PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/18410
06F 9/44 Al

G (43) International Publication Date: 6 July 1995 (06.07.95)

(21) International Application Number: PCT/US94/10195 | (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,

(22) International Filing Date: 12 September 1994 (12.09.94)

(30) Priority Data:
08/175,851 30 December 1993 (30.12.93) US

(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventors: ORTON, Debra, L.; 972 Nantucket Court, San Jose,
CA 95126 (US). ROLLIN, Keith, A.; 1599 Meadowlark
Lane, Sunnyvale, CA 94087 (US). GIBBONS, Bill; 24737
Prospect Avenue, Los Altos Hills, CA 95022 (US).

(74) Agent: STEPHENS, L., Keith; Taligent, Inc., 10201 N. De
Anza Boulevard, Cupertino, CA 95014 (US).

CZ, DE, DK, ES, Hl, GB, HU, JP, KP, KR, KZ, LK, LU,
LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published
With international search report.

(54) Title: OBJECT-ORIENTED INVOCATION FRAMEWORK

(57) Abstract

A view system is disclosed which provides support polymorphic initialization START 1000
and finalization of objects. This mechanism is used by the view system to support
virtual method invocation at construction/destruction time for objects that require the /- 1002

needed behavior. The C++ language does not support the invocation of virtual methods
from within the constructor/destructor of a given object. The view system provides a
mechanism whereby an initialization method is invoked after the object construction is

Call View Constructor /

completed, but before any methods are invoked on the constructed object. A similar L~ 1004

mechanism is used to invoke a virtual finalization method before the object destruction Call View Intialze o]
is started. This mechanism is not view system-specific, but is provided and used by the

view system to support such behavior.

1005
install View in Framework /_
Hiel

rarchy

O User Quits Application

/_— 1008
Remove View From Hierarchy 1~

Call View Finalize

]

/" 1008

y

Call View Destructor {

1010
FINISH

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
BY
CA
CF

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-1-
OBJECT-ORIENTED INVOCATION FRAMEWORK

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are subject to
copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document, or the patent disclosure, as it
appears in the Patent and Trademark Office.)

CROSS REFERENCE TO RELATED PATENT APPLICATIONS
This patent application is related to the patent application entitled Object
Oriented Area System, by Richard Daniel Webb et al. filed 6/20/93, and assigned
to Taligent, the disclosure of which is hereby incorporated by reference.

Field of the Invention
This invention generally relates to improvements in computer systems
and, more particularly, to operating system software for managing drawing
areas, called views, inside of a window display area in a graphic user interface.

Background of the Invention

One of the most important aspects of a modern computing system is the
interface between the human user and the machine. The earliest and most
popular type of interface was text based; a user communicated with the machine
by typing text characters on a keyboard and the machine communicated with
the user by displaying text characters on a display screen. More recently, graphic
user interfaces have become popular where the machine communicates with a
user by displaying graphics, including text and pictures, on a display screen and
the user communicates with the machine both by typing in textual commands
and by manipulating the displayed pictures with a pointing device, such as a
mouse.

Many modern computer systems operate with a graphic user interface
called a window environment. In a typical window environment, the graphical
display portrayed on the display screen is arranged to resemble the surface of an
electronic "desktop" and each application program running on the computer is
represented as one or more electronic "paper sheets" displayed in rectangular
regions of the screen called "windows".

Each window region generally displays information which is generated
by the associated application program and there may be several window regions

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
2-

simultaneously present on the desktop, each representing information
generated by a different application program. An application program presents
information to the user through each window by drawing or "painting” images,
graphics or text within the window region. The user, in turn, communicates
with the application by "pointing at" objects in the window region with a cursor
which is controlled by a pointing device and manipulating or moving the
objects and also by typing information into the keyboard. The window regions
may also be moved around on the display screen and changed in size and
appearance so that the user can arrange the desktop in a convenient manner.

Each of the window regions also typically includes a number of standard
graphical objects such as sizing boxes, buttons and scroll bars. These features
represent user interface devices that the user can point at with the cursor to
select and manipulate. When the devices are selected or manipulated, the
underlying application program is informed, via the window system, that the
control has been manipulated by the user.

In general, the window environment described above is part of the
computer operating system. The operating system also typically includes a
collection of utility programs that enable the computer system to perform basic
operations, such as storing and retrieving information on a disc memory and
performing file operations including the creation, naming and renaming of
files and, in some cases, performing diagnostic operations in order to discover
or recover from malfunctions.

The last part of the computing system is the "application program" which
interacts with the operating system to provide much higher level functionality,
perform a specific task and provide a direct interface with the user. The
application program typically makes use of operating system functions by
sending out series of task commands to the operating system which then
performs a requested task, for example, the application program may request
that the operating system store particular information on the computer disc
memory or display information on the video display.

Figure 1 is a schematic illustration of a typical prior art computer system
utilizing both an application program and an operating system. The computer
system is schematically represented by box 100, the application is represented by
box 102 and the operating system by box 106. The previously-described
interaction between the application program 102 and the operating system 106 is
illustrated schematically by arrow 104. This dual program system is used on
many types of computer systems ranging from main frames to personal
computers.

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-3-

The method for handling drawing to screen displays varies from
computer to computer and, in this regard, Figure 1 represents a prior art
personal computer system. In order to provide drawing to screen displays,
application program 102 generally stores information to be displayed (the
storing operation is shown schematically by arrow 108) into a screen buffer 110.
Under control of various hardware and software in the system the contents of
the screen buffer 110 are read out of the buffer and provided, as indicated
schematically by arrow 114, to a display adapter 112. The display adapter 112
contains hardware and software (sometimes in the form of firmware) which
converts the information in screen buffer 110 to a form which can be used to
drive the display monitor 118 which is connected to display adapter 112 by cable
116.

The prior art configuration shown in Figure 1 generally works well in a
system where a single application program with a single thread of execution 102
is running at any given time. This simple system works properly because the
single application program thread 102 can write information into any area of
the entire screen buffer area 110 without causing a display problem. However, if
the configuration shown in Figure 1 is used in a computer system where more
than one application program, or more than one thread of execution in that
application pfogram 102 can be operational at the same time (for example, a
"multitasking" computer system) display problems can arise. More particularly,
if each thread in each application program has access to the entire screen buffer
110, in the absence of some direct communication between threads and
applications, one thread may overwrite a portion of the screen buffer which is
being used by another thread, thereby causing the display generated by one
thread to be overwritten by the display generated by the other thread.

Accordingly, mechanisms were developed to coordinate the operation of
the applications as well as the threads of execution within the applications to
ensure that each application thread was confined to only a portion of the screen
buffer thereby separating the other displays. This coordination became
complicated in systems where multiple "windows" with multiple threads
drawing to those windows were allowed. The problem was divided into two
pieces: Managing the windows and their display area (application programs)
and managing the threads of execution within those applications. The Window
Manager handles coordination between applications and their windows. The
View System handles coordination of threads within the applications and their
window(s). Each window is subdivided in a hierarchy of drawing areas called

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-4-

"views" which are associated with specific threads of execution within a given
application program.

When the application window is arranged so that views appear to
"overlap", a view which appears in the window in "front" of another view
covers and obscures part of the underlying view. Thus, except for the foremost
view, only part of the underlying views may be drawn on the screen and be
"visible" at any given time. Further, because the view can be moved or resized
by the user, the portion of each view which is visible changes as other views are
added, removed, moved or resized. Thus, the portion of the window which is
assigned to each thread also changes as views from other threads are added,
removed, moved or resized.

In order to efficiently manage the changes to the window necessary to
accommodate rapid screen changes caused by moving or resizing views, the
prior art computer arrangement shown in Figure 1 was modified as shown in
Figure 2. In this new arrangement computer system 200 is controlled by one or
more application programs, comprised of one or more threads of execution, of
which threads 202 and 216 are shown, and which may be running
simultaneously in the computer system. Each of the threads interfaces with the
operating system 204 as illustrated schematically by arrows 206 and 220.
However, in order to display information on the display screen, application
threads 202 and 216 send display information to a central View System 218
located in the application program 204. The view system 218, in turn, interfaces
directly with the screen buffer 210 as illustrated schematically by arrow 208. The
contents of screen buffer 210 are provided, as indicated by arrow 212, to a display
adapter 214 which is connected by a cable 222 to a display monitor 224.

In such a system, the view system 218 is generally responsible for
maintaining all of the display contents that the user sees within a window
during operation of the application programs. Since the view system 218 is in
communication with all the treads within an application , it can coordinate
between threads to insure that view displays do not overlap. Consequently, it is
generally the task of the view system to keep track of the location and size of the
view and the view areas which must be drawn and redrawn as views and
windows are moved.

The view system 218 receives display requests from each of the
application threads 202 and 216. However, since only the view system 218
interfaces with the screen buffer 210, it can allocate respective areas of the screen
buffer 210 for each application and insure that no thread erroneously overwrites
the display generated by another thread. There are a number of different

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-5.

window environments commercially available which utilize the arrangement
illustrated in Figure 2. These include the X/Window Operating environment,
the WINDOWS: graphical user interface developed by the Microsoft
Corporation and the OS/2 Presentation Manager: developed by the
International Business Machines Corporation.

Each of these window environments has its own internal software
architecture, but the architectures can all be classified by using a multi-layer
model similar to the multi-layer models used to described computer network
software. A typical multi-layer model includes the following layers:

User Interface

Window Manager

Resource Control and Communication

Component Driver Software

Computer Hardware
where the term "window environment" refers to all of the above layers taken
together.

The lowest or computer hardware level includes the basic computer and
associated input and output devices including display monitors, keyboards,
pointing devices, such as mice or trackballs, and other standard components,
including printers and disc drives. The next or "component driver software"
level consists of device-dependent software that generates the commands and
signals necessary to operate the various hardware components. The resource
control and communication layer interfaces with the component drivers and
includes software routines which allocate resources, communicate between
applications and multiplex communications generated by the higher layers to
the underlying layers. The view system handles the user interface to basic
drawing operations, such as moving and resizing views, activating or
inactivating views and redrawing and repainting views. The final user
interface layer provides high level facilities that implement the various
controls (buttons, sliders, boxes and other controls) that application programs
use to develop a complete user interface.

Although the érrangement shown in Figure 2 solves the display screen
interference problem, it suffers from the drawback that the view system 218
must pr,ocess; the screen display requests generated by all of the application
threads. Since the requests can only be processed serially, the requests are
queued for presentation to the view system before each request is processed to
generate a display on terminal 224. In a display where many views are present
simultaneously on the screen, the view system 218 can easily become a

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-6-

"bottleneck" for display information and prevent rapid changes of the display by
the application threads 202 and 216. A delay in the redrawing of the screen
when views are moved or repositioned by the user often manifests itself by the
appearance that the views and windows are being constructed in a piecemeal
fashion which becomes annoying and detracts from the operation of the system.

Accordingly, it is an object of the present invention to provide a view
system which can interface with application threads in such a manner that the
screen display generated by each application thread can be quickly and
effectively redrawn.

It is another object of the presenf invention to provide a view system
which coordinates the display generation for all of the application threads in
order to prevent the applications from interfering with each other or
overwriting each other on the screen display.

It is yet another object of the present invention to provide a view system
which can interact with the application threads by means of a simple command
structure without the application threads being concerned with actual
implementation details.

It is yet another object of the present invention to provide a view system
which allows application developers who need detailed control over the screen
display process to achieve this control by means of a full set of display control
commands which are available, but need not be used by each application thread.

It is yet another object of the present invention to provide a view system
which provides application developers with a powerful and flexible drawing
environment which includes a virtual coordinate space, arbitrarily shaped
views (and windows) and up-to-date drawing state information to facilitate '
rapid, accurate drawing from multiple threads of execution.

It is yet another object of the present invention to provide a view system
which provides application developers with an automatic system for keeping
the display buffer up-to-date.

Summary of the Invention

The foregoing problems are overcome and the foregoing objects are
achieved in an illustrative embodiment of the invention in which an object-
oriented viewing framework provides support polymorphic initialization and
finalization of objects. This mechanism is used by the view system to support
virtual method invocation at construction/destruction time for objects that
require the needed behavior. The C++ language does not support the
invocation of virtual methods from within the constructor/destructor of a

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-7-

given object. The view system provides a mechanism whereby an initialization -
method is invoked after the object construction is completed, but before any
methods are invoked on the constructed object. A similar mechanism is used
to invoke a virtual finalization method before the object destruction is started.
This mechanism is not view system-specific, but is provided and used by the
view system to support such behavior.

Brief Description of the Drawings

The above and further advantages of the invention may be better
understood by referring to the following description in conjunction with the
accompanying drawings, in which:

Figure 1 is a schematic block diagram of a prior art computer system
showing the relationship of the application thread, the operating system, the
screen buffer and, the display monitor.

Figure 2 is a schematic block diagram of a modification of the prior art
system shown in Figure 1 which allows several application thread threads
running simultaneously to generate display output in a single window.

Figure 3 is a block schematic diagram of a computer system for example, a
personal computer system on which the inventive object-oriented viewing
framework operates.

Figure 4 is a schematic block diagram of a modified computer system
showing the interaction between a plurality of application threads, the viewing
framework, the window manager, and the screen buffer in order to display
graphic information on the display monitor.

Figure 5 is a block schematic diagram of the information paths which |
indicate the manner in which an application thread communicates with the
inventive object-oriented viewing framework and then directly to the screen
buffer.

Figure 6 is a schematic diagram indicating the typical appearance of a
graphical user interface which is supported by a object-oriented viewing
framework illustrating the components and parts of a window and the view
hierarchy which is contained within.

Figures 7A and 7B illustrate the portions of the view hierarchy which
must be redrawn when a view is resized.

Figure 8 is an illustrative flow chart of a method by which the object-
oriented viewing framework supports updating of invalid areas on the display
by means of a background thread(s) in order to display information on the
display screen.

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195

-8-

Figure 9 is an illustrative flow chart of a method used by the application
thread to create a new view object and install it in the view hierarchy.

Figure 10 is an illustrative flow chart of a method used to support
polymorphic initialization and finalization of a view framework object.

Figure 11 is an illustrative flow chart of the method by which an
application thread requests drawing state information from the object-oriented
viewing framework.

Figure 12 is a block schematic diagram of two non-rectilinear views and a
disjoint view, within the view hierarchy, which are supported by the object-
oriented viewing framework.

Figure 13 is a block schematic diagram of the multiple coordinate spaces
support by the object-oriented viewing framework.

Figure 14 is a block schematic diagram of aligned view objects based on
their center of gravity specification by the object-oriented viewing framework.

Figure 15 is an illustrative flow chart of the method by which a view is
automatically, spatially laid-out by the object-oriented viewing framework.

Figure 16 is a block schematic diagram of the visual effect, "Magnifier
View", that uses a matrix object to apply a scaling transformation to the view
below it in the view hierarchy as supported by the object-oriented viewing
framework.

Figure 17 is a block schematic diagram of the method used by the object-
oriented viewing framework to enable grouping of related windows to be
moved as a single layer.

Figure 18 is an illustrative flow chart of the method by which an
application thread makes use of a non-multitasking aware object in a
multitasking environment as provided by the object-oriented viewing
framework _

Figure 19 is an illustrative flow chart of the method by which an
application thread receives a positional event via the input system and the
object-oriented viewing framework.

Figure 20 is an illustrative flow chart of the method by which an
application thread receives changes in the object-oriented viewing framework
in a single batch notification.

Figure 21 is a block schematic diagram of the method used by the object-
oriented viewing framework to support read-only and read-write operations on
the hierarchy and view objects.

Detailed Description of a Preferred Embodiment of the Invention

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-9-

The invention is preferably practiced in the context of an operating
system resident on a personal computer such as the IBM- PS/2. or Apples
Macintosh, computer. A representative hardware environment is depicted in
Figure 3, which illustrates a typical hardware configuration of a computer 300 in
accordance with the subject invention. The computer 300 is controlled by a
central processing unit 302 (which may be a conventional microprocessor) and a
number of other units, all interconnected via a system bus 308, are provided to
accomplish specific tasks. Although a particular computer may only have some
of the units illustrated in Figure 3, or may have additional components not
shown, most computers will include at least the units shown.

Specifically, computer 300 shown in Figure 3 includes a random access
memory (RAM) 306 for temporary storage of information, a read only memory
(ROM) 304 for permanent storage of the computer's configuration and basic
operating commands and an input/output (I/O) adapter 310 for connecting -
peripheral devices such as a disk unit 313 and printer 314 to the bus 308, via
cables 315 and 312, respectively. A user interface adapter 316 is also provided
for connecting input devices, such as a keyboard 320, and other known interface
devices including mice, speakers and microphones to the bus 308. Visual
output is provided by a display adapter 318 which connects the bus 308 to a
display device 322, such as a video monitor. The workstation has resident
thereon and is controlled and coordinated by operating system software such as
the Apple System /7 operating system.

In a preferred embodiment, the invention is implemented in the C++
programming language using object-oriented programming techniques. C++ is
a compiled language, that is, programs are written in a human-readable script
and this script is then provided to another program called a compiler which
generates a machine-readable numeric code that can be loaded into, and directly
executed by, a computer. As described below, the C++ language has certain
characteristics which allow a software developer to easily use programs written
by others while still providing a great deal of control over the reuse of programs
to prevent their destruction or improper use. The C++ language is well-known
and many articles and texts are available which describe the language in detail.
In addition, C++ compilers are commercially available from several vendors
including Borland International, Inc. and Microsoft Corporation. Accordingly,
for reasons of clarity, the details of the C++ language and the operation of the
C++ compiler will not be discussed further in detail herein.

As will be understood by those skilled in the art, Object-Oriented
Programming (OOP) techniques involve the definition, creation, use and

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-10-

destruction of "objects". These objects are software entities comprising data
elements and routines, or functions, which manipulate the data elements. The
data and related functions are treated by the software as an entity and can be
created, used and deleted as if they were a single item. Together, the data and
functions enable objects to model virtually any real-world entity in terms of its
characteristics, which can be represented by the data elements, and its behavior,
which can be represented by its data manipulation functions. In this way,
objects can model concrete things like people and computers, and they can also
model abstract concepts like numbers or geometrical designs.

Objects are defined by creating "classes” which are not objects themselves,
but which act as templates that instruct the compiler how to construct the actual
object. A class may, for example, specify the number and type of data variables
and the steps involved in the functions which manipulate the data. An object
is actually created in the program by means of a special function called a
constructor which uses the corresponding class definition and additional
information, such as arguments provided during object creation, to construct
the object. Likewise objects are destroyed by a special function called a
destructor. Objects may be used by using their data and invoking their
functions.

The principle benefits of object-oriented programming techniques arise
out of three basic principles; encapsulation, polymorphism and inheritance.
More specifically, objects can be designed to hide, or encapsulate, all, or a
portion of, the internal data structure and the internal functions. More
particularly, during program design, a program developer can define objects in
which all or some of the data variables and all or some of the related functions
are considered "private" or for use only by the object itself. Other data or
functions can be declared "public” or available for use by other programs.
Access to the private variables by other programs can be controlled by defining
public functions for an object which access the object's private data. The public
functions form a controlled and consistent interface between the private data
and the "outside” world. Any attempt to write program code which directly
accesses the private variables causes the compiler to generate an error during
program compilation which error stops the compilation process and prevents
the program from being run.

Polymorphism is a concept which allows objects and functions which
have the same overall format, but which work with different data, to function
differently in order to produce consistent results. For example, an addition
function may be defined as variable A plus variable B (A+B) and this same

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-11-

format can be used whether the A and B are numbers, characters or dollars and
cents. However, the actual program code which performs the addition may
differ widely depending on the type of variables that comprise A and B.
Polymorphism allows three separate function definitions to be written, one for
each type of variable (numbers, characters and dollars). After the functions
have been defined, a program can later refer to the addition function by its
common format (A+B) and, during compilation, the C++ compiler will
determine which of the three functions is actually being used by examining the
variable types. The compiler will then substitute the proper function code.
Polymorphism allows similar functions which produce analogous results to be
"grouped” in the program source code to produce a more logical and clear
program flow.

The third principle which underlies object-oriented programming is
inheritance, which allows program developers to easily reuse pre-existing
programs and to avoid creating software from scratch. The principle of
inheritance allows a software developer to declare classes (and the objects which
are later created from them) as related. Specifically, classes may be designated as
subclasses of other base classes. A subclass "inherits” and has access to all of the
public functions of its base classes just as if these function appeared in the
subclass. Alternatively, a subclass can override some or all of its inherited
functions or may modify some or all of its inherited functions merely by
defining a new function with the same form (overriding or modification does
not alter the function in the base class, but merely modifies the use of the
function in the subclass). The creation of a new subclass which has some of the
functionality (with selective modification) of another class allows software
developers to easily customize existing code to meet their particular needs.

Although object-oriented programming offers significant improvements
over other programming concepts, program development still requires
significant outlays of time and effort, especially if no pre-existing software
programs are available for modification. Consequently, a prior art approach has
been to provide a program developer with a set of pre-defined, interconnected
classes which create a set of objects and additional miscellaneous routines that
are all directed to performing commonly-encountered tasks in a particular
environment. Such pre-defined classes and libraries are typically called
"frameworks" and essentially provide a pre-fabricated structure for a working
application.

For example, a framework for a user interface might provide a set of pre-
defined graphic interface objects which create windows, scroll bars, menus, etc.

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-12-

and provide the support and "default" behavior for these graphic interface
objects. Since frameworks are based on object-oriented techniques, the pre-
defined classes can be used as base classes and the built-in default behavior can
be inherited by developer-defined subclasses and either modified or overridden
to allow developers to extend the framework and create customized solutions
in a particular area of expertise. This object-oriented approach provides a major
advantage over traditional programming since the programmer is not changing
the original program, but rather extending the capabilities of the original
program. In addition, developers are not blindly working through layers of
code because the framework provides architectural guidance and modeling and,
at the same time, frees the developers to supply specific actions unique to the
problem domain.

There are many kinds of frameworks available, depending on the level of
the system involved and the kind of problem to be solved. The types of
frameworks range from high-level application frameworks that assist in
developing a user interface, to lower-level frameworks that provide basic
system software services such as communications, printing, file systems
support, graphics, etc. Commercial examples of application frameworks include
MacApp (Apple), Bedrock (Symantec), OWL (Borland), NeXT Step App Kit
(NeXT), and Smalltalk-80 MVC (ParcPlace).

While the framework approach utilizes all the principles of
encapsulation, polymorphism,. and inheritance in the object layer, and is a
substantial improvement over other programming techniques, there are
difficulties which arise. Application frameworks generally consist of one or
more object "layers" on top of a monolithic operating system and even with the
flexibility of the object layer, it is still often necessary to directly interact with the
underlying operating system by means of awkward procedural calls.

In the same way that an application framework provides the developer
with prefab functionality for an application thread, a system framework, such as
that included in a preferred embodiment, can provide a prefab functionality for
system level services which developers can modify or override to create
customized solutions, thereby avoiding the awkward procedural calls necessary
with the prior art application frameworks programs. For example, consider a
display framework which could provide the foundation for creating, deleting
and manipulating windows to display information generated by an application
thread. An application software developer who needed these capabilities would
ordinarily have to write specific routines to provide them. To do this with a
framework, the developer only needs to supply the characteristics and behavior

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-13-

of the finished display, while the framework provides the actual routines which
perform the tasks.

A preferred embodiment takes the concept of frameworks and applies it
throughout the entire system, including the application and the operating
system. For the commercial or corporate developer, systems integrator, or OEM,
this means all of the advantages that have been illustrated for a framework
such as MacApp can be leveraged not only at the application level for such
things as text and user interfaces, but also at the system level, for services such
as printing, graphics, multi-media, file systems, I/O, testing, etc.

Figure 4 shows a schematic overview of a computer system utilizing the
object-oriented viewing framework of the present invention. The computer
system is shown generally as box 400 and an application 416 with multiple
threads of execution (of which application threads 401 and 402 are shown) and
an operating system 404 are provided to control and coordinate the operations
of the computer. In order to simplify Figure 4, the interaction of the
application 416 with the operating system 404 is limited to the interactions
dealing with the screen displays. As shown in the figure, both application
threads 401 and 402 interface with the view system portion 405 of the
application program as illustrated by arrows 403 and 406. The view system 405,
in turn, sends information to the screen buffer 410 and the operating system 404
as schematically illustrated by arrow 407 and 420.

However, in accordance with the invention, and, as shown in Figure 4,
application threads 401 and 402 also directly send information to the screen
buffer 410 as illustrated by arrow 407. As will hereinafter be explained in detail,
application threads 401 and 402 provide display information directly to the
screen buffer 410 and retrieve stored information from the view system 405
when drawing is required. More specifically, when a view is changed, the view
system 405 recomputes and stores the visible area of each view. This stored
visible area is retrieved by the respective application thread and used as a
clipping region into which the application draws the display information.
Repainting or drawing of the view is performed simultaneously by the
application threads in order to increase the screen repainting speed.

The application displays are kept separated on the display screen because
the view system 405 recomputes the view visible areas so that none of the areas
overlap. Thus, if each application thread, such as application thread 401 or
application thread 402 draws only in the visible area provided to it by the view
system 405, there will be no overlap in the displays produced by the screen
buffer. Once the display information is drawn into the screen buffer 410 it is

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-14-

provided, as indicated by arrow 412, to a display adapter 414 which is, in turn,
connected by cable, or bus, 422 to the display monitor 424.

The interaction of an application thread with the view system is
illustrated in more detail in schematic diagram Figure 5. As previously
mentioned, the view system (illustrated as box 510 in Figure 5) is an object-
oriented program. Accordingly, an application thread 508 interfaces with the
view system by creating and manipulating "objects". In particular, each
application thread creates a view hierarchy object, for example, view hierarchy
object 512 in order to communicate with view system 510. The application
thread 508 then communicates with the view hierarchy object 512 by creating a
view object 506 and installing it in the hierarchy as shown schematically by
arrow 502. The view system itself is a collection of objects which is created
when the application program is started. The view system 510 interfaces with
the operating system 500 via a data stream 504 to perform window operations
on behalf of the application program and view system 510.

As will hereinafter be described in more detail, each view object 506
includes a small data store or "cache" area, called the drawing state 514 which is
used to store the associated view visible area and other drawing-related state
(coordinate system etc.). When the application thread desires to redraw the
information in one of its associated views, the view object first checks cache
status. If the information stored in the cache has not been changed or
invalidated, then this information is used to redraw the window. The use of
the cache area reduces the time necessary to complete a redrawing operation.

Since many view objects may be created simultaneously in order to
simultaneously display many views within a window, each view object 506
communicates with the view system 510 by means of multitask-safe method
calls 502. The view sYstem communicates with the operating system via data
stream 504 by creating "stream" objects which contain the software commands
necessary to transfer information from one object to another. For example,
when operating system 500 desires to transfer information to view system object
510, operating system 500 creates a stream object which "streams" the data into
view system object 510. Similarly, when view system object 510 desires to
transfer information back to operating system 500, view system object 510
creates a stream object which "streams" the data into window object 500. Such
stream objects are conventional in nature and not described in detail herein.
The stream objects which carry data from operating system 500 to view system
object 510 and the stream objects which carry information from view system
object 510 to operating system 500 are illustrated collectively as arrow 504.

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-15-

As shown in Figure 5, view system object 510 consists of four main parts:
the view hierarchy framework 512, the one or more view objects (and their
associated command objects) installed in the hierarchy 506, the drawing state
cached for each view in the hierarchy 514, and the framework to support
background updating of "invalid" areas within views installed in the hierarchy
516. The background drawing framework 516 includes an independent task
which is started by the view system 510 when the view system 510 is created. As
will be hereinafter explained in detail, the background updating framework is
responsible for refreshing the portions of the views 506 in the view hierarchy
512 which are visible on the data display screen and have become invalid via
view hierarchy changes, local view changes, or window manipulations. To this
end, it collects areas in need of updating, recomputes a view's visible area
intersected with the "invalid" area and tells the affected view to refresh only
that portion of itself that is invalid.

The drawing state cache 514 is comprised of a number of different objects
which together store information related to the drawing attributes and
environment for the associated view. The drawing state cache is created by the
view system on behalf of individual views and maintained by the view system
including a "time stamp" indicating the time of the last modification.

As previously mentioned, in accordance with a preferred embodiment,
the operating system is capable of running multiple threads simultaneously
and, whenever two or more threads are operating simultaneously, there is a
potential for mutual interaction. Such mutual interaction can occur when two
or more threads attempt to access simultaneously shared resources, such as the
view hierarchy. Accordingly, concurrency controls are necessary to manage
such interactions and to prevent unwanted interference. An illustrative
concurrency control technique known as a monitor is used in one embodiment.
Monitors are well-known devices which are used to "serialize" concurrent
access attempts to a resource and provide an object-oriented interface. In
particular, before a thread can access a resource which is controlled by a
monitor, the thread must "acquire” the monitor. When the thread is finished
with the resource it releases the monitor for acquisition by another thread.

Each monitor generally has a request queue associated with it so that requests to
acquire the monitor which cannot be honored (because the monitor has been
acquired by another thread) are held on the queue (called "blocking"). Monitors
also provide a mechanism to prevent acquisition until a specified "condition"
has been met.

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-16-

In the present system, monitors are used to protect several different
shared resources. In particular, a view system monitor is used to prevent the
application threads from interacting with the view system simultaneously and
corrupting data. Before accessing the cached drawing data, each application
thread must acquire the view system monitor. The monitor used in the present
system allows individual threads to "reacquire” a given monitor to prevent a
thread dead-locking with itself.

Figure 6 shows an illustrative screen display generated by a typical
"window environment" program. A window 600 is an area enclosed by borders
which can be moved and resized in a conventional manner. The window 600
usually includes a title bar 606 and a menu bar 604, each of which are a view and
may themselves contain other views. The menu bar 604, also a view allows
access to a number of pull-down menus (not shown) that are operated in a well-
known manner and allow the user to access various file, editing and other
commands.

The area remaining within the window, after excluding the title bar 606 ,
the menu bar 604 and the borders, is called the "content" view and constitutes
the main area that can be drawn or painted by an application thread such as a
drawing program. A content view may enclose additional views called "child"
views that are associated with the one or more application threads. In this case
the containing view is called a "parent” view or "container” view in relation to
the child view(s). Each child view may also have one or more child views
associated with it for which it is a parent view and so on, thus constructing a
view hierarchy.

Many application threads further sub-divide the content view into a
number of child views which are independently controlled. These typically
include a document view 622, a "toolbar" or "palette" view 616, and, in some
cases, a status line view (not shown). The document view 622 may be equipped
with horizontal and vertical scroll bar views, 618 and 614, that allow objects in
the document view to be moved on the screen. The document view 622 may be
further sub-divided into child views 602, 610 and 620 which may also overlap
each other (and need not be rectangular). At any given time usually only one of
the child views 602, 610 and 620 is active and only one view has input "focus".
Only the view which has input focus responds to input actions and commands
from the input devices such as the mouse and the keyboard.

The toolbar/palette view 616 usually contains a number of iconic images,
such as icons 608 and 612, which are used as a convenient way to initiate certain,
often-used programs or subroutines. For example, icon 608 may be selected to

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-17-

initiate a drawing routine which draws a box on the screen, whereas icon 612
might initiate a spelling checker program. The operation of such toolbars and
palettes is generally well-known and will not be described further herein.

The displayed controls are generally selected by means of a mouse or
other input device. The mouse controls a cursor that is drawn on the screen by
the operating system. When the cursor is positioned over the graphic image to
be selected, a button is activated on the mouse causing the view system to
respond.

Although the controls discussed above generally cannot be moved or
resized by the application thread, the content view and child views are usually
totally under control of the application thread. When an application thread has
several views, or several application threads, which are running
simultaneously, and displaying information views, changes in the size or the
position of one view will change the displayed or visible areas of views which
are "under” the changed view. Figures 7A and 7B illustrate how a
manipulation of one view associated with an application can change the visible
areas of other views that are associated with the same application and inside the
same window.

In particular, Figure 7A shows three views located inside a window. The
views overlap - view 700 is in the background, view 702 is in front of view 700
and view 704 is in front of view 702. As shown in Figure 7A, view 704 obscures
portions of views 702 and 700. Since each of views 700, 702 and 704 can be
independently moved and resized, it is possible when the foremost views 702 or
704 are moved or resized, areas in the overlapped views can be uncovered or
covered and thereby change the visual appearance of these views. However,
due to the overlapped appearance of the views, a change to a selected view only
affects view behind the selected view. For example, a change to view 704 can
affect views 702 and 700, but a change to view 700 cannot affect views 702 or 704
since these latter views overlap and obscure portions of view 700.

Figure 7B indicates the effect of a resizing of the front view 704 in Figure
7A. In particular, Figure 7B illustrates three views 712, 714 and 706, which
correspond to views 704, 702 and 700 in Figure 7A, respectively. However, in
Figure 7B, view 712 has been resized and, in particular, reduced in size from the
original size view 704. The reduction in the size of view 712 exposes an area
(illustrated as shaded area) of view 710 that was previously totally covered by
view 712. Similarly, the shaded portion 708 of view 706 is also uncovered. In
accordance with normal view system operation, only visible portions of views
are painted. Accordingly, areas 708 and 710 must be redrawn or repainted as

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-18-

they have now become visible areas. These areas in need of redrawing are said
to be "invalid" areas or "update" areas. This redrawing is accomplished by a
coordination between the view system's background updating framework and
the application thread which "owns" the invalid area as previously described.

Specifically, the view system computes the new visible area of each
changed view and all views that lie behind the changed view. The view system
then sends an "update request” to each view associated with a changed area
indicating to the view that part of its visible area which must be redrawn. Each
view, in turn, will proceed to update the visible area by directly writing into the
screen buffer.

The process of repainting a new visible area is shown in detail in the
flowchart illustrated in Figure 8. In particular, the repainting routine starts in
step 800 and proceeds to step 802 where the background updating framework
receives an update request from the view system. An update request might be
generated when the view system resizes a view as illustrated in Figures 7A and
7B or in response to a newly uncover window area. In response, the updating
framework acquires the view system monitor in function block 804, retrieves all
the pending updates and combines them into a single update object as
represented in step 806. A time stamp is then checked to see if the view system
display buffer is out of date, step 808. If the buffer is up-to-date, then it is copied
to the display as in step 810. If the time stamp is out of date, then the view
system display buffer must be recached. In step 812, a list of the views which
overlap the update area is generated. At this point, the view system monitor is
released 814. The background updating framework then iterates through each
view in the update list 816 and determines if the view has as associated
application thread for processing updates 818.

If the view does not have a background updating thread of its own, then
the view system background updating mechanism, itself, tells the view to
redraw the invalid area into the view system display buffer 820. If the view
does have its own updating thread, then the invalid area within that view is
handed off to the view's update thread 822 (which will cause the buffer to be
updated and copied to the display at a later time). At this point, the up-to-date
view system display buffer is copied to the display device buffer 824, the portion
of the update associated with that view is marked as completed by the
background updating framework 826, and the thread goes back to waiting for
further updates 828.

Also as previously mentioned, a view object can interact with the view
hierarchy object to provide various view hierarchy management functions,

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-19-

such as creating a new view and adding it to the hierarchy. An illustrative
routine used by the application developer to create a new view is shown in
detail in the flowchart of Figure 9. The routine starts in step 900 and proceeds to
step 902 in which a new child view is constructed.

After the view is constructed and initialized in step 902, the routine
proceeds to step 904 in which a "modifier" object is created to support and
provide modifications to the view hierarchy. In step 908 the "Add" method on
the modifier object is called and the newly constructed child view is added to
the view hierarchy. The modifier object may then be thrown away as in step
910. The routine finishes in step 914.

As previously mentioned, the view system provides a framework that
extends the intrinsic abilities of the C++ language to support construction and
initialization of C++ objects. The steps involved in using the initialization and
finalization support provided by the view system are detailed in the flow chart
Figure 10. The routine starts in step 1000 and the view object in question is
constructed in step 1002 (using the standard C++ "constructor” facility.) After
the construction of the object is complete, the "Initialize" method of the view
object is called automatically by the run time system as illustrated in step 1005.
A limitation of the C++ construction facilities makes it impossible to make
virtual method calls from within the constructor of an object. The "Initialize"
method provides a mechanism for calling virtual methods on an object after
the construction is complete, but before any other methods are called on the
object. This is particularly useful for subclasses which need to modify base class
behavior at construction or initialization time. Once the user quits the running
application, or some other event causes the view hierarchy (or even a single
view) to be in need of destruction, a similar mechanism is used to insure that a
"Finalize" method is called by the run time system after the last method call,
but immediately before the object's destructor is run. This mechanism makes it
possible to override behavior in the base class related to finalizing or destroying
an object. Step 1006 illustrates the removal of the view from the hierarchy, the
run time system calling the view's "Finalize" method, step 1007, the destructor
of the view being called, step 1008. The operation finishes in step 1010.

Figure 11 is a flow chart of an illustrative routine used by the view
system to synchronize individual views with any changes in the view system
that might affect them. The routine starts in step 1100. The view monitor is

‘acquired in step 1102. This monitor lock prevents further changes from

happening in the view system for the duration of the routine. A time stamp
within the view object is compared with the view system time "clock” in step

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-20-

1104 to determine if the cached view state is now out of date, step 1106. If the
cache is up-to-date, it is provided to the caller , step 1108. The view monitor is
released 1122 and the routine completes. If the time stamp in step 1106 is out of
date, then the view state is in need of recomputation. Step 1110 takes a copy of
the parent view's state (which will go through a similar routine as outlined in
figure 11 to provide its state to the requesting child view). The view object then
adds in any local state information, for instance the distance the view is offset
from its parent view and the difference between the area "owned" by the parent
view and itself, step 1112. Once the up-to-date state has been computed, it is
recached (step 114), along with the up-to-date time stamp, step 1116. The view
monitor is released 1122 and the routine is completed, step 1124.

The schematic diagram in Figure 12 illustrates three different views that
demonstrate the variety of view areas support by the view system framework.
The enclosing window object 1200 is similar to the one described above in figure
6. The application developer-owned content view 1208 is contained within the
window 1200. View 1206 is a child view of the content view which is non-
rectangular, although of somewhat conventional shape. View 1202 is a non-
rectilinear view which is a closed polygon and is also a child view of the content
view 1208. The third child view 1204 in the content view 1208 is a non-
contiguous view which has two separate, non-rectilinear portions. In this
example, the child views do not overlap and a front to back ordering is not
explicit. This is not meant to imply that ordering (and hence clipping) is not
possible, only that it is not demonstrated in this figure.

The schematic diagram in Figure 13 illustrates two possibilities for
coordinate spaces within any given view. The coordinate planes in any given
view are usually invisible, but have been made visible in this figure for ease of
explanation. The window 1200 is similar to that described in figure 6. The
developer-owned content view 1202 is contained within the window 1200. Two
child views of the content view are illustrated in this figure, view 1210 and
view 1206. View 1206 is a view with the default coordinate system provided by
the viewing framework. It consists of an "X" 1204 and "Y" 1208 axis that extend
off into positive and negative infinity. By default, the "origin" is located in the
top, left corner of the bounding rectangle of the view. The positive "X"
direction extends to the right of the origin and the positive "Y" direction
extends downward from the origin. In view 1206, the origin 1212 has been
move slightly, but no other changes to the standard coordinate space have been
made. In view 1210, a polar coordinate system is in operation. The origin 1216
of the view is located in the center of the view 1210. As in the Cartesian

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
21-

coordinate system in view 1206, the polar coordinate system in view 1210
extends off into infinity as demonstrated by the arrow 1214. Both the illustrated
coordinate systems are standard two dimensional coordinate planes. Three
dimensional (3D) coordinate spaces are also possible, but not explicitly support
by the viewing framework. To use a 3D coordinate space, the developer would
need to provide a 3D to 2D mapping for use by the viewing framework. In
general, this is not a problem, because the graphics system implicitly supports
3D objects in a 2D coordinate plane.

The schematic diagram in Figure 14 illustrates the alignment and layout
mechanism provided by the viewing framework. The window 1400 is similar
to the window described in figure 6. The developer-owned content view 1410 is
contained within the window 1400. The views 1410, 1412, 1414 and 1416 are all
child views of the content view. These views are objects provided by the
viewing framework which are used explicitly for laying out other view objects.
Although it is not possible to actually see the layout views (they do not have
any drawing capabilities), they are installed in the view hierarchy immediately
above the views for which they hold layout attributes, and may be nested in the
same fashion as other view objects. View 1402 is a child view of the layout
view 1410. View 1404 is a child view of the layout view 1412. View 1406 is a
child view of the layout view 1414. View 1408 is a child view of the layout view
1416. Views 1410, 1412 and 1414 have attributes that cause them to be
horizontally aligned at the center point. View 1416 and 1410 are also vertically
aligned, both on the left side.

Figure 15 is a flow chart of an illustrative routine used by the view
system to arrange the views to produce the layout described in figure 14. The
routine starts in step 1500. The view system queries a layout view in step 1502
for its horizontal and vertical attributes. In step 1560 the view system
determines if the view is flexible in size. If it is flexible, the view may be resized
to accommodate its layout wishes, step 1508. If the view is not flexible in size,
then it is not resized. Once any resizing is completed, the view may wish to be
moved slightly to distribute white space between siblings, step 1510 and 1512.
Once layout is completed, any display areas that have been changed are marked
as in need of redrawing by the view system and an update request is posted to
the background update framework. The routine is completed in step 1516.

The schematic diagram in Figure 16 illustrates a sample matrix
transformation used within a view object which is used to provide an effect on
another view object. Window 1600 is similar in operation to the window
described in figure 6. The content view 1608 is contained within the window

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
-22-

1600. View 1602 is a rectangular view which contains the text "Hello, World".
View effect 1604 is a "magnifier” view which displays the view(s) which are
"underneath" it magnified by one and a half times (150%). This is
accomplished my making use of the matrix object associated with the magnifier
view and the support provided by the view system and graphic system to hold
and use multiple matrix objects. View 1604 could be moved (by using a matrix
translation as well as the matrix scaling) by the user over the content view 1608
to "magnify" other portions of the content view.

The schematic diagram in Figure 17 illustrates the mechanism provided
by the viewing framework to "group" separate windows into a single layer, so
that they "move" relative to other windows as a single group. For instance, the
user moves the mouse over window 1702 and clicks the mouse button to select
that window, window 1704 and 1706 will immediately be brought to the front of
the display along with window 1702. Selecting any of the three windows 1702,
1704 or 1706 will cause all three windows to be selected and brought to the front
of the display.

Figure 18 is a flow chart of an illustrative routine used by the view
system to enable the use of non-multitask-safe objects by a framework which
supports multitasking, as does the view system framework. This mechanism
works without modifications to or internal knowledge of the workings of the
non-multitask-safe object. The routine starts at step 1800. A method call is
made on the non-multitask-safe object which is "caught” and implemented by
the multitask-safe object wrapper, step 1802. In step 1804, the wrapper object
checks to see if there are any non-multitask-safe objects not currently in use
from within an internal "pool" of objects kept by the wrapper. If no objects are
currently available, one is construed, step 1806 (another possible
implementation might be to block and wait for another object in the pool to
become available). Once an available object is obtained, the desired operation is
completed using the non-multitask-safe object, as presented in step 1810. When
the operation is completed, the internal monitor is released, step 1812 and the
routine is completed, step 1814.

Figure 19 is a flow chart of an illustrative routine used by the view
system to interact with the input system and distribute a positional event to its
destination view object. To simply this flow chart, no special distribution rules
are provided or used. The routine starts at step 1900. In step 1902, a positional
event is handed to the view system from the input system which received the
event from some device that generates positional events, for instance a
standard mouse device. The view monitor lock is acquired in step 1904. The

10

15

20

25

30

35

WO 95/18410 PCT/US94/10195
23-

view system then makes use of the view hierarchy and a set of extensible rule
objects to determine in which view the point is contained. The view system
checks to make sure the point is within the "first" (root) view, step 1906. The
operating system would not have passed the positional event to this window if
the point was not within the window's bounds, so for the root view case, the
test should always return true. (If for some reason it returns false, then there
may be a "bug" in some portion of the operating system.) Once it is determined
that the positional event is within the root view, the view system determines if
the point is contained within a child view of the root view, step 1910. If the
point is not within a child view, then the "target" for the positional event is the
current view. If the point is contained within a child view, then the view
system determines which child view, step 1910 and 1914 and continues
recursively until the correct, front-most view which contains the positional
event has been found (back to 1906 etc.) Once the target has been found, the
view monitor is released, step 1916, and the computed target is returned to the
input system, step 1918 which will handle all further processing of the event.
The routine is completed in step 1920.

Figure 20A and 20B are flow charts of illustrative routines used by the
background updating framework to collect, batch and process changes in the
display area of one or more view objects in the view system. In figure 20A, the
routine starts at step 2000. When a change occurs in a view object which is
currently installed in the view hierarchy, notification of that change is posted to
the view system, step 2002. The view system acquires the view monitor, step
2204 and then checks to see if changes are currently being "batched" for the view
system, step 2006. (When the view system is in "batching" mode, any
redrawing that may need to be done as a result of view system changes is
collected by the view system and saved for later processing by the background
updating framework. If batching is not currently in use, then update requests
are immediately posted to the background updating framework and processed.
In figure 204, if changes are being batched, then the change notification is added
to the list of changes being saved for later dispatch, step 2010. If changes are not
currently being batched, then the change notification is immediately posted to
any objects which have registered interest in that change, step 2008. Once the
change notification has been handled (either saved or distributed), the view
monitor is released, step 2012 and the routine is finished, step 2014. Figure 20B
illustrates the routine used to process change notifications once batching has
been turned off. The routine starts at step 2020. In step 2022, the batching
condition is changed to allow all pending change notifications to be posted. The

10

15

20

WO 95/18410 PCT/US94/10195
-24-

view system acquires the view monitor, step 2024, posts all the saved change
notifications, step 2026 and then releases the view monitor, step 2028. The
routine is completed at step 2030.

Figure 21A is a schematic diagram and figure 21B is a flow chart of
mechanism used by the view system to provide read-only and read-write access
to the view hierarchy. Figure 21A illustrates that iterator objects 2100 have
access to only read-only methods 2104 of the view hierarchy 2108. Modifier
objects 2102 have access to both read-only methods 2104 of the view hierarchy
object 2108 as well as read-write methods 2106 (methods which may modify the
hierarchy) of the view hierarchy object 2108. Figure 21B demonstrates the steps
performed in a sample operation of a iterator object (which is being used to
compute the total area of all the views child views). The routine starts in step
2150. The view object constructs an iterator object in step 2152. Using the
iterator object, the view retrieves the area for each of its direct child views and
adds it to the total area, step 2154. Once this operation is complete, the iterator is
destructed, step 2158 and the routine is completed, step 2160. No monitors (or
semaphores) are needed due to the fact that the iterator (and modifier) objects
acquire and release the necessary monitor(s) from within their internal
implementation.

While the invention is described in terms of preferred embodiments in a
specific system environment, those skilled in the art will recognize that the
invention can be practiced, with modification, in other and different hardware
and software environments within the spirit and scope of the appended claims.

—

O 0 N N W

I

O 00 0 A W b~ WN

WO 95/18410 PCT/US94/10195

25-
CLAIMS

Having thus described our invention, what we claim as new, and desire

to secure by Letters Patent is:

1.

(a)
(b)
(©
(d)

(e)

(a)
(b)

(d)

(e)

‘An apparatus for initializing a system environment, comprising:

a processor;
a storage attached to and under the control of the processor;

a object-oriented operating environment resident in the storage for
controlling the processor;

an object processor in the operating environment for constructing a first
object with an associated data area and method; and

a virtual base class object for invoking the object processor of the
operating environment to polymorphically initialize the first object.

The apparatus as recited in claim 1, including means within the object-
oriented operating environment for initializing a class identification
object with a unique identifier for identifying the first object.

The apparatus as recited in claim 2, including means within the class
identification object for identifying the first object with the unique
identifier. '

The apparatus as recited in claim 1, including object processing means for
querying information to determine if the first object has been properly
initialized.

An apparatus for finalizing a system environment, comprising:

a processor;

a storage attached to and under the control of the processor;

a object-oriented operating environment resident in the storage for
controlling the processor;

an object processor in the operating environment for destructing a first
object with an associated data area and method; and

a virtual base class object for invoking the object processor of the
operating environment to polymorphically finalize the first object.

—

O 00 NN O W AW N

A W A W N

WO 95/18410 PCT/US94/10195

()

(b)

10.

11.

12.

13.

(a)

-26-

The apparatus as recited in claim 5, including means within the object-
oriented operating environment for initializing a class identification
object with a unique identifier for identifying the first object.

The apparatus as recited in claim 6, including means within the class
identification object for identifying the first object with the unique
identifier.

The apparatus as recited in claim 7, including object processing means for
querying information to determine if the first object has been properly
initialized.

A method for initializing a system environment with a processor, a
storage attached to and under the control of the processor and a object-
oriented operating environment resident in the storage for controlling
the processor, comprising the steps of:

constructing a first object with an associated data area and method
utilizing the object processor in the operating environment; and
invoking the object processor of the operating environment to
polymorphically initialize the first object utilizing a virtual base class
object.

The apparatus as recited in claim 9, including the step of initializing a
class identification object with a unique identifier for identifying the first
object.

The apparatus as recited in claim 10, including the step of identifying the
first object with the unique identifier located within the class
identification object.

The apparatus as recited in claim 11, including the step of determining if
the first object has been properly initialized.

A method for finalizing a system environment with a processor, a
storage attached to and under the control of the processor and a object-
oriented operating environment resident in the storage for controlling
the processor, comprising the steps of:

destructing a first object with an associated data area and method
utilizing the object processor in the operating environment; and

WO 95/18410 27- PCT/US94/10195

(b) invoking the object processor of the operating environment to
polymorphically finalize the first object utilizing a virtual base class
object.

14. The method as recited in claim 13, including the step of initializing a
class identification object with a unique identifier for identifying the first
object.

15. The method as recited in claim 14, including identifying the first object
with the unique identifier utilizing the class identification object.

16. The method as recited in claim 15, including determining if the first
object has been properly initialized.

PCT/US94/10195

WO 95/18410

1/22

8L

oLl
A

(Wv toud) 11

¥

901

141

H3ildvav H3d4ng
Avdsia N33HOS

.
/ oLl _/ ™
cli
801
WALSAS WYHOOHd
ONILVYH3adO NOILYOITddV
7 X
\ vol H3LNdNOD

— ¢0l

00} I\

PCT/US94/10195

WO 95/18410

2/22

vece

(444

(v toud) 7 °Of4

WvYHOO0Hd
NOILYIIddY

/| 912

8l ——

H3aldvav

.

vic |\

002 \

Avidsia

N
\ 2le

ole

P

N33HOS

il

/D .
H344n4a \ HIODVYNYW W3LSAS
/ A MOAaNIM ONILVYHIdO
| 1 X
802 \
90¢ voc
\. WVYHD0Hd
\ NOILVYOIlddVY
c0e

H3a1NdWOIO

PCT/US94/10195

WO 95/18410

3/22

Avdsid auvogaAaN
"
2
pLE - I e
/[ae _—1 w3aidvav H3Ldvay
- Avdsia JOVAHIALNI
/W/M
SlE prom—
H3aldvav
cle oll
\
IAHG | I\ 808
¥sia, ore
/.’ ele
Nvd NOY NdO
1 4 £
00g \ \ / \
90¢g l\ 1401 ll\ c0e ||.N

PCT/US94/10195

WO 95/18410

4/22

acvy

90%
[~ 9
\ £ov
WvHO0oHd
2op NOILVOINddY
\'.3
. NHOMIWVHA ,
avadHL ONIMIIA avIdHL
IHOIIMLHOIN \n 1HOIIMLHODIN
var i 1T
mov'l\ >
l'l\\ oey
L0V L/\
"3ldvav y3d44na _lll.
AvVdSia N33HOS W3L1SAS
ONILVHIdO
L
_/ 80
viv oL '\ \
\ vov
0o¥ \ 431ndWo9o

PCT/US94/10195

WO 95/18410

5/22

908 —

2ls —

\

|V

+1 md3Lvadn

aANNOHODYOVE

41V1S
ONIMVYHA

104rdo
M3IA

o

\

B N

" smain 40

AHOHVH3IH

NALSAS
M3IA

S OIA

\‘ ¢0§

/
A v IHOIEAMLHOIT

av3idHl

N

N\ ois

v0S /

/ »

‘ NALSAS

,><mm_._.m <m.._.<h___v ONILVYH3dO

\4

005 i\

PCT/US94/10195

WO 95/18410

6/22

\, a9 Q o@NPm

V\l 009

/

/

\

819 I\

919 —

019 ———]

809 —

J
Pt

209 I\

diaH jewlo4 103lqo

MaIA NP3 3{ld

MOANIM

FIG. 74

%///

\\\\\ 1

FIG. 7B

WO 95/18410

PCT/US94/10195

8/22

START 800

y

Update Condition wakes
up update thread

/— 802

M

y

Monitor

Acquire View Frameworke

y

Combine Pending
Updates into one

/— 806

808

{s Cached
Buffer
Up to Date?

No

FIG. 8A

»
Copy View
Yes > System Buffer
to the Display

/-— 810

/—- 812

Generate List of
affected Views

814

Release
Monitor

y

For each View in
List Do:

818

Background
Update
Thread?

Yes

/— 820

Tell View to Refresh
No—» Update Area
in Buffer

®

WO 95/18410

9/22

Y

PCT/US94/10195

822

Post Update To Thread
~ ®
/— 824
Copy Buffer ¥
to Dispiay
/— 826
Mark Update as ¥
Completed

(FINISH

828

FIG. 8B

WO 95/18410

PCT/US94/10195

10/22

(START }— 900

Y

904

Instantiate View Subclass

906
y /_

Construct "Modifier" using /
Container View

908

y

Add View to Hierarchy via
"Modifier" Object

910

Destruct "Modifier" Object x|

] 914

(FINISH

FIG. 9

WO 95/18410

PCT/US94/10195

11/22

START 1000

/— 1002

Call View Constructor

,— 1004

Call View Initialize /

y

Install View in Framework
Hierarchy

/1005

y

User Quits Application

Remove View From Hierarchy /

/— 1006

y

Call View Finalize A

/— 1007

A

/— 1008

Call View Destructor ’/

FINISH

FIG. 10

1010

WO 95/18410 PCT/US94/10195

12/22

(START 5—— 1100

1102

y

Acquire View Monitor 4]

/— 1104
Check Validity of Time 41

Stamp

1108
1106

/ 1110

[*4
Yes® Use Cached View State

‘Get View State from
Container View

Time Stamp
valid?

N

y

Va 1112

Apply local state &1

1114

Cache resulting stateX]

I //////——1116
Store current
4

time stamp

1122

)

Release Monitor &1

< FINISH

1124

FIG. 11

PCT/US94/10195

WO 95/18410

14/22

£1 "OIA

K\]IOON—

L1

=

-

80¢I

clel

_/

djsH

jeutiog

19310

MaIA

np3

ald

MOANIMm

PCT/US94/10195

WO 95/18410

15/22

\lopv— VN -@~m | V\'OOv—

- 7)
Y 7
Novpl/
\
LN
yovi
eyt - I\
'__ 90v1 oLl 8ov1 9tvi
vivi
_:m__c 0))Hajewos S| siyj|
diaH jewiog 109lqo M3IA UP3 9l

|] MOGQNIM

WO 95/18410 PCT/US94/10195

16/22

START 1500

5 /— 1502
Query View for Horizontal

and Vertical Attributes b/

Flexible
in Size?

1508
Yjs /

Resize view to properly
align

No

/—' 1512

Balance White Space
Yes—» Between Siblings

Distribute
with Siblings?,

No
/— 1514
Invalidate ¥
ChangedView
Area

FIG. 15

1516
FINISH

PCT/US94/10195

WO 95/18410

17/22

\‘mom» QN owN.WN | v\’oom—

2091 n\

disH

jewioj 193lg0 meIn wp3 ajig

MOANIM

PCT/US94/10195

WO 95/18410

18/22

9 opey

S oipey

b opey

€ oipey

2 opey

| olpey

)

vOLL

O
O
@)
O
@)
@)

a

LI "OIA

V\IQONP
G 3

imou s123(qo sy ubyy

O

\'Not

]| [G]

{m

=

WO 95/18410 PCT/US94/10195

19/22

START 1800

/— 1802
Call Operation on
¥

Multitask-
safe Object

1808

\ 4

Acquire Monitor Lock

/— 1806

1804
) 4
Is interna Create new obiject and
Object No—> Add to pool
Avaiiable from
Pool?

/— 1810

Pertorm Operation

x/_ FIG. 18

Release Monitor Lock

y 1814

FINISH

WO 95/18410 PCT/US94/10195

20/22

(sTART }‘ 1900

y

Receive Positionai Event
From Input System /

Acquire View Monitor

1902

1904
T

Inside View
Area?

Yes

point Inside No

Y

More
Sibling
Views?

No

|

Yes

1908

/- 1912

Child View
Area?

Set Target to
Container
View

y

/— 1916

Release Monitor

More Child

Views? No —

Yes

FIG. 19

/— 1918

Return Target

A

FINISH

1920

WO 95/18410

y

/— 2002
Change in view is »4

Posted

Y

2004

Acquire View /

Monitor

PCT/US94/10195

/— 2008

Notify Clients of Change

2010

Add Change to List
Of Pending Changes

Release View Monitor '

/— 2012

¥
< FINISH

FIG. 20A

2014

FIG. 20B

START

View Change
Batching Condition /
is Released

Acquire View
Monitor /

y

Post all Saved
Change Notifications

NN N

Release View Monitor /

N

Y

FINISH

2020

2022

2024

2026

2028

2030

WO 95/18410

PCT/US94/10195
22/22

-

TERATORS) MODIFIERS

)
2102
2100 . /‘
\ | AddChild ,
A J RemoveChild ‘ﬂ
\

2104 ' ‘ ’ :

&)

READ-ONLY MODIFY
METHODS METHODS

/_ 2106
/)

SetArea
GetContainer

' VIEW HIERARCHY OBJECT
_ /

Nl

| Y,
" | FIG. 21A
/— 2152

Construct Iterator Object ’/

» 2154
y
For Each View GetArea() and
Add it to the Total

2158
y /—

Destruct Iterator Object ’/

(rwsn FIG. 218

<

A.

INTERNATIONAL SEARCH REPORT Intema’ 1\l Application No

PCT/US 94/10195

ASSIFICATION OF SUBJECT MATTER
IFC 6 GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classificaion symbols)

IPC 6 GO6F GO9G

Documentation searched other than minimurn documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international scarch (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

November 1993
see abstract

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A EP,A,0 476 635 (HEWLETT-PACKARD COMPANY) 1

25 March 1992 .

see page 2, line 6 - page 2, line 21
A EP,A,0 569 861 (MICROSOFT CORPORATION) 18 1

D Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

‘A"

g

L’

0"

-p*

° Special categories of cited documents :

document defining the general state of the art which is not
considered to be of particular relevance

carlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

documnent published prior to the international filing date but
later than the priority date claimed

*T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mc&ts, such combination being obvious to a person sidlled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

9 March 1995

Date of mailing of the international search report

140395

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (-+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Van Roost, L

Form PCT/ISA/210 {second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

u..ormation on patent family members

Interns 1l Application No

PCT/US 94/10195

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-476635 25-03-92 US-A- 5361351 01-11-94

JP-A- 4247536 03-09-92

EP-A-569861 18-11-93 Us-A- 5327562 05-07-94
JP-A- 6103085 15-04-94

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

