PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/35778
HO4L A2 , o

(43) International Publication Date: 15 July 1999 (15.07.99)

(21) International Application Number: PCT/US99/00337 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,

(22) International Filing Date: 7 January 1999 (07.01.99)

(30) Priority Data:
60/070,720 7 January 1998 (07.01.98) UsS
60/075.123 13 February 1998 (13.02.98) UsS
09/107,724 30 June 1998 (30.06.98) us
09/107,666 30 June 1998 (30.06.98) uUs
09/189,591 10 November 1998 (10.11.98) US

(71) Applicant;: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: KADYK, Don; 18908 128th Avenue N.E., Bothell,
WA 98041 (US). O’LEARY, Michael, J.; 22823 N.E. 54th
Street, Redmond, WA 98053 (US). CRONIN, Dennis; 2428
159th Avenue N.E., Bellevue, WA 98008 (US).

(74) Agents: KOEHLER, Steven, M. et al.; Westman, Champlin &
Kelly, P.A., Suite 1600, International Centre, 900 Second
Avenue South, Minneapolis, MN 55402-3319 (US).

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: LOW LEVEL CONTENT FILTERING

160
GROUP
RADIO TOPIC
ADDRESS ROUTING
TRANSPORT FILTERING DATA 170
FILTERING HEADER 168
HEADER 162 BYTES 164 BYTES 166
‘ PACKET
l‘—'_ PACKET HEADER ’I‘ DATA

(57) Abstract

A system and method for receiving wireless information on a portable device (10) includes receiving an information packet (160)
comprising a first portion having topic information (166) indicative of content in the second portion (170) of the information packet (160).
The first portion of the information packet (160) is compared to content filter data (206) stored on the portable computing device (10). At
least the second portion (170) of the information packet is forwarded to another component of the portable computing device if the first

portion matches any of the content filter data (206).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
18
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
Ty
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/35778

10

15

20

25

30

-1-

LOW LEVEL CONTENT FILTERING

BACKGROUND OF THE INVENTION

The present invention relates to personal
mobile computing devices commonly known as handheld
portable computers. More particularly, the present
invention relates to a system and method for providing
low level content filtering of wireless information on
a mobile device.

Mobile devices are small electronic
computing devices often referred to as personal
digital assistants. Many of such mobile devices are
handheld devices, or palm-size devices, which
comfortably f£it within the hand. One commercially
available mobile device is sold under the trade name
HandHeld PC (or H/PC) having software provided by
Microsoft Corporation of Redmond, Washington.

Generally, the mobile device includes a
processor, random access memory (RAM), and an input
device such as a keyboard and a display, wherein the
keyboard can be integrated with the display, such as a
touch sensitive display. A communication interface is
optionally provided and is commonly used to
communicate with a desktop computer. A replaceable or
rechargeable battery powers the mobile device.
Optionally, the mobile device can receive power from
an external power source that overrides or recharges
the built-in battery, such as a suitable AC or DC
adapter, or a powered docking cradle.

In one common application, the mobile device
is used in conjunction with the desktop computer. For
example, the user of the mobile device may also have
access to, and use, a desktop computer at work or at

home. The wuser typically runs the same types of

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-2-

applications on both the desktop computer and on the
mobile device. Thus, it is quite advantageous for the
mobile device to be designed to be coupled to the
desktop computer to exchange information with, and
share information with, the mobile device.

Another technique for providing information
to the mobile device includes the use of a low bit-
rate channel or transport, such as a pager network, to
transfer the information wirelessly. For example,
such information can include electronic mail or news,
weather, sports, traffic and 1local event information
typically obtained from a desktop computer connected
to the Internet. In this technique, wireless
information is transmitted over "wireless addresses"
("capcodes"). However, wireless addresses are a very
limited resource. For example, a typical pager
includes 4-16 addresses. The pager monitors broadcast .
frequencies at particular intervals for addresses and,
if it finds that the broadcast has no address of
interest, the pager shuts down until the next
monitoring interval. This technique provides
significant power savings because the pager wakes up
to receive and process only that information that is
of interest to it based on the wireless address.

A conventional technique for transmitting
wireless information is to transmit a specific type of
content on each wireless address. Commonly, a network
operator may charge a subscription fee to users who
want their wireless device to be programmed with the
specific address. Only those devices that have the
particular address programmed therein are capable of
receiving the particular content. This technique

achieves reduced power consumption, as described

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

-3-

above, and allows the network operator to maintain
subscription control. Nevertheless, each user is
limited to receiving a selected number of services
based on the number of wireless addresses available on
each particular wireless device. If a user wants an
additional service after all addresses have been used,
an existing wireless address must be reprogrammed.

In some situations, use of the current
technique may actually encourage power consumption.
For example, a single wireless address under the
current technique would be assigned to a stock
information service that will transmit information
about all stocks. However, if the user is interested
only in one or two stocks, special software may be
written for and operated on the wireless device to
only display the desired stock or stocks. Using the
current system, the wireless device would wake up to
receive each and every piece of stock information item
being transmitted from the stock information service.
The wireless device would then execute the special
software to determine if the stock information
pertains to the desired stock or stocks. Thus, each
time stock information is transmitted, the wireless
device will consume power. Commonly, if the wireless
device is a mobile device, it executes a general-
purpose operating system and may have multiple
peripheral devices which will incur high power
consumption for each wake up period.

There is a continuing need to improve
wireless communication with a mobile device. In
particular, there is a need to efficiently process
information transmitted over a wireless channel to the

mobile device in order to conserve battery resources

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

on the mobile device.
SUMMARY OF THE INVENTION

A system and method for receiving wireless

information on a portable computing device includes
receiving an information packet comprising a first
portion having topic information indicative of content
in a second portion of the information packet. The
first portion of the information packet is compared to
content filter data stored on the portable computing
device. At least the second portion of the information
packet is forwarded to another component of the
portable computing device if the first portion matches
any of the content filter data. Instructions can be
provided on a computer readable medium to implement
the method.

Another aspect of the present invention is a
portable computing device receiving wireless
information packets. Each information packet comprises
a first portion having topic information indicative of
content in a second portion of the information packet.
The portable computing device includes a wireless
receiver capable of receiving wireless information
packets and memory storing content filter data. A
module is operable with the wireless receiver to
receive the wireless information packet. The module
compares the first portion with the content filter
data to ascertain if the information packet is to be
discarded.

A third aspect of the present invention is a
computer readable medium for storing a data structure
for a portable computing device receiving information
according to addresses. The data structure is operable

with a module with a portable computing device for

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

-5-

processing the information. The data structure
comprises a plurality of datatables. Each datatable is
associated with an address for receiving information
and storing representations of user preferences of
desired information.

A fourth aspect of the present invention is
an information packet for transmitting information to
a portable computing device. The information packet
includes a first portion comprising data information,
and a second portion comprising selected topic
information indicative of the first portion.

A fifth aspect of the present invention is a
computer implemented method for obtaining content
filter data on a portable computing device used for
processing wireless information. The mwethod includes
receiving wuser preferences indicative of desired
content information and organizing the user
preferences as a function of the addresses operable
with the portable computing device. The addresses are
used to transmit corresponding information to the
portable computing device. The method further includes
storing the user preferences as a function of the
associated addresses in a computer readable medium of
the portable computing device. The computer readable
medium is accessible by a filter module for processing
received wireless information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1is a simplified block diagram
illustrating one embodiment of a mobile device in
accordance with the present invention.

FIG. 2 is a more detailed block diagram of
one embodiment of the mobile device shown in FIG. 1.

FIG. 3 is a simplified pictorial

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

-6-

illustration of one embodiment of the mobile device in

-accordance with the present invention.

FIG. 4 is a simplified pictorial
illustration of another embodiment of the mobile
device in accordance with the present invention.

FIG. 5 is a simplified schematic
illustration of a wireless receiver in accordance with
the present invention.

FIG. 6 is a flow chart illustrating a method
of operation for the wireless receiver and the mobile
device.

FIG. 7 illustrates a detailed flow chart
illustrating operation of the wireless receiver and
the mobile device.

FIG. 8 illustrates a general structure of a
message packet ‘transmitted to the mobile device in
accordance with one aspect of the present invention.

FIG. 9 1is a block diagram illustrating
modules of a mobile device for filtering based on
content.

FIG. 10 is a flow chart illustrating a
method of obtaining and creating content filter data.

FIG. 11 is a flow chart illustrating a
method of filtering a message using content filter
data.

DETATILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The discussion below provides a brief,
general description of a suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be
described, at least in part, in the general context of
computer-executable instructions stored, such as

modules and drivers, being executed by a portable

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-7~

computing device, the computer executable instructions
being stored on a computer readable medium. Generally,
modules and drivers include routine programs, objects,

components, data structures, etc., that perform

particular tasks or implement particular abstract data

types. Moreover, those skilled in the art will
appreciate that the invention may be practiced with

other computer system configurations, including other

handheld devices, such as palmtop computers,
multiprocessor systems, microprocessor-based or
programmable consumer electronics, network PCs,

minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed
computing environments where tasks are performed by a
plurality of processing devices that are linked
through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory storage devices.

FIG. 1 is a block diagram of an exemplary
portable computing device, herein a mobile device 10,
in accordance with the present invention. FIG. 1
illustrates that, in one preferred embodiment, the
mobile device 10 is suitable for connection with, and
to receive information from, a desktop computer 12, a
wireless transport 14, or both. The wireless transport
14 can be a paging network, cellular digital packet
data (CDPD), FM-sideband, or other suitable wireless
communications. However, it should also be noted that
the mobile device 10 may not be equipped to be
connected to the desktop computer 12, and the present
invention applies regardless of whether the mobile
device 10 is provided with this capability.

In any case, the mobile device 10 preferably

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

-8-

includes one or more application modules 16 and an

object store 18. The application modules 16 can be,

for example, a personal information manager (PIM) 16A
that stores objects related to a user's electronic
mail e-mail and scheduling or calendaring information.
The application modules 16 can also include a content
viewer 16B that is used to view information obtained
from a wide-area network (WAN), such as the Internet.
In one embodiment, the content viewer 16B is an
"offline" wviewer in that information is stored
primarily before viewing, wherein the user does not
interact with the source of information in real time.
However, it should be understood that the present
invention can be implemented in a real time
environment wherein the wireless transport 14 provides
two-way communication.

The wireless transport 14 is used toc send
information to the mobile device 10 for storage in the
object store 18 and for use by the application modules
16. The wireless transport 14 receives the information
to be sent from an information source provider 13,
which, for example, can be a source of news, weather,
sports, traffic or local event information. Likewise,
the information source provider 13 can receive e-mail
and/or scheduling information from the desktop
computer 12 to be transmitted to the mobile device 10
through the wireless transport 14. The information
from the desktop computer 12 can be supplied to the
information source provider 13 through any suitable
communication link, such as a direct modem connection.
In another embodiment, the desktop computer 12 and the
information source provider 13 can be connected

together forming a local area network (LAN) or a wide

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-9-

area network (WAN). Such networking environments are
commonplace in offices, enterprise-wide computer
network Intranets and the Internet. If desired, the
desktop computer 12 can also be directly connected to
the wireless transport 14.

The object store 18 is preferably configured
to store a plurality of individual records or objects,
each comprising a plurality of fields or properties
related to features of PIM 16A, or to data viewable on
the content viewer 16B. For example, where PIM 16A is
an e-mail and scheduling program, object store 18 is
configured to store objects, each of which has a
plurality of properties which can be associated with
e-mail, scheduling or calendaring features provided by
PIM 16A.

It 1is also worth noting that, in one
embodiment, the mobile device 10 can be coupled to the
desktop computer 12 using any suitable, and
commercially available, communication link and using a
suitable communications protocol. For instance, in one
embodiment, the mobile device 10 communicates with the
desktop computer 12 with a physical cable which
communicates using a serial communications protocol.
Other communication mechanisms include infra-red (IR)
communication and direct modem communication.

It is also worth noting that the mobile
device 10, in one embodiment, can be synchronized with
the desktop computer 12. In that instance, properties"
of objects stored in object store 18 are similar to
properties of other instances of the same objects
stored in an object store on the desktop computer 12
or on the mobile device 10. Thus, for example, when

one instance of an object stored in the object store

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-10-

18 on the desktop computer 12, the second instance of
that object in the object store 18 of the mobile
device 10 is updated the next time the mobile device
10 is connected to the desktop computer 12 so that
both instances of the same object contain up-to-date
data. This is commonly referred to as synchronization.

In order to accomplish synchronization,
synchronization components run on both the mobile
device 10 and the desktop computer 12. The
synchronization components communicate with one
another through well defined interfaces to manage
communication and synchronization.

FIG. 2 is a more detailed block diagram of
the mobile device 10. The mobile device 10 includes a
processor 20, memory 22, input/output (I/O) components
24, a desktop computer communication interface 26 and
a wireless receiver 27. In a preferred embodiment,
these components of the mobile device 10 are coupled
for communication with one another over a suitable bus
28.

Memory 22 is preferably implemented as non-
volatile electronic memory such as random access
memory (RAM) with a battery back-up module (not shown)
such that information stored in memory 22 is not lost
when the general power to the mobile device 10 is shut
down. A portion of memory 22 is preferably allocated
as addressable memory for program execution, while the
remaining portion of memory 22 is preferably used for
storage, such as to simulate storage on a disk drive.

Memory 22 includes an operating system 30,
the application modules 16 (such as PIM 16A discussed
with respect to FIG. 1), as well as the object store

18. During operation, the operating system 30 is

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-11-

preferably loaded into, and executed by, the processor
20 from memory 22. The operating system 30, in one
preferred embodiment, is a "WINDOWS CE" brand
operating system commercially available from Microsoft
Corporation. The operating system 30 is preferably
designed for mobile devices, and implements features
which can be utilized by PIM 16A and content viewer
16B through a set of exposed application programming
interfaces and methods. The objects in object store 18
are preferably maintained by PIM 16A, content viewer
16B and the operating system 30, at least partially in
response to calls to the exposed application
programming interfaces and methods.

The I/O components 24, in one preferred
embodiment, are provided to facilitate input and
output operations from the user of the mobile device
10. The I/O components 24 are described in greater
detail with respect to FIGS. 3 and 4.

The desktop computer communication interface
26 1s optionally provided as any suitable, and
commercially available, communication interface. The
interface 26 is used to communicate with the desktop
computer 12, as described with respect to FIG. 1.

The wireless receiver 27 receives
information from the information source provider 13
and includes an antenna 31. The wireless receiver 27
is coupled to the bus 28 for communication with the
processor 20 and the object store 18 to store
information received from the wireless transport 14 in
a manner described below.

A power supply 35 includes a battery 37 for
powering the mobile device 10. The power supply 35

communicates with the processor 20 to control power

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-12-

provided to the above-described components. In one

embodiment, the power supply 35 provides all power for

the mobile device 10, including the wireless receiver
27 without the need for an external bgttery as
typically found in the prior art. Further, components
of the mobile device 10, such as the I/O components
24, are provided power only when necessary to process
the incoming information.

Optionally, the mobile device 10 can receive
power from an external power source 41 that overrides
or recharges the built-in battery 37. For instance,
the external power source 41 can include a suitable AC
or DC adapter, or a power docking cradle for the
mobile device 10.

FIG. 3 is a simplified pictorial
illustration of one preferred embodiment of the mobile
device 10 which can be used in accordance with the
present invention. The mobile device 10, as
illustrated in FIG. 3, can be a desktop assistant sold
under the designation H/PC having software provided by
the Microsoft Corporation. In one preferred
embodiment, the mobile device 10 includes a
miniaturized keyboard 32, a display 34 and a stylus
36. In the embodiment shown in FIG. 3, the display 34
is a liquid crystal display (LCD) which uses a contact
sensitive display screen in conjunction with the
stylus 36. The stylus 36 is used to press or contact
the display 34 at designated coordinates to accomplish
certain user input functions. The winiaturized
keyboard 32 is preferably implemented as a
miniaturized alpha-numeric keyboard, with any suitabie
and desired function keys which are also provided for

accomplishing certain user input functions.

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

-13-

FIG. 4 1s another simplified pictorial

‘illustration of the mobile device 10 in accordance

with another preferred embodiment of the present
invention. The mobile device 10, as illustrated in
FIG. 4, includes some items which are similar to those
described with respect to FIG. 3, and are similarly
numbered. For instance, the mobile device 10, as shown
in FIG. 4, also includes the touch sensitive display
34 which can be used, in conjunction with the stylus
36, to accomplish certain user input functions. It
should be noted that the display 34 for the mobile
devices shown in FIGS. 3 and 4 can be the same size,
or of sizes, but will typically be much smaller than a
conventional display used with a desktop computer. For
example, the displays 34 shown in FIGS. 3 and 4 may be
defined by a matrix of only 240x320 coordinates, or
160x160 coordinates, or any other suitable size.

The mobile device 10 shown in FIG. 4 also
includes a number of user input keys or buttons (such
as scroll buttons 38) which allows the user to scroll
through menu options or other display options which
are displayed on display 34, without contacting the
display 34. In addition, the mobile device 10 shown in
FIG. 4 also preferably includes a power button 40
which can be used to turn on and off the general power
to the mobile device 10.

It should also be noted that in the
embodiment illustrated in FIG. 4, the mobile device 10
includes a handwriting area 42. Handwriting area 42
can be used in conjunction with the stylus 36 such
that the user can write messages which are stored in
memory 22 for later use by the mobile device 10. In

one preferred embodiment, the handwritten messages are

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

~-14-

simply stored in handwritten form and can be recalled

by the user and displayed on the display 34 such that

the user can review the handwritten messages entered
into the mobile device 10. In another preferred
embodiment, the mobile device 10 is provided with a
character recognition module such that the user can
enter alpha-numeric information into the mobile device
10 by writing that alpha-numeric information on the
area 42 with the stylus 36. In that instance, the
character recognition module in the mobile device 10
recognizes the alpha-numeric characters and converts
the characters into computer recognizable alpha-
numeric characters which «can be wused by the
application modules 16 in the mobile device 10.

Although illustrated in FIGS. 3 and 4 as a
handheld portable computer, it should be understood
that the present invention can be used in other forms
of portable computing devices such as pagers, laptops,
computers designed for use in automobiles, and
portable phones having computers.

FIG. 5 1is a simplified diagram of the
wireless receiver 27 as coupled to other components of
the mobile device 10. Generally, information sent by
the wireless transport 14 is detected by a RF receiver
60 through the antenna 31. The RF receiver 60 provides
the wireless information to a processor 62. The
processor 62 temporarily stores the information in
suitable memory, forming, for example, a FIFO (first-
in-first-out) buffer. The processor 62 and memory 64
are operably coupled to an interface controller 66,
which is commonly used to connect components to a
computer system. In particular, the interface

controller 66 couples the wireless receiver 27 to the

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

~-15-

bus 28 and to an interrupt controller 68 that is

-operably coupled to the processor 20 of the mobile

device 10. The interface controller 66 is designed and
operates according to known industry standards such as
PCMCIA and Compact Flash Specifications. In one
embodiment, the components of the wireless receiver 27
form a removable card that can be selectively coupled
to an expansion slot provided in the mobile device 10
wherein suitable connectors are provided to couple the
interface controller 66 to the bus 28 and the
interrupt controller 68 as well as connect the
wireless receiver 27 to the power supply 35
illustrated in FIG. 1. In the embodiment illustrated,
the interrupt controller 68 is shown as being separate
from the processor 20. In other embodiments, the
interrupt controller 68 can be designed as part of the
processor 20. The components of the wireless receiver
27 can be manufactured wusing known fabrication
techniques as implemented in pagers, GSM phones,
cellular phones or the like. Although illustrated and
discussed below with respect to the processor 62, it
should be understood that discrete components can also
be used in place of the processor 62.

Operation of the wireless receiver 27 and
the mobile device 10 is directed to efficiently use
power from the power supply 35 in order to maximize
the operational time between recharging or replacement
of the battery 37. In one embodiment, the wireless
receiver 27 is powered and capable of receiving
information from the wireless transport 14 at all
times irrespective of whether other components of the
mobile device 10 are operational and receiving power.

This allows the wireless transport 14 to send

PCT/US99/00337

WQ 99/35778

10

15

20

25

30

-16-

information to the mobile device 10 even if the user

"is not interacting with the I/O components 24 of the

mobile device 10.

When it is desired that the mobile device 10
receive information at all times, power from the power
supply 35 is principally provided to the interrupt
controller 68 and the wireless receiver 27, while all
other components of the mobile device 10 do not
receive power, or receive only enough power to operate
in a ‘"suspend" mode or state. For instance, the
processor 20 can have three different modes of
operation designed to maximize battery 1life by
minimizing power consumption; full speed, standby and
suspend. Full speed mode is used to execute
applications. Standby mode is used during brief idle
periods. Standby mode can use less than one-tenth
(1/10th) of full speed power. Suspend mode is used
during long idle periods. Suspend mode can use less
than one-one thousandth (1/1000th) of full speed
power.

FIG. 6 illustrates a method of operation 80
of the mobile device 10 and the wireless receiver 27
to process information from the wireless receiver 27.
The system and method are further described in co-
pending application entitled "SYSTEM AND METHOD FOR
RECEIVING WIRELESS INFORMATION ON A MOBILE DEVICE",
and Serial No. 09/189,024 filed November 10, 1998, and
which is fully incorporated herein by reference. At
step 82, the wireless receiver 27 and the mobile
device 10 await information to be sent from the
wireless transport 14. It is assumed that only the
wireless receiver 27 and the interrupt controller 68

are receiving power and operating, while all other

PCT/US99/00337

10

15

20

25

30

W0 .99/35778

-17-

components are either off or are in a suspend state,
as discussed above.

At step 84, information is received by the
RF receiver 60 from the wireless transport 14. The
information is then processed by the wireless receiver
27 at step 86. In the embodiment illustrated, the
processor 62 initially analyzes the information
received and determines if the information requires
further processing by the processor 20 of the mobile
device 10 and/or storage of the information in the
object store 18. If at step 86, the processor 62
determines that the processing or storage components
of the mobile device 10 are not needed, operational
flow continues to step 88 whereat the wireless
receiver 27 processes or discards the information
received. For instance, upon processing, the processor
62 can determine that the information received does
not pertain to the mobile device 10, such as when a
wireless address (capcode) does not pertain to the
mobile device 10, and thus, the information can be
discarded. Alternatively, the processor 62 can
determine that all of the information <can be
temporarily stored in memory 64 for later retrieval by
the processor 20 of the mobile device 10. After
processing the information at step 88, operational
flow returns to step 82 where the wireless receiver 27
awaits further transmitted information.

Steps 86 and 88 illustrate how the wireless
receiver 27 can vreceive and process information
without further interaction with other components of
the mobile device 10. Thus, power consumption from the
power supply 35 is conserved since none of the other

components of the mobile device 10 have been turned-on

PCT/US99/00337

10

i5

20

25

30

WO.99/35778

-18-

or operated at a higher power consumption rate.

If at step 86, the wireless receiver 27
determines that the information received must be
further processed by the mobile device 10, operational
flow continues to step 90. At step 90, the processor
20 is awoken by the interrupt controller 68 as
initiated by the processor 62. The processor 20
retrieves the .information stored in memory 64 and
processes the information to determine if user
interaction is required. If wuser interaction is
required, operational flow proceeds to step 92 whereat
user input devices, such as the keyboard 32, are
activated and the user is notified of the information
through the display 34. .

If at step 90, the processor 20 determines
that user interaction is not necessary to process the
information, the processor 20 processes the
information, turning on only those components of the
mobile device 10 that are necessary at step 94. For
instance, the information received by the wireless
receiver 27 could have exceeded the memory
capabilities of memory 64 and that the only required
action is to store the information in the object store
18 or other temporary memory provided in the mobile
device 10. In such a case, it 1is not necessary to
activate or turn on the keyboard 32 or the display 34.
The processor 20 merely performs the required actions
such as storing the information in memory in the
mobile device 10 and returns to the suspend mode.
Operational flow then returns to step 82 whereat the
wireless receiver awaits further transmitted
information.

Steps 90 and 94 thus illustrate how power

PCT/US99/00337

W0.99/35778

10

15

20

25

30

-19-

consumption is conserved since only a partial wake-up
of the mobile device 10 has been performed to process
the information. In other words, since only those
components necessary to process the information have
been turned-on, while other components such as the
display 34 remain off, power has been conserved and
battery life has been extended.

FIG. 7 illustrates a detailed method of
operation of the wireless receiver 27 and the mobile
device 10. Generally, the wireless receiver 27 and the
mobile device 10 process three types of incoming
messages. A first type of message is not related to
the mobile device 10 and is discarded. A second type
of message is for the mobile device 10, but either can
be received now for further processing at a later
time, or can be received and processed at a later
time. A third type of message is a high priority
message that must be processed immediately and may
require user interaction. All of these messages are
efficiently handled by the method of FIG. 7 to
conserve power and maximize battery life.

In FIG. 7, wireless data 102 is received by
the wireless receiver 27 as indicated at step 104. At
step 106, the wireless information is examined by the
processor 62 to ascertain if the wireless address of
the information pertains to the mobile device 10.
Typically, the wireless receiver 27 will be configured
to respond to multiple wireless addresses, wherein
each wireless address is used by one or a number of
services to send information to the mobile device 10.
For instance, one wireless address can be used to send
high priority or personal messages to the mobile

device 10, while other wireless addresses are used by

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-20-

one or more services to send other information to the
mobile device 10. At step 106, the processor 62
ascertains if the wireless information pertains to a
valid wireless address of the mobile device 10. If the
wireless information does not pertain to the mobile
device 10, it is discarded at step 108.

At step 110, valid information for the
mobile device 10 is stored in memory 64 of the
wireless receiver 27. At this step, the processor 62
ascertains whether all of the information can be
stored in memory 64, or if the mobile device 10 must
be at least partially woke up. If the entire incoming
information can be stored in memory 64, and the
information is not high priority, the processor 62
stores the incoming information at step 112. If, on
the other hand, the processor 62 determines that the
incoming information cannot be completely stored in
memory 64, or that the incoming information pertains
to a high priority message, for example, based on its
wireless address, an interrupt request is generated at
step 114 to wake up the processor 20 of the mobile
device 10.

At this point, it should be noted that the
size of memory 64 is proportional to the rate at which
wireless information is received by the wireless
receiver 27 and the amount of time necessary for the
processor 20 of the mobile device 10 to wake up and
begin extracting information from memory 64. In one
embodiment, the minimum amount of memory is provided
in the wireless receiver 27 to store information until
the processor 20 wakes up. In this manner, the size of
memory 64 present in the wireless receiver 27 is less,

thereby reducing the overall size of the wireless

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-21-

receiver 27 and reducing its cost.

At step 116, the processor 20 of the mobile
device 10 executes an initial body of code herein
called the hardware abstraction layer (HAL). As part
of the HAL wake-up code, HAL can call a function
herein identified as CheckAndProcessRadioWakeup ().
Generally, this function checks if the radio receiver
27 needs some service and whether this service can be
handled within HAL or if more components of the device
will need to be started. The return values include:
(1) a first value indicating that the radio receiver
27 has been serviced and there is no need to start
other components (herein the first value is
"HRADIO_ NOCONTINUE"); (2) a second value indicating
that the display 34 .should be turned on (herein the
second value is "HRADIO CONTINUE_VIDEO ON"); and (3) a
third value indicating that the display 34 should not
be turned on (herein the third value is
"HRADIO_ CONTINUE_VIDEO_OFF"). It should be noted that
the return values can be ignored if other wake-up
events occur. For instance, if the user presses the
power button 40 about the same time as a radio
interrupt is also received, and if the return value is
"HRADIO NOCONTINUE" or "HRADIO CONTINUE_VIDEO_OFF" the
return value is ignored. In one embodiment, the radio
receiver 27 registers information in a data block
accessible by the HAL program indicative of the return
values. The function is further described in detail in
the Appendix along with other functions and related
information.

Based on the return values, the processor 20
retrieves the information stored in memory 64 and

examines it to determine if the processor can store

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-22-

the information temporarily in a temporary buffer
herein called a HAL buffer 120. If temporary storage
in the HAL buffer 120 is possible, program flow
continues to step 118 whereat the processor 20
executes a device driver buffering routine which
stores the information in the HAL buffer 120 as
indicated at step 120. The processor 20 then returns
to the suspend state as indicated at step 122.

If, on the other hand, at step 116, the
processor 20 determines that the information cannot be
stored in the HAL buffer 120, for instance, where the
information is high priority or of length exceeding
the storage available in the HAL buffer 120, the
processor 20 continues its wake-up process and a
kernel is loaded at step 124. Each of the device
drivers, such as a display driver, a serial port
driver, etc., is then loaded at step 126. One
particular driver that is loaded is a device driver,
which executes a filtering library function, and
indicated at step 128, and is described in more detail
below. The device driver examines the information at
step 130 to determine if the information is relevant
to the mobile device 10. In contrast to step 106 where
information is discarded if it does not correspond to
a wireless address recognized by the mobile device 10,
information is discarded at step 130 if, based on its
content, it is not relevant to the mobile device 10.
For instance, the user may want to receive only
football scores and no other sports scores. However,
all of the sports scores may be transmitted with
respect to a particular wireless address, thus
information on baseball scores would not be discarded

at step 106 since this information was transmitted

PCT/US99/00337

10

15

20

25

30

WO0.99/35778

-23-

with respect to the correct wireless address for
football scores. However, at step 130, the content of
the information is examined so baseball scores would
be discarded, while football scores are retained.
Steps 116 to 128 are very efficient and quick. In
particular, the filtering step 128 examines the
initial few bytes of the information and can quickly
determine if the information should be kept or
discarded. The number and location of the bytes to
examine are predetermined and agreed upon between the
wireless information carrier and software developers.
By examining only the first few bytes, the filtering
step 128 can execute quickly (the processor 20 is up
for 1less time) and does not require all of the
operating system services to be started. Non-relevant
information is discarded at step 132. It should be
noted that upon loading of the pager driver at step
128, any information stored in the HAL buffer 120 at
step 120 from ©prior messages 1is retrieved and
processed.

It should be noted that in a further
embodiment, the filtering step 128 can include other
filtering parameters settable by applications
executable on the mobile device 10, as described
below. In other words, besides filtering on designated
bytes within the message, as discussed above, the
filtering library function can include other filtering
parameters determined by application programs. For
instance, a news viewer application can set a filter
parameter where the mobile device 10 always rejects
and dces not store digital pictures and accepts only
the accompanying text. The filter parameters can be

passed from the application to the filtering library

PCT/US99/00337

10

15

20

25

30

WO0.99/35778

-24-

at filtering step 128 using, for example, application
program interfaces (APIs).

If the information is relevant to the mobile
device 10 and should not be discarded, program flow
continues to step 134 to determine if user interaction
is needed. For instance, if the message pertains to a
high priority message requiring acknowledgement by the
user, the mobile device 10 completely wakes up with
activation of the display 34 to indicate that a
message of high priority has been received. A full
wake-up is indicated at step 136.

If the information does not require user
interaction, program flow continues to step 138. At
step 138, if Dbuffer space exists and no further
processing is necessary, the processor 20 executes a
buffer data routine at step 140 to store the
information at step 142. The processor 20 then returns
to the suspend state at step 122. If buffer space does
not exist at step 138, the mobile device 10 is
powered-up without the display 34 at step 144. The
information is then processed or additional buffer
space is obtained at step 146. If necessary, access
and storage can be made in the object store 18. The
processor 20 then returns to the suspend state at step
122. It should be noted that considerable power has
been conserved since the user input/output (I/O)
devices (display 34 and keyboard 32) have not been
powered. However, if the user were to activate the
mobile device 10 to turn it on, the display 34 would
immediately enable.

The mobile device 10 processes incoming
wireless messages according to the above-described

method in the background whether or not the user is

PCT/US99/00337

WO.99/35778

10

15

20

25

30

-25-

actively interacting with the mobile device 10 using
the I/O components 24. It should be noted that if the
user were to turn off the mobile device 10, the
wireless receiver 27 will remain powered to receive
incoming messages. If the user were to turn off the
power during processing of an incoming message, the
display 34 would turn off to indicate at least partial
shut down of the mobile device 10; however, the
incoming message would be processed according to the
above-described procedure.

FIG. 8 illustrates one embodiment of an
information packet 160 of web content data received by
wireless receiver 27. Wireless receiver 27 can receive
messages of substantially any format. Many different
types of header formats can be defined for receipt by
the wireless receiver 27. FIG. 8 gives but one
illustrative type of packet format.

Information packet 160 preferably includes a
plurality of portions, such as radio transport header
162, group address bytes 164, topic filtering bytes.
166, routing header 168 and ‘data 170. The radio
transport header 162 includes wireless address
(capcode) information. As discussed above, the
wireless address information is an identifier used to
send a radio message to RF receiver 60 (or any other
similar type of radio card) illustrated in FIG. 5. The
radio transport header 162, in one embodiment,
supports sixteen different addresses. RF receiver 60
filters and discards any radio messages which do not
match any of the wireless addresses. If a match is
observed, then RF receiver 60 has detected a radio
message potentially addressed to it, and must receive

and further process the message.

PCT/US99/00337

WO 99/35778

10

15

20

25

30

-26-

Group address bytes 164 and topic filtering bytes
166 are also provided. A group address, as referred to
herein, is a subclass of a wireless address that is
used in accordance with the present invention to
extend the filtering capability of an address.
Further, a topic is a subclass of a wireless address
or group address, which is also provided to extend the
filtering capability of the wireless address and group
address information.

It should be noted that information packet 160
arriving at wireless receiver 27 with an appropriate
address may not have group address bytes 164 and topic
filtering bytes 166 pre-appended thereto. If those
bytes are present, however, a driver 200 (FIG. 9)
operates to filter the information packet 160 based on
the group and topic filtering bytes.

The driver 200 implements logic which first
examines information packet 160 to determine whether
any group and topic filtering bytes are included in
information packet 160. In one embodiment, the driver
200 supports a library which includes a function
AnalyzeMessage () . The AnalyzeMessage function isolates
service group codes and other information in the
incoming message. If group and topic filtering bytes
are present, then the group and topic filtering
functions must be performed.

In one embodiment, mobile device 10 includes a
memory which contains a group table. Briefly, the
group table contains entries of service groups, each
of which can be associated with any suitable address.
Also, there can preferably be any suitable number of
service groups associated with one address. Thus, in

one embodiment, group entries in the group table are

PCT/US99/00337

10

15

20

25

30

WO0.99/35778

-27-

sorted by address numbers, then by service group
codes.

If group or topic filtering bytes are detected,
then the driver 200 searches the group table to
determine whether the service group code detected in
information packet 160 is listed in the group table,
and whether it 1is active or inactive. If the service
group code is not found in the table, or if it is
found but it has been deactivated (or disabled), then
the driver 200 discards the information packet 160 and
no further processing is done with respect to that
message. However, if driver 200 determines that the
group address bytes 164 are included in the group
table, then it is determined that the message was
intended for that particular mobile device 10 and
further processing continues on topic filtering bytes
166, if present. Topic filtering is discussed in
greater detail below.

Since all of the group and topic filtering is
done at the level of driver 200, it occurs quite low
in the protocol stack, or system architecture, of
mobile device 10. Thus, filtering occurs early on in
the process and the storage space required for the
address and message is quite low. In addition, since
the driver 200, itself, performs much of this
filtering, the group and topic filtering bytes allow
any application running on mobile device 10 to pass
correct filtering information down to the group and
topic tables for filtering at the level of driver 200.
This significantly improves power consumption over
previous designs because the messages do not need to
be received, processed, and passed all the way up to

the application 1level in the protocol stack, or

PCT/US99/00337

10

15

20

25

30

WO0_99/35778

-28-

architecture, of mobile device 10 before being
filtered.

FIG. 9 illustrates hardware and software modules
for filtering input messages based on topic filter
bytes 166 prior to storage or delivery to a higher
level application module. Generally, in the exemplary
embodiment, the modules include the driver 200 that
receives messages of the exemplary format described
above from the wireless receiver 27. If the input
message includes topic filter bytes 166, driver 200
executes a topic filter module 204 that compares the
topic filter bytes 166 with previously stored content
filter data 206. If the topic filter bytes 166
correspond to user preferences as indicated by the
content filter data 206, driver 200 passes the
information upwardly in the mobile device architecture
for storage in store 18 and/or use by higher level
application modules indicated at 208, 209 and 210. In
the embodiment illustrated, a routing module 212 is
provided to receive at least the data 170 from driver
200. Routing module 212 forwards the input message to
store 18 or any of the application modules 208-210 as
required or given by routing header 168 (FIG. 8).
Communication between driver 200 and routing module
212 can be implemented using standard APIs.

FIG. 10 illustrates a method 220 for obtaining
and creating content filter data 206 used to filter
input messages or information packets 160. At step
222, user preferences are obtained for the content
that will be filtered. Generally, the user provides
individual indicators, a range of indicators or a set
of indicators that the user would or would not like to

receive information on. For example, the indicators

PCT/US99/00337

WO 99/35778

10

15

20

25

30

~-29-

can comprise key words, characters, numbers, etc.,
that have typically been previously agreed to with the
information source provider 13 to be used for
filtering content. If desired, a hashing function can
be used for all packets received, or can be selected
based on the type of content information which will be
received. For instance, a first hashing function can
be wused for ASCII strings while other hashing
functions can be used for numeric data, non-ASCIIU
unicode data, binary data, etc. In another
application, indicators in the topic filter bytes 166
can be zip <code data allowing region-specific
filtering to be received. In yet another application,
the topic filter bytes can be mnemonic codes for
"channels" of broadcast information, allowing the user
to subscribe or unsubscribe to specific channels.
Referring back to FIG. 9, a user interface module 228
obtains the indicators from the wuser. The user
interface wmodule 228 can be accessed by or
incorporated into application modules 208-210.

Having obtained the user preferences for content
filtering at step 222, content filter data 206 is
created at step 230. In one embodiment, content filter
data 206 is organized as a function of wireless
addresses or group addresses in order that content
filtering can be performed as a function of the
wireless address or group address of the incoming
message. In the embodiment illustrated, a plurality of
filter data tables 2327, 232B, 232C and 232D are
shown, wherein each filter data table 232A-232D is
associated with a wireless address or a group address.
In one embodiment, the filter data tables 232A-232D

can simply contain the indicators provided by the

PCT/US99/00337

WO _99/35778

10

15

20

25

30

-30-

user. However, in order to conserve memory resources,
it may be advantageous to transform the indicators
into another, smaller representation. For example, a
translation function can be implemented wherein a
unique integer (within a small range) is obtained for
each indicator. The unique integer can then be stored
in the corresponding filter data tables 232A-232D. In
a further embodiment, each of the filter data tables
232A-232D can comprise a bit-array where the unique
integer is used as an offset into the array and
wherein each bit, if set ("1"), indicates that the
corresponding content is desired, and wherein if the
bit is reset ("0"), the corresponding content is not
desired. In yet a further embodiment, a hashing
function can be used if the range of unique integer
numbers becomes too large. However, since the integers
will no longer be unique, undesired content
information may be obtained if the topic filter bytes
166 in the incoming message correspond to an integer
of desired content information.

At step 236, content filter data 206 is stored in
memory accessible to driver 200. In one embodiment,
content filter data 206, or a smaller portion such as
one or more filter data tables 232A-232D is created in
memory 244 accessible by user interface module 228,
and then transferred to memory accessible to driver
200 in its entirety, for example, through driver 200.
Alternatively, driver 200 can allocate necessary
memory wherein content filter data 206 or portions
thereof, such as filter data tables 232A-232D, are
incrementally updated or populated according to the
user preferences.

FIG. 11 illustrates a method 250 for processing

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-31-

an incoming message that has been transmitted on a
wireless address or group address recognized by mobile
device 10. At step 252, driver 200 receives the
incoming message. At step 254, driver 200 analyzes the
message using the AnalyzeMessage ()function described
above to ascertain if the incoming message includes
topic filter bytes 166 for content filtering. If the
message does not contain topic filter bytes 166,
operational flow proceeds to step 256 whereat the
driver 200 passes the incoming message to store 18,
higher application modules 208-210 or, in the
embodiment illustrated, to routing module 212.

ff, however, the incoming message includes topic
filter bytes as detected at step 254, operational flow
continues to step 258 whereat driver 200 provides the
topic filter bytes 166 to topic filter module 204.
Topic filter module 204 compares the topic filter
bytes 166 with content filter data 206. In the
embodiment illustrated, topic filter module 204
accesses the filter data table 232A-232D that
corresponds to the wireless address or group address
upon which the incoming message was transmitted. If
filter data tables 232A-232D have been created using a
hashing function, topic filter module 204 operates the
hashing function upon the topic filter bytes 166 so as
to ascertain if the incoming message pertains to
desired content. It should be noted that the topic
filter bytes 166 can be in a compressed and/or in a
protocol format such as UNICODE in order to transmit
the data packet 160 over a wireless network. In such
cases, topic filter module 204 operates upon the topic
filter bytes 166 as necessary in order to make a

comparison with content filter data 206. It should

PCT/US99/00337

WO0.99/35778

10

15

20

25

30

~-32-

also be noted that the same hashing function need not
be used for each filter data table 232A-232D. Rather,
different hashing functions can be used for one or
more of filter data tables 232A-232D. Topic filter
module 204 can maintain a table of hashing functions
according to wireless addresses or group addresses and
access this table based on the wireless address or
group address that the message was transmitted on.

Topic filter module 204 provides as an output an
indication of whether or not the incoming message
relates to the user's preferences. If the incoming
message pertains to desired content . information as
compared to content filter data 206, operational flow
continues to step 256 whereat driver 200 forwards at
least the data portion of the message further in the
architecture of .the mobile device 10 as discussed
above. Otherwise, operational flow proceeds to step
260 whereat the message is discarded by driver 200.
Although illustrated wherein functions of driver 200
and topic filter module 204 have been separated, it
should be understood that these functions can be
performed by driver 200 alone, or divided up among
even more than the two modules illustrated in the
exemplary embodiment.

In one embodiment, APIs are provided to allow
application modules 208-210 to operate with driver 200
in order to select operational parameters and/or
access content filter data 206. Exemplary APIs
include:

IsGroupTagRegistered (LPWSTR sxGroupTag, BOOL
*fResult, LPDWORD pdwDevice)

This API allows an application module to query

driver 200 to ascertain if content filtering will be

PCT/US99/00337

WO .99/35778

10

15

20

25

30

-33-

performed on an address or a group address. As
discussed above, driver 200 can maintain a table or
other list indicating enablement or disenablement of
content filtering as a function of address or group
address irrespective of the existence of a filter data
table corresponding to the address or group address.
This allows easy enabling or disenabling of content
filtering as a function of an address or group
address. This API returns a ‘"true" or a "false"
indication in "fResult" as to whether the group
address as given by "szGroupTag" is registered or not.

CreateFilterTable (HANDLE *phFTable, DWORD
dwNumEntries, WIS_FILTER TABLE wftFilterType)

This API allows an application module to create a
filter data table wherein the approximate size or
entries of the table is provided at "dwNumEntries".
Driver 200 or user interface module 228 allocates
necessary space in memory for content filter data 206,
or memory 244, respectively, and provides back to the
application module a handle or a pointer at
"phFTable". It should be noted that the filter data
table can be create first in memory 244 and then
transferred to memory accessible by driver 200.

In the embodiment illustrated, this API also can
include an input denoted herein as "wftFilterType",
which can be wused to select predefined filter
functions. For instance, a first value can be provided
to indicate that all messages transmitted on the
wireless address or group address will be accepted. A
second value can be provided to indicate that all
messages will be rejected. A third wvalue can be
provided to indicate that a preselected filtering

function, such as hashing function will be used.

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-34-

(Other filtering functions can include an individual,
set or range of content information.) A fourth wvalue
can be provided to indicate that a particular type of
data needs to be received first before content
filtering will begin. The latter is probably best
illustrated by an example. In co-pending application
entitled "CHANNEL DEFINITION ARCHITECTURE EXTENSION",
a system and method are described wherein Web or
Internet 1is rendered on a mobile device using a
channel definition format (CDF) file, a set of script
files and a set of data files. Briefly, navigation of
the content on the mobile device is performed using
the CDF file which includes references to the script
files and the data files. When one particular page of
content is to be displayed, a script file is accessed
and is used to operate upon the data file in order to
render the desired information. This architecture
allows wireless wupdates of data files, because,
typically, only the data files will change with time.
However, if desired, the CDF files and the script
files can be also be updated wirelessly. Each of the
data files, script files and CDF files have associated
identifiers.

In such a system, content filtering can be
provided as a function of particular data to be
displayed. For instance, the user may only want
information regarding football or baseball articles
(which are associated with certain identifiers), but
not want any articles related to hockey (which are
associated with another identifier). Using topic
filter bytes 166 as described above, the user can
filter the data files accordingly wusing the

identifiers. However, in this system, as discussed

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-35-

above, in order to display the data files, it is
necessary that the user receive the CDF file so that
upon rendering, the application module will know which
script file to use to render the data. The fourth
value can be used to indicate that the CDF file must
be received before any content filtering will be
performed. Upon receipt of the CDF file, "this API can
then be wused to initiate content -filtering by
providing, for example, the third value.

SetHashValue (HANDLE hFTable., LPWSTR szValue)

This API is used in accordance with a filter data
table comprising a bit-array that is set according to
a hashing function. 1In particular, the hashing
function is applied to the input given by "szValue"
wherein the filter data table indicated by a handle or
a pointer "hFTable" is updated to reflect the desired
content.

SetPreference (HANDLE hFTable, DWORD
dwPreferences)

This API allows additional information to be
stored for each of the filter data tables 232A-232D.
Referring back to FIG. 9, the additional information
is indicated at 2704, 2708, 270C and 270D,
respectively, for each of the filter data tables 222A-
232D. In one embodiment, the additional information
270A-270D can store global preferences that will be
applied to the incoming message if transmitted
pursuant to the wireless address or group address. For
example, data filter table 232A can correspond to
football and baseball articles provided on a selected
"channel". If desired, an application module can also
store a value in portion 270A indicating that only

text information will be provided from driver 200

PCT/US99/00337

10

15

20

25

30

WO 99/35778

-36-

whereas, for example, data pertaining to images will
be discarded. In the embodiment illustrated, topic
filter module 204 accesses additional information
270A-270D when the corresponding filter data tables
232A-232D are accessed. This information is provided
to the driver 200 where the message is further
filtered by additional information 270A-270D. In an
alternative embodiment, all filtering functions can be
performed by topic filter module 204 whereby driver
200 receives only that portion of the message that
will be forwarded to higher 1level modules of the
mobile device 10.

RegisterFilterTable (HANDLE hFTable, LPWSTR
szGroupTag, LPDWORD pdwDevice)

This API associates a data filter table with a
selected address or group address. As discussed above,
in one embodiment, the filter data table can be
created in higher 1level memory 244 associated with
application modules 208-210. This API will copy the
created data filter table (and associated additional
information, if present) into memory accessible by
driver 200. It should be noted that this API also
allows an application program to disassociate a data
filter table from a wireless address or a group
address. In the embodiment illustrated, a "null" value
for "hFTable" will cause driver 200 to disassociate
the filter data table in memory accessible by it for
the address or the group address given by
"szGroupTable".

DestroyFilterTable (HANDLE hFTable)

This API releases the high level memory 244
accessible by the application program module to create
the filter data table. It should be noted that this

PCT/US99/00337

WO 99/35778 PCT/US99/00337
-37-

API does not disassociate the data filter table from
the address or group address at the level of driver
200.

Although the present invention has been
described with reference to preferred embodiments,
workers skilled in the art will recognize that changes
may be made in form and detail without departing from
the spirit and scope of the invention.

WO0.99/35778 PCT/US99/00337
38

APPENDIX

1.1.1 Overview

Wireless Services for Windows CE defines a hardware, device drivers, and overall
architecture for the incorporation of message-based radio into a Windows CE device. The
goal is to create a framework within which applications, system services and hardware all
remain modular with respect to each other, thus providing the environment for a wide range
of applications.

This appendix addresses what support the device drivers need to provide to meet the
following requirements:

1. Power saving achieved by not waking up the whole system.

2. Doing background processing without turning on video

1.1.2 Terminology

Device Windows CE hardware (e.g. Palm PC, Auto PC)
Radio Radio HW for a device (e.g. a paging card)
OEM Original Equipment Manufacturer — In this document this term refers to the

device manufacturers

IHV Independent HW Vendor — In this document IHV refers to the radio
manufacturer (who develops the HW and/or device driver)

HAL Hardware Abstraction Layer. This is implemented by each OEM to abstract their
HW implementations from the Windows CE operating system.

LCD and VIDEO | These two terms have been used interchangeably and refer to the display panel
on the device.

1.1.3 Overview

A typical radio device /istens to the radio transmissions and determines if there is a message for the
user. This determination is based on one or more ‘addresses’ that are programmed in the radio
receiver or hardware (HW). The radio HW is powered independently (i.e., it is powered even when
the Windows CE device is powered down) and the radio HW carries out the lowest level of filtering
without requiring the Windows CE device to be powered on. This achieves some level of power

savings since radio HW typically require only a fraction of power compared to the Windows CE
device.

Wireless Information Services for Windows CE provides for additional levels of filtering that may or
may not be carried out in the radio HW. If the radio HW is separately powered and has enough logic

WO 99/35778 PCT/US99/00337

39
to do additional filtering independent of the device CPU, then it will not cause major power drain
from the device power supply. However, it is expected that the majority of the radio HW will be in the
Compact Flash card type II form factor (a form factor for most devices) and will not have separate
power or CPU due to size constraints. These cards, therefore, will cause a wakeup of the device so
that some processing is carried out in the device driver.

Another way to achieve power saving is not to wakeup the system for each message but to buffer
them for group processing at a later time. The radio HW may not have enough memory and to use the
Windows CE device memory for this purpose will ordinarily require the device to be woken up to run
the device driver code that copies message from the radio HW to the system memory. In this case we
want the system to be up for a very short duration and there is no need for the display and other
subsystems to be powered on.

Thus, the power saving goals can be summarized as:
e System comes up quickly and stays powered on for as little time as possible
e The LCD is not turned on until it is needed

* System shuts down as soon as possible (currently, once the system is up, it does a time out of
the order of 1-5 minutes to shutdown)

To achieve the above goals, Win CE Radio device drivers support a state called Partial Wakeup state.
This refers to the device state just after wakeup where HAL has initialized but the kernel and file
system are not fully initialized. The objective is to do some processing in this state to filter out
unwanted messages and shut down the system as soon as possible, ideally from the partial wakeup
state itself.

1.1.4 Driver Support for Partial Wakeup

This section describes what support needs to be provided in the driver.

1.1.4.1 RIO_Init()

During system initialization, radio driver initialization function RIO_Init() is called. In
addition to the other initialization, it should call a MS supplied function called
RegisterWakeup() and supply the address of a call back function as parameter. The call back
function (called CheckAndProcessRadioWakeup() in this document) is described velow.

See section 1.1.8 for sample code for RIO_init() function.
Section 1.1.6.1 describes RegisterWakeup() function that does the following:

1. Calls VirtualAlloc() to allocate needed memory space. This space will be used to
store pointers to buffers for radio and other data (e.g. data for filtering
functions). This memory is referred to as Radio Control Block.

to

Makes the kernel call to lock the driver code and allocated buffers in memory.

(98}

Calls HAL IOCTL calls and registers a function in driver space that will be
called by HAL during warm boot when the wakeup source is radio (this

WO 99/35778 PCT/US99/00337

40
function, called CheckAndProcessRadioWakeup() in this document, determines
if the wakeup should continue or not). HAL maintains a data structure for each
device driver to store this function pointer.

1.1.4.2 Registered wakeup callback function

The radio driver is expected to supply a function which will be called during the system
wakeup sequence from HAL. This function executes in the partial wakeup state and therefore
has many limitations and requirements (described later). The main purpose of this function is
to achieve power savings for the device. Power saving is achieved in many ways as listed
below:

* The function could simply read the data off the radio HW and buffer it in the memory
blocks for later processing. It could also implement low level filtering (e.g. group level
filtering, if the radio HW is not capable of doing it). In this case the function returns a
value indicating that system wakeup is not required (in this scenario this function acts
like an interrupt service routine, quickly servicing the radio HW and shutting down the
system as soon as possible)

* Ifthe system buffers are full, the function could return a value indicating to the HAL that
a system wakeup is required but there is no need to power the display. In this scenario,
the system will wakeup and execute message router and other components that process
the messages and most likely will shut down the system after processing is complete.

» Ifthe data is high priority (e.g. a personal page), the function should return a value
indicating to the HAL that a full system wakeup is required because this message will
most likely cause-a user notification.

1.1.5 Data Structures

1.1.5.1 Radio control block

The radio control block data structure is maintained by HAL. A pointer to the radio control
block is passed to the registered function (called CheckAndProcessRadioWakeup() in this
document). The radio control block holds pointers to memory blocks that contain data or
code. These memory blocks are allocated using VirtualAlloc() function, are locked down so
that they are accessible during partial wakeup stawe, and are accessed using physical
addresses.

The radio control block is an array of RADIO_BLOCK which is defined below:

WO 99/35778

PCT/US99/00337

typedef struct _hra?ilio_block {
DWORD dwid; // Block ID
DWORD PAddr; / / Physical address of block
DWORD VAddr; // Virtual address of block
DWORD dwSize; // Size of block

} HRADIO_BLOCK, *LPHRADIO BLOCK;

The block can be either a pointer to code or a pointer to data as determined by the dwld field.
The Ids are generated using macros defined in the next section.

1.1.5.2 Block ID Macros

The radio control block stores pointers to code or data that needs to be accessed during partial
wakeup state. The entries are tagged using an id, which is generated using one of the macros

defined below:

HRADIO_MAKE_DRIVER_ID (Parl, Par2)

Generates an id for a driver function or data block. Par! can be either
HRADIO_DATA (for defining a data block pointer) or HRADIO_CODE (for
defining a function pointer). Par2 is an unsigned 16-bit value.

HRADIO_MAKE_SYSTEM_ID (Parl, Par2, Par3)

Generates an id for a known system function or data block. These ids are used
internally by the system and should not be used ki, device drivers. Par] can be
either HRADIO_DATA (for defining a data block pointer) or HRADIO_CODE (for
defining a function pointer). Par2 and Par3 have the following meanings:

Par2 Par3

0 HRADIO_WAKEUP Pointer to the partial wakeup call back function
or data

0 HRADIO_ANALYZE _MSG Pointer to the AnalyzeMessage() function or
data

0 HRADIO_FILTER Pointer to the FilterMessage() function or data

Address Group Pointer to application filter function or data for

the given address/group combination

WO 99/35778 PCT/US99/00337
42
1.1.6 Function Reference — MS Supplied Functions

1.1.6.1 RegisterWakeup()

This function does the following:
- Creates the Radio control block (VirtualAlloc(), lock it, register with the HAL)

- Makes HAL 10CTL call to register the wakeup callback function (which will be called
by H.\L during partial wakeup sequence)

- Makes HAL IOCTL call to register AnalyzeMessage() function (which deciphers the
message header)

- Makes HAL I0CTL call to register FilterMessage() function (which invokes the
application level filtering functions)

Syntax
LPHRADIO_BLOCK RegisterWakeup(

BYTE Deviceld,

BYTE NumBlocks,

LPVOID pWakeupFn,

DWORD dwWakeupFnSize)
Parameters

Deviceld Identifies the device controlled by this driver (this
parameter is derived from the parameter passed to the
RIO_Init() function)

NumBlocks Number of additional radio control block entries needed by
the driver (driver will need one entry for each buffer or
function it intends to use during partial wakeup state). This
does not include system required entries, e.g. the partial
wakeup callback function etc.

pWakeupFn Pointer to the partial wakeup callback function.

dwWakeupFnSize Size in bytes of the partial wakeup callback function. If not
used, pass a 0 value.

ReturnValue

Returns pointer to the radio control block if successful, NULL otherwise.

1.1.6.2 LocateAndCallAnalyzeMessage()

This function locates and invokes the AnalyzeMessage() function in partial wakeup state
(driver can call the AnalyzeMessage() function directly in other places).

Syntax

WO0.99/35778 PCT/US99/00337

43
BOOL LocateAndCallAnalyzeMessage (

VOID *pMsg,

DWORD dwMsgLen,
BOOL *pfDiscard,
BYTE *pGroupCode)
Parameters
pMsg Pointer to the message bytes.
dwMsgLen Length of the message.
pfDiscard Receives a BOOL value indicating whether the message
should be discarded or kept.
pGroupCode Receives the Group code.

Return Value

Returns TRUE if message had a valid WS header, FALSE otherwise. When it returns TRUE
pGroupCode receives the group code and pfDiscard receives a BOOL value indicating
whether the message should be kept or not (TRUE=discard).

1.1.6.3 LocateAndCallFilterMessage()

This function locates and invokes the application level filtering mechanism .

3

Syntax
BOOL LocateAndCallFilterMessage (

VOID *pMsg,
DWORD dwMsglLen,
BYTE Address,
BYTE GroupCode)
Parameters
pMsg Pointzr to the message bytes.
dwMsglen Length of the message.
Address Address number this message came on.
GroupCode Group code this message came on.

Return Value

Returns TRUE if message should be kept, FALSE if it should be discarded.

WO 99/35778 PCT/US99/00337
44
1.1.6.4 RegisterBlock()

Allocates a memory block, locks it down, and creates an entry in the radio control block for
it. Then data from the supplied buffer is copied into this newly allocated memory block.

Syntax
LPHRADIO_BLOCK RegisterBlock(BYTE Deviceld, DWORD dwBlockld,

LPBYTE IpbData,
DWORD dwDataLen)
Parameters -
Deviceld The block will be added to the radio control block for this device.
dwBlockld Block Id to be assigned (This id must be output of macros defined
in 1.1.5.2)
IpbData Pointer to the data that will be copied in a newly allocated memory
block.

dwDatalen Length of the data (this is the size of the newly allocated memory
block)

ReturnValue

Null is returned if data block can't be created. pointer to the created radio block is returned
otherwise.

Remarks

The dwBlockld also indicates whether the block is a code block (function) or data block
(buffer).

1.1.6.5 LocateBlock()

This function searches the radio control block for the given block id.
Syntax
LPHRADIO_BLOCK LocateBlock (BYTE Deviceld. DWORD dwBlockld)

Parameters
Deviceld The block will be searched in the radio control block for this device.
dwBlockld Block Id to be assigned (This id must be output of macros defined
in1.1.5.2)
ReturnValue

Returns pointer to radio block if ID found, else returns NULL

WO 99/35778 PCT/US99/00337

45
1.1.6.6 Busy()
This function increments or decrements the system busy counter.
Syntax
WORD Busy(BYTE State)
Parameters
State If TRUE, increments the busy counter. FALSE decrements busy
counter.
ReturnValue

Returns current value of system busy counter.

1.1.6.7 Video()

This function turns the video on or off.

Syntax

BOOL Video(BYTE State)
Parameters

State If TRUE, turns video on. FALSE turns video off.
ReturnValue

Returns TRUE if operation completed, FALSE otherwise.

1.1.7 Function Reference - IHV Supplied Functions

1.1.7.1 CheckAndProcessRadioWakeup()

This function is statically part of the radio driver but is called by the HAL during warm boot.
The main purpose of this function is to check if the radio device needs some service and
whether this service can be handled within HAL or it requires the whole system to be woken
up.

WO 99/35778 PCT/US99/00337

46
Syntax
DWORD CheckAndProcessRadioWakeup (
DWORD MempPtr F%imer to radio control block
)
Description

This function is called in response to the wakeup interrupt from the radio Jevice
(RING_INDICATE interrupt). This function is called by HAL before the kernel is initialized
(partial wakeup state). Because of this, this function must meet the following criteria:

* The function must be on a page boundary.
* The function will be executed in physical mode
* The function must not call any OS or file system calls.

¢ The function must not call any other function. (If it needs to call other driver
supplied functions, they must be called via a function pointer table initialized
during startup. See Error! Reference source not found. and Error! Reference
source not found. for details.)

The function should read the data from the radio device and determine if the data needs to be
kept or discarded. If the data needs to be kept, it should further determine if it is high priority
data (see device driver specifications for discussion of address and group property flags).
High priority data needs to be processed immediately and will require a full wakeup. Low
priority data may be buffered in memory allocated during startup. If that memory is full, a full
wake up is again required to flush that memory. In either case, the data is read off the radio
device and appropriate return value is passed to the HAL.

The skeleton of this function is:
- read data off the radio HW

- Call AnalyzeMessage() to get the group code information from the message
header

- Do group level filtering (if the HW has not done it)

- Invoke application level filtering mechanism. Do message filtering based on the
return code.

- if message is to be kept, then buffer it and return appropriate return code

Since this function is executed during the partial wakeup state, it can not make function calls
directly. Instead a support library has the following two functions to invoke the
AnalyzeMessage() and filter mechanism:

LocateAndCallAnalyzeMessage() — this function invokes the AnalyzeMessage()
function described in the device driver specifications.

LocateAndCallFilterMessage() - this function invokes application level filtering (to
be documented).

WO 99/35778
47
Return Values:

HRADIO_NOCONTINUE

PCT/US99/00337

The device has been serviced, no need to continue the warm boot. An example of
this case would be when the radio device has a new message that can be buffered in
the system memory (done by this function) and no further processing is required.

HRADIO_CONTINUE_VIDEO_ON

The device service needs the system to continue the warm boot with video (the video
should be powered on too). An example of this case would be when a message is
received on a priority address that will cause a notification to be issued.

HRADIO_CONTINUE_VIDEO_OFF

The device service needs the system to continue the warm boot without video (the
video should not be powered on). An example of this case would be when a
broadcast message is received when the system memory buffer is full, so processing
should continue without video so the system buffer can be flushed.

Remarks:

The partial call back function is quite similar to the interrupt service function (ISR) (also
supplied by the driver). However, there are some significant differences as outlined below:

ISR

Partial wakeup call back function

Registered using CardRequestIRQ()

Registered using RegisterWakeup()

Registered for a specified socket and function
pair.

Registered for a driver.

Interrupt condition cleared by “ard Services.

Call back function needs to clear the interrupt
condition.

Return as quickly as possible. If more processing
needed, spawn a thread and return.

Return as quickly as possible, can not spawn a
thread.

Kemnel and file system services available.

No kernel or file system services.

Always called to handle the interrupt from the
radio HW.

Called only if the interrupt causes a system
wakeup (if the system is already up at the time of
the interrupt, only the ISR gets to execute).

Responsible to copy the message from the radio
HW, to analyze it, and to filter it. Can call the MS
supplied functions directly to do these.

Responsible to copy the message from the radio
HW, to analyze it, and to filter it. Can call the MS
supplied functions using special indirection
methods only.

Is a normal user-mode function.

Is a special function that executes in physical
mode and has special restriction on it (e.g., must
be on a page boundary, can not call other
functions, etc.)

WO 99/35778 PCT/US99/00337
48

1.1.8 Sample Code

1.1.8.1 RIO_Init()

HINSTANCE HallLib;

LPHRADIO BLOCK HalMem;

// Since the Register function needs to be located on
// a page boundary, the following pragma assures that.
DWORD CheckAndProcessRadioWakeup (DWORD) ;

#pragma alloc_text (*.wakeup", CheckAndProcessRadioWakeup)

HalLib = LoadDriver (TEXT(“riohal.dll"));
if (HalLib) {
func = GetProcAddress(pRadioCtl->HallLib,
TEXT ("RegisterWakeup")) ;
if (func) {
// Call RegisterWakeup()
HalMem = (LPHRADIO_BLOCK}

(*func)((DWORD)CheckAndProcessRadioWakeup);

1.1.8.2 CheckAndProcessRadioWakeup()

LPBYTE pAddressTag, pGroupTag;
BOOL fDiscard, fGroupFound;
BYTE GroupCode;

char *p, buf(1000];

BYTE bMSgBuf[MAX_MSG_SIZE]:
WORD dwMsgSize;

char address = 1;

// Fill szMsgBuf[] with message data from the Radio HW

WO 99/35778 PCT/US99/00337

. . 49
// do group filterning

fGroupFound = LocateAndCallAnalyzeMessage (bMsgBuf, dwMsgSize,
éfDiscard, &GroupCode) ;
if (fGroupFound) ({
if (fDiscarxd) {
// discard message
return HRADIO NOCONTINUE;
}
// Search driver data structure for group info relating to
// the address this message came on and the group code
// {returned by the AnalyzeMessage{) above
// if GroupCode is not found or it is disabled then
// also discard the message
if (!LocateAndCallFilterMessage (bMsgBuf, dwMsaSize,

Address, GroupCode))

// discard message

return HRADIO NOCONTINUE;

}

// here buffer the message and return HRADIO_NOCONTINUER
// if buffer full then return HRADIO_CONTINUE_VIDEO_OFF
} else {

// treat as a normal page message (cause full wakeup, etc.)
pag g

return HRADIO_CONTINUE_VIDEO_OFF:

1.1.9 Type Definitions

This section defines the types used in the driver API.

1.1.9.1 Basic Types

The following basic types are used:
BYTE Unsigned 8-bit
WORD Signed 16-bit

WO 99/35778

DWORD Signed 32-bit

PCT/US99/00337
50

1.1.9.2 Complex Types (structs)

All structures have the following three fields at the beginning:

WORD wOperationCode

WORD wStructSize

Indicates what operations needs to be performed. This field
also determines the rest of the struct.

Each struct has fixed size fields followed by the length of
the variable fields. The variabie fields follow in the same
order as their lengths. The wStructSize field holds the size
in bytes of the fixed part of the struct (i.e., fixed fields and:
the lengths of the variable fields). This field provides a
versioning method as well and will be used for backward
compatibility in the future releases.

In addition, the variable leng:n fields are grouped towards the end a length field for each one
of them is provided. This allows expanding these structures without losing backward or

forward compatibility.

1.1.9.3 struct HRADIO_REGISTER

This struct is used for registering a wakeup function.

Size Field
2 WOperationCode
2 WStructSize

4 DwMemPtr

1 Device

WORD wOperationCode HAL_IOCTL_CMD_REGISTER_WAKEUP_FUNCTION

WORD wStructSize sizeof(HRADIO_REGISTER)

DWORD dwMemPir Poin‘er to a memory block (RMB). The second DWORD of
this memory block contains a pointer to the function that
will be called by HAL during wakeup to determine if
power on sequence should continue or not.

BYTE Device Device number (This is how HAL distinguishes one

device’s RMB from another).

WO 99/35778 PCT/US99/00337

51
1.1.9.4 struct HRADIO_FLAG

This struct use used for operations on the HAL flags.

Size Field
2 wOperationCode
2 wStructSize
2 wFlag
WORD wOperationCode One for the following values:

HRADIO_CMD_FLAG_SET

HRADIO_CMD_FLAG_CLEAR

HRADIO_CMD_FLAG_GET
WORD wStructSize sizeof(HRADIO_FLAG)

WORD wFlag A code indicating which HAL flags is affected by the
requested operation. Values are:

HRADIO_FLAG_VIDEO STATE
HRADIO_FLAG_SYSTEM_BUSY

1.1.9.5 struct HRADIO_LOCK

This struct use used for operations on locking and unlocking memory.

Size Field

2 wOperationCode

wStructSize

2
4 dwMemPtr
4

dwSize

WORD wOperationCode One for the following values:
HRADIO_CMD LOCKPAGE
HRADIO_CMD UNLOCKPAGE
WORD wStructSize sizeof(HRADIO_LOCK)
DWORD dwMemPtr A virtual pointer to memory to be locked or unlocked.
DWORD dwSize The total number of bytes to be locked or unlocked.

WO 99/35778

PCT/US99/00337

1110 HAL Flags

The following flags form part of the HAL:

Flag

Type

Meaning

HAL_fVideoState | Bool

Set if the video is currently powered on, reset otherwise. Set on cold
boot. (When the flag is set using HRADIO_CMD_FLAG_SET
command, the video is turned ON. When it is reset, the video is
turned off).

HAL_SystemBusy | Counter

This needs to be implemented as a counter (at least one byte). If
non-zero, HAL will trap power off button to prevent system from -
shutting down. HRADIO_CMD_FLAG_SET command increments
the counter, HRADIO_FLAG_CLEAR decrements it. Initialized to
0 on cold boot. ’

1111 HALIOCTL calls

In Windows CE systems, HAL supports IO Control calls to perform operations that are
specific to their hardware. Most OEMs already implement the following IOCTL call for other

services.

Svntax

BOOL OEMIOControl (

DWORD dwCode

PBYTE pBufln

DWORD dwLenlIn

PBYTE pBufOut
DWORD dwLenOut
PDWORD pdwActualOut

Parameters

dwCode

pBufin

dwLenln

pBufOut
dwlLenOut

pdwActualOut

)

Specifies a value indicating the I/0 control operation to perform.
The code used will be IOCTL_HAL_RADIO_CNTRL.

Points to the buffer containing data that is input to the HAL.

Specifies the number of bytes of data in the buffer specified for
pBufin.

Points to the buffer used to transfer the output data.

Specifies the maximum number of bytes in the buffer specified by
pBufOut

Points to DWORD buffer the function uses to return the actual
number of bytes received from the device.

WO 99/35778 PCT/US99/00337

53
Return Value

Returns TRUE if the HAL successfully completed its specified 1/0 control operation,
otherwise it returns FALSE.

11111 HRADIO_CMD_REGISTER

Syntax
HRADIO_REGISTER CmdBuf ;

HANDLE hRegister;

CmdBuf.wStructSize = sizeof (HRADIO REGISTER) ;
CmdBuf .dwOperationCode = HRADIO CMD REGISTER;
CmdBuf .MemPtr = ..; (NULL for deregistefing)
CmdBuf .Device = ..;

BOOL OemIOControl (
DWORD dwCode IOCTL_HAL_RADIO_CNTRL
PBYTE pBufln &CmdBuf
DWORD dwLenIn = sizeof (CmdBuf)
PBYTE pBufOut = &hRegister
DWORD dwLenOut = sizeof (HANDLE)
PDWORD pdwActualOut = &dwWriteBytes
)i

Operation

This call registers a radio memory block (RMB) that contains a pointer to the wakeuf)
function that is called during HAL powei on processing. If the MemPtr member is
NULL then the call does de-regiz. ation.

The output buffer returns a handle to the RMB (address of the HAL data structure
where the device memory block was saved).

Remarks

The function supplied must be statically bound to the driver code and small enough
to fit within a memory page. '

1.1.11.2 HRADIO_CMD_FLAG_xxx

Syntax
HRADIO_FLAG CmdBuf ;

CmdBuf .wStructSize = 8;
CmdBuf .wOperationCode = HRADIO_CMD_FLAG xxx;
CmdBuf .wFlag = ..

PCT/US99/00337

WO 99/35778
54
BOOL OemIOControl (
DWORD dwCode = IOCTL_HAL_RADI O_CNTRL
PBYTE pBufln = &CmdBuf
DWORD dwLenIn = sizeof (CmdBuf)
PBYTE pBufOut = &dwOldFlagValues
DWORD dwLenOut = sizeof (dwOldFlagValues)
PDWORD pdwActualOut = &dwWriteBytes
);
Note: pBufOut, dwLenOut, and pdwActualOut are used for
GET operation only. Set them to NULL for other
operations.
Operation
The operation depends upon the operation code stored in dwOperationCode member
and is described below:
HAL_IOCTL_CMD_SET FLAG
If the indicated flag is a Boolean flag then set it to TRUE. If it is a counter
flag, then increment it.
HAL_IOCTL_CMD_RESET FLAG
If the indicated flag is a Boolean flag then set it to FALSE. If it is a counter
flag and is non-zero, then decrement it.
HAL_IOCTL_CMD_GET FLAG
Value of the indicated flag is returned in ;5 ufOut. For simplicity, the flag
value is always returned as a DWORD (su pBufOut must be large enough to
hold at least one DWORD).
Additional processing for HRADIO FLA G_VIDEO _STATE:
If the flag changes its state because of a set or a reset command, the video
needs to be turned on or off to correctly reflect the new state of this flag. For
example, if the HAL_fVideoState is 0 and a
HAL_IOCTL_CMD_FLAG_SET is issued on this flag, then the video needs
to be turned on. If the flag was already set to 1 (hence the video is already
on}, then this set command will have no effect and there is no need for any
additional processing (the video is already ON).
Remarks

The HAL flags are accessible to the drivers directly (they don’t need to make these
IOCTL calls).

1.1.11.3 HRADIO_CMD_LOCKPAGE

Svyntax

PCT/US99/00337

W0 99/35778
55

HRADIO_LOCK CmdBuf;

CmdBuf .wStructSize = 12;

CmdBuf .wOperationCode = HRADIO_CMD_LOCKPAGE;

CmdBuf .dwMemPtr = &buf;

CmdBuf.dwSize = sizeof (buf) ;

BOOL OemIOControl (
DWORD dwCode = IOCTL_HAL RADIO CNTRL
PBYTE pBuflIn = &CmdBuf
DWORD dwLenIn = sizeof (CmdBuf)
PBYTE pBufOut = PHYSICAL ADDRESS OF LOCKED PAGE
DWORD dwLenOut = sizeof (DWORD) ;
PDWORD pdwActualOut = &dwWriteBytes
)Y)

Operation

This operation locks down the memory pointed to my dwMemPtr. The number of
pages locked will be determined by the page size and the value of dwSize. The value
returned will be the physical address of the first byte pointed to dwMemPtr. This
value will normally be adjusted to be not cached and accessible at initial power on.

11114 HRADIO_CMD_UNLOCKPAGE

Syntax
HRADIO_LOCK CmdBuf;

CmdBuf .wStrn~tSize = 12;

CmdBuf . wOperationCode = HRADIO_CMD_UNLOCKPAGE:

k]

CmdBuf .dwMemPtr = previous value returned from
HRADIO_CMD_LOCKPAGE;

CmdBuf .dwSize = previous value used with
HRADIO CMD LOCKPAGE;

BOOL OemIOControl (
DWORD dwCode = IOCTL_HAL_RADIO CNTRL
PBYTE pBufIn &CmdBuf
DWORD dwLenIn = sizeof (CmdBuf)
PBYTE pBufOut = NULL (not used)
DWORD dwLenOut = 0 (not used)
PDWORD pdwActualOut = &dwWriteBytes
)

Operation

WO 99/35778 PCT/US99/00337

56
This operation unlocks the memory pointed to my dwMemPtr. The number of pages
unlocked will be determined by the page size and the value of dwSize. This function
is used to unlock previously locked memory.

1112 HALLCD Changes

The LCD initialization code needs to check the wakeup source and determine if the LCD

should be turned on or not. If HAL_fVideoRequest flag is implemented, then the processing
would be as follows:

if (HAL_fVideoRequest) {

Continue normal initialization sequence (the LCD is
turned on).

“} else {

Continue initialization sequence without actually
powering on the LCD.

The LCD code also needs to correctly set HAL_fVideoState flag: TRUE when the LCD is
powered ON, and FALSE when it is not.

1.1.13 HAL Touch Screen Considerations

If the touch screen can not be turned of when the video is turned off, then the touch interrupt
should be ignored if the video is currently off (ie, HAL_fVideoState == FALSE). For devices
that support the touch screen to turn on the device, then the video should be turned on, and
the touch interrupt event should be discarded. This can be done by the following code:

if (HAL_fvideoState == FALSE)
HRADIO FLAG CmdBuf;
CmdBuf.wStructSize = sizeof (HRADIO FLAG) ;
CmdBuf .wOperationCode =HRADIO_CMD_FLAG_SET;

CmdBuf .wFlag = HRADIO_FLAG_VIDEO STATE;

OemIOControl (IOCTL_HAL__RADIO_CNTRL ,
&CmdBuf, sizeof (CmdBuf)
NULL, 0O
pdwActualOut = &dwWriteBytes
)i

}

Note that above is just an example code that uses an HAL IOCTL to turn on the video. It is
possible that the code to turn on video is trivial (or is available as function) in which case that
code can be used directly. No matter how this is done, care must be taken to ensure that
HAL_fVideoState correctly reflects the true state of the video (ON=1 or OFF=0).

WO 99/35778 PCT/US99/00337

: .57
1.1.14 HAL Keyboard Considerations

I. When the HAL detects a key, it also néeds to check HAL_fVideoState and if it is not set
(i.e., video is currently not on) then it needs to turn on the video using the HAL IOCTL
call (same code as in touch driver) and eats the key.

2. Anadditional change is required to implement the delayed power off feature. On every
power off key press, do the following

if (HAL SystemBusy &&
(KeyPressed == KEY POWER _OFF)) {

Turn video off and ignore the key
//see 1.1.13 for the sample code and

//comment about HAL fVideoState

1115 OOM system Considerations

The OOM (out of memory message) code needs to check HAL_fVideoState and if it is not set
(i.e., video is currently not on) then it needs to turn on the video using the HAL JOCTL call.
It also needs to clear the HAL_SystemBusy flag.

Sample Code:

HRADIO_ FLAG CmdBuf;

CmdBuf.wStructSize = sizoef (HRADTN. TLAG);
CmdBuf .wOperationCode = HRADIO _CMD_FLAG SET;

CmdBuf.wFlag = HRADIO_ FLAG_VIDEO STATE;

OemIOControl (
IOCTL_HAL_RADIO CNTRL, // DWORD dwCode
&CmdBuf, // PBYTE pBufin
sizeof (CmdBuf), // DWORD dwLenIn
NULL, // PBYTE pBufOut
o, // DWORD dwLenOut
&dwWriteBytes // PDWORD pdwActualOut

)i
CmdBuf .wFlag = HRADIO FLAG_SYSTEM BUSY;

DWORD dwValue;

while (1)

PCT/US99/00337

WO0.99/35778
58
// get the value of SystemBusy counter
CmdBuf .wOperationCode = HRADIO_CMD_GET;
if (OemIOControl -
IOCTL_HAL_ RADIO_CNTRL, // DWORD dwCode
&CmdBuf, // PBYTE pBufiln
sizeof (CmdBuf), // DWORD dwLenIn
&dwValue // PBYTE pBufout
sizeof (dwValue), // DWORD dwLenOut
&dwWriteBytes // PDWORD pdwActualOut
) {
if (dwvValue == 0) {
break; // we are done
}
// decrement SystemBusy counter
CmdBuf.dwOperationCode = HRADIO _CMD_CLEAR;
if (!0emIOControl (
IOCTL_HAL RADIO CNTRL, // DWORD dwCode
&CmdBuf, // PBYTE pBufIn
sizeof (CmdBuf) , // DWORD dwLeniIn
NULL, // PBYTE pBufOut
0, // DWORD dwLenOut
&dwWriteBytes // PDWORD pdwActualOut
) {
break;
}
}
}

1116 OEM_Idle() Considerations

OEM_Idle() is called by the Windows CE kernel when there are no more threads or tasks to
execute. This function is expected to do a timeout (typically 1 — 5 minutes) and if no system
activity is detected. the system is shutdown.

To implement the immediate shutdown feature, this function should check HA L_fVideoState
flag. If it is clear (Video is off) then it does not need to do the idle timeout and should
shutdown the system immediately.

WO 99/35778 PCT/US99/00337
59

1147 Sample Code

1.1.17.1 HALIOCTL Implementation

BOOL OEMIoControl(DWORD dwloControlCode, LPVOID IpInBuf, DWORD nInBufSize
LPVOID IpOutBuf, DWORD nOutBufSize, LPDWORD IpBytesReturned) {
BOOL retval = FALSE;
DWORD len;
DWORD PhysAddr, value;
PHRADIO_LOCK pHalLock;
LPHRADIO_REGISTER pHalReg;
LPHRADIO_FLAG pHalFlag;

2

switch (dwloControlCode) {
case IOCTL_HAL_RADIO_CNTRL:
if (nInBufSize < sizeof(WORD)) {
SetLastError(ERROR_INVALID_PARAMETER);
break;
}
switch (*(LPWORD)lpInBuf) {
case HRADIO_CMD_LOCKPAGE:
if (nInBufSize <sizeof(HRADIO LOCK)) {
SetLastError(ERROR_INSUFFICIENT BUFFER);
break;
}
pHalLock = (LPHRADIO_LOCK)lpInBuf;
if (LockPages((LPVOID)pHalLock->dwMemPtr, 1, &PhysAddr, 2)) {
memcepy(IpOutBuf, &PhysAddr, sizeof(DWORD));
retval = TRUE;

S
}

break;

case HRADIO_CMD_REGISTER:
if (nInBufSize <sizeof HRADIO_REGISTER)) {
SeILaSlError(ERROR__lNSUFFICIEN'I‘_BUFFER);

WO 99/35778 PCT/US99/060337

60
break;

}

pHalReg = (LPHRADIO_REGISTER)lpInBuf;

if (pHalReg->Device != 1 && pHalReg->Device !=2) {
SetLastError(ERROR_BAD_DEVICE);
break;

if (pHalReg->Device == 1) { .
REG32(OEM_BASE+RADIO!) = UnMapPtr(pHalReg->dwMemPtr);
} else {
REG32(OEM_PASE+RADIQ2) = UnMapPtr(pHalReg->dwMemPtr);
}
if (\pHalReg->dwMemPtr) {
retval = TRUE;

break;

if (nOutBufSize < sizeof DWORD)) {
SetLastError(ERROR_INSUFFICIENT_BUFFER};
break;

PhysAddr = pHalReg->Device == 1 2 (OEM_BASE+RADIOI) :
(OEM_BASE+RADIO2);

memcepy(IpOutBuf, &PhysAddr. sizeoff DWORD));
retval = TRUE;

break;

case HRADIO_CMD_FLAG_SET:
if (nInBufSize < sizeof(HRADIO_FLAG)) ¢
SetLastError(ERROR_INSUFFICIENT _BUFFER)
break;

1
pHalFiag = (LPHRADIO_FLAG)lpInBuf:

3

WO 99/35778

61
switch (pHalFlag->wFlag) {
case HRADIO_FLAG_VIDEO_STATE:
VideoOff();

break;

case HRADIO_FLAG_SYSTEM_BUSY:
// need to increment because multiple devices
++REG32(OEM_BASE+RADIO_BUSY);
break;
}
retval = TRUE;
break;

case HRADIO_CMD_FLAG_CLEAR:
if (nInBufSize < sizeof(HRADIO_FLAG)) {
SetLastErrorERROR_INSUFFICIENT_BUFFER);
break;
}
pHalFlag = (LPHRADIO_FLAG)IpInBuf;
switch (pHalFlag->wFlag) {
case HRADIO_FLAG_VIDEO_STATE:
VideoOn();
break;

case HRADIO_FLAG_SYSTEM_BUSY:
// need to increment because multiple devices
if (REG32(OEM_BASE+RADIO_BUSY)) {
--REG32(OEM_BASE+RADIO_BUSY);

}
break;

}

retval = TRUE;

break;

case HRADIO_CMD_FLAG_GET:
if (nInBufSize <sizecof(HRADIO_FLAG)) {

PCT/US99/00337

$99/00337
WO .99/35778 62 PCT/U

SetLastError(ERROR_INSUFFICIENT_BUFFER);
break;
}
if (nOutBufSize < sizeof(DWORD)) {
SetLastError(ERROR_INSUFFICIENT _BUFFER);
break;
}
pHalFlag = (LPHRADIO_FLAG)lpInBuf;
value = 0;
switch (pHalFlag->wFlag) {
case HRADIO_FLAG_VIDEO STATE:
value = (DWORD)REG8(OEM_BASE+VIDEO_OFF);
break;

case HRADIO_FLAG_SYSTEM_BUSY:
value = REG32(OEM_BASE+RADIO_BUSY);
break;
}
memcpy(IpOutBuf, &value, sizeof(DWORD));
retval = TRUE;
break;
}
break;
default:
Setl.astError(ERROR_NOT_SUPPORTED);
break;

}

return retval,

——

1.1.17.2 HAL PowerOn Implementation

OEMPowerOn()

if (WakeupSource()==CompactFlash_RI) {
ret = HRADIO_CONTINUE_VIDEO_ON;

PCT/US99/00337
WO 99/35778 63

if (RadioWakeupFunction = NULL) {
ret = RadioWakeupFunction(HalControlBlock);

} .

if (ret == HRADIO_CONTINUE_VIDEO_ON) {
Videolnit(FALSE);

} else

if (ret==HRADIO_CONTINUE_VIDEQ_OFF) {
Vidoelnit(TRUE);

} else

GotToSleep();

11173 HAL Changes for LCD

Videolnit(BOOL KeepVideoOff);
VideoOn();
VideoOff{);

1.1.17.4 HAL Considerations for Keyboard

/* system already running *./
if (DWORD)REG8(OEM_BASE+VIDEO_OFF)) {
if (IsWakeupKey(key)) {
Video(on);
}
IgnoreKey();
}
if (IsPowerDownKey(key)) {
if (REG32(OEM_BASE+RADIO_BUSY)) {
VideoOff();
IgnoreKey();
} else ProcessKey():
}

11175 HAL Considerations for Touch Screen

Same logic as keyboard changes described above.

WO 99/35778 " PCT/US99/00337

1.1.17.6 HAL Considerations for OEM_ldle()

if VideoOff ()
GoToSleep();

WO 99/35778 PCT/US99/00337

65
WHAT IS CLAIMED IS:
1. A computer implemented method for receiving

wireless information on a portable computing device,
the method comprising:
receiving an information packet comprising a
first portion having topic information
indicative of content in a second portion of
the information packet;
comparing the first portion of the information
packet to content filter data stored on the
portable computing device; and
forwarding at least the second portion of the
information packet to another component of
the portable computing device if the first
portion matches any of the content filter
data.
2. The method of claim 1 and further comprising:
discarding the information packet if the first
portion does not match any of the content
filter data.
3. The method of claim 1 wherein the step of
receiving includes receiving the information packet on
a selected address, and wherein the step of comparing
includes comparing the first portion of the
information packet to the content filter data as a
function of the address.
4. The method of claim 3. wherein the information
packet includes a wireless address and the step of
comparing includes comparing the first portion of the
information packet to the content filter data as a
function of the wireless address.
5. The method of claim 3 wherein the information
packet includes a group address and the step of

comparing includes comparing the first portion of the

WO 99/35778 PCT/US99/00337
66

information packet to the content filter data as a 7
function of the group address.
6. The method of claim 3 wherein the content filter
data comprises a plurality of data tables, each data
table being associated with a selected address.
7. The method of claim 6 wherein each data table
includes representations of at least one of a single,
set or range of user preferences for filtering.
8. The method of claim 6 wherein each data table
comprises information stored pursuant to a hashing
function.
9. The method of claim 7 wherein each data table
comprises a bit-array, wherein a status of each bit
indicates a user preference for a selected type of
information, and wherein the hashing function
generates an offset value, and wherein the step of
comparing includes:
operating the hashing function upon the first
portion to generate the offset value; and
checking the status of the bit in the bit-array
as a function of the offset value.
10. The method of claim 3 wherein the content filter
data includes additional information stored as a
function of the address.
11. The method of claim 10 and further comprising:
filtering the second portion as a function of the
additional information.
12. A computer readable medium including instructions
readable by a computer of a portable computing device
which, when implemented, cause the computer to handle
information by performing steps comprising:
receiving an information packet comprising a
first portion having topic information

indicative of content in a second portion of

WO 99/35778 PCT/US99/00337
67

the information packet;
comparing the first portion of the information
packet to content filter data stored on the
portable computing device; and
forwarding at least the second portion of the
information packet to another component of
the portable computing device if the first
portion matches any of the content filter
data.
13. The computer readable medium of claim 12
including instructions readable by a computer which,
when implemented, «cause the computer to handle
information by performing a step comprising:
discarding the information packet if the first
portion does not match any of the content
filter data.
14. The computer readable medium of claim 12 wherein
the step of receiving includes receiving the
information packet on a selected address, and wherein
the step of comparing includes comparing the first
portion of the information packet to the content
filter data as a function of the address.
15. The computer readable medium of claim 14 wherein
the information packet includes a wireless address and
the step of comparing includes comparing the first
portion of the information packet to the content
filter data as a function of the wireless address.
16. The computer readable medium of claim 14 wherein
the information packet includes a group address and
the step of comparing includes comparing the first
portion of the information packet to the content
filter data as a function of the group address.
17. The computer readable medium of claim 14 wherein
the content filter data comprises a plurality of data

WO 99/35778 PCT/US99/00337
' 68

tables, each data table being associated with a
selected address.
18. The computer readable medium of claim 17 wherein
each data table includes representations of at least
one of a single, set or range of user preferences for
filtering. ,
19. The computer readable medium of claim 17 wherein
each data table comprises information stored pursuant
to a hashing function.
20. The computer readable medium of claim 18 wherein
each data table comprises a bit-array, wherein a
status of each bit indicates a user preference for a
selected type of information, and wherein the hashing
function generates an offset value, and wherein the
step of comparing includes:
operating the hashing function upon the first
portion to generate the offset value; and
checking the status of the bit in the bit-array
as a function of the offset value.
21. The computer readable medium of claim 14 wherein
the content filter data includes additional
information stored as a function of the address.
22. The computer readable medium of claim 21
including instructions readable by a computer which,
when implemented, cause the computer to handle
information by performing a step comprising:
filtering the second portion as a function of the
additional information.
23. A portable computing device for receiving
wireless information packets, each information packet
comprising a first portion having topic information
indicative of content in a second portion of the
information packet, the portable computing device

comprising:

WO 99/35778 PCT/US99/00337
' 69

a wireless receiver capable of receiving wireless
information packets;
memory storing content filter data; and
a module operable with the wireless receiver to
receive the wireless information packet, the
module comparing the first portion with the
content filter data to ascertain if the
information packet is to be discarded.
24. The portable computing device of claim 23 wherein
information packet includes address, and wherein the
module compares the first portion of the information
packet to the content filter data as a function of the
address.
25. The portable computing device of claim 24 wherein
the content filter data comprises a plurality of data
tables, each data table being associated with a
selected address.
26. The portable vomputing device of claim 25 wherein
each data table includes representations of at least
one of a single, set or range of user preferences.
27. The portable computing device of claim 25 wherein
each data table comprises information stored pursuant
to a hashing function.
28. The portable computing device of claim 26 wherein
each data table comprises a bit-array, wherein a
status of each bit indicates a user preference for a
selected type of information, and wherein the module
operates a hashing function upon the first portion to
generate an offset value, and checks the status of the
bit in the bit-array as a function of the offset
value.
29. The portable computing device of claim 25 wherein
the content filter data includes additional

information stored as a function of the address.

WO 99/35778 PCT/US99/00337
) 70

30. The portable computing device of claim 29 wherein
the module filters the second portion as a function of
the additional information.

31. A computer readable medium for storing a data
structure for a portable computing device receiving
information according to addresses, the data structure
operable with a module of the portable computing
device for processing the information, the data
structure comprising:

a plurality of data tables, each data table
associated with an address for receiving
information and storing representations of
user preferences of desired information.

32. The computer readable medium of claim 31 wherein
each data table includes representations of at least
one of a single, set or range of user preferences.

33. The computer readable medium of claim 32 wherein
each data table comprises information stored pursuant
to a hashing function.

34. The computer readable medium of claim 33 wherein
each data table comprises a bit-array, wherein a
status of each bit indicates a user preference for a
selected type of information.

35. The computer readable medium of claim 31 wherein
the each data table includes associated additional
information stored as a function of the address.

36. An information packet for transmitting
information to a portable computing device, the
information packet comprising:

a first portion comprising data information; and

a second portion comprising selected topic
information indicative of the first portion.

37. The information packet of claim 36 and further
comprising:

WO 99/35778 PCT/US99/00337
' 71

a third portion indicative of an address.
38. The information packet of claim 37 wherein the
address comprises a wireless address, and wherein the
information packet further includes a fourth portion
indicative of a group address.
39. A computer implemented method for obtaining
content filter data on a portable computing device
used for processing wireless information, the method
comprising:
receiving user preferences indicative of desired
content information;
organizing the user preferences as a function of
addresses operable with the portable
computing device, the addresses being used
to transmit corresponding information to the
portable computing device; and
storing the user preferences as a function of the
associated addresses in a computer readable
medium of the portable computing device, the
computer readable medium being accessible by
a filtering module for processing received
wireless information.
40. The method of claim 39 wherein the step of
organizing comprises:
creating at least one data table as a function of
one of the addresses operable with the
portable computing device.
41. The method of claim 40 wherein the data table
includes representations of at least one of a single,
set or range of user preferences.
42. The method of claim 41 wherein the step of
storing comprises storing user preferences pursuant to
a hashing function.

43. The method of claim 42 wherein each data table

WO 99/35778 PCT/US99/00337
' 7

comprises a bit-array, wherein a status of each bit
indicates a user preference for a selected type of
information, and wherein the hashing function
generates an offset value for the bit-array.

44. The method of claim 39 and further comprising

storing additional information as a function of the
addresses.

PCT/US99/00337

WO0_99/35778

7///

€l
H3dINOYd
30dNOS
NOILLVIWHOANI

[

>

14"

1HOdSNVHL
SSITIHIM

ﬁ

A A

I "©ld

4%

dO1XS3a

» H31NdWNOD [¢& — — —Pp

8l JHO1S
103rd0

4
g91
HIM3IIA
IN3LINOD —

Vol Wid

ol
JIIA3A 31190

9l

SUBSTITUTE SHEET (RULE 26)

WO 99/35778

4/

-

10

PCT/US99/00337

22
20 28
\ / MEMORY 30
PROCESSOR /
T os 11 18
-
24 = | aeps)
\ 18
1o
OBJECT /
5 STORE [T
26 31
DESKTOP
COMPUTER |,
COMMUNICATION 4 WIRELESS
INTERFACE RECEIVER
B
POWER | —35
SUPPLY
BATTERY T ~37
A
EXTERNAL 41
power |~
FlG 2 SOURCE

SUBSTITUTE SHEET (RULE 26)

WO 99/35778 PCT/US99/00337

3/17

- =
e B

N Y,

_
COCOCCOCOCOC O OO
COCOCOCO OO OO -
OO O

V4

FIG. 3 36

SUBSTITUTE SHEET (RULE 26)

WO 99/35778 PCT/US99/00337

4/17

10

34

42

()

3 o

FIG. 4

36 38

SUBSTITUTE SHEET (RULE 26)

WO . 99/35778

/77

PCT/US99/00337

I T3
& | § -
7 89 o
WS — ¥ITI0¥INOD WS e
S LdNYYILNI S0
[0/
o
99
¥ITI08INOD [©
JOVANILNI
11

r=————1"-

[I

1| & o |

1 198 x &

| 3] S s3 |1

| | O < I

Y

| o

[I

Bl |

| |

| 04 '

B |

| |ew |

@)

I i |

| |

L= |

31

SUBSTITUTE SHEET (RULE 26)

FIG. 5

WO 99/35778

/1!

PCT/US99/00337

88

A

WAIT FOR INFORMATION
TO BE TRANSMITTED

Y

RECEIVE INFORMATION

A 4

82 80
s/
84
-/
86

DOES INFORMATION NEED
TO BE PROCESSED
BY MOBILE DEVICE 10?

-/

NO

l

YES

90

WIRELESS RECEIVER 27
PROCESSES OR
DISCARDS INFORMATION

DOES INFORMATION
NEED USER INTERACTION?

P

NO

YES

92

e

COMPLETE WAKE-UP OF
MOBILE DEVICE 10

PARTIAL WAKE-UP OF
MOBILE DEVICE 10.
PROCESSOR 20 PROCESSES
INFORMATION AND
TO SUSPEND MODE.

94

|

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US99/00337

WO 99/35778

7/17

[4A

£¢30VdS

81 3HOI1S
103rg0

¥344ng

L Ol

viva ¥3ddng
HO $S300Ud

L

a v1va ¥344n8
A
ch\

avl

-/

440 NA3YOS H1IM

NO 43aIMOd

¥344ng !
v aaAral N\ AHOW3IW NI
- ozl viva Ly
w344n8
INILNOY ONINIL4Ng NEL auvosia

H3AINA 301A3a \

I 12134

"

// . 804

ve vIJ
NOLLONN
SaVOT1 ¥3AV] | savor J savo i Drewpirks
NOILOVALSEY FUVMAXVH RENREN ¥3AA 30IA3A BN
oNmaLIE|),
N ons oz J
¥OL
NOLLYWYONI /
Fuols ¢SSIHAQV ¥INFOTY
A SININOJWOQ SST1IUIM
J N
901
OILLYWHOSNI
3OIN3A ¥IMOJ LAHOWIN N w_m.m._mm;w’
LEN HONON3 aNAOSNI
QuvosIa

/ Zot

SUBSTITUTE SHEET (RULE 26)

WO 99/35778 PCT/US99/00337

8/
160
GROUP
RADIO TOPIC
TRANSPORT :;E'EERREIEISG FILTERING HE/(\)I;J;IIRN%S DATA 170
HEADER 162 | [TERING | ByTes 166
' PACKET
—— PACKET HEADER ana DATA

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO0_99/35778

/ 208

911

[209

APPLICATION

MODULE

APPLICATION
MODULE

/18

STORE

ROUTING
MODULE

212
v

PCT/US99/00337
[210
APPLICATION
MODULE
228) 244 >
USER
" INTERFACE re» MEMORY
MODULE

TOPIC
FILTER
MODULE

Y
y

DEVICE
DRIVER
200
A
27
INCOMING WIRELESS /
MESSAGE RECEIVER

232A

270A ~

232D

270D ~

CONTENT FILTER DATA

2328 \

2708

232C

270C

206

SUBSTITUTE SHEET (RULE 26)

...

WO 99/35778

220

10/77

OBTAIN USER
PREFERENCES OF
CONTENT FOR
FILTERING

l

CREATE
CONTENT FILTER DATA
OF USER

PREFERENCES -

l

STORE CONTENT FILTER
DATA IN MEMORY
ACCESSIBLE BY DEVICE
DRIVER

PCT/US99/00337

222

230

236

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 99/35778 PCT/US99/00337

v

250

\, 252
RECEIVE MESSAGE -/

v 254

DOES MESSAGE CONTAIN /

TOPIC FILTER BYTES?

YES l
258

NO DO TOPIC FILTER BYTES /
COMPARE WITH CONTENT

FILTER DATA?

YES NO
A4
PASS MESSAGE TO HIGHER
LEVEL MODULES OR M'E%Jgng
STORE

\ k— 260
256

FIG. 11

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

