
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0288738A1

Dale et al.

US 20070288738A1

(43) Pub. Date: Dec. 13, 2007

(54)

(76)

(21)

(22)

SYSTEMAND METHOD FOR SELECTING A
RANDOMI PROCESSOR TO BOOT ON A
MULTIPROCESSOR SYSTEM

Inventors: Jason N. Dale, Austin, TX (US);
Jonathan J. DeMent, Austin, TX
(US); Clark M. O’Niell, White
Plains, NY (US); Christopher J.
Spandikow, Austin, TX (US)

Correspondence Address:
IBM CORP. (WIP)
fo WALDER INTELLECTUAL PROPERTY
LAW, P.C.
P.O. BOX832745
RICHARDSON, TX 75083

Appl. No.: 11/423,320

Filed: Jun. 9, 2006

RECEIVE POWER-GOOD
SiGNAL FROM SYSTEM

CONTROLLER

SELECT BOOT

PROCESSORS

SELEC BOOT CODE
PARTITIONS TO ASSIGNTO
EACH BOOT PROCESSOR

810

830

EXECUTENEX BOOT CODE
PARTITION NASSOCATE)

BOO PROCESSOR

EXECUTION
OF BOOT CODE

PARTITION SUCCESSFUL AND
UNCOMPROMISED

ALL BOOT
CODEPARTITIONS
SUCCESSFU. AND
UNCOMPROMISED

SIGNALSUCCESSFUL
880 BOOT OF SYSTEM

Publication Classification

(51) Int. Cl.
G06F 15/177 (2006.01)

(52) U.S. Cl. ... 713/2
(57) ABSTRACT

A system and method for masking a boot sequence by
providing a dummy processor are provided. With the system
and method, one of the processors of a multiprocessor
system is chosen to be a boot processor. The other processors
of the multiprocessor System execute masking code that
generates electromagnetic and/or thermal signatures that
mask the electromagnetic and/or thermal signatures of the
actual boot processor. The execution of the masking code on
the non-boot processors preferably generates electromag
netic and/or thermal signatures that approximate the signa
tures of the actual boot code execution on the boot processor.
One of the non-boot processors is selected to execute
masking code that is different from the other masking code
sequence to thereby generate a electromagnetic and/or ther
mal signature that appears to be unique from an external
monitoring perspective.

NO

SGNAL BOOT
OPERATION FAILURE Y-860

US 2007/0288738A1 Dec. 13, 2007 Sheet 1 of 9 Patent Application Publication

CE BROADBAND ENGINE

B C
PERWASIVE

LOGIC

197

EXTERNAL
BUSES/
DEWICES

US 2007/0288738A1 Dec. 13, 2007 Sheet 2 of 9 Patent Application Publication

EJ(J00 || .009 []E I dÅ HONE

Z '5) IAI

US 2007/0288738A1 Dec. 13, 2007 Sheet 3 of 9 Patent Application Publication

? HdS ()|099

0BdS OL 098

Patent Application Publication Dec. 13, 2007 Sheet 4 of 9 US 2007/0288738A1

SAMPLE

397

PER WASWE LOGIC SKEY
STORAGE - 395

RANDOMEWENT RANDOM KE (Efuse)
GENERATO USE

y

GENERATOR/ R y
SELECTOR 390 BJS OF

KEY WEDTH

SELECTOR BUSS "ONE-HO

WALID COMBINATIONS:

1) OOOOOO
O1 OOOOOO
O)1 OOOOO
OOO1 OOOO
OOOOOOO
OOOOO1 OO
OOOOOO 10
OOOOOOO1

FIG. 3C

Patent Application Publication Dec. 13, 2007 Sheet 5 of 9 US 2007/0288738A1

410 y 44 A18 422

RUNSCOF
THAT LOOKS

RUNS CODE RUNS CODE
THAT LOOKS THAT LOOKS

KE BOOT
CODE

LIKE BOOT LIKE BOOT
CODE CODE

EB

RUNS CODE RUNS CODE RUNS CODE RUNS CODE
THAT LOOKS THAT LOOKS THAT LOOKS THAT LOOKS

KE BOOT LIKE BOOT KBOO KF BOOT
CODE CODE CODE CODE

412 416 FIG. 4A A2O A24

410 44 418 422

RUNS RUNS RUNS
RANDOM RANDOM RANDOM

ALGORTHMB ALGORTHMD ALGORTHMF
405

k
RUNS runs RUNS RUNS

RANDOM
ALGORTHMA

RANDOM RANDOM
ALGORITHMC ALGORIHME

RANDOM
ALGORTHMG

412 41 FIG. 4B 0 424

Patent Application Publication

414

Dec. 13, 2007 Sheet 6 of 9

418 FIG. 4C 422

RUNS CODE RUNS CODE RUNS CODE
THAT LOOKS THAT LOOKS THAT LOOKS
LIKE BOOT LIKE BOOT LIKE BOOT
CODE CODE CODE

RUNS CODE
HAT LOOKS
LKE BOOT
CODE

A1)

RUNS BOOT
CODE

THAT LOOKS

414

RUNS CODE RUNS CODE
THAT LOOKS
LKE BOOT
CODE

RUNS
RANDOM

ALGORITIMA LKE BOOT

CODE

418 FIG. 4D 422

RUNSB00T
CODE

RUNS BOOT
CODE

RUNS BOO
CODE

RUNS BOOT
CODE

RKEY

RUNS BOOT
COOE

RUNS BOOT
CODE

RUNS BOOT
CODE

US 2007/0288738A1

Patent Application Publication

50

520

530

540

550

560

580

590

595

FIG. 5

POR OPERATION

POWER GOOD SIGNAL FROM
SYSTEM CONTROLLER

INITIATE RANDOM
BOOT OPERATION

RANDOMY SELECT PROCESSOR
FROM PLURALITY OF PROCESSORS

TO BE BOOT PROCESSOR

SET CONFIGURATION BITS OF
PROCESSORS BASED ON
RANDOMSELECTION

SIGNAL PROCESSORS TO
BEGIN BOOT OPERATION

PROVIDE ENCRYPTED
BCOT CODE AND KFY

WALUES TO PROCESSORS

PROCESSORS SELECT KEYS
BASED ON CONFIGURATION

BIT WAUES

PROCESSORS A TEMPT
DECRYPT OF BOOT CODE
BASED ON SELECTE) KEYS

SELECTED PROCESSOR
DECRYPTS BOOT CODE USING

SECRET KEY AND BOCTS SYSTEM

EN)

Dec. 13, 2007 Sheet 7 of 9

610

620

650

660

US 2007/0288738A1

RECEIVE SIGNAL
TO BEGIN BOOT
OPERATION

DECRYPT
BOOT CODE

630

DECRYPTION
FALP

SELECT CODE TO
EXECUTE TO MASK
BOOT SEQUENCE

RUN MASKING
CODE SEOUENCE

SYSTEM
N OPERATIONAL

STATE?

EXECUTE
BOOT CODE
SEQUENCE

END MASKING

CODE SEQUENCE

Patent Application Publication Dec. 13, 2007 Sheet 8 of 9 US 2007/0288738A1

ENCRYPTED BOOT CODE SEQUENCE
710

FIG. 7A a

BCO CODE | BOOT CODE BOOT CODE | BOOT CODE
PARTITION 1 PARTITION 2 PARTITION 6 PARTITION 7

SGNAL SGNAL
SUCCESSFUL SUCCESSFUL

UNCOMPROMISED UNCOMPROMISE)
COMPLETON COMPLETON

SIGNAL
SUCCESSFUL

UNCOMPROMISED
COMPLETION

. marr or non- on nor nor. -nnnn nor nor

SELECTSIGNALS---
PERWASWE

790 LOGIC
ENCRYPTED BOOT
CODE SECUENCE

10

FIG. 7B
BOOT CODE | BOOT CODE
PARTITION 6 PARTITION 7

SIGNAL
SUCCESSF

UNCOMPROMSEC
COMPLETION SIGNAL

SUCCESSFUL
UNCOMPROMISED
COMPLETION

SPE/PPE

SELECTSIGNALS---
PERWASWE

790 LOGIC 760

Patent Application Publication Dec. 13, 2007 Sheet 9 of 9 US 2007/0288738A1

RECEIVE POWER-GOOD
SGNAL FROM SYSTEM

CONTROLLER

SELECT BOOT

PROCESSORS

SELEC BOOT CODE
PARTITIONS TO ASSIGN TO

EACH BOOT PROCESSOR

810

820

830

EXECUTE NEXT BOOT CODE
PARTITION NASSOCATED

BOOT PROCESSOR

EXECUTION
OF BOOT CODE

PARTITION SUCCESSFUL AND
UNCOMPROMISED

860
SGNAL BOOT

OPERATION FAILURE

ALL BOOT
CODE PARTITIONS
SUCCESSFUL AND
UN COMPROMISED

SIGNAL SUCCESSFUL
BOOT OF SYSTEM 880

US 2007/0288738A1

SYSTEMAND METHOD FOR SELECTING A
RANDOMI PROCESSOR TO BOOT ON A

MULTIPROCESSOR SYSTEM

BACKGROUND

0001 1. Technical Field
0002 The present application relates generally to an
improved data processing system and method. More spe
cifically, the present application is directed to a system and
method for masking a boot sequence by providing a dummy
processor.
0003 2. Description of Related Art
0004 As our society becomes increasingly dependent
upon electronic communication and storage of information,
concerns over the security of digital information, such as
personal information and digital rights management (DRM),
have increased. Moreover, the Sophistication of computer
hackers and other unauthorized interlopers into computing
systems has increased in recent years. As a result, much
effort has gone into the development of security systems for
computing devices so that Such sensitive digital information
may be secured from unauthorized access.
0005 One way in which an intruder may gain access to
a computing system is to observe the boot activity of a
computing system through electrical interfaces and other
observable electromagnetic or thermal activity. By observ
ing the boot activity in this way, the intruder may deduce
what data signals are being input and output by the boot
processor, what cryptographic algorithms are running on the
processors, and the like. From this information, an intruder
may detect points in the boot sequence where unauthorized
intrusion may be made. Moreover, with secure boot
sequences in which security keys are required for booting of
the system, the intruder may reverse the cryptographic
algorithm used by the boot processor to obtain access to the
security keys and thereby be given complete access to the
computing system. Since the overall security of the com
puting system is often dependent upon the security of the
boot process, when the intruder gains access to the boot
sequence, the security of the entire system may be at risk.
0006 Thus, it would be beneficial to have an apparatus
and method that increases the difficulty of monitoring the
boot sequence of a processor so as to make the system more
secure from unauthorized intrusion.

SUMMARY

0007. The illustrative embodiments provide a system and
method for selecting a random processor to boot a multi
processor system and for masking a boot sequence by
providing a dummy processor. By randomizing which pro
cessor will be used to boot the multiprocessor system, the
ability of unauthorized persons to monitor the electrical
interfaces, thermal activity, and other electromagnetic activ
ity to obtain information about the boot sequence for pur
poses of defeating the security of the system is made more
difficult. For example, in a multiprocessor System, the
would-be intruder would either need to run the boot
sequence many different times while monitoring a single
processor in hopes that it may be randomly selected as the
boot processor, or monitor all of the processors at boot in
order to determine which one was the actual boot processor.
Both options require considerable effort on the part of the
would-be intruder that may act as a deterrent from actually

Dec. 13, 2007

attempting to monitor the system to obtain boot sequence
information or at least add significant delay to the time it
would take the would-be intruder to compromise the system.
0008. With the mechanisms of the illustrative embodi
ments, pervasive logic is provided on a multiprocessor
system, such as a system-on-a-chip, that controls the boot
operation of the multiprocessor System. The pervasive logic
includes a random event generator which randomly selects
which processor in the multiprocessor System is to be the
boot processor that runs the boot code to thereby bring the
system into an operational state. Based on the random
selection of a boot processor, a configuration bit associated
with the boot processor is set indicating that processor to be
the boot processor. Thereafter, the selected boot processor is
provided with the necessary security key(s) for secure
booting of the multiprocessor System into an operational
State.

0009. In some illustrative embodiments, while the ran
domly selected processor performs the secure boot opera
tion, the other processors of the multiprocessor system
perform operations to mask the real Secure boot operation.
This masking may involve executing other code sequences,
other than the boot code sequence, that cause the processors
to generate electromagnetic and/or thermal outputs that, if
monitored by an interloper, would make it difficult for the
interloper to distinguish which processor is performing the
actual secure boot operation.
0010. One way in which a different code sequence may
be generated is by inserting random delay elements into the
boot code that run loops which iterate a random amount. In
this way, each processor may run the boot code but with
differing delay amounts thereby causing different electro
magnetic and thermal signatures to be generated. From an
interloper's perspective, it will be very difficult to discern
the actual boot processor from the other processors in the
multiprocessor System due to such masking.
0011. In a further illustrative embodiment, the code
sequences performed by the other processors are the same
boot code sequence that the randomly selected processor
executes but with dummy security keys. Thus, these other
processors operate and look, to an interloper, as if they are
performing the secure boot operation. However, if the pro
cessors are monitored, false electromagnetic and thermal
outputs are identified that make it difficult for the interloper
to determine if the monitored processor is the actual ran
domly selected processor that is performing the secure boot
operation.
0012. In a still further illustrative embodiment, masking
of the randomly selected boot processor may be performed
by providing a dummy processor. The dummy processor
appears, from an electromagnetic, thermal, etc., monitoring
apparatus perspective, as if it is unique by running processes
different from the boot code sequence on this dummy
processor to thereby redirect attacks on the system to this
dummy processor. In this way, when an interloper attempts
to access the system by getting around the security mecha
nisms, the interloper only accesses a dummy processor that
does not have actual access to the rest of the multiprocessor
system.
0013. In other illustrative embodiments, the boot code
sequence may be distributed across a plurality of processors
in the multiprocessor system. By distributing the boot code
sequence across a plurality of processors in the multipro
cessor System, the number of processors that must be

US 2007/0288738A1

compromised in order to obtain complete information about
the boot sequence and thereby circumvent security measures
is increased. Thus, the distributed boot operation of the
illustrative embodiments is more secure than multiprocessor
data processing systems that utilize a single secure core.
Furthermore, by distributing the boot operation, if any
portion of the boot operation is compromised, the boot
operation fails, thereby preventing an unauthorized indi
vidual from circumventing the security of the system.
0014 With this illustrative embodiment, the boot code
sequence is partitioned into a plurality of partitions such that
each partition may be provided to a different processor of the
multiprocessor System. As each partition of the boot code
sequence is executed, that partition must complete correctly
on its respective processor before the boot code sequence
may proceed on another processor. A secure communication
mechanism is used to communicate satisfactory completion
of a previous partition of the boot code sequence. This
secure communication mechanism may include a security
token, such as an encrypted password or other security
identifier, e.g., a public/private encryption key pair, that
indicates that the previous session was not compromised. In
this way, a chain of dependent "sessions' are created that
must complete satisfactorily.
0015 The processors that are involved in the distributed
execution of the boot code may be all of the processors in the
multiprocessor System or a sub-set of the processors in the
multiprocessor system. For example, a random selection
mechanism, such as that described above for selecting a
single boot processor, may be used to randomly select a
plurality of boot processors to be used in booting the system
in a distributed manner. Moreover, the particular partitions
of the boot code that are executed by the processors may be
randomly selected Such that, with each power-on reset
(POR) operation, the same processor may or may not
execute the same boot code partition as in a previous POR
operation. Thus, randomization may be performed with
regard to which processors are involved in the distributed
boot operation as well as with regard to what boot code
partitions each processor will execute.
0016 Other processors of the multiprocessor system, i.e.
non-boot processors, may either not perform any work
during the distributed boot operation or may execute mask
ing code sequences, of one or more of the various masking
code illustrative embodiments described previously, to mask
the boot code execution on the randomly selected sub-set of
processors. In other words, the distributed boot code
sequence operation of the present illustrative embodiment
may be combined with one or more of the previously
described illustrative embodiments.

0017. In one illustrative embodiment, a method is pro
vided, in a data processing system having a boot processor
and a plurality of non-boot processors, for masking execu
tion of a boot code sequence in the data processing system.
The method may comprise executing a boot code sequence
on a boot processor to thereby boot the data processing
system to an operational state and executing a first masking
code sequence on at least one first non-boot processor, of the
plurality of non-boot processors, to thereby generate at least
one of electromagnetic or thermal signatures that approxi
mate an electromagnetic or thermal signature of the execu
tion of the boot code sequence on the boot processor, thereby
masking the execution of the boot code sequence on the boot
processor. The method may further comprise executing a

Dec. 13, 2007

second masking code sequence on a second non-boot pro
cessor, of the plurality of non-boot processors, to thereby
generate at least one of electromagnetic or thermal signa
tures that are different from the electromagnetic or thermal
signature of the execution of the boot code sequence on the
boot processor, thereby making the second non-boot pro
cessor appear to be the boot processor. The method may
further comprise randomly selecting the second masking
code sequence from a plurality of masking code sequences.
0018. The second non-boot processor may be randomly
selected from a plurality of non-boot processors. The at least
one first non-boot processor may be all non-boot processors
of the plurality of non-boot processors that were not ran
domly selected to be the second non-boot processor. The
second non-boot processor may be randomly selected from
the plurality of non-boot processors with each power-on
reset operation of the data processing system.
0019. The method may further comprise randomly select
ing the boot processor from a plurality of processors. The
plurality of processors may comprise the boot processor, the
at least one first non-boot processor, and the second non
boot processor.
0020. The data processing system may be a heteroge
neous multiprocessor System-on-a-chip. The heterogeneous
multiprocessor system-on-a-chip may have a first processor
the operates according to a first instruction set and one or
more second processors that operate according to a second
instruction set different from the first instruction set. The
first instruction set may be a RISC instruction set and the
second instruction set may be a SIMD instruction set.
0021. In another illustrative embodiment, a data process
ing system is provided that comprises a boot processor, a
plurality of non-boot processors, a boot code storage device
coupled to the boot processor, and a masking code storage
device coupled to the plurality of non-boot processors. A
boot code sequence may be executed on the boot processor
to thereby boot the data processing system to an operational
state. A first masking code sequence, from the masking code
storage device, may be executed on at least one first non
hoot processor, of the plurality of non-boot processors, to
thereby generate at least one of electromagnetic or thermal
signatures that approximate an electromagnetic or thermal
signature of the execution of the boot code sequence on the
boot processor, thereby masking the execution of the boot
code sequence on the boot processor. A second masking
code sequence, from the masking code storage device, may
be executed on a second non-boot processor, of the plurality
of non-boot processors, to thereby generate at least one of
electromagnetic or thermal signatures that are different from
the electromagnetic or thermal signature of the execution of
the boot code sequence on the boot processor, thereby
making the second non-boot processor appear to be the boot
processor.
0022. The system may further comprise pervasive logic
coupled to the boot processor and the plurality of non-boot
processors. The pervasive logic may randomly select the
second masking code sequence from a plurality of masking
code sequences. The pervasive logic may randomly select
the second non-boot processor from the plurality of non
boot processors. The at least one first non-boot processor
may be all non-boot processors of the plurality of non-boot
processors that were not randomly selected to be the second
non-boot processor. The pervasive logic may randomly

US 2007/0288738A1

select the boot processor from a plurality of processors
comprising the boot processor and the plurality of non-boot
processors.
0023 The second non-boot processor may be randomly
selected from the plurality of non-boot processors with each
power-on reset operation of the data processing system.
0024. In yet another illustrative embodiment, a computer
program product comprising a computer useable medium
having a computer readable program is provided. The com
puter readable program, when executed on a data processing
system, causes the data processing system to perform vari
ous ones, or combinations of the operations outlined above
with regard to the method illustrative embodiment described
previously.
0025. These and other features and advantages of the
present invention will be described in, or will become
apparent to those of ordinary skill in the art in view of the
following detailed description of the exemplary embodi
ments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0026. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:
0027 FIG. 1 is an exemplary block diagram of a multi
processor system in which the illustrative embodiments may
be implemented;
0028 FIG. 2 is an exemplary diagram illustrating the
primary operational components of a random boot processor
selection mechanism in accordance with one illustrative
embodiment;
0029 FIG. 3A is an exemplary diagram illustrating a
random selection mechanism in accordance with one illus
trative embodiment;
0030 FIG. 3B is a graphical representation of jitter
introduced into the input to a LFSR counter of a random
event generator in accordance with one illustrative embodi
ment,
0031 FIG. 3C is an exemplary diagram illustrating an
illustrative embodiment in which a secret key and a plurality
of randomly generated key values are provided to processors
using parallel signal lines;
0032 FIGS. 4A-4D are exemplary diagrams illustrating
masking operations for masking a secure boot operation of
a randomly selected boot processor in accordance with
illustrative embodiments;
0033 FIG. 5 is a flowchart outlining an exemplary opera
tion for randomly selecting a processor in a multiprocessor
system as a boot processor;
0034 FIG. 6 is a flowchart outlining an exemplary opera
tion for masking a boot code sequence in accordance with
one illustrative embodiment;
0035 FIG. 7A is an exemplary diagram illustrating a
distributed boot operation configured as a daisy chain or ring
arrangement in accordance with one illustrative embodi
ment,
0036 FIG. 7B is an exemplary diagram illustrating a
distributed boot operation configured as a master/slave
arrangement in accordance with one illustrative embodi
ment; and

Dec. 13, 2007

0037 FIG. 8 is a flowchart outlining an exemplary opera
tion for distributed booting of a multiprocessor System in
accordance with one illustrative embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0038. The illustrative embodiments provide an apparatus
and method for selecting a random processor to boot on a
multiprocessor System. The illustrative embodiments may
be implemented for use with any multiprocessor System in
which one of the processors may be selected for booting the
multiprocessor System. Thus, the mechanisms of the illus
trative embodiments are applicable to symmetric multipro
cessor (SMP) systems, heterogeneous multiprocessor sys
tems, non-coherent asymmetrical multiprocessor Systems,
and the like.
0039. One multiprocessor system in which the illustrative
embodiments may be implemented is the Cell Broadband
Engine (CBE) available from International Business
Machines, Inc. of Armonk, N.Y. The illustrative embodi
ments will be described with reference to the CBE archi
tecture, however, it should be appreciated that the descrip
tion of the illustrative embodiments is only exemplary and
is not intended to state or imply any limitation with regard
to the types or configurations of the multiprocessor Systems
in which the mechanisms of the illustrative embodiments
may be implemented. Many modifications to the described
CBE architecture may be made without departing from the
spirit and scope of the present invention.
0040 FIG. 1 is an exemplary block diagram of a data
processing system in which aspects of the present invention
may be implemented. The exemplary data processing sys
tem shown in FIG. 1 is an example of the Cell Broadband
Engine (CBE) data processing system. While the CBE will
be used in the description of the preferred embodiments of
the present invention, the present invention is not limited to
such, as will be readily apparent to those of ordinary skill in
the art upon reading the following description.
0041. As shown in FIG. 1, the CBE 100 includes a power
processor element (PPE) 110 having a power processor unit
(PPU) 116 and its L1 and L2 caches 112 and 114, and
multiple synergistic processor elements (SPEs) 120-134 that
each has its own synergistic processor unit (SPU) 140-154,
memory flow control 155-162, local memory or store (LS)
163-170, and bus interface unit (BIU unit) 180-194 which
may be, for example, a combination direct memory access
(DMA), memory management unit (MMU), and bus inter
face unit. A high bandwidth internal element interconnect
bus (BIB) 196, a bus interface controller (BIC) 197, and a
memory interface controller (MIC) 198 are also provided.
0042. The CBE 100 may be a system-on-a-chip such that
each of the elements depicted in FIG. 1 may be provided on
a single microprocessor chip. Moreover, the CBE 100 is a
heterogeneous processing environment in which each of the
SPUs may receive different instructions from each of the
other SPUs in the system. Moreover, the instruction set for
the SPUs is different from that of the PPU, e.g., the PPU may
execute Reduced Instruction Set Computer (RISC) based
instructions while the SPUs execute Single Instruction Mul
tiple Data (SIMD) instructions.
0043. The SPEs 120-134 are coupled to each other and to
the L2 cache 114 via the EIB 196. In addition, the SPEs
120-134 are coupled to MIC 198 and BIC 197 via the EIB
196. The MIC 198 provides a communication interface to

US 2007/0288738A1

shared memory 199. The BIC 197 provides a communica
tion interface between the CBE 100 and other external buses
and devices, such as a Scouth BridgeTM communications
processor, for example.
0044) The PPE 110 is a dual threaded PPE 110. The
combination of this dual threaded PPE 110 and the eight
SPEs 120-134 makes the CBE 100 capable of handling 10
simultaneous threads and over 128 outstanding memory
requests. The PPE 110 acts as a controller for the other eight
SPEs 120-134 which handle most of the computational
workload. The PPE 110 may be used to run conventional
operating systems while the SPEs 120-134 perform vector
ized floating point code execution, for example.
0045. The SPEs 120-134 comprise a synergistic process
ing unit (SPU) 140-154, memory flow control units 155-162,
local memory or store 163-170, and bus interface units
180-194. The local memory or store 163-170, in one exem
plary embodiment, comprises a 256 KB instruction and data
memory which is visible to the PPE 110 and can be
addressed directly by software.
0046. The PPE 110 may load the SPEs 120-134 with
Small programs or threads, chaining the SPEs together to
handle each step in a complex operation. For example, a
set-top box incorporating the CBE 100 may load programs
for reading a DVD, video and audio decoding, and display,
and the data would be passed off from SPE to SPE until it
finally ended up on the output display. At 4GHz, each SPE
120-134 gives a theoretical 32 GFLOPS of performance
with the PPE 110 having a similar level of performance.
0047. The memory flow control units (MFCs) 155-162
serve as an interface for an SPU to the rest of the system and
other elements. The MFCs 155-162 provide the primary
mechanism for data transfer, protection, and synchronization
between main storage and the local storages 163-170. There
is logically an MFC for each SPU in a processor. Some
implementations can share resources of a single MFC
between multiple SPUs. In such a case, all the facilities and
commands defined for the MFC must appear independent to
software for each SPU. The effects of sharing an MFC are
limited to implementation-dependent facilities and com
mands.
0048. The illustrative embodiments provide an apparatus
and method for selecting a random processor, Such as one of
the SPEs 120-134, to boot a multiprocessor system, e.g., the
CBE 100. By randomizing which SPE 120-134 will be used
to boot the CBE 100, the ability of unauthorized persons to
monitor the electrical interfaces, thermal activity, and other
electromagnetic activity to obtain information about the boot
sequence for purposes of defeating the security of the CBE
100 is made more difficult.
0049. With the mechanisms of the illustrative embodi
ments, pervasive logic 193 is provided on the CBE 100
which controls the boot operation of the CBE 100. The
pervasive logic 193 includes a random event generator
which randomly selects which SPE120-134 is to be the boot
processor that runs the boot code to thereby bring the system
into an operational state. Based on the random selection of
a boot SPE 120-134, a configuration bit associated with the
selected SPE, e.g., SPE 120, is set indicating that SPE 120
to be the actual boot processor. Thereafter, the selected SPE
120 is provided with the necessary security key(s) for secure
booting of the CBE 100 into an operational state. When the
chosen SPE successfully completes the secure boot proce
dure, it will transition from a secure state, wherein the MIC

Dec. 13, 2007

198, Shared Memory 199, and a portion of the BIC 197 other
than the communication link to Flash Rom 230 in FIG. 2
hereafter, are shutdown and prevented from operation, to an
unlocked state. Once the secure SPE enters the unlocked
state, it will initiate the process of fully enabling the MIC
198, BIC 197 (a process referred to as “training, and all
other processors (SPEs and PPE) by executing the encrypted
code provided by the Flash ROM 230. For more information
regarding the secure boot process used in the Cell Broad
band Engine, reference is made to co-pending and com
monly assigned U.S. Patent Application Publication No.
20050021944, which is hereby incorporated by reference.
0050. In some illustrative embodiments, while the ran
domly selected SPE 120 performs the secure boot operation,
the other SPEs 122-134 perform operations to mask the real
secure boot operation. This masking may involve executing
other code sequences, other than the boot code sequence,
that cause the SPEs 122-134 to generate electrical, electro
magnetic, and/or thermal outputs that, if monitored by an
interloper, would make it difficult for the interloper to
distinguish which SPE 120-134 is performing the actual
secure boot operation.
0051 One way in which a different code sequence may
be generated is by inserting random delay elements into the
boot code that run loops which iterate a random amount.
These random delay elements are added so that while
booting the processor, the secure-boot algorithm will change
in a random way to cause different electromagnetic and
thermal signatures, thereby making it difficult to compare
two different boot operations over time. In this way, each
SPE120-134 may run the boot code but with differing delay
amounts thereby causing different electromagnetic and ther
mal signatures to be generated. Moreover, the same SPE
120-134 will generate different electromagnetic and thermal
signatures each time it runs the secure boot code. From an
interloper's perspective, it will be very difficult to discern
the actual boot SPE 120 from the other SPES 122-134 in the
CBE 100 due to such masking.
0052. In a further illustrative embodiment, the code
sequences performed by the other SPEs 122-134 are the
same boot code sequence that the randomly selected SPE
120 executes but with dummy security keys. Thus, these
other SPEs 122-134 operate and look, to an interloper, as if
they are performing the secure boot operation. However, if
the SPEs 122-134 are monitored, false electrical, electro
magnetic, and thermal outputs are identified that make it
difficult for the interloper to determine if the monitored SPE
is the actual randomly selected SPE 120 that is performing
the secure boot operation.
0053. In a still further illustrative embodiment, masking
of the randomly selected boot SPE 120 may be performed by
providing a dummy SPE (not shown). The dummy SPE
appears, from an electromagnetic, thermal, etc., monitoring
apparatus perspective, as if it is unique by running processes
different from the boot code sequence on this dummy SPE
to thereby redirect attacks on the CBE 100 to this dummy
SPE. In this way, when an interloper attempts to access the
system by getting around the security mechanisms, the
interloper only accesses a dummy SPE that does not have
actual access to the rest of the CBE 100. Furthermore, if the
intruder compromises the dummy SPE and attempts to
execute code, the dummy SPE can then shutdown the rest of
the CBE 100 to prevent further intrusion attempts.

US 2007/0288738A1

0054 Each of the above mentioned illustrative embodi
ments will now be described in greater detail. It should be
appreciated that, while each illustrative embodiment will be
described separately herein, the illustrative embodiments
may be combined in various ways so as to achieve even
greater security of the multiprocessor system, e.g., CBE 100.
Thus, any combination of the illustrative embodiments that
is deemed suitable to a particular situation and multiproces
sor environment is intended to be within the spirit and scope
of the present invention.
0055 FIG. 2 is an exemplary diagram illustrating the
primary operational components of a random boot processor
selection mechanism in accordance with one illustrative
embodiment. It should be appreciated that, for simplicity of
the explanation of the illustrative embodiments, FIG. 2 only
shows one processor of a multiprocessor System in detail.
However, it should be appreciated that each of the proces
sors of the multiprocessor system have a similar arrange
ment of elements and operate in a similar manner to that of
the processor that is explicitly shown in FIG. 2. Any number
of processors may be included in the multiprocessor System
without departing from the spirit and scope of the present
invention. However, for purposes of explanation of the
illustrative embodiments, it will be assumed that the number
of processors is eight as in the CBE architecture shown in
FIG 1.

0056. As shown in FIG. 2, the primary operational com
ponents of a random boot processor selection mechanism
include a system controller 210, a secure key storage 220, a
flash ROM 230, and pervasive logic 240. In one illustrative
embodiment, taking the CBE architecture of FIG. 1 as
exemplary, elements 210-240 may be elements that are
provided on the chip in which the CBE architecture is
implemented. That is, these elements 210-240 may be built
into the logic of a multiprocessor System-on-a-chip (SoC)
and thus, the operations performed by these elements 210
240 may be performed on-chip. Alternatively, one or more
of the elements may be provided off chip, e.g., the flash
ROM 230 may be provided off-chip.
0057 The system controller 210 is responsible for per
forming the initial operations of a power on reset (POR) to
bring the power of the system to an acceptable and stable
level. That is, the system controller 210 is responsible for
bringing up the Voltages, turning on the system clock, and
other initial operations required for bringing the multipro
cessor System to a state where boot operations may begin, as
is generally known in the art. As part of this POR operation,
the processors 280–290 are brought up in a secure mode of
operation. In this secure mode of operation, the processor's
local stores are not accessible outside the processor. The
system controller 210, once these initial operations are
completed and the system is at an acceptable power state,
signals a “power good State to the pervasive logic 240.
0058. In response to the “power good” signal from the
system controller 210, the pervasive logic 240 begins a boot
operation for booting the multiprocessor System into an
operational state Such that Software programs may begin to
execute. As part of this boot operation, a random event
generator 242 of the pervasive logic 240 randomly selects
one of the processors, e.g., processor 280, to be the boot
processor for the multiprocessor system. The random event
generator 242 generates a signal that is sent to each of the
processors of the multiprocessor System. The signal is
logically high only for the processor that is selected as the

Dec. 13, 2007

boot processor. This signal effectively sets the value in the
configuration bit register 250 of the randomly selected
processor 280 to a value, e.g., “1” indicative of this proces
sor 280 being the boot processor. The other processors will
have their configuration bit values in their respective con
figuration bit registers kept at an initial value, thereby
indicating that these processors are not the randomly
selected boot processor for the multiprocessor system.
0059. The boot code for booting the multiprocessor sys
tem is stored in an encrypted format in flash ROM 230. The
encrypted boot code 232 may be provided to each of the
processors 280–290. That is, as part of the boot sequence,
each of the processors 280-290 may attempt to read the
encrypted boot code 232 from the flash ROM 230. However,
since only one of the processors has been randomly selected
as the boot processor, only one of the processors will be able
to decrypt the encrypted boot code 232 and properly execute
it so as to bring the multiprocessor system to an operational
state. This is achieved through the use of a selector 260
provided in each of the processors that selects between the
secret key that is the key value used to decrypt the encrypted
boot code 232 and a randomly generated key value that will
not be able to decrypt the encrypted boot code 232.
0060. The value stored in the configuration bit register
250 is used to generate a selector signal that is provided to
the selector 260. For example, selector 260 may be a
multiplexer that receives the secure key (Skey) from the
secure key storage 220 as one input, a randomly generated
key value from a random value generator 262 as a second
input, and the select signal from the configuration bit register
250 indicating which of the two inputs to select. If the
configuration bit register 250 stores a value indicative of the
processor being the randomly selected boot processor, then
the Skey input is selected. If the configuration bit register
250 stores a value indicative that the processor is not the
randomly selected boot processor, then the randomly gen
erated key value input may be selected by the selector 260.
The selected key value is then output to the SPE 270.
0061. The SPE 270 receives the selected key value and
the encrypted boot code 232. The SPE 270 then attempts to
decrypt the encrypted boot code 232. If the selected key
value is the Skey from the secure key storage 220, then the
SPE 270 will be able to properly decrypt the encrypted boot
code 232 and execute the boot code instructions therein to
bring the system to an operational state. If the selected key
value is not the Skey from the secure key storage 220, then
the decryption will fail and the SPE 270 will not be able to
execute the boot code instructions.
0062. The above process for randomly selecting a boot
processor and booting the multiprocessor System using the
randomly selected boot processor may be performed with
each power-on reset (POR) operation performed by the
multiprocessor System. Thus, each time the multiprocessor
system is booted, a different one of the plurality of proces
sors may be randomly selected to be the boot processor. As
a result, a potential intruder into the system will not be able
to determine, a priori, which processor is the boot processor
and direct measurements of electromagnetic and thermal
conditions of the multiprocessor system to that particular
processor.

0063. On the contrary, the potential intruder must either
monitor a single processor through multiple boot-up opera
tions of the multiprocessor System in hopes that the single
processor will eventually be selected as the random proces

US 2007/0288738A1

sor to be the boot processor or the potential intruder must
monitor all of the processors to thereby identify which
processor is the boot processor and attempt to obtain the
necessary information through measurements of its indi
vidual electromagnetic and thermal conditions. In an eight
processor System, for example, the difficulty in monitoring
the boot sequence is made eight times more difficult since all
eight processors must be monitored. Moreover, more probes
and hardware would be need to do such monitoring, thereby
adding to the difficulty of attempting such monitoring.
0064 FIG. 3A is an exemplary diagram illustrating a
random selection mechanism in accordance with one illus
trative embodiment. As described above, the principle idea
behind the illustrative embodiments is the random selection
of a processor, from a plurality of processors, to be the boot
processor for the multiprocessor system. In order to do this
random selection, a random event generator and selector
mechanism are provided. The random event generator is
provided in pervasive logic of the multiprocessor system
while a selector is provided in association with each of the
processors, in the illustrative embodiments. FIG. 3A pro
vides a depiction of one implementation of a random event
generator and selector in accordance with one illustrative
embodiment.
0065. As shown in FIG. 3A, the random event generator
310, which may correspond to the random event generator
242 in FIG. 2, for example, includes a linear feedback shift
register (LFSR) counter 320, a ring oscillator 330, and a
selector signal register/decoder 340. The ring oscillator 330
is a device composed of an odd number of NOT gates whose
output oscillates between two voltage levels. The NOT
gates, or inverters, are attached in a chain with the output of
the last inverter being fed back into the first inverter. The last
output of a chain of an odd number of inverters is the logical
NOT of the first input. This final output is asserted a finite
amount of time after the first input is asserted. The feedback
of this last output to the input causes an unstable oscillation
that will vary in time according to random elements such as
electromagnetic noise on the power Supply and temperature.
0066. The output of the ring oscillator 330 is provided as
an input to the LFSR counter 320 along with a clock signal
clk. The LFSR counter 320 is a shift register whose input bit
is a linear function of its previous state. The only linear
functions of single bits are XOR and inverse-XOR and thus,
the LFSR is a shift register whose input bit is driven by the
exclusive-or (XOR) of some bits of the overall shift register
value.

0067. The initial value of the LFSR counter 320 is called
the seed, and because the operation of the register is deter
ministic, the sequence of values produced by the LFSR
counter 320 is completely determined by its current (or
previous) state. A LFSR counter 320 with a well-chosen
feedback function can produce a sequence of bits which
appears random and which has a very long cycle. In the
illustrative embodiments, this randomness is made more
apparent in that the input to the LFSR counter 320 is a
product of the oscillation produced by the ring oscillator 330
and the discrepancy between the frequency of the ring
oscillator 330 and the input clock clk which vary indepen
dently of one another.
0068. The LFSR counter 320 receives, as input, the
output from the ring oscillator 330 and the clock signal clk.
and generates an output bit stream that is stored in selector
signal register/decoder 340. The inverters of the ring oscil

Dec. 13, 2007

lator 330 introduce a delay in the output signal to the LFSR
counter 320 and thus, there is a discrepancy between the
frequency of the ring oscillator 330 and the input clock clk.
This discrepancy between the frequencies gives rise to jitter
in the input to the LFSR counter 320, as depicted in FIG.3B.
This jitter provides a measure of randomness which ran
domizes the output generated by the LFSR counter 320.
0069. The output of the LFSR counter 320 is stored in the
selector signal register/decoder 340. In the depicted
example, the LFSR counter 320 is a 3-bit counter which
generates a 3-bit output that is interpreted to encode a value
1-8. A decoder function of the selector signal register/
decoder 340 selects one of the B unique outputs based on the
random 3-bit input value. Based on the state of the bits
stored in the selector signal register 340, high or low state
signals are output to the configuration bit registers of the
various processors, e.g., SPE0-SPE7 120-134 in FIG. 1, to
thereby set the values stored in the configuration bit registers
and thus, select one of the processors to be the boot
processor for the multiprocessor System.
0070. Once the configuration bit register values are set,
these values are used to provide selector signals to the
corresponding selectors 350-370. As shown in FIG. 3A, the
selector signal is provided to a multiplexer 352, 362,372,
along with an Skey input and a random key value input.
Based on the state of the selector signal, either the Skey
input or the random key value input is selected by each of
the multiplexers 352,362,372. The random key value inputs
may be generated by one or more random value generators
of the same or a different type from the random event
generator configuration described above for selecting the
boot processor. That is, a similar random event generator
configuration as described above may be used to randomly
generate a key value having a same length as the Skey. These
random key values are then input to the multiplexers 352,
362, and 372.
0071. The system is designed such that, by way of the
decoder function describe above, for example, only one of
the selector signals that are input to the multiplexers 352,
362,372 will select the Skey input while all the others will
select a random key value input. The outputs from the
multiplexers 352, 362, and 372 are provide to the corre
sponding SPEs so that the SPEs may utilize these outputs for
either decrypting boot code and executing the boot code, in
the case of the randomly selected boot processor, or attempt
ing to decrypt the boot code and failing to boot the multi
processor system, as in the case of all other processors in the
multiprocessor System.
0072. It should be appreciated that the mechanisms
described above for providing a random event generator and
selector are only exemplary and are not intended to state or
imply any limitation with regard to the types of random
event generators and selectors that may be used with the
illustrative embodiments. For example, rather than using a
ring oscillator and LFSR counter arrangement as shown in
FIG. 3A, other random event generators may be utilized. For
example, a thermal sensor may be used to measure thermal
noise which may then be used to generate a random event for
selecting one of the processors as a boot processor. Simi
larly, a quantum dot (q-dot), or semiconductor nanocrystals,
may be used to measure quantum Source effects that may be
used as a source of randomness for selecting a processor as
the boot processor. Any strong Source of randomness may be

US 2007/0288738A1

used with the illustrative embodiments to provide a random
selection of a processor for use as the boot processor for the
multiprocessor System.
0073 Moreover, it should be appreciated that while FIG.
3A shows the ring oscillator 330 having five inverters, the
illustrative embodiments are not limited to such. Rather, any
number of inverters, so long as there are an odd number of
inverters, may be used without departing from the spirit and
Scope of the present invention. In fact, in order to provide
additional jitter in the input to the LFSR counter 320, it may
be desirable to add additional inverters to the chain of
inverters in the ring oscillator 330 so as to introduce even
more discrepancy between the frequency of the input clock
signal clk and the input from the ring oscillator 330. The
amount of discrepancy may be selected based on the desired
operational characteristics for the particular multiprocessor
system in which the illustrative embodiments are imple
mented.

0074. Furthermore, while FIGS. 2 and 3A depict the
random key value being generated by a separate random key
value generator for each processor, the illustrative embodi
ments are not limited to such. Rather, a single random key
value generator may be provided for all of the processors
with the random key value generator generating one or more
random key values that are input to the processors. Thus, for
example, the random key value generator may generate a
single random key value that is provided to all of the
processors, a separate random key value for each individual
processor (in which case seven different random key values
may be generated, for example), or any number of random
key values that may be selectively provided to the various
processors of the multiprocessor System.
0075. In one illustrative embodiment, as illustrated in
FIG. 3C, a plurality of random key value generators 390 may
be provided that each output a different random key value.
Alternatively, as mentioned above, a single random key
value generator may be used in replacement of these sepa
rate random key value generators. These random key values
may be provided as inputs to the selectors, e.g., multiplexers
391 and 392, of the processors, e.g., SPEs 393 and 394, in
the multiprocessor System along with the secure key (Skey)
from an Skey storage 395, e.g., an eFuse, that is actually
used to decrypt the boot code for booting of the multipro
cessor System. As shown, the randomly generated key values
and the Skey value may be multiplexed and provided on
eight identical signal lines to each of the multiplexers 391
and 392 so as to make it more difficult for an intruder to
isolate one of the lines as being a signal line from the secure
key storage 395.
0076. The eight total key value inputs may be provided to
the multiplexers 391 and 392 and the select signals from the
random event generator 396 in the pervasive logic 397 may
be used to select one of the eight inputs. In this case, rather
than simply selecting between the Skey input and a random
key value, the multiplexers 391 and 392 may select between
the Skey input and seven random key values. Thus, a first
processor may select the Skey input, based on the random
selection of this first processor as the boot processor, a
second processor may select a third random key value, a
third processor may select a fourth random key value, a fifth
processor may select a first random key value, and so on.
Thus, each processor may receive a different key value,
either the Skey or a randomly generated key value. As a
result, it becomes difficult for an intruder to discern which

Dec. 13, 2007

key value is the correct key value when monitoring bus
traffic of the multiprocessor system.
0077. It should be further appreciated that the mecha
nisms shown in FIGS. 3A and 3C are preferably provided in
lower layer metal layers of the ceramic package in which the
multiprocessor System is provided, or the lowest layer of
interconnect, if the design is on a single chip. Since the
ability to probe electrical and thermal characteristics of a
multiprocessor system is currently limited to the upper
layers of the multiprocessor ceramic package, by placing
these elements in the lower layer metal layers, the ability to
probe the operation of these elements is made more difficult.
Thus, it is very difficult, if not impossible, for a would-be
intruder to monitor the thermal and electrical characteristics
of the random event generator and selectors so as to deter
mine the key values provided by these elements.
0078. Using the mechanisms above, a processor within a
plurality of processors of a multiprocessor System may be
randomly selected to boot the multiprocessor System. In this
way, the ability to monitor the electrical and thermal char
acteristics of the processors so as to obtain secret informa
tion, e.g., the secret keys, used to boot the multiprocessor
system is made more difficult and potentially becomes a
deterrent to those who may wish to access the multiproces
sor System without authorization.
0079 While the above mechanism for randomly select
ing a processor to boot the multiprocessor System provide a
good amount of protection against monitoring of the boot
sequence, it may still be possible for an unauthorized
individual to “hack” the system if such an individual is
persistent enough. In order to make Such monitoring virtu
ally impossible, the illustrative embodiments provide addi
tional mechanisms for masking the boot sequence on the
randomly selected processor Such that the unauthorized
individual is not able to discern which processor is correctly
performing the actual boot sequence for booting the multi
processor System.
0080. In one illustrative embodiment, the masking opera
tion involves each of the processors that were not selected to
be the boot processor running a different set of instructions
to thereby generate masking electrical and thermal signa
tures that make it difficult to discern the boot processor from
the other processors in the system. The code sequences that
are run by the different processors may be the same default
code sequence that is provided either in a memory associ
ated with the processor, or is otherwise accessible by the
processors when the processors are not able to decrypt the
boot code sequence. For example, the default code sequence
may be provided in a secure portion of a local store
associated with each of the processors. Alternatively, the
default code sequence may be provided in a flash ROM or
other storage device provided on or off-chip.
I0081. When the processor is notable to decrypt the actual
encrypted boot code received from the flash ROM, the
processor may default back to this secure portion of local
storage which causes the processor to execute instructions to
mask the boot code sequence being performed on another
processor. This sequence of instructions may not generate
any useable information and may serve only a masking
function. Alternatively, this sequence of instructions may be
used to perform operations for monitoring the system during
the boot operation, or other useful operations, for example.
0082 In one illustrative embodiment, the code that is
executed on each of the non-selected processors, i.e. the

US 2007/0288738A1

non-boot processors, is the same. In illustrative embodi
ments where the code that is executed by each of the
non-selected processors is the same, the code that is run on
each of these non-selected processors preferably is code that
generates electrical and thermal profiles that resemble the
actual boot code but do not provide any of the secret
information that an intruder would require in order to
circumvent the Security of the multiprocessor System. Such
code may perform similar operations to that of the actual
boot code but not access the sensitive portions of the
multiprocessor System. In fact, in one illustrative embodi
ment, the same boot code that is used to boot the multipro
cessor System may be used by the non-selected processors
but with access to the secure key (Skey) and other privileged
information being made inaccessible.
0083. As a result, the thermal profile and bus traffic of
these non-selected processors will approximate the actual
boot sequence. Thus, from the perspective of an intruder
using monitoring probes to monitor the thermal profile, bus
traffic, and the like, the intruder will be unable to decipher
which core is performing the actual boot operation since all
of the cores will look the same via the monitoring probes.
Such ambiguity deters tampering and makes it more difficult
to isolate the real boot code sequence, Secret key informa
tion, and the like.
0084. In other illustrative embodiments, each of the non
selected processors may execute a different set of instruc
tions. By executing different sets of instructions on each of
the non-selected processors, none of the processors look
unique when monitored using electrical or thermal probes.
As a result, a distinguishing characteristic, such as thermal
profile or bus traffic, cannot be identified by probes so as to
identify which processor is the boot processor.
0085. These different sets of instructions may be ran
domly selected for each of the processors in the multipro
cessor system. Thus, for example, differing start addresses
for code sequences stored in an on-chip storage device, e.g.,
a flash ROM or the like, may be randomly selected and
provided to the processors of the multiprocessor system. The
processors may then begin executing instructions at the
randomly selected Start addresses thereby generating differ
ent thermal profiles and bus traffic that masks the actual boot
code sequence.
I0086 One way in which to provide different code
sequences for the different processors is to provide boot code
that has random delay elements inserted into the boot code.
These delay elements may be, for example, loops that iterate
a random number of times. Such delay elements may be
provided both in the actual boot code sequence run by the
randomly selected boot processor and in the boot code
sequences run by the non-selected processors. This random
delay causes the boot code to “look” different on each of the
processors from the perspective of an intruder monitoring
the thermal and bus traffic characteristics of the processors.
As a result, it is not possible for the intruder to discern which
processor is running the actual boot code that boots the
multiprocessor System.
0087. In yet another illustrative embodiment, a dummy
processor is provided that looks as though it is unique when
monitored by an intruder. This illustrative embodiment is a
combination of the previous embodiments in which one
processor is randomly selected to be the boot processor, one
processor of the non-selected processors is selected to be a
dummy processor that runs code that provides a unique

Dec. 13, 2007

thermal and bus traffic profile from the boot code sequence,
and the other processors run code sequences that replicate
the thermal profile and bus traffic of the actual boot code
sequence as close as possible. In this way, the intruder will
detect the dummy processor as being unique from the other
processors and will conclude that this processor is running
the actual boot code sequence. Thus, the intruder will direct
its attacks to this dummy processor rather than the actual
boot processor that appears to be similar to the other
processors from a thermal profile and bus traffic standpoint.
Furthermore, if the intruder attempts to run code or other
wise actively interfere with the dummy processor, the
dummy processor can then signal a system shutdown.
I0088 FIGS. 4A-4D are exemplary diagrams illustrating
masking operations for masking a secure boot operation of
a randomly selected boot processor in accordance with
illustrative embodiments. FIG. 4A illustrates a first masking
operation in which code that appears, from a monitoring
probe Standpoint, to be the same as the boot code sequence
is run on each of the non-selected processors. As shown in
FIG. 4A, SPE0 410 is randomly selected, such as by use of
the mechanisms described previously, to be the boot pro
cessor for the multiprocessor system 400. Thus, SPE0 410
receives the secret key, decrypts the boot code sequence
from the flash ROM, and executes the actual boot code
operations required to bring the multiprocessor System 400
into an operational state. The other SPEs, i.e. SPE1-SPE7
412-424, execute code that looks like the boot code
sequence from the perspective of a monitoring probe.
I0089. As described above, the code sequence that the
other SPEs 412-424 run may be default code sequences
provided in a secure portion of local storage which causes
the SPE 412-424 to execute instructions to mask the boot
code sequence being performed on SPE0 410. The code that
is run on each of these non-selected SPEs 412-424 prefer
ably is code that generates electrical and thermal profiles
that resemble the actual boot code but do not provide any of
the secret information that an intruder would require in order
to circumvent the security of the multiprocessor System.
Such code may perform similar operations to that of the
actual boot code but not access the sensitive portions of the
multiprocessor system 400.
0090 FIG. 4B illustrates another illustrative embodiment
in which different randomly selected algorithms are run on
each of the non-selected processors. As shown in FIG. 4B,
SPE0 is again selected to be the boot processor and thus,
runs the boot code for booting the multiprocessor system
400 into an operational state. Each of the other SPEs
412-424 run a separate randomly selected algorithm that
generates different thermal profiles and different bus traffic
on the EIB. Thus, each SPE0-7 appears to be unique when
compared to each of the other SPEs 410-424, Thus, it is not
possible to discern which SPE0-74.10-424 is the actual boot
processor for booting the multiprocessor system 400.
0091. As mentioned above, these different algorithms
may be randomly selected for each of the SPEs 412-424 in
the multiprocessor System. Thus, for example, differing start
addresses for code sequences stored in an on-chip storage
device, e.g., a flash ROM or the like, may be randomly
selected and provided to the SPEs 412-424. The SPEs
412-424 may then begin executing instructions at the ran
domly selected start addresses thereby generating different
thermal profiles and bus traffic that masks the actual boot
code sequence.

US 2007/0288738A1

0092 Alternatively, the boot code may be provided to
each of the SPEs 410-424 with random delay elements
inserted into the boot code. These delay elements may be,
for example, loops that iterate a random number of times.
This random delay causes the boot code to “look” different
on each of the SPEs 410-424 from the perspective of an
intruder monitoring the thermal and bus traffic characteris
tics of the processors. As a result, it is not possible for the
intruder to discern which processor is running the actual
boot code that boots the multiprocessor system.
0093 FIG.4C illustrates another illustrative embodiment
in which a dummy processor is provided to which attacks
from an intruder may be redirected. As shown in FIG. 4C,
SPE0 is the randomly selected boot processor executing the
boot sequence. SPE1-SPE4 412–418 and SPE6-SPE7 422
424 run code that looks like the boot code sequence from a
thermal and bus traffic monitoring perspective, as in the
embodiment described above with regard to FIG. 4A. SPE5
420, on the other hand, runs a randomly selected algorithm
which may be randomly selected in a similar manner as
described above with regard to FIG. 4B.
0094 Thus, from the perspective of an intruder monitor
ing the characteristics of the processors 410-424, all of the
SPEO-SPE4 410-418 and SPE6-SPE7 422-424 look to be
executing the same code. SPE5 420, however, appears to be
unique from the other SPEs. Hence, an intruder wishing to
attack the boot sequence of the multiprocessor System may
redirect attacks against SPE5420 rather than the actual boot
processor SPE0 410 since, to the intruder, it appears that
SPE5 420 is the actual boot processor.
0095. Just as the actual boot processor is randomly
selected with each power-on reset (POR) operation, the
dummy processor may be randomly selected from the non
selected processors as well. Thus, with each POR operation,
a different boot processor and dummy processor may be
selected, thereby making it more difficult for an intruder to
deduce which processor is performing an actual boot
sequence that may be compromised in order to obtain access
to the multiprocessor system.
0096. For completeness, FIG. 4D illustrates the Illustra
tive embodiment previously described above in which the
boot code that is used to boot the system is executed by each
of the processors. In this illustrative embodiment, only the
randomly selected boot processor is given access to the
secret key (Skey) while the other processors receive ran
domly selected keys (Rkey 1-Rkey7). Each of the processors
attempts to decode and execute the boot code using the key
that was Supplied to them, e.g., the Skey or an Rkey. Only
the randomly selected boot processor will be able to cor
rectly decrypt the boot code and execute it to bring the data
processing system into an operational state. However, to an
outside monitor, it will appear as if all of the processors are
booting the system, thereby masking the actual boot pro
cessor, since each of them will be performing similar tasks
to attempt to decrypt and boot the system. That is, each of
the processors will generate a similar thermal and/or elec
trical signature that makes it difficult for a would-be intruder
to discern which processor is the actual boot processor using
measuring probes and the like.
0097. Through the use of the random selection of the boot
processor and the masking of the boot sequence, as provided
by the illustrative embodiments, it becomes very difficult for
any would-be intruder into the multiprocessor system to be
able to discern which processor is performing a boot code

Dec. 13, 2007

sequence. Thus, it becomes very difficult for a would-be
intruder to monitor thermal profiles and bus traffic of the
processors and identify secret key information for use in
accessing the encrypted boot code. Moreover, it becomes
difficult for a would-be intruder to identify places in the boot
code sequence where intrusion into the system is possible.
Hence, the multiprocessor System is made more secure from
unauthorized access to the boot sequence.
0.098 FIGS. 5-6 are flowcharts outlining an exemplary
operation for randomly selecting a processor in a multipro
cessor System as a boot processor and for masking the boot
code sequence. It will be understood that each block of the
flowchart illustrations, and combinations of blocks in the
flowchart illustrations, can be implemented by computer
program instructions. These computer program instructions
may be provided to a processor or other programmable data
processing apparatus to produce a machine, such that the
instructions which execute on the processor or other pro
grammable data processing apparatus create means for
implementing the functions specified in the flowchart block
or blocks. These computer program instructions may also be
stored in a computer-readable memory or storage medium
that can direct a processor or other programmable data
processing apparatus to function in a particular manner. Such
that the instructions stored in the computer-readable
memory or storage medium produce an article of manufac
ture including instruction means which implement the func
tions specified in the flowchart block or blocks.
I0099. Accordingly, blocks of the flowchart illustrations
Support combinations of means for performing the specified
functions, combinations of steps for performing the speci
fied functions and program instruction means for performing
the specified functions. It will also be understood that each
block of the flowchart illustrations, and combinations of
blocks in the flowchart illustrations, can be implemented by
special purpose hardware-based computer systems which
perform the specified functions or steps, or by combinations
of special purpose hardware and computer instructions.
0100 FIG. 5 outlines an exemplary operation for random
selection of a boot processor for booting a multiprocessor
system. As shown in FIG. 5, the operation starts with the
system controller performing a power-on reset (POR) opera
tion (step 510). After performance of the initial POR opera
tions, the system controller provides a “power good” signal
to the pervasive logic of the multiprocessor system (step
520) and the pervasive logic initiates a random boot opera
tion (step 530).
0101 The pervasive logic randomly selects a processor
from a plurality of processors to be the boot processor (step
540). The pervasive logic then sets the configuration bits of
the processors based on the random selection (step 550) and
signals the processors to begin the boot operation (step 560).
A flash ROM provides the encrypted boot code to the
processors and key values are provided to the processors
from a secret key storage and random key generator (step
570). The processors then select the keys that are to be used
by the processors based on the setting of their configuration
bits (step 580). The processors attempt to decrypt the boot
code based on the selected keys (step 590). The selected
processor decrypts the boot code using the secret key and
boots the system (step 595). It should be noted that the
attempt to decrypt the boot code by all other non-selected
processors will fail and only the selected processor will be
able to boot the system. The operation then ends.

US 2007/0288738A1

0102 FIG. 6 is a flowchart outlining an exemplary opera
tion for masking a boot code sequence in accordance with
one illustrative embodiment. The operation outlined in FIG.
6 may be performed in each processor of a multiprocessor
system, for example.
0103) As shown in FIG. 6, the processor receives a signal

to begin a boot operation (step 610). This step may corre
spond to step 530 in FIG. 5, for example. The processor
attempts to decrypt the boot code (step 620) and a determi
nation is made as to whether the decrypt attempt failed (step
630). If the decrypt was successful, i.e. the processor is the
randomly selected boot processor, then the boot code is
executed to thereby bring the multiprocessor system to an
operational state (step 640).
0104. If the decryption failed, then a code sequence to
execute to mask the boot sequence is selected (step 650). As
mentioned above, depending upon the particular embodi
ment, the selection of a masking code sequence may be
based on a default code sequence in a secure portion of a
local store, a randomly selected Starting address, the use of
boot code with random delay elements, or the like. The
masking code sequence is run (step 660) and a determination
is made as to whether the system is in an operational state,
i.e. the boot sequence has completed (step 670). If not, the
operation returns to step 660 and continues to run the
masking code sequence. If the system is in an operational
state, then the execution of the masking code sequence is
ended (step 680) and the operation terminates.
01.05 Thus, the above illustrative embodiments provide a
mechanism by which a processor may be randomly selected
from a plurality of processors as a boot processor for booting
a multiprocessor System to an operational state. The illus
trative embodiments further provide a mechanism for mask
ing the boot code sequence being executed by a randomly
selected processor so as to make it difficult for an intruder to
discern which processor has been randomly selected to
execute the actual boot code sequence. Using these mecha
nisms, a multiprocessor system is made more secure by
making it extremely difficult for an intruder to gain access to
the system through monitoring the boot code sequence.
0106. The above illustrative embodiments are described
in terms of the boot code sequence being performed by a
single processor in a multiprocessor system. However, the
illustrative embodiments are not limited to such. In other
illustrative embodiments, the boot code sequence may be
distributed across a plurality of processors in the multipro
cessor system, as described hereafter. By distributing the
boot code sequence across a plurality of processors in the
multiprocessor System, the number of processors that must
be compromised in order to obtain complete information
about the boot sequence and thereby circumvent security
measures is increased.

0107 Thus, the distributed boot operation of the illustra
tive embodiments described hereafter is more secure than
multiprocessor data processing systems that utilize a single
secure core. Furthermore, by distributing the boot operation,
if any portion of the boot operation is compromised, the boot
operation fails, thereby preventing an unauthorized indi
vidual from circumventing the security of the system. In
other words, while the would-be intruder may compromise
a portion of the boot operation, the would-be intruder is not
able to compromise the all of the boot operation and thus, is
notable to obtain access to the multiprocessor data process
ing System.

Dec. 13, 2007

0108. With this illustrative embodiment, the boot code
sequence is partitioned into a plurality of partitions such that
each partition may be provided to a different processor of the
multiprocessor System. As each partition of the boot code
sequence is executed, that partition must complete correctly
on its respective processor before the boot code sequence
may proceed on another processor. A secure communication
mechanism is used to communicate satisfactory completion
of a previous partition of the boot code sequence. This
secure communication mechanism may include a security
token, Such as an encrypted password or other security
identifier, e.g., a public/private encryption key pair, that
indicates that the previous session was not compromised. In
this way, a chain of dependent "sessions are created that
must complete satisfactorily.
0109 The processors that are involved in the distributed
execution of the boot code may be all of the processors in the
multiprocessor System or a sub-set of the processors in the
multiprocessor system. For example, a random selection
mechanism, Such as that described above for selecting a
single boot processor, may be used to randomly select a
plurality of boot processors to be used in booting the system
in a distributed manner. Moreover, the particular partitions
of the boot code that are executed by the processors may be
randomly selected Such that, with each power-on reset
(POR) operation, the same processor may or may not
execute the same boot code partition as in a previous POR
operation. Thus, randomization may be performed with
regard to which processors are involved in the distributed
boot operation as well as with regard to what boot code
partitions each processor will execute.
0110. Other processors of the multiprocessor system, i.e.
non-boot processors, may either not perform any work
during the distributed boot operation or may execute mask
ing code sequences, of one or more of the various masking
code illustrative embodiments described previously, to mask
the boot code execution on the randomly selected sub-set of
processors. In other words, the distributed boot code
sequence operation of the present illustrative embodiment
may be combined with one or more of the previously
described illustrative embodiments without departing from
the spirit and scope of the present invention.
0111 FIG. 7A is an exemplary diagram illustrating a
distributed boot operation configured as a daisy chain or ring
arrangement in accordance with one illustrative embodi
ment. As shown in FIG. 7A, a plurality of processors
720-750 are provided for booting the multiprocessor data
processing system. In the depicted example, all of the
co-processors, i.e. SPEs, are utilized in the distributed boot
operation while the control processor, e.g., PPE, does not
execute the distributed boot code. Of course, in other
illustrative embodiments, the PPE may also be included in
the distributed boot operation. Moreover, in other illustrative
embodiments, as mentioned previously, only a sub-set of the
processors in the multiprocessor data processing system may
be used to perform the distributed boot operation.
0112 The encrypted boot code 710, which may be stored
in a storage device associated with the multiprocessor data
processing system, such as in Flash ROM 230 in FIG. 2, for
example, may be partitioned into separately executable
partitions, i.e. boot code partitions 1 to n. For example, the
partitions may be provided as modules or routines in the
encrypted boot code that are separately encrypted using the
same encryption algorithm and the same secret key (Skey).

US 2007/0288738A1

Preferably, the number of boot code partitions is equal to the
number of processors that will be involved in the distributed
boot operation, i.e. the number of boot processors. However,
in some illustrative embodiments, such as in a ring arrange
ment of the boot processors, the number of boot code
partitions is not limited the number of boot processors and
may be any number of partitions less than or greater than the
number of boot processors.
0113. The distributed boot operation is performed under
the control of the pervasive logic 790, which may be the
same pervasive logic 193 in FIG. 1, for example. The
pervasive logic 790, through the user of the random event
generator, for example, may randomly select the processors
720-750 to be used as boot processors as well as may
randomly select which partition each of the randomly
selected processors 720-750 will execute. In such an
embodiment, the pervasive logic 790 may keep track of the
order in which the boot code partitions are to be executed in
order to ensure the security of the boot code sequence
through use of a secure communication mechanism that
indicates whether or not a previous session of the distributed
boot operation has been compromised. For simplicity of the
present description, however, it will be assumed that, in the
depicted example, all of the processors, or at least the
co-processors, of the multiprocessor system are utilized in
the distributed boot operation and that boot code partitions
are provided to the processors 720-750 in sequential order.
0114. The pervasive logic 790 provides selector signals to
the processors 720-750 for selecting which boot code par
tition is to be executed by each of the processors 720-750.
In addition, the pervasive logic 790 provides key value
selector signals for causing the processor 720-750 to select
the Skey, from Skey storage, as the key to be used to decrypt
their corresponding boot code partitions. The processors
720-750 decrypt their boot code partition using the supplied
Skey and then execute the boot code partition in the proper
sequence either by virtue of the arrangement of the proces
sors 720-750 in a daisy chain architecture or under the
control of the pervasive logic 790, for example.
0115. In the depicted example, SPE0 720 begins the
distributed boot operation by decrypting its boot code par
tition 1, executing the boot code partition, and then securely
communicating the Successful completion of the boot code
partition 1 to SPE1 730. Moreover, a security mechanism
may be utilized between the SPEs for indicating that the
previous session, i.e. the session comprised of the execution
of the previous boot code partition, was not compromised.
The security mechanism may be, for example, passing a
security token, digital signature, password, a checksum of
the previous boot code partition, using public key/private
key encryption of the Successful completion message, or the
like. Any security mechanism that may be used to commu
nicate whether or not the previous session of a distributed
boot operation was compromised or not is intended to be
within the spirit and scope of the present invention.
0116. After receiving confirmation of the successful and
uncompromised completion of the boot code partition 1
execution, the SPE1730 may decrypt its boot code partition
2, execute the boot code partition, and then communicate its
successful completion of boot code partition 2 to SPE2 740.
This process may continue until all of the processors have
signaled that they have completed their portion of the
distributed boot operation without being compromised. Any
break in this dependency chain of boot code partitions, e.g.,

Dec. 13, 2007

any signaling of unsuccessful execution or compromised
execution, results in a failed boot which may be signaled to
the system controller. Once all of the boot code partitions
have completed Successfully, the multiprocessor data pro
cessing system is in an operative state in which software
applications may be executed on the various processors.
0117 The illustrative embodiment described above uti
lizes a daisy-chain arrangement of the processors with
regard to the boot code partitions that are executed on the
processors. Other arrangements that ensure a sequential
execution of boot code partitions may be utilized without
departing from the spirit and Scope of the present invention.
For example, an extension of the daisy-chain arrangement
above is to provide a ring arrangement of the processors with
regard to the distributed boot operation such that the last
processor, e.g., SPE7 750, communicates back to the first
processor, e.g., SPE0720, which is selected as the “primary
boot processor, its successful and uncompromised comple
tion of execution of its boot code partition. In this way, the
security mechanism, e.g., the security token, an incremented
count value, etc., which is passed from one session to the
next through the ring arrangement may be used at the
primary boot processor to Verify uncompromised execution
of the entire distributed boot operation.
0118 Moreover, a ring arrangement of processors allows
a greater number of boot code partitions to be utilized than
the number of boot processors. Thus, if only a sub-set of
processors in the multiprocessor data processing system are
selected to be boot processors, this sub-set of processors
may execute any number of boot code partitions when
arranged in a ring arrangement with regard to the distributed
boot operation. This gives rise to the ability of the pervasive
logic 790 to not only randomly select which processors in
the multiprocessor data processing system are to be boot
processors, but also to randomly select how many proces
sors will be boot processors in the distributed boot operation.
Thus, in a first POR operation, four processors may be
selected to be boot processors while in a subsequent POR
operation three boot processors may be selected. The per
vasive logic 790 may contain logic for randomly selecting a
number of processors to select to be boot processors which
then is used to control the random selection of processors as
previously described above.
0119) Another possible arrangement of boot processors
with regard to a distributed boot operation is to provide a
master/slave arrangement. FIG. 7B is an exemplary diagram
illustrating a distributed boot operation configured as a
master/slave arrangement in accordance with one illustrative
embodiment. As shown in FIG. 7B, one processor 760 is
designated the master processor. This processor may be one
of the co-processors, e.g., an SPE, or the control processor,
e.g., the PPE. The slave processors, e.g., SPE0-SPE7 720
750, each are responsible for completing their boot code
partition and securely communicating to the master core that
they have finished execution and have not been compro
mised, in a similar manner as described above in FIG. 7A.
Once the master processor 760 has received signals from
each of the slave processors 720-750, and validated that it
has not been compromised itself, then the multiprocessor
data processing system is permitted to enter an operational
state in which software applications may be executed.
0.120. It should be appreciated that while a daisy-chain,
ring, and master/slave arrangement of processors with
regard to a distributed boot operation have been described

US 2007/0288738A1

herein, the present invention is not limited to only these
described arrangements. Rather any arrangement of proces
sors with regard to a distributed boot operation may be used
with the mechanisms of the illustrative embodiments with
out departing from the spirit and scope of the present
invention.

0121 FIG. 8 is a flowchart outlining an exemplary opera
tion for distributed booting of a multiprocessor System in
accordance with one illustrative embodiment. As shown in
FIG. 8, the operation starts with the pervasive logic receiv
ing a “power good” signal from the system controller (step
810). The pervasive logic selects the processors to be boot
processors from the plurality of processors in the multipro
cessor data processing system (step 820). As mentioned
above, such selection may result in all of the processors
being selected or some Subset of the processors in the
multiprocessor data processing system being selected to be
boot processors. Such selection may be performed using a
random event generator in the pervasive logic, for example.
0122) The pervasive logic selects the boot code partitions

to be assigned to the selected boot processors (step 830). A
next boot code partition is executed by an associated boot
processor (step 840). The boot processor determines
whether the execution of the boot code partition was suc
cessful and uncompromised (step 850). If not, a boot failure
is signaled to the system controller (step 860) and the
operation terminates.
0123. If the boot code partition executes successfully and

is not compromised, then the boot processor determines if
the all boot code partitions have been executed successfully
(step 870). If not, the operation returns to step 840 and the
next boot code partition is executed by its associated boot
processor. If all of the boot code partitions have been
executed Successfully, the boot processor signals the Suc
cessful boot of the data processing system to the system
controller (step 880) and the operation terminates.
0124 Thus, as set forth above, the illustrative embodi
ments, in addition to randomly selecting a single boot
processor and performing masking operations on other pro
cessors of the multiprocessor data processing system, pro
vides mechanisms for distributing the boot operation over a
plurality of processors. The illustrative embodiments pro
vide mechanisms for randomly selecting boot processors,
randomly selecting boot code partitions to be executed on
selected boot processors, and to ensure the security of the
execution of the boot code partitions by the various boot
processors. All of these various mechanisms aid is increas
ing the security of the multiprocessor data processing system
from unauthorized monitoring of the boot operation.
0.125. The illustrative embodiments may take the form of
an entirely hardware embodiment, an entirely software
embodiment or an embodiment containing both hardware
and software elements. In a preferred embodiment, the
invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.
0126 Furthermore, the illustrative embodiments may
take the form of a computer program product accessible
from a computer-usable or computer-readable medium pro
viding program code for use by or in connection with a
computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium may be any apparatus that may contain,

Dec. 13, 2007

store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device.
I0127. The medium may be an electronic, magnetic, opti
cal, electromagnetic, infrared, or semiconductor System (or
apparatus or device) or a propagation medium. Examples of
a computer-readable medium include a semiconductor or
Solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and DVD.
I0128. The circuits as described above may be part of the
design for an integrated circuit chip. The chip design may be
created in a graphical computer programming language, and
stored in a computer storage medium (such as a disk, tape,
physical hard drive, or virtual hard drive such as in a storage
access network). If the designer does not fabricate chips or
the photolithographic masks used to fabricate chips, the
designer may transmit the resulting design by physical
means (e.g., by providing a copy of the storage medium
storing the design) or electronically (e.g., through the Inter
net) to such entities, directly or indirectly. The stored design
may then be converted into the appropriate format (e.g.,
GDSII) for the fabrication of photolithographic masks,
which typically include multiple copies of the chip design in
question that are to be formed on a wafer. The photolitho
graphic masks may be utilized to define areas of the wafer
(and/or the layers thereon) to be etched or otherwise pro
cessed.

I0129. The resulting integrated circuit chips may be dis
tributed by the fabricator in raw wafer form (that is, as a
single wafer that has multiple unpackaged chips), as a bare
die, or in a packaged form. In the latter case the chip may be
mounted in a single chip package (such as a plastic carrier,
with leads that are affixed to a motherboard or other higher
level carrier) or in a multichip package (such as a ceramic
carrier that has either or both surface interconnections or
buried interconnections). In any case the chip may then be
integrated with other chips, discrete circuit elements, and/or
other signal processing devices as part of either (a) an
intermediate product, such as a motherboard, or (b) an end
product. The end product may be any product that includes
integrated circuit chips, ranging from toys and other low-end
applications to advanced computer products having a dis
play, a keyboard or other input device, and a central pro
cessor. Moreover, the end products in which the integrated
circuit chips may be provided may include game machines,
game consoles, hand-held computing devices, personal digi
tal assistants, communication devices, such as wireless
telephones and the like, laptop computing devices, desktop
computing devices, server computing devices, or any other
computing device.
0.130. The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli
cation, and to enable others of ordinary skill in the art to

US 2007/0288738A1

understand the invention for various embodiments with
various modifications as are Suited to the particular use
contemplated.
What is claimed is:
1. A method, in a data processing system having a boot

processor and a plurality of non-boot processors, for mask
ing execution of a boot code sequence in the data processing
System, comprising:

executing a boot code sequence on a boot processor to
thereby boot the data processing system to an opera
tional state;

executing a first masking code sequence on at least one
first non-boot processor, of the plurality of non-boot
processors, to thereby generate at least one of electro
magnetic or thermal signatures that approximate an
electromagnetic or thermal signature of the execution
of the boot code sequence on the boot processor,
thereby masking the execution of the boot code
sequence on the boot processor; and

executing a second masking code sequence on a second
non-boot processor, of the plurality of non-boot pro
cessors, to thereby generate at least one of electromag
netic or thermal signatures that are different from the
electromagnetic or thermal signature of the execution
of the boot code sequence on the boot processor,
thereby making the second non-boot processor appear
to be the boot processor.

2. The method of claim 1, further comprising:
randomly selecting the second masking code sequence

from a plurality of masking code sequences.
3. The method of claim 1, further comprising:
randomly selecting the second non-boot processor from a

plurality of non-boot processors.
4. The method of claim 3, wherein the at least one first

non-boot processor is all non-boot processors of the plurality
of non-boot processors that were not randomly selected to be
the second non-boot processor.

5. The method of claim 3, wherein the second non-boot
processor is randomly selected from the plurality of non
boot processors with each power-on reset operation of the
data processing system.

6. The method of claim 1, further comprising:
randomly selecting the boot processor from a plurality of

processors, wherein the plurality of processors com
prise the boot processor, the at least one first non-boot
processor, and the second non-boot processor.

7. The method of claim 1, wherein the data processing
system is a heterogeneous multiprocessor system-on-a-chip
having a first processor the operates according to a first
instruction set and one or more second processors that
operate according to a second instruction set different from
the first instruction set.

8. A data processing system comprising:
a boot processor;
a plurality of non-boot processors;
a boot code storage device coupled to the boot processor,

and
a masking code storage device coupled to the plurality of

non-boot processors, wherein:
a boot code sequence is executed on the boot processor to

thereby boot the data processing system to an opera
tional state,

a first masking code sequence, from the masking code
storage device, is executed on at least one first non-boot

Dec. 13, 2007

processor, of the plurality of non-boot processors, to
thereby generate at least one of electromagnetic or
thermal signatures that approximate an electromagnetic
or thermal signature of the execution of the boot code
sequence on the boot processor, thereby masking the
execution of the boot code sequence on the boot
processor, and

a second masking code sequence, from the masking code
storage device, is executed on a second non-boot pro
cessor, of the plurality of non-boot processors, to
thereby generate at least one of electromagnetic or
thermal signatures that are different from the electro
magnetic or thermal signature of the execution of the
boot code sequence on the boot processor, thereby
making the second non-boot processor appear to be the
boot processor.

9. The system of claim B, further comprising pervasive
logic coupled to the boot processor and the plurality of
non-boot processors, wherein the pervasive logic randomly
selects the second masking code sequence from a plurality
of masking code sequences.

10. The system of claim 8, further comprising pervasive
logic coupled to the boot processor and the plurality of
non-boot processors, wherein the pervasive logic randomly
selecting the second non-boot processor from the plurality of
non-boot processors.

11. The system of claim 10, wherein the at least one first
non-boot processor is all non-boot processors of the plurality
of non-boot processors that were not randomly selected to be
the second non-boot processor.

12. The system of claim 10, wherein the second non-boot
processor is randomly selected from the plurality of non
boot processors with each power-on reset operation of the
data processing system.

13. The system of claim 8, further comprising pervasive
logic coupled to the boot processor and the plurality of
non-boot processors, wherein the pervasive logic randomly
selects the boot processor from a plurality of processors,
wherein the plurality of processors comprise the boot pro
cessor and the plurality of non-boot processors.

14. The system of claim 8, wherein the data processing
system is a heterogeneous multiprocessor System-on-a-chip
having a first processor the operates according to a first
instruction set and one or more second processors that
operate according to a second instruction set different from
the first instruction set.

15. A computer program product comprising a computer
useable medium having a computer readable program,
wherein the computer readable program, when executed on
a data processing system, causes the data processing system
tO:

execute a boot code sequence on a boot processor to
thereby boot the data processing system to an opera
tional state;

execute a first masking code sequence on at least one first
non-boot processor, of the plurality of non-boot pro
cessors, to thereby generate at least one of electromag
netic or thermal signatures that approximate an elec
tromagnetic or thermal signature of the execution of the
boot code sequence on the boot processor, thereby
masking the execution of the boot code sequence on the
boot processor, and

execute a second masking code sequence on a second
non-boot processor, of the plurality of non-boot pro

US 2007/0288738A1

cessors, to thereby generate at least one of electromag
netic or thermal signatures that are different from the
electromagnetic or thermal signature of the execution
of the boot code sequence on the boot processor,
thereby making the second non-boot processor appear
to be the boot processor.

16. The computer program product of claim 15, wherein
the computer readable program further causes the data
processing system to:

randomly select the second masking code sequence from
a plurality of masking code sequences.

17. The computer program product of claim 15, wherein
the computer readable program further causes the data
processing system to:

randomly select the second non-boot processor from a
plurality of non-boot processors.

14
Dec. 13, 2007

18. The computer program product of claim 17, wherein
the at least one first non-boot processor is all non-boot
processors of the plurality of non-boot processors that were
not randomly selected to be the second non-boot processor.

19. The computer program product of claim 17, wherein
the second non-boot processor is randomly selected from the
plurality of non-boot processors with each power-on reset
operation of the data processing system.

20. The computer program product of claim 15, wherein
the computer readable program further causes the data
processing system to:

randomly select the boot processor from a plurality of
processors, wherein the plurality of processors com
prise the boot processor, the at least one first non-boot
processor, and the second non-boot processor.

k k k k k

