发明名称：汽车传动轴万向节叉挤压模锻工艺及其模具

摘要

本发明特别适用于汽车传动轴万向节叉及类似产品的制作，它包括叉形下，在压力机作用下一次行将毛坯正流分流挤压模锻成型的制作工艺和与此相应的模具，它们的优点集中表现为：(一)一次挤压模锻成形，减少工序，提高工效；(二)飞边金属损耗大幅度降低，材料率提高35%以上；(三)可减少甚至消除模锻斜度，锻件表面粗䊁度大为降低，内在质量高；(四)可在变径杆部挤出一定深度的孔。
1. 汽车传动轴万向节叉挤压模锻工艺，其特征为将加热好的棒料毛坯置于凹模模膛中，叉形向下，在压力机作用下一次行程（一次打击），将毛坯正向分流挤压模锻成形为所需组件；或采用加热好的棒料毛坯，叉形向下，一次正向分流挤压成叉形头部，然后将带有该叉形头部的工件置于另一付模具中，对其实心杆部进行反向挤压，完成后成形组件，模具润滑采用石墨润滑剂，以喷射方式均匀地喷射在模具表面。

2. 一种运用权利要求1所述的汽车传动轴万向节叉挤压模锻工艺的模具，其特征为模具有两个多余金属分流孔（23），它们设置在凹模叉部模膛中心线两侧的几何中心。左右对称的位置，分流孔的形状为向模块中心线由圆弧形，其尺寸根据毛坯体积或质量精度而定；模具的两半凹模由闭合状态到张开的过程由张模器（14）完成。

3. 根据权利要求2所述的张模器，其特征为它由铰座（17）、柱销（18）、活塞销（19）、螺纹套筒（20）、弹簧（21）和铰座（22）组成。
汽车传动轴万向节叉挤压模锻工艺及其模具

本发明涉及一种锻件制作工艺及其模具，特别适用于汽车传动轴万向节叉的制作。

苏联《锻压生产》(КУЗНЕЧНО-ШТАМПОВОЧНОЕ ПРОИЗВОДСТВО) 刊登的“万向接头在可分回模中模锻过程的研究”(ИССЛЕДОВАНИЕ ПРОЦЕССА ШТАМПОВКИ ПОКЕВОК ВИЛОК КАРДАНА В ШТАМПАХ С РАЗБЕМНЫМИ МАТРИЦАМИ № 10, 1970 Г.)

一文中的介绍的用于汽车传动轴万向节叉的制作工艺，虽然也采用挤压模工艺，但难以在压力机作用下将结构复杂而机械加工又难以完成的汽车传动轴万向节叉通过模具一次挤压模锻成形。该文中的介绍的工艺和模具只适用于结构简单的对象，如叉部呈扁平板状而杆部为实心的万向节叉，且该工艺在挤压模锻制坯后还需辅以压制工艺，即在另一台设备上水平压制终锻成形。这种工艺的回模为水平分模，上下回模系采用压板和螺钉锁紧，欲使上下回模分开，必须先松开螺钉，模具整体结构显得复杂臃肿。

为克服上述现有技术的缺陷，本发明公开一种叉形向下，一次正向分流挤压成形的多向精密挤压工艺及其模具。

该工艺适用于汽车传动轴万向节叉及同类产品的制造，为此，本发明采用下列二种工艺技术方案：第一种，采用棒料毛坯，叉形向下，一次正向分流挤压成形。毛坯采用感应加热或其它少氧化加热方法加
热，加热温度根据材料确定。加热好的毛坯置于四模模膛中，只要压
力机一次行程（一次打击）即可将毛坯挤压模锻成形，成为所需锻件。
模具润滑采用水基石墨润滑剂，以喷射方式均匀地喷射在模膛表面。
第二种，采用棒料毛坯，叉形向下，一次正向分流挤压成叉形头部，
然后将带有该叉形头部的工件置于另一付模具中，对其实心杆部进行
反向挤压，即可获得具有空心杆部的终锻成形锻件。若只有一台压力机，
则第一火完成上述第一道工序，在第二道工序开始前，从压力机上卸
下第一付模具，装上第二付模具，然后，将带有叉形的工件加热，将
加热后的工件置于模具中进行反向挤压，只需一次行程，即可终锻成
形锻件。模具润滑采用水基石墨润滑剂，以喷射方式均匀地喷射在模
膛表面。

上述两种工艺方案，第一种适合与各种小型汽车传动轴万向叉骨、
滑动叉及类似锻件的生产；第二种适合与各种大、中型汽车传动轴滑
动叉及类似锻件的生产。

实施本发明模锻工艺的模具结构为：模具的两个多余金属分流孔
设置在凹模叉部模膛中心线两侧的几何中心位置，左右对称（图 3 ）。
分流孔的形状为向模块中心线膨胀的圆形弧形，其尺寸根据毛坯体积或
质量精度而定。模具的两半凹模由闭合状态到张开的过程，由具有锁
座、柱销、螺纹套筒、弹簧及活塞杆构成的多键键机构张开模膛完成。
垂直可分凹模由凹模镶块，锥形套佛块组成，通过锁座、销子和锁住
顶杆与固定在压力机工作台下面的油缸活塞杆相联。当垂直可分凹模
配合的冲头，通过压圈、垫板用螺钉固定在上模板上，当该模具处于
图 1 所示位置时，两半凹模闭合，构成封闭模膛，加热好的棒料毛坯
置于凹模模膛中，只需压力机一次行程便可得到万向节叉精密锻件。
当压力机滑块回程时，顶出器活塞上升，垫支顶杆将可分凹模向上顶起。在顶起的过程中，同时被两个模柄器将两半凹模拉开，取出铸件。当抽板活塞向下移动时，将两半凹模向下拉面闭合成封闭凹模模膛，即可开始下个工作行程。

与现有技术相比，本发明具有以下优点：（1）一次挤压模锻成形，其质量和性能符合中华人民共和国部颁标准，工效大大提高；（2）飞边金属损耗大幅度降低，材料利用率平均提高 3.5% 以上；（3）可减少甚至消除模锻斜度，锻件表面粗糙度大为降低，内在质量高；（4）可在实心杆部挤出一定深度的孔。

附图图面说明：

图 1 为万向合叉挤压模锻可分凹模模具图。图中（1）为上底板，（2）为冲头垫板，（3）为冲头固定器，（4）为冲头，（5）和（15）为限位块，（6）为导套，（7）为导柱，（8）为凹模镶块，（9）为哈佛块，（10）为凹模圈，（11）为模座，（12）为柱销，（13）为垫支顶杆，（14）为张模器，（16）为铸件。

图 2 为张模器结构图。图中（17）模座，（18）柱销，（19）活塞杆，（20）螺纹套筒，（21）胀套，（22）模座。

图 3 为图 1（8）的 A—A 剖视放大图。图中（23）为多余金属分流孔。

本发明的实施方案可通过附图作进一步说明。

图 1 所示为本发明模具结构图。冲头（4）通过压圈（3）和垫板（2）用螺钉固定在上底板（1）上。垂直可分凹模由凹模镶块（8）和锥形哈佛块（9）组成，通过模座（11）。销子（12）及垫支顶杆（13）与固定在压力机工作台下面的油缸活塞杆连接。当压力机滑块回程时，
顶出器的活塞上升，使支撑顶杆（13）将垂直可分凹模向上顶起。同时被两个张模器（14）将两半凹模拉开，取出锻件（16）。当支撑顶杆（18）随抽芯活塞向下运动时，将两半凹模向下拉面闭合成封闭凹模。张模器（14）由铁座（17）固定于滑块（9）上，可绕柱销（18）转动，活塞杆（19）的左端为螺纹联接，右端与螺纹套筒（20）联接，在它们之间装有弹簧（21）。该张模器通过铁座（22），使其右端固定在凹模圈（10）上。表1所列为采用本发明新工艺及新模具后与老工艺老模具比较所得的节材率。

<table>
<thead>
<tr>
<th>产品名称</th>
<th>老工艺所耗钢材（公斤）</th>
<th>新工艺所耗钢材（公斤）</th>
<th>节材率</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJ212滑动叉</td>
<td>2.35</td>
<td>1.54</td>
<td>34.5%</td>
</tr>
<tr>
<td>BJ212万向节叉</td>
<td>2.05</td>
<td>1.23</td>
<td>40%</td>
</tr>
</tbody>
</table>
图 1