUE software. Starting
up the computer once the IUE application is installed causes
functions or processes to run in memory: a IUE driverset 300
and a IUE environment (bubble) manager process 340. A
detector function residing in the driver set 300 monitors the
operating system for process execution requests to detect and
trap the occurrence of a detector trigger event. The environ
ment manager 340 provides management services for the
components of the IUE application, such as user profile and
administration configurations.
0045. In the embodiment illustrated in FIG.3, the detector
trigger event was a process execution system call. On being
triggered, the detector function traps the call checking for the
presence of a proper User "context.” The term “context' is a
term of art, and as used herein is to be given its usual meaning
as generally known in the field. If a proper context is found,
the call is passed to the Object Manager FIG. 10. If a proper
context is not found, the call is passed to the Environment
Handler for authentication, see FIG. 12.
0046 FIG. 4A depicts the Active State/Triggered configu
ration of the computer 20, which occurs at a point after a first
trigger event has been detected and a proper context has been
either detected for or assigned to the trapped process execu
tion call. In the state depicted, a context and the IUE bubble
are established. The IUE bubble comprises a memory alloca
tion (bubble memory) 120 and a storage allocation (bubble
storage) 100a. Bubble memory 120 is typically an allocation
of RAM, and bubble storage 100a is typically a flat file
mounted as a block device by the driverset 300. At this point,
the triggering process is assigned to the job object, "loaded
suspended into bubble memory 120, but is not yet passed to
the CPU 24 for execution. For example, in the case of a trigger
Such as a browser call (e.g., a call to load Internet ExplorerR),
at this point the browser is loaded into bubble memory 120,
but not yet executed, therefore no browser initiated connec
tion has been made to the Internet 14.

Aug. 12, 2010

0047 FIG. 4B is a block diagram depicting an Active State
configuration of the computer at a point after that of FIG. 4A,
at which point the associated process thread 126a, currently
loaded into bubble memory 120, has been passed to the com
puter's CPU 24 and executed. At this point the triggering
process is now running.
0048 FIG. 4C depicts an Active State configuration of the
computer at a point after that of FIG. 4B, at which point a
connection to the Internet 14 has been established by the
triggering process 126a (e.g. Internet Explorer browser),
which is now running in memory 120. Data generated by the
running process 126a and stored locally are isolated to bubble
storage 100a by the IUE driver set 300.
0049 FIG. 5A, illustrates a subsequent condition where
additional processes 130a & 130b, each having a IUE con
text, have loaded into bubble memory 120. In this example,
the processes 130a & 130b are derived from an external data
source such as the Internet 14. If one of the processes 130a
attempts to write to the computer's native data storage 26, the
driver set 300 redirects the write request to bubble storage
100.
0050 FIG. 5B depicts a configuration of the computer
running the present IUE at a point where the downloaded
modules in bubble memory 130a, 130b are attempting to
write to the systems data storage at paths common to a typical
installation of the Windows operating system (e.g.
C:\%systemfolder'/6\System32). However, all write requests
originating from a process 130a 130b in bubble memory 120
are transparently redirected to a like path within bubble stor
age 100 (e.g., %BUBBLE DEV%:
\%systemfolder'6\System32) by the driver set 300.
0051 FIG. 5C depicts a configuration of the computer
running the present IUE at a point in its shut-down process,
where the user has logged-out of the IUE environment, caus
ing the connection to the Internet 14 to close, all processes
130a 130b 126a running in the bubble memory 120 to be
closed and bubble memory 120 to be killed. However, any
write requests redirected to bubble storage 100a by the driver
set 300 during the session remain isolated in bubble storage
100a, unless otherwise deleted, (e.g., by a “clean-up' func
tion, virus scan, manually, etc.).
0.052 FIG. 5D depicts a configuration of the computer
running the present IUE at a point in its shut-down process
where the IUE data storage space (bubble storage) 100a is
unmounted by the driverset 300 and appears to the operating
system to be configured as a single flat file 100 stored on a data
storage device 26.
0053 FIG. 6 is similar to FIG. 4C, but depicts an Active
State configuration of the computer 20 on a Subsequent ini
tiation of the IUE environment. In this configuration, when
the stored IUE data space 100 is mounted by the driver set
300, expanding it to a block device file system 100a typical of
personal computers. The block device file system 100a con
tains the data 126a 130a written to it in previous IUE sessions.
This condition illustrates the persistence and availability of
certain data created in a previous IUE session.
0054 FIG. 7A depicts a configuration of the computer
running the present IUE at a point in the active state where a
module containing a trojan type of malware 130c (malicious
code) has been downloaded into bubble memory 120, and
copied into bubble storage 100a (as data 130c) prior to its
execution.
0055 FIG. 7B depicts a configuration of the computer 20
running the present IUE at a point in the active state where

US 2010/0205666 A1

malware data 130c in bubble storage 100a containing a trojan
is called from bubble storage 100a, loaded as a process 130x
in bubble memory 120 and executed. On execution, the trojan
attempts to write to a primary system file/memory (e.g.,
C:\%systemfolder'/6\System32, and the system registry), but
instead is caused by the driver set 300 to write to bubble
storage 100a at like paths 100x & 116x (e.g., %BUBBLE
DEV%\%systemfolder'6\System32, and the IUE registry
implementation).
0056 FIG. 7C depicts a configuration of the computer 20
running the present IUE applicationata point in its shut-down
process where the user has logged-out of the IUE environ
ment, causing the connection to the Internet 14 to close, all
processes 130x126a running in the bubble memory 120 to be
closed and bubble memory 120 to be killed. However, any
write requests redirected to bubble storage 100a by the driver
set 300 during the session, remain isolated in bubble storage
100a, unless otherwise deleted (e.g., by a “clean-up' func
tion, virus scan, manually, etc.).
0057 FIG.7D is a block diagram depicting an Active State
configuration of the computer 20 at a point on boot-up after a
IUE session such as depicted in FIG. 7C has been previously
run on the computer 20. In this case, when bubble storage
100a is mounted, it contains the data 126a, 130c & 116x
written to it in the previous IUE sessions, including the trojan
malware 130c (unless the file was identified as malicious and
eliminated by the cleanup function at the close of the prior
IUE session). However, because the malicious files or data
116x created by the trojan were isolated in bubble storage
100a, where they were not executed by the reboot or upon
mounting of bubble storage 100a.
0058 FIG. 8 shows a system in accordance with one
embodiment of the invention. The system includes an authen
tication module (described in FIG. 11), an environment han
dler (described in FIG. 12), a JobObject Manager (described
in FIG. 10), a user database (described in FIG. 12), a NDIS
hook (described in FIG. 14), an execute hook (described in
FIG. 9), a system call hook (described in FIG. 15), a file
system filter driver (FSFD) (described in FIG. 13), and a
block device driver (described in FIG. 16). The block device
driver and the FSFD are configured to interface with the flat
file. Further, the execute hook is configured to interface with
the executable. Finally, the executable image is configured to
interface with the execute hook and the system call hook.
0059 FIG. 9 show a flowchart in accordance with one
embodiment of the invention. The following discussion out
lines pseudo to implement the flowchart shown in FIG. 9 in
accordance with one embodiment of the invention.

Hook ShellExecute calls
Record process and affiliate parameters
Get pointer to a hash that defines the systems execution
contextstate...Check for context

EnvironmentHandler(NULL, NULL.......ChkHash, ...,...)
If no context hashlpointer exists

AuthService() Call authentication service and await return...
if return (UserAuthenticated, UID, HashPointer)

if UID == O Super User
// Continue win32 normal ShellExecute processing
EscapeHook

else
call StartRestricted Proc(NULL,
Create.NULL.Process:parameters)

else return (AuthenticationFailure, NULL, NULL)
terminate ShellExecute call

Aug. 12, 2010

-continued

exit silent
else if context hashlpointer exists

read hash
if UID == 0

EscapeHook Continue normal Execute processing
else

call StartRestricted Proc(NULL, Add, NULL,
Process:parameters)

else if hash or pointer is corruptlstale
return error
exit.

0060 FIG. 10 show a flowchart in accordance with one
embodiment of the invention. The following discussion out
lines pseudo to implement the flowchart shown in FIG. 10 in
accordance with one embodiment of the invention.

StartRestricted Proc(pointer, CreatleAdd process, process, process:
parameters)
Define JobObject parameters: Security Descriptors, etc.
Receive Job Object management request
Get processiparameters to load for execution
if request format is munged

return error message
exit

else if
new job object is requested

EnvironmentHandler Check for haswpointer.
if hashilpointer exists

return an err message 'A Job Object Environment
already exists'
exit

else
CreateJobObject

MaxIdleTimeCounter = n (StartIMaintain a proc
Idle time clock)

AssignProcessToJobObject
Return error message if failure “Cant Create Job

Environment
else if add process to object is requested

EnvironmentHandler
if hashilpointer exists

AssignProcessToJobOject()
else return err message “There is no current Job

Object Environment
exit

else if last process in job quits, call EnvironmentHandler
destruct JobObject

EnvironmentHandler() DestructEnvironment.

0061 FIG. 11 show a flowchart in accordance with one
embodiment of the invention. The following discussion out
lines pseudo to implement the flowchart shown in FIG. 11 in
accordance with one embodiment of the invention.

If request for auth
set authentication counter (maybe 3 try’s before auth exits...)
display authentication window (user:password)

UserAuth() Check user:password combination against
aflat (txt)Jile
if Authenticated (U1 D:PASSWD match)

If UID == f/Super User? Admin
// Request demi environment creation from Environment
Handler
EnvironmentHandler(UID, NULL....,
CreateHash, NULL, NULL, NULL)
If return is success

US 2010/0205666 A1 Aug. 12, 2010

-continued -continued

return (UserAuthenticated, HashPointer) to requestor decrement counter
(ShellExecute Hook) else if AuthCounter <= 0

else return auth failure
// Request environment creation fiom Environment Handler exit.

EnvironmentHandler(UID, NULL........., InitEnv, NULL)
If return is success

return (UserAuthenticated, HashPointer) 0062 FIG. 12 show a flowchart in accordance with one
if Authentication fails

if AuthCounter > 0 embodiment of the invention. The following discussion out
display failed auth/retry authentication window lines pseudo to implement the flowchart shown in FIG. 12 in

accordance with one embodiment of the invention.

EnvironmentHandler (
UID: Numerical ID mapped to User-Name
User-Name: Users Authenticated SUES Environment name.
Hash-Perams: Colon separated parameters list: UniqueID:DivePath...
ChkHash: Bool; Does a hash pointer already exist?
CreateHash: Only Create Hash, don't mount drives, etc.
GetPointer: Request a pointer to the current users hash.
InitEnv: Create a new environment.
DestructHash, Destroy current environment.
(The Hash is %UID%:% VIRTUAL-DRIVE-LETTER96, where the virtual-drive-letter is
collected from the win32check for available vol letters function)
Maintain Subscription to File System Filter Driver
If request to check for hash

ChkHash()
if hash;pointer exist in user db and pointer is valid

return O
else

return 1
If request to create new hash

if ChkHash() Does hasWpointer exist? -ifyes...
return an err message 'A Job Object Environment already exists'
exit

else
GenerateHash Create a unique hash using authenticated UID as seed
return hash
MmapHash Place hash in memory
return pointer
Appenduserprofile Concatenate the authenticated users profile.in the user data

base, with the newly generated hashpointer (UID: USER
NAME: PASSWD becomes UID:USER - NAME:PASSWD:
%HASH%:%POINTER)

return pointer
If request to create new environment

if ChkHash() (Does haswpointer exist?
return an err message 'A Job Object Environment already exists'

exit
else if ChkVol() (See ifthe virtual disk indicated in the UID hash is mounted:

return error message A volume is already mounted for this environment
exit

else
Load river Set

if failure
return error message “File System Driver failed to load
call DestructEnvironment

!Open handle to File System Filter Driver! Subscribe
GetAvailableDriveLetter
if success

Appendprofile Concatenate the authenticated users profile.in the user database,
with the returned drive letter (UID: USER-NAME:PASSWD becomes UID:
USER - NAME: PASSWD: DRIVELETTER:)

else
return error message “Cant get volume map
exit

Append UserProfile
Concatenate the authenticated usersprofile, in the lut (txt) database, with the newly generated
hash pointer (UID: USER-NAME:PASSWD: DRIVELETTER becomes
UID: USER - NAME: PASS WD: DRIVELETTER::%POINTER9%)
return pointer
Mount(GetVolName) f/Mount the loopback FS using VolName? Label
if volume is successfully mounted

US 2010/0205666 A1

-continued

return O
else

return error message “Mount Volume failed
DestructEnvironment

exit
If request to destruct environment
if ChkHash() Does hasWpointer exist?

if ChkVol() See if the virtual disk indicated in the UID hash is mounted:
UnMount()
if volume is successfully un-mounted

return O
else

return error message “Un-mount Volume failed
exit

else
return error message “No volume mounted for this environment

UnloadHash Remove the hash from memory
Iffails

Return error message

Aug. 12, 2010

RmPointer Remove the volume:pointer string appended to the users profile (in the Jlat
...txt file database...)

if fails
return error message

Unload) river Set
if fails

return error message
else

return error message “No Environment Exists'
If request to GetHashPointer
if ChkHash()

return pointer
else

return error
exit

0063 FIG. 13 show a flowchart in accordance with one
embodiment of the invention. In step 1, the I/O manager
creates an IRP for any given operation needing file system I/O
processing. It fills the stack location corresponding to the
driver that is at the top of the layer (in this case our File System
Filter). In step 2, the File System Filter, on receiving an IRP.
does any processing needed to fulfill the current SUEZ filter
rules. In step 3, the File System Filter then returns the IRP to
the I/O manager, copying its stack to the lower drivers stack
location. In step 4, the I/O manager passes the IRP on to the
driver below it in the layer order (in this case, the File System
Driver). In step 5, the lower level driver now processes the
IRP, using its own stack. In step 6, the lower level driver
(FSD) returns the IRP back to the I/O manager. The I/O
manager then releases any resource allocated to the IRP.
0.064 FIG. 14 show a flowchart in accordance with one
embodiment of the invention. The following discussion out
lines pseudo to implement the flowchart shown in FIG. 14 in
accordance with one embodiment of the invention. In one
embodiment of the invention, the NDIS Hook intercepts IP
packets at the NDIS (Network Device Interface Specifica
tion) layer using a custom driver, for example, SUEZNDIS.
VXD or SUEZNDIS.SYS and at the SPI (Service Provider
Interface) layer using, for example, a SUEZNDIS.DLL. In
one embodiment of the invention, each intercepted packet is
checked against the filtering rules that define what kind of
traffic is allowed to pass. Allowed incoming packets are for
warded to the TCP/IP stack (not shown) and the networking
applications (not shown). Similarly, allowed outgoing pack
ets are sent out on the network interface. In one embodiment
of the invention, the rules describing the aforementioned
filtration are provided as metadata.

0065 FIG. 15 show a flowchart in accordance with one
embodiment of the invention. The following discussion out
lines pseudo to implement the flowchart shown in FIG. 15 in
accordance with one embodiment of the invention. In step 1.
the application executes a registry related system call. In step
2, the WINDOWSR) system call handler looks up the kernel
function corresponding to the system call, which SUEZ has
replaced with its own function. In step 3, SUEZ calls its
system call hook function. In step 4, SUEZ invokes the origi
nal handler. In step 5, SUEZ invokes its environment specific
registry handler. In step 6, the environment handler prescribes
filter metadata, and periodically obtains log statistics.

System Overview

0.066 Turning now to FIG. 16 there is provided a sche
matic illustration of the system environment wherein the
described software system is operating, referred to as system
500 and representing a preferred embodiment of the present
invention upon installation and initialization on the Host
computer system. The system 500 includes seven principal
components which comprise the preferred embodiment of an
Isolated User Environment (IUE) software:
0067 a) The Execution Hook component, which inter
cepts all system calls to load an executable image and tests the
execution requests for an assigned User context. This testing
allows credential based assignment of processes to an alter
nate method of process creation to that native to the Host
computer system. Additionally, the Execution Hook is the
triggering mechanism for the initiation of new Isolated User
Environments.

US 2010/0205666 A1

0068 b) The Job object module, which provides an alter
native process creation mechanism that allows the IUE to
create a job with specific security descriptors and then assign
User processes and their children to this job for creation; this
assignment facilitates starting User processes in a restricted
state, allowing the Environment handler to prescribe granular
control over the credentials, memory allocation, IPC and
general functionality assigned any User processes. All pro
cesses assigned to a User job are definable by a context
representing this association and are effectively jailed within
the file system namespace allocated to User's isolated User
environment by this context due to its being honored by the
complementary Software components of the present system.
0069 c) The System Call Hook, which provides a virtual
registry, private to the isolated User environment, by selec
tively redirecting registry calls associated with a Users con
text to a virtual registry within the isolated User environment.
The IUE System Call Hook has its interception functions run
in lieu of the Host computer systems original system call
functions simply by inserting pointers to the IUE replacement
functions within the Windows system call array. After the IUE
System Call Hook has examined the parameters an applica
tion, requesting registry I/O, passed to a system call, it tests
these parameters against a set offilter rules prescribed by the
environment handler to determine whether the I/O must be
redirected to the isolated User instance of the Windows reg
istry. If the original system call request is not of User context,
the IUE System Call hook invokes the Host system call it
replaced. When control returns to the IUE System Call Hook
from the Host system call, the IUE System Call functions can
optionally still examine the return status and pass control to
the requesting application. FIG. 15 demonstrates this process.
System call indexes can change between different releases of
Windows, but the method the preferred embodiment uses to
determine indexes is version-independent.
0070 d) The Block device driver, which is a file system
driver component for mounting and un-mounting a flat file as
a block device. This facilitate the isolation of the User's
isolated file system from the Host file system. In the preferred
embodiment this driver is called upon, at IUE initialization, to
mount a specific isolated User file system by the environment
handler. The call for destruction of an isolated User environ
ment results in a Subsequent call from the environment han
dler to unmount the isolated User file system.
(0071 e) The File System Filter Driver (FSFD), which
facilitates presenting the file system namespace of an IUE to
its associated User and User context processes as a combina
tion of the Host computers file system namespace and that of
the Users isolated file system. Control of what objects from
the Host computers file system are included in this merger of
namespaces is controlled by User credentials and their asso
ciated metadata, prescribed by the environment handler. The
FSFD intercepts requests targeted at a file system or another
file system filter driver. By intercepting the request before it
reaches its intended target, the FSFD extends or replace func
tionality provided by the original target of the request. All I/O
requests made by any process with User context are proxied.
allowing processing of all Such IFO
(readwritelmodify|deletelcopy, etc) to be performed in lieu
of normal processing. This includes the transparent redirec
tion, of select file system requests, to the User's isolated file
system.
0072 f) The NDIS driver, which isolates User context
requests for network connectivity to that Users IUE. To facili

Aug. 12, 2010

tate isolating User network interactions to the IUE, the pre
ferred embodiment exports one or more virtual adapters,
bound to Users IUE, to which overlying protocols can bind.
To a protocol driver, a virtual adapter exported by the inter
mediate driver appears to be a physical NIC. This allows an
IUE to be bound to a MAC and IP address removed from that
of the Host computer system. Additionally, the NDIS hook
intercepts IP packets at the Windows NDIS (Network Device
Interface Specification) layer; each packet is checked against
the filtering rules that define what kind of traffic is allowed to
pass. Allowed incoming packets are forwarded to the TCP/IP
stack and the networking applications. Similarly, allowed
outgoing packets are sent out on the network interface.
0073 g) The Environment handler component, is respon
sible for creating and destructing User specific IUE's as
needed, however, to facilitate tying all described IUE soft
ware components together, the Environment Handler pro
vides environment management services for all the compo
nents of the preferred embodiment by revealing an
administrative configuration interface to system administra
tors. It facilitates the definition of the rules and general con
figuration data that defines the operation of the present sys
tem. User authentication and credentials for all software
components, prescribing filter metadata and periodically
obtaining log statistics or metrics from all IUE Software com
ponents are all under the environment handlers jurisdiction.
Additionally, the environment handler operates as a proxy to
facilitate interconnection of all components of the IUE, tying
all the described components into a single source for authen
tication, filter and parameter metadata, credential discovery,
system state and general configuration.
0074 FIG. 16 presents a high level flow diagram of the
IUE components operation. The preferred embodiment pro
viding isolation of all User execution and I/O operation from
the Host computer system 500. The Execution Hook compo
nent intercepts system calls requesting process execution. All
Such calls are tested for a User context previously assigned by
the IUE software. If a user context is present, the environment
handler is queried to determine how to operate on the current
request. If the request is determined to be in the context of a
User with a currently initialized IUE, then the process is
passed to the existing User associated job object for creation.
If no User context is present in association with a request for
process creation, the environment handler is interrogated for
authentication. Upon return of authentication, a context is
assigned reflecting the credentials of the authenticated opera
tor. If the User has administrative credentials, an administra
tive context is set and the request for process execution is
passed to the Host systems native process creation mecha
nism. If the User credential is not privileged, the environment
handler initiates the creation of a IUE to which to bind the
User. This Isolated User Environment initialization consists
of the creation of a Job Object, with credentials specific to
User (as prescribed by the environment handler during its
creation of the User Job Object), to which all User processes
can be assigned for creation and the mounting of a flat file as
a block device by the Block Device Driver providing an
isolated User file system, additionally, the initialization of the
File System Filter Driver (FSFD), System Call Hook and
NDIS drivers, having been prescribed by the Environment
Handler appropriate filtering metadata reflecting the creden
tials of the User for which the environment is being created

US 2010/0205666 A1

and finally, any pre-processing specifically required for User
or generally required by the software are processed by the
Environment handler.

0075. Once an IUE has been initialized for User by the
Environment Handler, all Subsequent process creation
requests are assigned to the User Job Object component and
loaded Suspended. Once assigned, an alternative process cre
ation mechanism defines specific memory restrictions and
security descriptors binding all User processes and their chil
dren, then the process is released from its suspended State for
execution in the Isolated Execution Environment (IEE) cre
ated by the Job Object.
0076 Once User processes are restricted to the Isolated
Execution Environment (IEE), binding them within the
User's IUE, they are unable to see objects outside their IUE,
as defined by the credentials prescribed by the environment
handler. Effectively, they operate as normal, though the file
system namespace and process object namespace revealed to
them by FSFD and IEE is restricted to the IUE namespace or
Some Subset of the Host computer systems namespace in
combination with the that of the Users. IUE.
0077 User processes making I/O requests targeted at a file
system or another file system filter driver are intercepted by
the FSFD for examination and potential modification. By
intercepting the request before it reaches its intended target,
the filter driver extends or replace functionality provided by
the original target of the request. All I/O requests made by any
process owned by User are proxied, allowing processing of all
such I/O (readwrite modifyldeletelcopy, etc) to be per
formed in lieu of normal processing. This includes the trans
parent redirection of select file system requests to User's
isolated User file system, as well controlling object visibility
or access by object type, credentials, location, etc. By mirror
ing the Host computers native file system hierarchy and
implementing granular FSFD redirection filtering rules, the
preferred embodiment can create a merged view of the Host
computer systems process object and file system namespace
for exposure to User processes. An example of this would be
to allow User access to particular directories on the Host file
system, all other directories being mirrors of the Host file
system but resident on the isolated User file system. Restart
ing the Host computer systems shell under the Users context
upon initiation of the IUE results in the graphical presentation
of the User namespace presented by the computer system,
such as the desktop, file explorer etc. to be a reflection of the
users namespace merged with whatever objects have been
configured for revelation to the User by the FSFD.
0078. An application's configuration data is crucial to its
proper function. The windows registry provides programs an
interface to system and Software configuration data. To facili
tate this functionality, while still abstracting the Host com
puter system from processes belonging to an IUE, the pre
ferred embodiment implements a System Call Hook to
intercept and filter registry I/O, protecting the Host computers
configuration data. User processes making I/O requests to the
Windows registry structure may be making calls to edit cells
in Volatile memory, thus the need for a redirection system in
addition to the FSFD. Such system call requests are tested for
User context by the System Call Hook component and filtered
based on rules prescribed by the Environment Handler.
Because the Windows System Service functions are stored in
a system service dispatch table within the kernel, the IUE
System Call Hook driver is able to hook a system service by
saving the address of a function from Host's native array and

Aug. 12, 2010

replacing the array entry with the address of the IUE hook
function. Once the IUE is installed on a system 500, any
invocations of the hooked system service get diverted to the
IUE drivers function. Here the call is examined for an asso
ciation to a User context. If the call is found to originate from
a User context process it may be modified and the registry
request diverted to a registry within the isolated User envi
ronment. The IUE registry may be a mirror of the host sys
tems registry hive or some Subset there of optionally, a read
first operation can be performed that looks to the User registry
for requested key’s before examining the Host computer sys
tems native registry for the requested I/O.
0079 Commonly. User processes will request connectiv
ity to an attached network, Such as the Internet. To isolate Such
interactions to the IUE, this embodiment of the present inven
tion utilizes an NDIS driver that exports a virtual adapters
specific to the Users IUE. This allows an IUE to be bound to
a MAC and IP address removed from that of the Host com
puter system. Additionally, the NDIS hook intercepts IP
packets at the Windows NDIS (Network Device Interface
Specification) layer; each packet is checked against the filter
ing rules that define what kind of traffic is allowed to pass.
Allowed incoming packets are forwarded to the TCP/IP stack
and the networking applications. Similarly, allowed outgoing
packets are sent out on the network interface.

Use Case

0080. The following Use Case(s) are used primarily to
capture the high level user-functional requirements of the
SUEZ system. This section provides a description of each
section in the use case template.
I0081 Actor: An actor is a person or other entity external to
the software system being specified who interacts with the
system and performs use cases to accomplish tasks. Different
actors often correspond to different user classes, or roles,
identified from the customer community that will use the
product.
I0082. Description: A brief description of the reason for
and outcome of this use case, or a high-level description of the
sequence of actions and the outcome of executing the use
CaSC.

I0083 Preconditions: List any activities that must take
place, or any conditions that must be true, before the use case
can be started.

I0084 Postconditions: Describe the state of the system at
the conclusion of the use case execution.
I0085 Normal Case: Provides a detailed description of the
user actions and system responses that will take place during
execution of the use case under normal, expected conditions.
This dialog sequence will ultimately lead to accomplishing
the goal stated in the use case name and description.
I0086 Alternative Case: Documents other, legitimate
usage scenarios that can take place within this use case. States
the alternative flow, and describes any differences in the
sequence of steps that take place.
I0087 While the above description contains many specif
ics, these should not be construed as limitations on the scope
of the invention, but rather as exemplifications of one or
another preferred embodiment thereof. Many other variations
are possible, which would be obvious to one skilled in the art.
Accordingly, the scope of the invention should be determined
by the scope of the appended claims and their equivalents, and
not just by the embodiments.

US 2010/0205666 A1

1.-19. (canceled)
20. A method for securing a computer system, comprising:
monitoring an operating system executing on a processor

in the computer system;
trapping, in response to the monitoring, a process system

call to execute a program, wherein the process system
call originated in a host executing in the computer sys
tem;

responsive to the trapping, creating an isolated user envi
ronment (IUE) in the computer system, wherein creating
the IUE comprises allocating memory and persistent
storage for the IUE, and wherein the IUE comprises:
a file system filter driver (FSFD) configured to redirect

Input/Output (I/O) calls originating from the IUE to
the persistent storage, and

a network interface/NDIS hook component configured
to control network traffic originating from the IUE
and destined for the IUE:

after creating the IUE, loading an executable image corre
sponding to the program into the IUE; and

executing the program using the executable image in the
IUE using the processor, wherein the IUE enables a user
to provide input to the program during execution.

21. The method of claim 20, further comprising:
responsive to the executing, issuing an I/O call from the
IUE to a file system of the host; and

redirecting, by the FSFD, the I/O call to the persistent
storage, wherein the persistent storage comprises a file
system of the IUE.

22. The method of claim 21, wherein a hierarchy of the file
system of the IUE mirrors a hierarchy of the file system of the
host.

23. The method of claim 21, wherein the FSFD is config
ured to limit the portions of the file system of the host which
processes executing in the IUE may access.

24. The method of claim 20, further comprising:
responsive to the executing, issuing an I/O call from the
IUE to a registry of the host; and

redirecting, by a system call hook component, the I/O call
to the persistent storage, which includes a registry of the
IUE.

25. The method of claim 24, wherein the registry of the IUE
is a mirror of the registry of the host.

Aug. 12, 2010

26. The method of claim 24, wherein the system call hook
component is configured to query the registry of the IUE prior
to querying the registry of the host when locating a registry
key.

27. The method of claim 20, further comprising:
responsive to the executing, storing data in the persistent

Storage;
after executing the process system call, closing the IUE:

and
responsive to closing the IUE, terminating all processes

executing the IUE, deallocating the memory and
unmounting the persistent storage.

28. The method of claim 27, further comprising:
creating a new IUE after closing the IUE, wherein the data

in the persistent storage is accessible through the new
IUE.

29. The method of claim 20, wherein the process system
call is associated with a user, wherein the persistent storage
comprises a file system for the user and wherein the IUE
comprises a file system block device driver component con
figured to mount and unmount the file system for the user.

30. The method of claim 29, wherein the file system for the
user is stored as a flat file in the persistent storage after the IUE
is closed.

31. The method of claim 20, wherein the process system
call corresponds to a call to open a web browser and access a
website external to the host via the web browser.

32. The method of claim 20, wherein the host is associated
with a first TCP/IP stack and the IUE is associated with a
second TCP/IP stack, wherein the first TCP/IP stack is dis
tinct from the second TCP/IP stack.

33. The method of claim 20, wherein the IUE is associated
with a job object component configured to create a restricted
process in the IUE, wherein execution of the restricted pro
cess is limited to the IUE.

34. The method of claim 33, wherein the process system
call is associated with a job object, wherein the job object is
associated with the IUE and wherein job objects not associ
ated with the IUE are hidden from the restricted process.

35. The method of claim 20, wherein the IUE is associated
with a virtual adapter, wherein the virtual adapter is associ
ated with an IP address which is distinct from the IP address
associated with a physical adapter connected to the host.

c c c c c

