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(57) ABSTRACT 

A system and method for masking a boot sequence by 
providing a dummy processor are provided. With the system 
and method, one of the processors of a multiprocessor 
system is chosen to be a boot processor. The other processors 
of the multiprocessor System execute masking code that 
generates electromagnetic and/or thermal signatures that 
mask the electromagnetic and/or thermal signatures of the 
actual boot processor. The execution of the masking code on 
the non-boot processors preferably generates electromag 
netic and/or thermal signatures that approximate the signa 
tures of the actual boot code execution on the boot processor. 
One of the non-boot processors is selected to execute 
masking code that is different from the other masking code 
sequence to thereby generate a electromagnetic and/or ther 
mal signature that appears to be unique from an external 
monitoring perspective. 
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SYSTEMAND METHOD FOR SELECTING A 
RANDOMI PROCESSOR TO BOOT ON A 

MULTIPROCESSOR SYSTEM 

BACKGROUND 

0001 1. Technical Field 
0002 The present application relates generally to an 
improved data processing system and method. More spe 
cifically, the present application is directed to a system and 
method for masking a boot sequence by providing a dummy 
processor. 
0003 2. Description of Related Art 
0004 As our society becomes increasingly dependent 
upon electronic communication and storage of information, 
concerns over the security of digital information, such as 
personal information and digital rights management (DRM), 
have increased. Moreover, the Sophistication of computer 
hackers and other unauthorized interlopers into computing 
systems has increased in recent years. As a result, much 
effort has gone into the development of security systems for 
computing devices so that Such sensitive digital information 
may be secured from unauthorized access. 
0005 One way in which an intruder may gain access to 
a computing system is to observe the boot activity of a 
computing system through electrical interfaces and other 
observable electromagnetic or thermal activity. By observ 
ing the boot activity in this way, the intruder may deduce 
what data signals are being input and output by the boot 
processor, what cryptographic algorithms are running on the 
processors, and the like. From this information, an intruder 
may detect points in the boot sequence where unauthorized 
intrusion may be made. Moreover, with secure boot 
sequences in which security keys are required for booting of 
the system, the intruder may reverse the cryptographic 
algorithm used by the boot processor to obtain access to the 
security keys and thereby be given complete access to the 
computing system. Since the overall security of the com 
puting system is often dependent upon the security of the 
boot process, when the intruder gains access to the boot 
sequence, the security of the entire system may be at risk. 
0006 Thus, it would be beneficial to have an apparatus 
and method that increases the difficulty of monitoring the 
boot sequence of a processor so as to make the system more 
secure from unauthorized intrusion. 

SUMMARY 

0007. The illustrative embodiments provide a system and 
method for selecting a random processor to boot a multi 
processor system and for masking a boot sequence by 
providing a dummy processor. By randomizing which pro 
cessor will be used to boot the multiprocessor system, the 
ability of unauthorized persons to monitor the electrical 
interfaces, thermal activity, and other electromagnetic activ 
ity to obtain information about the boot sequence for pur 
poses of defeating the security of the system is made more 
difficult. For example, in a multiprocessor System, the 
would-be intruder would either need to run the boot 
sequence many different times while monitoring a single 
processor in hopes that it may be randomly selected as the 
boot processor, or monitor all of the processors at boot in 
order to determine which one was the actual boot processor. 
Both options require considerable effort on the part of the 
would-be intruder that may act as a deterrent from actually 
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attempting to monitor the system to obtain boot sequence 
information or at least add significant delay to the time it 
would take the would-be intruder to compromise the system. 
0008. With the mechanisms of the illustrative embodi 
ments, pervasive logic is provided on a multiprocessor 
system, such as a system-on-a-chip, that controls the boot 
operation of the multiprocessor System. The pervasive logic 
includes a random event generator which randomly selects 
which processor in the multiprocessor System is to be the 
boot processor that runs the boot code to thereby bring the 
system into an operational state. Based on the random 
selection of a boot processor, a configuration bit associated 
with the boot processor is set indicating that processor to be 
the boot processor. Thereafter, the selected boot processor is 
provided with the necessary security key(s) for secure 
booting of the multiprocessor System into an operational 
State. 

0009. In some illustrative embodiments, while the ran 
domly selected processor performs the secure boot opera 
tion, the other processors of the multiprocessor system 
perform operations to mask the real Secure boot operation. 
This masking may involve executing other code sequences, 
other than the boot code sequence, that cause the processors 
to generate electromagnetic and/or thermal outputs that, if 
monitored by an interloper, would make it difficult for the 
interloper to distinguish which processor is performing the 
actual secure boot operation. 
0010. One way in which a different code sequence may 
be generated is by inserting random delay elements into the 
boot code that run loops which iterate a random amount. In 
this way, each processor may run the boot code but with 
differing delay amounts thereby causing different electro 
magnetic and thermal signatures to be generated. From an 
interloper's perspective, it will be very difficult to discern 
the actual boot processor from the other processors in the 
multiprocessor System due to such masking. 
0011. In a further illustrative embodiment, the code 
sequences performed by the other processors are the same 
boot code sequence that the randomly selected processor 
executes but with dummy security keys. Thus, these other 
processors operate and look, to an interloper, as if they are 
performing the secure boot operation. However, if the pro 
cessors are monitored, false electromagnetic and thermal 
outputs are identified that make it difficult for the interloper 
to determine if the monitored processor is the actual ran 
domly selected processor that is performing the secure boot 
operation. 
0012. In a still further illustrative embodiment, masking 
of the randomly selected boot processor may be performed 
by providing a dummy processor. The dummy processor 
appears, from an electromagnetic, thermal, etc., monitoring 
apparatus perspective, as if it is unique by running processes 
different from the boot code sequence on this dummy 
processor to thereby redirect attacks on the system to this 
dummy processor. In this way, when an interloper attempts 
to access the system by getting around the security mecha 
nisms, the interloper only accesses a dummy processor that 
does not have actual access to the rest of the multiprocessor 
system. 
0013. In other illustrative embodiments, the boot code 
sequence may be distributed across a plurality of processors 
in the multiprocessor system. By distributing the boot code 
sequence across a plurality of processors in the multipro 
cessor System, the number of processors that must be 
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compromised in order to obtain complete information about 
the boot sequence and thereby circumvent security measures 
is increased. Thus, the distributed boot operation of the 
illustrative embodiments is more secure than multiprocessor 
data processing systems that utilize a single secure core. 
Furthermore, by distributing the boot operation, if any 
portion of the boot operation is compromised, the boot 
operation fails, thereby preventing an unauthorized indi 
vidual from circumventing the security of the system. 
0014 With this illustrative embodiment, the boot code 
sequence is partitioned into a plurality of partitions such that 
each partition may be provided to a different processor of the 
multiprocessor System. As each partition of the boot code 
sequence is executed, that partition must complete correctly 
on its respective processor before the boot code sequence 
may proceed on another processor. A secure communication 
mechanism is used to communicate satisfactory completion 
of a previous partition of the boot code sequence. This 
secure communication mechanism may include a security 
token, such as an encrypted password or other security 
identifier, e.g., a public/private encryption key pair, that 
indicates that the previous session was not compromised. In 
this way, a chain of dependent "sessions' are created that 
must complete satisfactorily. 
0015 The processors that are involved in the distributed 
execution of the boot code may be all of the processors in the 
multiprocessor System or a sub-set of the processors in the 
multiprocessor system. For example, a random selection 
mechanism, such as that described above for selecting a 
single boot processor, may be used to randomly select a 
plurality of boot processors to be used in booting the system 
in a distributed manner. Moreover, the particular partitions 
of the boot code that are executed by the processors may be 
randomly selected Such that, with each power-on reset 
(POR) operation, the same processor may or may not 
execute the same boot code partition as in a previous POR 
operation. Thus, randomization may be performed with 
regard to which processors are involved in the distributed 
boot operation as well as with regard to what boot code 
partitions each processor will execute. 
0016 Other processors of the multiprocessor system, i.e. 
non-boot processors, may either not perform any work 
during the distributed boot operation or may execute mask 
ing code sequences, of one or more of the various masking 
code illustrative embodiments described previously, to mask 
the boot code execution on the randomly selected sub-set of 
processors. In other words, the distributed boot code 
sequence operation of the present illustrative embodiment 
may be combined with one or more of the previously 
described illustrative embodiments. 

0017. In one illustrative embodiment, a method is pro 
vided, in a data processing system having a boot processor 
and a plurality of non-boot processors, for masking execu 
tion of a boot code sequence in the data processing system. 
The method may comprise executing a boot code sequence 
on a boot processor to thereby boot the data processing 
system to an operational state and executing a first masking 
code sequence on at least one first non-boot processor, of the 
plurality of non-boot processors, to thereby generate at least 
one of electromagnetic or thermal signatures that approxi 
mate an electromagnetic or thermal signature of the execu 
tion of the boot code sequence on the boot processor, thereby 
masking the execution of the boot code sequence on the boot 
processor. The method may further comprise executing a 
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second masking code sequence on a second non-boot pro 
cessor, of the plurality of non-boot processors, to thereby 
generate at least one of electromagnetic or thermal signa 
tures that are different from the electromagnetic or thermal 
signature of the execution of the boot code sequence on the 
boot processor, thereby making the second non-boot pro 
cessor appear to be the boot processor. The method may 
further comprise randomly selecting the second masking 
code sequence from a plurality of masking code sequences. 
0018. The second non-boot processor may be randomly 
selected from a plurality of non-boot processors. The at least 
one first non-boot processor may be all non-boot processors 
of the plurality of non-boot processors that were not ran 
domly selected to be the second non-boot processor. The 
second non-boot processor may be randomly selected from 
the plurality of non-boot processors with each power-on 
reset operation of the data processing system. 
0019. The method may further comprise randomly select 
ing the boot processor from a plurality of processors. The 
plurality of processors may comprise the boot processor, the 
at least one first non-boot processor, and the second non 
boot processor. 
0020. The data processing system may be a heteroge 
neous multiprocessor System-on-a-chip. The heterogeneous 
multiprocessor system-on-a-chip may have a first processor 
the operates according to a first instruction set and one or 
more second processors that operate according to a second 
instruction set different from the first instruction set. The 
first instruction set may be a RISC instruction set and the 
second instruction set may be a SIMD instruction set. 
0021. In another illustrative embodiment, a data process 
ing system is provided that comprises a boot processor, a 
plurality of non-boot processors, a boot code storage device 
coupled to the boot processor, and a masking code storage 
device coupled to the plurality of non-boot processors. A 
boot code sequence may be executed on the boot processor 
to thereby boot the data processing system to an operational 
state. A first masking code sequence, from the masking code 
storage device, may be executed on at least one first non 
hoot processor, of the plurality of non-boot processors, to 
thereby generate at least one of electromagnetic or thermal 
signatures that approximate an electromagnetic or thermal 
signature of the execution of the boot code sequence on the 
boot processor, thereby masking the execution of the boot 
code sequence on the boot processor. A second masking 
code sequence, from the masking code storage device, may 
be executed on a second non-boot processor, of the plurality 
of non-boot processors, to thereby generate at least one of 
electromagnetic or thermal signatures that are different from 
the electromagnetic or thermal signature of the execution of 
the boot code sequence on the boot processor, thereby 
making the second non-boot processor appear to be the boot 
processor. 
0022. The system may further comprise pervasive logic 
coupled to the boot processor and the plurality of non-boot 
processors. The pervasive logic may randomly select the 
second masking code sequence from a plurality of masking 
code sequences. The pervasive logic may randomly select 
the second non-boot processor from the plurality of non 
boot processors. The at least one first non-boot processor 
may be all non-boot processors of the plurality of non-boot 
processors that were not randomly selected to be the second 
non-boot processor. The pervasive logic may randomly 
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select the boot processor from a plurality of processors 
comprising the boot processor and the plurality of non-boot 
processors. 
0023 The second non-boot processor may be randomly 
selected from the plurality of non-boot processors with each 
power-on reset operation of the data processing system. 
0024. In yet another illustrative embodiment, a computer 
program product comprising a computer useable medium 
having a computer readable program is provided. The com 
puter readable program, when executed on a data processing 
system, causes the data processing system to perform vari 
ous ones, or combinations of the operations outlined above 
with regard to the method illustrative embodiment described 
previously. 
0025. These and other features and advantages of the 
present invention will be described in, or will become 
apparent to those of ordinary skill in the art in view of the 
following detailed description of the exemplary embodi 
ments of the present invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0026. The novel features believed characteristic of the 
invention are set forth in the appended claims. The invention 
itself, however, as well as a preferred mode of use, further 
objectives and advantages thereof, will best be understood 
by reference to the following detailed description of an 
illustrative embodiment when read in conjunction with the 
accompanying drawings, wherein: 
0027 FIG. 1 is an exemplary block diagram of a multi 
processor system in which the illustrative embodiments may 
be implemented; 
0028 FIG. 2 is an exemplary diagram illustrating the 
primary operational components of a random boot processor 
selection mechanism in accordance with one illustrative 
embodiment; 
0029 FIG. 3A is an exemplary diagram illustrating a 
random selection mechanism in accordance with one illus 
trative embodiment; 
0030 FIG. 3B is a graphical representation of jitter 
introduced into the input to a LFSR counter of a random 
event generator in accordance with one illustrative embodi 
ment, 
0031 FIG. 3C is an exemplary diagram illustrating an 
illustrative embodiment in which a secret key and a plurality 
of randomly generated key values are provided to processors 
using parallel signal lines; 
0032 FIGS. 4A-4D are exemplary diagrams illustrating 
masking operations for masking a secure boot operation of 
a randomly selected boot processor in accordance with 
illustrative embodiments; 
0033 FIG. 5 is a flowchart outlining an exemplary opera 
tion for randomly selecting a processor in a multiprocessor 
system as a boot processor; 
0034 FIG. 6 is a flowchart outlining an exemplary opera 
tion for masking a boot code sequence in accordance with 
one illustrative embodiment; 
0035 FIG. 7A is an exemplary diagram illustrating a 
distributed boot operation configured as a daisy chain or ring 
arrangement in accordance with one illustrative embodi 
ment, 
0036 FIG. 7B is an exemplary diagram illustrating a 
distributed boot operation configured as a master/slave 
arrangement in accordance with one illustrative embodi 
ment; and 
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0037 FIG. 8 is a flowchart outlining an exemplary opera 
tion for distributed booting of a multiprocessor System in 
accordance with one illustrative embodiment. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0038. The illustrative embodiments provide an apparatus 
and method for selecting a random processor to boot on a 
multiprocessor System. The illustrative embodiments may 
be implemented for use with any multiprocessor System in 
which one of the processors may be selected for booting the 
multiprocessor System. Thus, the mechanisms of the illus 
trative embodiments are applicable to symmetric multipro 
cessor (SMP) systems, heterogeneous multiprocessor sys 
tems, non-coherent asymmetrical multiprocessor Systems, 
and the like. 
0039. One multiprocessor system in which the illustrative 
embodiments may be implemented is the Cell Broadband 
Engine (CBE) available from International Business 
Machines, Inc. of Armonk, N.Y. The illustrative embodi 
ments will be described with reference to the CBE archi 
tecture, however, it should be appreciated that the descrip 
tion of the illustrative embodiments is only exemplary and 
is not intended to state or imply any limitation with regard 
to the types or configurations of the multiprocessor Systems 
in which the mechanisms of the illustrative embodiments 
may be implemented. Many modifications to the described 
CBE architecture may be made without departing from the 
spirit and scope of the present invention. 
0040 FIG. 1 is an exemplary block diagram of a data 
processing system in which aspects of the present invention 
may be implemented. The exemplary data processing sys 
tem shown in FIG. 1 is an example of the Cell Broadband 
Engine (CBE) data processing system. While the CBE will 
be used in the description of the preferred embodiments of 
the present invention, the present invention is not limited to 
such, as will be readily apparent to those of ordinary skill in 
the art upon reading the following description. 
0041. As shown in FIG. 1, the CBE 100 includes a power 
processor element (PPE) 110 having a power processor unit 
(PPU) 116 and its L1 and L2 caches 112 and 114, and 
multiple synergistic processor elements (SPEs) 120-134 that 
each has its own synergistic processor unit (SPU) 140-154, 
memory flow control 155-162, local memory or store (LS) 
163-170, and bus interface unit (BIU unit) 180-194 which 
may be, for example, a combination direct memory access 
(DMA), memory management unit (MMU), and bus inter 
face unit. A high bandwidth internal element interconnect 
bus (BIB) 196, a bus interface controller (BIC) 197, and a 
memory interface controller (MIC) 198 are also provided. 
0042. The CBE 100 may be a system-on-a-chip such that 
each of the elements depicted in FIG. 1 may be provided on 
a single microprocessor chip. Moreover, the CBE 100 is a 
heterogeneous processing environment in which each of the 
SPUs may receive different instructions from each of the 
other SPUs in the system. Moreover, the instruction set for 
the SPUs is different from that of the PPU, e.g., the PPU may 
execute Reduced Instruction Set Computer (RISC) based 
instructions while the SPUs execute Single Instruction Mul 
tiple Data (SIMD) instructions. 
0043. The SPEs 120-134 are coupled to each other and to 
the L2 cache 114 via the EIB 196. In addition, the SPEs 
120-134 are coupled to MIC 198 and BIC 197 via the EIB 
196. The MIC 198 provides a communication interface to 
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shared memory 199. The BIC 197 provides a communica 
tion interface between the CBE 100 and other external buses 
and devices, such as a Scouth BridgeTM communications 
processor, for example. 
0044) The PPE 110 is a dual threaded PPE 110. The 
combination of this dual threaded PPE 110 and the eight 
SPEs 120-134 makes the CBE 100 capable of handling 10 
simultaneous threads and over 128 outstanding memory 
requests. The PPE 110 acts as a controller for the other eight 
SPEs 120-134 which handle most of the computational 
workload. The PPE 110 may be used to run conventional 
operating systems while the SPEs 120-134 perform vector 
ized floating point code execution, for example. 
0045. The SPEs 120-134 comprise a synergistic process 
ing unit (SPU) 140-154, memory flow control units 155-162, 
local memory or store 163-170, and bus interface units 
180-194. The local memory or store 163-170, in one exem 
plary embodiment, comprises a 256 KB instruction and data 
memory which is visible to the PPE 110 and can be 
addressed directly by software. 
0046. The PPE 110 may load the SPEs 120-134 with 
Small programs or threads, chaining the SPEs together to 
handle each step in a complex operation. For example, a 
set-top box incorporating the CBE 100 may load programs 
for reading a DVD, video and audio decoding, and display, 
and the data would be passed off from SPE to SPE until it 
finally ended up on the output display. At 4GHz, each SPE 
120-134 gives a theoretical 32 GFLOPS of performance 
with the PPE 110 having a similar level of performance. 
0047. The memory flow control units (MFCs) 155-162 
serve as an interface for an SPU to the rest of the system and 
other elements. The MFCs 155-162 provide the primary 
mechanism for data transfer, protection, and synchronization 
between main storage and the local storages 163-170. There 
is logically an MFC for each SPU in a processor. Some 
implementations can share resources of a single MFC 
between multiple SPUs. In such a case, all the facilities and 
commands defined for the MFC must appear independent to 
software for each SPU. The effects of sharing an MFC are 
limited to implementation-dependent facilities and com 
mands. 
0048. The illustrative embodiments provide an apparatus 
and method for selecting a random processor, Such as one of 
the SPEs 120-134, to boot a multiprocessor system, e.g., the 
CBE 100. By randomizing which SPE 120-134 will be used 
to boot the CBE 100, the ability of unauthorized persons to 
monitor the electrical interfaces, thermal activity, and other 
electromagnetic activity to obtain information about the boot 
sequence for purposes of defeating the security of the CBE 
100 is made more difficult. 
0049. With the mechanisms of the illustrative embodi 
ments, pervasive logic 193 is provided on the CBE 100 
which controls the boot operation of the CBE 100. The 
pervasive logic 193 includes a random event generator 
which randomly selects which SPE120-134 is to be the boot 
processor that runs the boot code to thereby bring the system 
into an operational state. Based on the random selection of 
a boot SPE 120-134, a configuration bit associated with the 
selected SPE, e.g., SPE 120, is set indicating that SPE 120 
to be the actual boot processor. Thereafter, the selected SPE 
120 is provided with the necessary security key(s) for secure 
booting of the CBE 100 into an operational state. When the 
chosen SPE successfully completes the secure boot proce 
dure, it will transition from a secure state, wherein the MIC 
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198, Shared Memory 199, and a portion of the BIC 197 other 
than the communication link to Flash Rom 230 in FIG. 2 
hereafter, are shutdown and prevented from operation, to an 
unlocked state. Once the secure SPE enters the unlocked 
state, it will initiate the process of fully enabling the MIC 
198, BIC 197 (a process referred to as “training, and all 
other processors (SPEs and PPE) by executing the encrypted 
code provided by the Flash ROM 230. For more information 
regarding the secure boot process used in the Cell Broad 
band Engine, reference is made to co-pending and com 
monly assigned U.S. Patent Application Publication No. 
20050021944, which is hereby incorporated by reference. 
0050. In some illustrative embodiments, while the ran 
domly selected SPE 120 performs the secure boot operation, 
the other SPEs 122-134 perform operations to mask the real 
secure boot operation. This masking may involve executing 
other code sequences, other than the boot code sequence, 
that cause the SPEs 122-134 to generate electrical, electro 
magnetic, and/or thermal outputs that, if monitored by an 
interloper, would make it difficult for the interloper to 
distinguish which SPE 120-134 is performing the actual 
secure boot operation. 
0051 One way in which a different code sequence may 
be generated is by inserting random delay elements into the 
boot code that run loops which iterate a random amount. 
These random delay elements are added so that while 
booting the processor, the secure-boot algorithm will change 
in a random way to cause different electromagnetic and 
thermal signatures, thereby making it difficult to compare 
two different boot operations over time. In this way, each 
SPE120-134 may run the boot code but with differing delay 
amounts thereby causing different electromagnetic and ther 
mal signatures to be generated. Moreover, the same SPE 
120-134 will generate different electromagnetic and thermal 
signatures each time it runs the secure boot code. From an 
interloper's perspective, it will be very difficult to discern 
the actual boot SPE 120 from the other SPES 122-134 in the 
CBE 100 due to such masking. 
0052. In a further illustrative embodiment, the code 
sequences performed by the other SPEs 122-134 are the 
same boot code sequence that the randomly selected SPE 
120 executes but with dummy security keys. Thus, these 
other SPEs 122-134 operate and look, to an interloper, as if 
they are performing the secure boot operation. However, if 
the SPEs 122-134 are monitored, false electrical, electro 
magnetic, and thermal outputs are identified that make it 
difficult for the interloper to determine if the monitored SPE 
is the actual randomly selected SPE 120 that is performing 
the secure boot operation. 
0053. In a still further illustrative embodiment, masking 
of the randomly selected boot SPE 120 may be performed by 
providing a dummy SPE (not shown). The dummy SPE 
appears, from an electromagnetic, thermal, etc., monitoring 
apparatus perspective, as if it is unique by running processes 
different from the boot code sequence on this dummy SPE 
to thereby redirect attacks on the CBE 100 to this dummy 
SPE. In this way, when an interloper attempts to access the 
system by getting around the security mechanisms, the 
interloper only accesses a dummy SPE that does not have 
actual access to the rest of the CBE 100. Furthermore, if the 
intruder compromises the dummy SPE and attempts to 
execute code, the dummy SPE can then shutdown the rest of 
the CBE 100 to prevent further intrusion attempts. 
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0054 Each of the above mentioned illustrative embodi 
ments will now be described in greater detail. It should be 
appreciated that, while each illustrative embodiment will be 
described separately herein, the illustrative embodiments 
may be combined in various ways so as to achieve even 
greater security of the multiprocessor system, e.g., CBE 100. 
Thus, any combination of the illustrative embodiments that 
is deemed suitable to a particular situation and multiproces 
sor environment is intended to be within the spirit and scope 
of the present invention. 
0055 FIG. 2 is an exemplary diagram illustrating the 
primary operational components of a random boot processor 
selection mechanism in accordance with one illustrative 
embodiment. It should be appreciated that, for simplicity of 
the explanation of the illustrative embodiments, FIG. 2 only 
shows one processor of a multiprocessor System in detail. 
However, it should be appreciated that each of the proces 
sors of the multiprocessor system have a similar arrange 
ment of elements and operate in a similar manner to that of 
the processor that is explicitly shown in FIG. 2. Any number 
of processors may be included in the multiprocessor System 
without departing from the spirit and scope of the present 
invention. However, for purposes of explanation of the 
illustrative embodiments, it will be assumed that the number 
of processors is eight as in the CBE architecture shown in 
FIG 1. 

0056. As shown in FIG. 2, the primary operational com 
ponents of a random boot processor selection mechanism 
include a system controller 210, a secure key storage 220, a 
flash ROM 230, and pervasive logic 240. In one illustrative 
embodiment, taking the CBE architecture of FIG. 1 as 
exemplary, elements 210-240 may be elements that are 
provided on the chip in which the CBE architecture is 
implemented. That is, these elements 210-240 may be built 
into the logic of a multiprocessor System-on-a-chip (SoC) 
and thus, the operations performed by these elements 210 
240 may be performed on-chip. Alternatively, one or more 
of the elements may be provided off chip, e.g., the flash 
ROM 230 may be provided off-chip. 
0057 The system controller 210 is responsible for per 
forming the initial operations of a power on reset (POR) to 
bring the power of the system to an acceptable and stable 
level. That is, the system controller 210 is responsible for 
bringing up the Voltages, turning on the system clock, and 
other initial operations required for bringing the multipro 
cessor System to a state where boot operations may begin, as 
is generally known in the art. As part of this POR operation, 
the processors 280–290 are brought up in a secure mode of 
operation. In this secure mode of operation, the processor's 
local stores are not accessible outside the processor. The 
system controller 210, once these initial operations are 
completed and the system is at an acceptable power state, 
signals a “power good State to the pervasive logic 240. 
0058. In response to the “power good” signal from the 
system controller 210, the pervasive logic 240 begins a boot 
operation for booting the multiprocessor System into an 
operational state Such that Software programs may begin to 
execute. As part of this boot operation, a random event 
generator 242 of the pervasive logic 240 randomly selects 
one of the processors, e.g., processor 280, to be the boot 
processor for the multiprocessor system. The random event 
generator 242 generates a signal that is sent to each of the 
processors of the multiprocessor System. The signal is 
logically high only for the processor that is selected as the 
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boot processor. This signal effectively sets the value in the 
configuration bit register 250 of the randomly selected 
processor 280 to a value, e.g., “1” indicative of this proces 
sor 280 being the boot processor. The other processors will 
have their configuration bit values in their respective con 
figuration bit registers kept at an initial value, thereby 
indicating that these processors are not the randomly 
selected boot processor for the multiprocessor system. 
0059. The boot code for booting the multiprocessor sys 
tem is stored in an encrypted format in flash ROM 230. The 
encrypted boot code 232 may be provided to each of the 
processors 280–290. That is, as part of the boot sequence, 
each of the processors 280-290 may attempt to read the 
encrypted boot code 232 from the flash ROM 230. However, 
since only one of the processors has been randomly selected 
as the boot processor, only one of the processors will be able 
to decrypt the encrypted boot code 232 and properly execute 
it so as to bring the multiprocessor system to an operational 
state. This is achieved through the use of a selector 260 
provided in each of the processors that selects between the 
secret key that is the key value used to decrypt the encrypted 
boot code 232 and a randomly generated key value that will 
not be able to decrypt the encrypted boot code 232. 
0060. The value stored in the configuration bit register 
250 is used to generate a selector signal that is provided to 
the selector 260. For example, selector 260 may be a 
multiplexer that receives the secure key (Skey) from the 
secure key storage 220 as one input, a randomly generated 
key value from a random value generator 262 as a second 
input, and the select signal from the configuration bit register 
250 indicating which of the two inputs to select. If the 
configuration bit register 250 stores a value indicative of the 
processor being the randomly selected boot processor, then 
the Skey input is selected. If the configuration bit register 
250 stores a value indicative that the processor is not the 
randomly selected boot processor, then the randomly gen 
erated key value input may be selected by the selector 260. 
The selected key value is then output to the SPE 270. 
0061. The SPE 270 receives the selected key value and 
the encrypted boot code 232. The SPE 270 then attempts to 
decrypt the encrypted boot code 232. If the selected key 
value is the Skey from the secure key storage 220, then the 
SPE 270 will be able to properly decrypt the encrypted boot 
code 232 and execute the boot code instructions therein to 
bring the system to an operational state. If the selected key 
value is not the Skey from the secure key storage 220, then 
the decryption will fail and the SPE 270 will not be able to 
execute the boot code instructions. 
0062. The above process for randomly selecting a boot 
processor and booting the multiprocessor System using the 
randomly selected boot processor may be performed with 
each power-on reset (POR) operation performed by the 
multiprocessor System. Thus, each time the multiprocessor 
system is booted, a different one of the plurality of proces 
sors may be randomly selected to be the boot processor. As 
a result, a potential intruder into the system will not be able 
to determine, a priori, which processor is the boot processor 
and direct measurements of electromagnetic and thermal 
conditions of the multiprocessor system to that particular 
processor. 

0063. On the contrary, the potential intruder must either 
monitor a single processor through multiple boot-up opera 
tions of the multiprocessor System in hopes that the single 
processor will eventually be selected as the random proces 
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sor to be the boot processor or the potential intruder must 
monitor all of the processors to thereby identify which 
processor is the boot processor and attempt to obtain the 
necessary information through measurements of its indi 
vidual electromagnetic and thermal conditions. In an eight 
processor System, for example, the difficulty in monitoring 
the boot sequence is made eight times more difficult since all 
eight processors must be monitored. Moreover, more probes 
and hardware would be need to do such monitoring, thereby 
adding to the difficulty of attempting such monitoring. 
0064 FIG. 3A is an exemplary diagram illustrating a 
random selection mechanism in accordance with one illus 
trative embodiment. As described above, the principle idea 
behind the illustrative embodiments is the random selection 
of a processor, from a plurality of processors, to be the boot 
processor for the multiprocessor system. In order to do this 
random selection, a random event generator and selector 
mechanism are provided. The random event generator is 
provided in pervasive logic of the multiprocessor system 
while a selector is provided in association with each of the 
processors, in the illustrative embodiments. FIG. 3A pro 
vides a depiction of one implementation of a random event 
generator and selector in accordance with one illustrative 
embodiment. 
0065. As shown in FIG. 3A, the random event generator 
310, which may correspond to the random event generator 
242 in FIG. 2, for example, includes a linear feedback shift 
register (LFSR) counter 320, a ring oscillator 330, and a 
selector signal register/decoder 340. The ring oscillator 330 
is a device composed of an odd number of NOT gates whose 
output oscillates between two voltage levels. The NOT 
gates, or inverters, are attached in a chain with the output of 
the last inverter being fed back into the first inverter. The last 
output of a chain of an odd number of inverters is the logical 
NOT of the first input. This final output is asserted a finite 
amount of time after the first input is asserted. The feedback 
of this last output to the input causes an unstable oscillation 
that will vary in time according to random elements such as 
electromagnetic noise on the power Supply and temperature. 
0066. The output of the ring oscillator 330 is provided as 
an input to the LFSR counter 320 along with a clock signal 
clk. The LFSR counter 320 is a shift register whose input bit 
is a linear function of its previous state. The only linear 
functions of single bits are XOR and inverse-XOR and thus, 
the LFSR is a shift register whose input bit is driven by the 
exclusive-or (XOR) of some bits of the overall shift register 
value. 

0067. The initial value of the LFSR counter 320 is called 
the seed, and because the operation of the register is deter 
ministic, the sequence of values produced by the LFSR 
counter 320 is completely determined by its current (or 
previous) state. A LFSR counter 320 with a well-chosen 
feedback function can produce a sequence of bits which 
appears random and which has a very long cycle. In the 
illustrative embodiments, this randomness is made more 
apparent in that the input to the LFSR counter 320 is a 
product of the oscillation produced by the ring oscillator 330 
and the discrepancy between the frequency of the ring 
oscillator 330 and the input clock clk which vary indepen 
dently of one another. 
0068. The LFSR counter 320 receives, as input, the 
output from the ring oscillator 330 and the clock signal clk. 
and generates an output bit stream that is stored in selector 
signal register/decoder 340. The inverters of the ring oscil 
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lator 330 introduce a delay in the output signal to the LFSR 
counter 320 and thus, there is a discrepancy between the 
frequency of the ring oscillator 330 and the input clock clk. 
This discrepancy between the frequencies gives rise to jitter 
in the input to the LFSR counter 320, as depicted in FIG.3B. 
This jitter provides a measure of randomness which ran 
domizes the output generated by the LFSR counter 320. 
0069. The output of the LFSR counter 320 is stored in the 
selector signal register/decoder 340. In the depicted 
example, the LFSR counter 320 is a 3-bit counter which 
generates a 3-bit output that is interpreted to encode a value 
1-8. A decoder function of the selector signal register/ 
decoder 340 selects one of the B unique outputs based on the 
random 3-bit input value. Based on the state of the bits 
stored in the selector signal register 340, high or low state 
signals are output to the configuration bit registers of the 
various processors, e.g., SPE0-SPE7 120-134 in FIG. 1, to 
thereby set the values stored in the configuration bit registers 
and thus, select one of the processors to be the boot 
processor for the multiprocessor System. 
0070. Once the configuration bit register values are set, 
these values are used to provide selector signals to the 
corresponding selectors 350-370. As shown in FIG. 3A, the 
selector signal is provided to a multiplexer 352, 362,372, 
along with an Skey input and a random key value input. 
Based on the state of the selector signal, either the Skey 
input or the random key value input is selected by each of 
the multiplexers 352,362,372. The random key value inputs 
may be generated by one or more random value generators 
of the same or a different type from the random event 
generator configuration described above for selecting the 
boot processor. That is, a similar random event generator 
configuration as described above may be used to randomly 
generate a key value having a same length as the Skey. These 
random key values are then input to the multiplexers 352, 
362, and 372. 
0071. The system is designed such that, by way of the 
decoder function describe above, for example, only one of 
the selector signals that are input to the multiplexers 352, 
362,372 will select the Skey input while all the others will 
select a random key value input. The outputs from the 
multiplexers 352, 362, and 372 are provide to the corre 
sponding SPEs so that the SPEs may utilize these outputs for 
either decrypting boot code and executing the boot code, in 
the case of the randomly selected boot processor, or attempt 
ing to decrypt the boot code and failing to boot the multi 
processor system, as in the case of all other processors in the 
multiprocessor System. 
0072. It should be appreciated that the mechanisms 
described above for providing a random event generator and 
selector are only exemplary and are not intended to state or 
imply any limitation with regard to the types of random 
event generators and selectors that may be used with the 
illustrative embodiments. For example, rather than using a 
ring oscillator and LFSR counter arrangement as shown in 
FIG. 3A, other random event generators may be utilized. For 
example, a thermal sensor may be used to measure thermal 
noise which may then be used to generate a random event for 
selecting one of the processors as a boot processor. Simi 
larly, a quantum dot (q-dot), or semiconductor nanocrystals, 
may be used to measure quantum Source effects that may be 
used as a source of randomness for selecting a processor as 
the boot processor. Any strong Source of randomness may be 
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used with the illustrative embodiments to provide a random 
selection of a processor for use as the boot processor for the 
multiprocessor System. 
0073 Moreover, it should be appreciated that while FIG. 
3A shows the ring oscillator 330 having five inverters, the 
illustrative embodiments are not limited to such. Rather, any 
number of inverters, so long as there are an odd number of 
inverters, may be used without departing from the spirit and 
Scope of the present invention. In fact, in order to provide 
additional jitter in the input to the LFSR counter 320, it may 
be desirable to add additional inverters to the chain of 
inverters in the ring oscillator 330 so as to introduce even 
more discrepancy between the frequency of the input clock 
signal clk and the input from the ring oscillator 330. The 
amount of discrepancy may be selected based on the desired 
operational characteristics for the particular multiprocessor 
system in which the illustrative embodiments are imple 
mented. 

0074. Furthermore, while FIGS. 2 and 3A depict the 
random key value being generated by a separate random key 
value generator for each processor, the illustrative embodi 
ments are not limited to such. Rather, a single random key 
value generator may be provided for all of the processors 
with the random key value generator generating one or more 
random key values that are input to the processors. Thus, for 
example, the random key value generator may generate a 
single random key value that is provided to all of the 
processors, a separate random key value for each individual 
processor (in which case seven different random key values 
may be generated, for example), or any number of random 
key values that may be selectively provided to the various 
processors of the multiprocessor System. 
0075. In one illustrative embodiment, as illustrated in 
FIG. 3C, a plurality of random key value generators 390 may 
be provided that each output a different random key value. 
Alternatively, as mentioned above, a single random key 
value generator may be used in replacement of these sepa 
rate random key value generators. These random key values 
may be provided as inputs to the selectors, e.g., multiplexers 
391 and 392, of the processors, e.g., SPEs 393 and 394, in 
the multiprocessor System along with the secure key (Skey) 
from an Skey storage 395, e.g., an eFuse, that is actually 
used to decrypt the boot code for booting of the multipro 
cessor System. As shown, the randomly generated key values 
and the Skey value may be multiplexed and provided on 
eight identical signal lines to each of the multiplexers 391 
and 392 so as to make it more difficult for an intruder to 
isolate one of the lines as being a signal line from the secure 
key storage 395. 
0076. The eight total key value inputs may be provided to 
the multiplexers 391 and 392 and the select signals from the 
random event generator 396 in the pervasive logic 397 may 
be used to select one of the eight inputs. In this case, rather 
than simply selecting between the Skey input and a random 
key value, the multiplexers 391 and 392 may select between 
the Skey input and seven random key values. Thus, a first 
processor may select the Skey input, based on the random 
selection of this first processor as the boot processor, a 
second processor may select a third random key value, a 
third processor may select a fourth random key value, a fifth 
processor may select a first random key value, and so on. 
Thus, each processor may receive a different key value, 
either the Skey or a randomly generated key value. As a 
result, it becomes difficult for an intruder to discern which 
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key value is the correct key value when monitoring bus 
traffic of the multiprocessor system. 
0077. It should be further appreciated that the mecha 
nisms shown in FIGS. 3A and 3C are preferably provided in 
lower layer metal layers of the ceramic package in which the 
multiprocessor System is provided, or the lowest layer of 
interconnect, if the design is on a single chip. Since the 
ability to probe electrical and thermal characteristics of a 
multiprocessor system is currently limited to the upper 
layers of the multiprocessor ceramic package, by placing 
these elements in the lower layer metal layers, the ability to 
probe the operation of these elements is made more difficult. 
Thus, it is very difficult, if not impossible, for a would-be 
intruder to monitor the thermal and electrical characteristics 
of the random event generator and selectors so as to deter 
mine the key values provided by these elements. 
0078. Using the mechanisms above, a processor within a 
plurality of processors of a multiprocessor System may be 
randomly selected to boot the multiprocessor System. In this 
way, the ability to monitor the electrical and thermal char 
acteristics of the processors so as to obtain secret informa 
tion, e.g., the secret keys, used to boot the multiprocessor 
system is made more difficult and potentially becomes a 
deterrent to those who may wish to access the multiproces 
sor System without authorization. 
0079 While the above mechanism for randomly select 
ing a processor to boot the multiprocessor System provide a 
good amount of protection against monitoring of the boot 
sequence, it may still be possible for an unauthorized 
individual to “hack” the system if such an individual is 
persistent enough. In order to make Such monitoring virtu 
ally impossible, the illustrative embodiments provide addi 
tional mechanisms for masking the boot sequence on the 
randomly selected processor Such that the unauthorized 
individual is not able to discern which processor is correctly 
performing the actual boot sequence for booting the multi 
processor System. 
0080. In one illustrative embodiment, the masking opera 
tion involves each of the processors that were not selected to 
be the boot processor running a different set of instructions 
to thereby generate masking electrical and thermal signa 
tures that make it difficult to discern the boot processor from 
the other processors in the system. The code sequences that 
are run by the different processors may be the same default 
code sequence that is provided either in a memory associ 
ated with the processor, or is otherwise accessible by the 
processors when the processors are not able to decrypt the 
boot code sequence. For example, the default code sequence 
may be provided in a secure portion of a local store 
associated with each of the processors. Alternatively, the 
default code sequence may be provided in a flash ROM or 
other storage device provided on or off-chip. 
I0081. When the processor is notable to decrypt the actual 
encrypted boot code received from the flash ROM, the 
processor may default back to this secure portion of local 
storage which causes the processor to execute instructions to 
mask the boot code sequence being performed on another 
processor. This sequence of instructions may not generate 
any useable information and may serve only a masking 
function. Alternatively, this sequence of instructions may be 
used to perform operations for monitoring the system during 
the boot operation, or other useful operations, for example. 
0082 In one illustrative embodiment, the code that is 
executed on each of the non-selected processors, i.e. the 
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non-boot processors, is the same. In illustrative embodi 
ments where the code that is executed by each of the 
non-selected processors is the same, the code that is run on 
each of these non-selected processors preferably is code that 
generates electrical and thermal profiles that resemble the 
actual boot code but do not provide any of the secret 
information that an intruder would require in order to 
circumvent the Security of the multiprocessor System. Such 
code may perform similar operations to that of the actual 
boot code but not access the sensitive portions of the 
multiprocessor System. In fact, in one illustrative embodi 
ment, the same boot code that is used to boot the multipro 
cessor System may be used by the non-selected processors 
but with access to the secure key (Skey) and other privileged 
information being made inaccessible. 
0083. As a result, the thermal profile and bus traffic of 
these non-selected processors will approximate the actual 
boot sequence. Thus, from the perspective of an intruder 
using monitoring probes to monitor the thermal profile, bus 
traffic, and the like, the intruder will be unable to decipher 
which core is performing the actual boot operation since all 
of the cores will look the same via the monitoring probes. 
Such ambiguity deters tampering and makes it more difficult 
to isolate the real boot code sequence, Secret key informa 
tion, and the like. 
0084. In other illustrative embodiments, each of the non 
selected processors may execute a different set of instruc 
tions. By executing different sets of instructions on each of 
the non-selected processors, none of the processors look 
unique when monitored using electrical or thermal probes. 
As a result, a distinguishing characteristic, such as thermal 
profile or bus traffic, cannot be identified by probes so as to 
identify which processor is the boot processor. 
0085. These different sets of instructions may be ran 
domly selected for each of the processors in the multipro 
cessor system. Thus, for example, differing start addresses 
for code sequences stored in an on-chip storage device, e.g., 
a flash ROM or the like, may be randomly selected and 
provided to the processors of the multiprocessor system. The 
processors may then begin executing instructions at the 
randomly selected Start addresses thereby generating differ 
ent thermal profiles and bus traffic that masks the actual boot 
code sequence. 
I0086 One way in which to provide different code 
sequences for the different processors is to provide boot code 
that has random delay elements inserted into the boot code. 
These delay elements may be, for example, loops that iterate 
a random number of times. Such delay elements may be 
provided both in the actual boot code sequence run by the 
randomly selected boot processor and in the boot code 
sequences run by the non-selected processors. This random 
delay causes the boot code to “look” different on each of the 
processors from the perspective of an intruder monitoring 
the thermal and bus traffic characteristics of the processors. 
As a result, it is not possible for the intruder to discern which 
processor is running the actual boot code that boots the 
multiprocessor System. 
0087. In yet another illustrative embodiment, a dummy 
processor is provided that looks as though it is unique when 
monitored by an intruder. This illustrative embodiment is a 
combination of the previous embodiments in which one 
processor is randomly selected to be the boot processor, one 
processor of the non-selected processors is selected to be a 
dummy processor that runs code that provides a unique 
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thermal and bus traffic profile from the boot code sequence, 
and the other processors run code sequences that replicate 
the thermal profile and bus traffic of the actual boot code 
sequence as close as possible. In this way, the intruder will 
detect the dummy processor as being unique from the other 
processors and will conclude that this processor is running 
the actual boot code sequence. Thus, the intruder will direct 
its attacks to this dummy processor rather than the actual 
boot processor that appears to be similar to the other 
processors from a thermal profile and bus traffic standpoint. 
Furthermore, if the intruder attempts to run code or other 
wise actively interfere with the dummy processor, the 
dummy processor can then signal a system shutdown. 
I0088 FIGS. 4A-4D are exemplary diagrams illustrating 
masking operations for masking a secure boot operation of 
a randomly selected boot processor in accordance with 
illustrative embodiments. FIG. 4A illustrates a first masking 
operation in which code that appears, from a monitoring 
probe Standpoint, to be the same as the boot code sequence 
is run on each of the non-selected processors. As shown in 
FIG. 4A, SPE0 410 is randomly selected, such as by use of 
the mechanisms described previously, to be the boot pro 
cessor for the multiprocessor system 400. Thus, SPE0 410 
receives the secret key, decrypts the boot code sequence 
from the flash ROM, and executes the actual boot code 
operations required to bring the multiprocessor System 400 
into an operational state. The other SPEs, i.e. SPE1-SPE7 
412-424, execute code that looks like the boot code 
sequence from the perspective of a monitoring probe. 
I0089. As described above, the code sequence that the 
other SPEs 412-424 run may be default code sequences 
provided in a secure portion of local storage which causes 
the SPE 412-424 to execute instructions to mask the boot 
code sequence being performed on SPE0 410. The code that 
is run on each of these non-selected SPEs 412-424 prefer 
ably is code that generates electrical and thermal profiles 
that resemble the actual boot code but do not provide any of 
the secret information that an intruder would require in order 
to circumvent the security of the multiprocessor System. 
Such code may perform similar operations to that of the 
actual boot code but not access the sensitive portions of the 
multiprocessor system 400. 
0090 FIG. 4B illustrates another illustrative embodiment 
in which different randomly selected algorithms are run on 
each of the non-selected processors. As shown in FIG. 4B, 
SPE0 is again selected to be the boot processor and thus, 
runs the boot code for booting the multiprocessor system 
400 into an operational state. Each of the other SPEs 
412-424 run a separate randomly selected algorithm that 
generates different thermal profiles and different bus traffic 
on the EIB. Thus, each SPE0-7 appears to be unique when 
compared to each of the other SPEs 410-424, Thus, it is not 
possible to discern which SPE0-74.10-424 is the actual boot 
processor for booting the multiprocessor system 400. 
0091. As mentioned above, these different algorithms 
may be randomly selected for each of the SPEs 412-424 in 
the multiprocessor System. Thus, for example, differing start 
addresses for code sequences stored in an on-chip storage 
device, e.g., a flash ROM or the like, may be randomly 
selected and provided to the SPEs 412-424. The SPEs 
412-424 may then begin executing instructions at the ran 
domly selected start addresses thereby generating different 
thermal profiles and bus traffic that masks the actual boot 
code sequence. 
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0092 Alternatively, the boot code may be provided to 
each of the SPEs 410-424 with random delay elements 
inserted into the boot code. These delay elements may be, 
for example, loops that iterate a random number of times. 
This random delay causes the boot code to “look” different 
on each of the SPEs 410-424 from the perspective of an 
intruder monitoring the thermal and bus traffic characteris 
tics of the processors. As a result, it is not possible for the 
intruder to discern which processor is running the actual 
boot code that boots the multiprocessor system. 
0093 FIG.4C illustrates another illustrative embodiment 
in which a dummy processor is provided to which attacks 
from an intruder may be redirected. As shown in FIG. 4C, 
SPE0 is the randomly selected boot processor executing the 
boot sequence. SPE1-SPE4 412–418 and SPE6-SPE7 422 
424 run code that looks like the boot code sequence from a 
thermal and bus traffic monitoring perspective, as in the 
embodiment described above with regard to FIG. 4A. SPE5 
420, on the other hand, runs a randomly selected algorithm 
which may be randomly selected in a similar manner as 
described above with regard to FIG. 4B. 
0094 Thus, from the perspective of an intruder monitor 
ing the characteristics of the processors 410-424, all of the 
SPEO-SPE4 410-418 and SPE6-SPE7 422-424 look to be 
executing the same code. SPE5 420, however, appears to be 
unique from the other SPEs. Hence, an intruder wishing to 
attack the boot sequence of the multiprocessor System may 
redirect attacks against SPE5420 rather than the actual boot 
processor SPE0 410 since, to the intruder, it appears that 
SPE5 420 is the actual boot processor. 
0095. Just as the actual boot processor is randomly 
selected with each power-on reset (POR) operation, the 
dummy processor may be randomly selected from the non 
selected processors as well. Thus, with each POR operation, 
a different boot processor and dummy processor may be 
selected, thereby making it more difficult for an intruder to 
deduce which processor is performing an actual boot 
sequence that may be compromised in order to obtain access 
to the multiprocessor system. 
0096. For completeness, FIG. 4D illustrates the Illustra 
tive embodiment previously described above in which the 
boot code that is used to boot the system is executed by each 
of the processors. In this illustrative embodiment, only the 
randomly selected boot processor is given access to the 
secret key (Skey) while the other processors receive ran 
domly selected keys (Rkey 1-Rkey7). Each of the processors 
attempts to decode and execute the boot code using the key 
that was Supplied to them, e.g., the Skey or an Rkey. Only 
the randomly selected boot processor will be able to cor 
rectly decrypt the boot code and execute it to bring the data 
processing system into an operational state. However, to an 
outside monitor, it will appear as if all of the processors are 
booting the system, thereby masking the actual boot pro 
cessor, since each of them will be performing similar tasks 
to attempt to decrypt and boot the system. That is, each of 
the processors will generate a similar thermal and/or elec 
trical signature that makes it difficult for a would-be intruder 
to discern which processor is the actual boot processor using 
measuring probes and the like. 
0097. Through the use of the random selection of the boot 
processor and the masking of the boot sequence, as provided 
by the illustrative embodiments, it becomes very difficult for 
any would-be intruder into the multiprocessor system to be 
able to discern which processor is performing a boot code 
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sequence. Thus, it becomes very difficult for a would-be 
intruder to monitor thermal profiles and bus traffic of the 
processors and identify secret key information for use in 
accessing the encrypted boot code. Moreover, it becomes 
difficult for a would-be intruder to identify places in the boot 
code sequence where intrusion into the system is possible. 
Hence, the multiprocessor System is made more secure from 
unauthorized access to the boot sequence. 
0.098 FIGS. 5-6 are flowcharts outlining an exemplary 
operation for randomly selecting a processor in a multipro 
cessor System as a boot processor and for masking the boot 
code sequence. It will be understood that each block of the 
flowchart illustrations, and combinations of blocks in the 
flowchart illustrations, can be implemented by computer 
program instructions. These computer program instructions 
may be provided to a processor or other programmable data 
processing apparatus to produce a machine, such that the 
instructions which execute on the processor or other pro 
grammable data processing apparatus create means for 
implementing the functions specified in the flowchart block 
or blocks. These computer program instructions may also be 
stored in a computer-readable memory or storage medium 
that can direct a processor or other programmable data 
processing apparatus to function in a particular manner. Such 
that the instructions stored in the computer-readable 
memory or storage medium produce an article of manufac 
ture including instruction means which implement the func 
tions specified in the flowchart block or blocks. 
I0099. Accordingly, blocks of the flowchart illustrations 
Support combinations of means for performing the specified 
functions, combinations of steps for performing the speci 
fied functions and program instruction means for performing 
the specified functions. It will also be understood that each 
block of the flowchart illustrations, and combinations of 
blocks in the flowchart illustrations, can be implemented by 
special purpose hardware-based computer systems which 
perform the specified functions or steps, or by combinations 
of special purpose hardware and computer instructions. 
0100 FIG. 5 outlines an exemplary operation for random 
selection of a boot processor for booting a multiprocessor 
system. As shown in FIG. 5, the operation starts with the 
system controller performing a power-on reset (POR) opera 
tion (step 510). After performance of the initial POR opera 
tions, the system controller provides a “power good” signal 
to the pervasive logic of the multiprocessor system (step 
520) and the pervasive logic initiates a random boot opera 
tion (step 530). 
0101 The pervasive logic randomly selects a processor 
from a plurality of processors to be the boot processor (step 
540). The pervasive logic then sets the configuration bits of 
the processors based on the random selection (step 550) and 
signals the processors to begin the boot operation (step 560). 
A flash ROM provides the encrypted boot code to the 
processors and key values are provided to the processors 
from a secret key storage and random key generator (step 
570). The processors then select the keys that are to be used 
by the processors based on the setting of their configuration 
bits (step 580). The processors attempt to decrypt the boot 
code based on the selected keys (step 590). The selected 
processor decrypts the boot code using the secret key and 
boots the system (step 595). It should be noted that the 
attempt to decrypt the boot code by all other non-selected 
processors will fail and only the selected processor will be 
able to boot the system. The operation then ends. 
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0102 FIG. 6 is a flowchart outlining an exemplary opera 
tion for masking a boot code sequence in accordance with 
one illustrative embodiment. The operation outlined in FIG. 
6 may be performed in each processor of a multiprocessor 
system, for example. 
0103) As shown in FIG. 6, the processor receives a signal 

to begin a boot operation (step 610). This step may corre 
spond to step 530 in FIG. 5, for example. The processor 
attempts to decrypt the boot code (step 620) and a determi 
nation is made as to whether the decrypt attempt failed (step 
630). If the decrypt was successful, i.e. the processor is the 
randomly selected boot processor, then the boot code is 
executed to thereby bring the multiprocessor system to an 
operational state (step 640). 
0104. If the decryption failed, then a code sequence to 
execute to mask the boot sequence is selected (step 650). As 
mentioned above, depending upon the particular embodi 
ment, the selection of a masking code sequence may be 
based on a default code sequence in a secure portion of a 
local store, a randomly selected Starting address, the use of 
boot code with random delay elements, or the like. The 
masking code sequence is run (step 660) and a determination 
is made as to whether the system is in an operational state, 
i.e. the boot sequence has completed (step 670). If not, the 
operation returns to step 660 and continues to run the 
masking code sequence. If the system is in an operational 
state, then the execution of the masking code sequence is 
ended (step 680) and the operation terminates. 
01.05 Thus, the above illustrative embodiments provide a 
mechanism by which a processor may be randomly selected 
from a plurality of processors as a boot processor for booting 
a multiprocessor System to an operational state. The illus 
trative embodiments further provide a mechanism for mask 
ing the boot code sequence being executed by a randomly 
selected processor so as to make it difficult for an intruder to 
discern which processor has been randomly selected to 
execute the actual boot code sequence. Using these mecha 
nisms, a multiprocessor system is made more secure by 
making it extremely difficult for an intruder to gain access to 
the system through monitoring the boot code sequence. 
0106. The above illustrative embodiments are described 
in terms of the boot code sequence being performed by a 
single processor in a multiprocessor system. However, the 
illustrative embodiments are not limited to such. In other 
illustrative embodiments, the boot code sequence may be 
distributed across a plurality of processors in the multipro 
cessor system, as described hereafter. By distributing the 
boot code sequence across a plurality of processors in the 
multiprocessor System, the number of processors that must 
be compromised in order to obtain complete information 
about the boot sequence and thereby circumvent security 
measures is increased. 

0107 Thus, the distributed boot operation of the illustra 
tive embodiments described hereafter is more secure than 
multiprocessor data processing systems that utilize a single 
secure core. Furthermore, by distributing the boot operation, 
if any portion of the boot operation is compromised, the boot 
operation fails, thereby preventing an unauthorized indi 
vidual from circumventing the security of the system. In 
other words, while the would-be intruder may compromise 
a portion of the boot operation, the would-be intruder is not 
able to compromise the all of the boot operation and thus, is 
notable to obtain access to the multiprocessor data process 
ing System. 
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0108. With this illustrative embodiment, the boot code 
sequence is partitioned into a plurality of partitions such that 
each partition may be provided to a different processor of the 
multiprocessor System. As each partition of the boot code 
sequence is executed, that partition must complete correctly 
on its respective processor before the boot code sequence 
may proceed on another processor. A secure communication 
mechanism is used to communicate satisfactory completion 
of a previous partition of the boot code sequence. This 
secure communication mechanism may include a security 
token, Such as an encrypted password or other security 
identifier, e.g., a public/private encryption key pair, that 
indicates that the previous session was not compromised. In 
this way, a chain of dependent "sessions are created that 
must complete satisfactorily. 
0109 The processors that are involved in the distributed 
execution of the boot code may be all of the processors in the 
multiprocessor System or a sub-set of the processors in the 
multiprocessor system. For example, a random selection 
mechanism, Such as that described above for selecting a 
single boot processor, may be used to randomly select a 
plurality of boot processors to be used in booting the system 
in a distributed manner. Moreover, the particular partitions 
of the boot code that are executed by the processors may be 
randomly selected Such that, with each power-on reset 
(POR) operation, the same processor may or may not 
execute the same boot code partition as in a previous POR 
operation. Thus, randomization may be performed with 
regard to which processors are involved in the distributed 
boot operation as well as with regard to what boot code 
partitions each processor will execute. 
0110. Other processors of the multiprocessor system, i.e. 
non-boot processors, may either not perform any work 
during the distributed boot operation or may execute mask 
ing code sequences, of one or more of the various masking 
code illustrative embodiments described previously, to mask 
the boot code execution on the randomly selected sub-set of 
processors. In other words, the distributed boot code 
sequence operation of the present illustrative embodiment 
may be combined with one or more of the previously 
described illustrative embodiments without departing from 
the spirit and scope of the present invention. 
0111 FIG. 7A is an exemplary diagram illustrating a 
distributed boot operation configured as a daisy chain or ring 
arrangement in accordance with one illustrative embodi 
ment. As shown in FIG. 7A, a plurality of processors 
720-750 are provided for booting the multiprocessor data 
processing system. In the depicted example, all of the 
co-processors, i.e. SPEs, are utilized in the distributed boot 
operation while the control processor, e.g., PPE, does not 
execute the distributed boot code. Of course, in other 
illustrative embodiments, the PPE may also be included in 
the distributed boot operation. Moreover, in other illustrative 
embodiments, as mentioned previously, only a sub-set of the 
processors in the multiprocessor data processing system may 
be used to perform the distributed boot operation. 
0112 The encrypted boot code 710, which may be stored 
in a storage device associated with the multiprocessor data 
processing system, such as in Flash ROM 230 in FIG. 2, for 
example, may be partitioned into separately executable 
partitions, i.e. boot code partitions 1 to n. For example, the 
partitions may be provided as modules or routines in the 
encrypted boot code that are separately encrypted using the 
same encryption algorithm and the same secret key (Skey). 
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Preferably, the number of boot code partitions is equal to the 
number of processors that will be involved in the distributed 
boot operation, i.e. the number of boot processors. However, 
in some illustrative embodiments, such as in a ring arrange 
ment of the boot processors, the number of boot code 
partitions is not limited the number of boot processors and 
may be any number of partitions less than or greater than the 
number of boot processors. 
0113. The distributed boot operation is performed under 
the control of the pervasive logic 790, which may be the 
same pervasive logic 193 in FIG. 1, for example. The 
pervasive logic 790, through the user of the random event 
generator, for example, may randomly select the processors 
720-750 to be used as boot processors as well as may 
randomly select which partition each of the randomly 
selected processors 720-750 will execute. In such an 
embodiment, the pervasive logic 790 may keep track of the 
order in which the boot code partitions are to be executed in 
order to ensure the security of the boot code sequence 
through use of a secure communication mechanism that 
indicates whether or not a previous session of the distributed 
boot operation has been compromised. For simplicity of the 
present description, however, it will be assumed that, in the 
depicted example, all of the processors, or at least the 
co-processors, of the multiprocessor system are utilized in 
the distributed boot operation and that boot code partitions 
are provided to the processors 720-750 in sequential order. 
0114. The pervasive logic 790 provides selector signals to 
the processors 720-750 for selecting which boot code par 
tition is to be executed by each of the processors 720-750. 
In addition, the pervasive logic 790 provides key value 
selector signals for causing the processor 720-750 to select 
the Skey, from Skey storage, as the key to be used to decrypt 
their corresponding boot code partitions. The processors 
720-750 decrypt their boot code partition using the supplied 
Skey and then execute the boot code partition in the proper 
sequence either by virtue of the arrangement of the proces 
sors 720-750 in a daisy chain architecture or under the 
control of the pervasive logic 790, for example. 
0115. In the depicted example, SPE0 720 begins the 
distributed boot operation by decrypting its boot code par 
tition 1, executing the boot code partition, and then securely 
communicating the Successful completion of the boot code 
partition 1 to SPE1 730. Moreover, a security mechanism 
may be utilized between the SPEs for indicating that the 
previous session, i.e. the session comprised of the execution 
of the previous boot code partition, was not compromised. 
The security mechanism may be, for example, passing a 
security token, digital signature, password, a checksum of 
the previous boot code partition, using public key/private 
key encryption of the Successful completion message, or the 
like. Any security mechanism that may be used to commu 
nicate whether or not the previous session of a distributed 
boot operation was compromised or not is intended to be 
within the spirit and scope of the present invention. 
0116. After receiving confirmation of the successful and 
uncompromised completion of the boot code partition 1 
execution, the SPE1730 may decrypt its boot code partition 
2, execute the boot code partition, and then communicate its 
successful completion of boot code partition 2 to SPE2 740. 
This process may continue until all of the processors have 
signaled that they have completed their portion of the 
distributed boot operation without being compromised. Any 
break in this dependency chain of boot code partitions, e.g., 
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any signaling of unsuccessful execution or compromised 
execution, results in a failed boot which may be signaled to 
the system controller. Once all of the boot code partitions 
have completed Successfully, the multiprocessor data pro 
cessing system is in an operative state in which software 
applications may be executed on the various processors. 
0117 The illustrative embodiment described above uti 
lizes a daisy-chain arrangement of the processors with 
regard to the boot code partitions that are executed on the 
processors. Other arrangements that ensure a sequential 
execution of boot code partitions may be utilized without 
departing from the spirit and Scope of the present invention. 
For example, an extension of the daisy-chain arrangement 
above is to provide a ring arrangement of the processors with 
regard to the distributed boot operation such that the last 
processor, e.g., SPE7 750, communicates back to the first 
processor, e.g., SPE0720, which is selected as the “primary 
boot processor, its successful and uncompromised comple 
tion of execution of its boot code partition. In this way, the 
security mechanism, e.g., the security token, an incremented 
count value, etc., which is passed from one session to the 
next through the ring arrangement may be used at the 
primary boot processor to Verify uncompromised execution 
of the entire distributed boot operation. 
0118 Moreover, a ring arrangement of processors allows 
a greater number of boot code partitions to be utilized than 
the number of boot processors. Thus, if only a sub-set of 
processors in the multiprocessor data processing system are 
selected to be boot processors, this sub-set of processors 
may execute any number of boot code partitions when 
arranged in a ring arrangement with regard to the distributed 
boot operation. This gives rise to the ability of the pervasive 
logic 790 to not only randomly select which processors in 
the multiprocessor data processing system are to be boot 
processors, but also to randomly select how many proces 
sors will be boot processors in the distributed boot operation. 
Thus, in a first POR operation, four processors may be 
selected to be boot processors while in a subsequent POR 
operation three boot processors may be selected. The per 
vasive logic 790 may contain logic for randomly selecting a 
number of processors to select to be boot processors which 
then is used to control the random selection of processors as 
previously described above. 
0119) Another possible arrangement of boot processors 
with regard to a distributed boot operation is to provide a 
master/slave arrangement. FIG. 7B is an exemplary diagram 
illustrating a distributed boot operation configured as a 
master/slave arrangement in accordance with one illustrative 
embodiment. As shown in FIG. 7B, one processor 760 is 
designated the master processor. This processor may be one 
of the co-processors, e.g., an SPE, or the control processor, 
e.g., the PPE. The slave processors, e.g., SPE0-SPE7 720 
750, each are responsible for completing their boot code 
partition and securely communicating to the master core that 
they have finished execution and have not been compro 
mised, in a similar manner as described above in FIG. 7A. 
Once the master processor 760 has received signals from 
each of the slave processors 720-750, and validated that it 
has not been compromised itself, then the multiprocessor 
data processing system is permitted to enter an operational 
state in which software applications may be executed. 
0.120. It should be appreciated that while a daisy-chain, 
ring, and master/slave arrangement of processors with 
regard to a distributed boot operation have been described 



US 2007/0288738A1 

herein, the present invention is not limited to only these 
described arrangements. Rather any arrangement of proces 
sors with regard to a distributed boot operation may be used 
with the mechanisms of the illustrative embodiments with 
out departing from the spirit and scope of the present 
invention. 

0121 FIG. 8 is a flowchart outlining an exemplary opera 
tion for distributed booting of a multiprocessor System in 
accordance with one illustrative embodiment. As shown in 
FIG. 8, the operation starts with the pervasive logic receiv 
ing a “power good” signal from the system controller (step 
810). The pervasive logic selects the processors to be boot 
processors from the plurality of processors in the multipro 
cessor data processing system (step 820). As mentioned 
above, such selection may result in all of the processors 
being selected or some Subset of the processors in the 
multiprocessor data processing system being selected to be 
boot processors. Such selection may be performed using a 
random event generator in the pervasive logic, for example. 
0122) The pervasive logic selects the boot code partitions 

to be assigned to the selected boot processors (step 830). A 
next boot code partition is executed by an associated boot 
processor (step 840). The boot processor determines 
whether the execution of the boot code partition was suc 
cessful and uncompromised (step 850). If not, a boot failure 
is signaled to the system controller (step 860) and the 
operation terminates. 
0123. If the boot code partition executes successfully and 

is not compromised, then the boot processor determines if 
the all boot code partitions have been executed successfully 
(step 870). If not, the operation returns to step 840 and the 
next boot code partition is executed by its associated boot 
processor. If all of the boot code partitions have been 
executed Successfully, the boot processor signals the Suc 
cessful boot of the data processing system to the system 
controller (step 880) and the operation terminates. 
0124 Thus, as set forth above, the illustrative embodi 
ments, in addition to randomly selecting a single boot 
processor and performing masking operations on other pro 
cessors of the multiprocessor data processing system, pro 
vides mechanisms for distributing the boot operation over a 
plurality of processors. The illustrative embodiments pro 
vide mechanisms for randomly selecting boot processors, 
randomly selecting boot code partitions to be executed on 
selected boot processors, and to ensure the security of the 
execution of the boot code partitions by the various boot 
processors. All of these various mechanisms aid is increas 
ing the security of the multiprocessor data processing system 
from unauthorized monitoring of the boot operation. 
0.125. The illustrative embodiments may take the form of 
an entirely hardware embodiment, an entirely software 
embodiment or an embodiment containing both hardware 
and software elements. In a preferred embodiment, the 
invention is implemented in software, which includes but is 
not limited to firmware, resident software, microcode, etc. 
0126 Furthermore, the illustrative embodiments may 
take the form of a computer program product accessible 
from a computer-usable or computer-readable medium pro 
viding program code for use by or in connection with a 
computer or any instruction execution system. For the 
purposes of this description, a computer-usable or computer 
readable medium may be any apparatus that may contain, 
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store, communicate, propagate, or transport the program for 
use by or in connection with the instruction execution 
system, apparatus, or device. 
I0127. The medium may be an electronic, magnetic, opti 
cal, electromagnetic, infrared, or semiconductor System (or 
apparatus or device) or a propagation medium. Examples of 
a computer-readable medium include a semiconductor or 
Solid state memory, magnetic tape, a removable computer 
diskette, a random access memory (RAM), a read-only 
memory (ROM), a rigid magnetic disk and an optical disk. 
Current examples of optical disks include compact disk-read 
only memory (CD-ROM), compact disk-read/write (CD-R/ 
W) and DVD. 
I0128. The circuits as described above may be part of the 
design for an integrated circuit chip. The chip design may be 
created in a graphical computer programming language, and 
stored in a computer storage medium (such as a disk, tape, 
physical hard drive, or virtual hard drive such as in a storage 
access network). If the designer does not fabricate chips or 
the photolithographic masks used to fabricate chips, the 
designer may transmit the resulting design by physical 
means (e.g., by providing a copy of the storage medium 
storing the design) or electronically (e.g., through the Inter 
net) to such entities, directly or indirectly. The stored design 
may then be converted into the appropriate format (e.g., 
GDSII) for the fabrication of photolithographic masks, 
which typically include multiple copies of the chip design in 
question that are to be formed on a wafer. The photolitho 
graphic masks may be utilized to define areas of the wafer 
(and/or the layers thereon) to be etched or otherwise pro 
cessed. 

I0129. The resulting integrated circuit chips may be dis 
tributed by the fabricator in raw wafer form (that is, as a 
single wafer that has multiple unpackaged chips), as a bare 
die, or in a packaged form. In the latter case the chip may be 
mounted in a single chip package (such as a plastic carrier, 
with leads that are affixed to a motherboard or other higher 
level carrier) or in a multichip package (such as a ceramic 
carrier that has either or both surface interconnections or 
buried interconnections). In any case the chip may then be 
integrated with other chips, discrete circuit elements, and/or 
other signal processing devices as part of either (a) an 
intermediate product, such as a motherboard, or (b) an end 
product. The end product may be any product that includes 
integrated circuit chips, ranging from toys and other low-end 
applications to advanced computer products having a dis 
play, a keyboard or other input device, and a central pro 
cessor. Moreover, the end products in which the integrated 
circuit chips may be provided may include game machines, 
game consoles, hand-held computing devices, personal digi 
tal assistants, communication devices, such as wireless 
telephones and the like, laptop computing devices, desktop 
computing devices, server computing devices, or any other 
computing device. 
0.130. The description of the present invention has been 
presented for purposes of illustration and description, and is 
not intended to be exhaustive or limited to the invention in 
the form disclosed. Many modifications and variations will 
be apparent to those of ordinary skill in the art. The 
embodiment was chosen and described in order to best 
explain the principles of the invention, the practical appli 
cation, and to enable others of ordinary skill in the art to 
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understand the invention for various embodiments with 
various modifications as are Suited to the particular use 
contemplated. 
What is claimed is: 
1. A method, in a data processing system having a boot 

processor and a plurality of non-boot processors, for mask 
ing execution of a boot code sequence in the data processing 
System, comprising: 

executing a boot code sequence on a boot processor to 
thereby boot the data processing system to an opera 
tional state; 

executing a first masking code sequence on at least one 
first non-boot processor, of the plurality of non-boot 
processors, to thereby generate at least one of electro 
magnetic or thermal signatures that approximate an 
electromagnetic or thermal signature of the execution 
of the boot code sequence on the boot processor, 
thereby masking the execution of the boot code 
sequence on the boot processor; and 

executing a second masking code sequence on a second 
non-boot processor, of the plurality of non-boot pro 
cessors, to thereby generate at least one of electromag 
netic or thermal signatures that are different from the 
electromagnetic or thermal signature of the execution 
of the boot code sequence on the boot processor, 
thereby making the second non-boot processor appear 
to be the boot processor. 

2. The method of claim 1, further comprising: 
randomly selecting the second masking code sequence 

from a plurality of masking code sequences. 
3. The method of claim 1, further comprising: 
randomly selecting the second non-boot processor from a 

plurality of non-boot processors. 
4. The method of claim 3, wherein the at least one first 

non-boot processor is all non-boot processors of the plurality 
of non-boot processors that were not randomly selected to be 
the second non-boot processor. 

5. The method of claim 3, wherein the second non-boot 
processor is randomly selected from the plurality of non 
boot processors with each power-on reset operation of the 
data processing system. 

6. The method of claim 1, further comprising: 
randomly selecting the boot processor from a plurality of 

processors, wherein the plurality of processors com 
prise the boot processor, the at least one first non-boot 
processor, and the second non-boot processor. 

7. The method of claim 1, wherein the data processing 
system is a heterogeneous multiprocessor system-on-a-chip 
having a first processor the operates according to a first 
instruction set and one or more second processors that 
operate according to a second instruction set different from 
the first instruction set. 

8. A data processing system comprising: 
a boot processor; 
a plurality of non-boot processors; 
a boot code storage device coupled to the boot processor, 

and 
a masking code storage device coupled to the plurality of 

non-boot processors, wherein: 
a boot code sequence is executed on the boot processor to 

thereby boot the data processing system to an opera 
tional state, 

a first masking code sequence, from the masking code 
storage device, is executed on at least one first non-boot 
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processor, of the plurality of non-boot processors, to 
thereby generate at least one of electromagnetic or 
thermal signatures that approximate an electromagnetic 
or thermal signature of the execution of the boot code 
sequence on the boot processor, thereby masking the 
execution of the boot code sequence on the boot 
processor, and 

a second masking code sequence, from the masking code 
storage device, is executed on a second non-boot pro 
cessor, of the plurality of non-boot processors, to 
thereby generate at least one of electromagnetic or 
thermal signatures that are different from the electro 
magnetic or thermal signature of the execution of the 
boot code sequence on the boot processor, thereby 
making the second non-boot processor appear to be the 
boot processor. 

9. The system of claim B, further comprising pervasive 
logic coupled to the boot processor and the plurality of 
non-boot processors, wherein the pervasive logic randomly 
selects the second masking code sequence from a plurality 
of masking code sequences. 

10. The system of claim 8, further comprising pervasive 
logic coupled to the boot processor and the plurality of 
non-boot processors, wherein the pervasive logic randomly 
selecting the second non-boot processor from the plurality of 
non-boot processors. 

11. The system of claim 10, wherein the at least one first 
non-boot processor is all non-boot processors of the plurality 
of non-boot processors that were not randomly selected to be 
the second non-boot processor. 

12. The system of claim 10, wherein the second non-boot 
processor is randomly selected from the plurality of non 
boot processors with each power-on reset operation of the 
data processing system. 

13. The system of claim 8, further comprising pervasive 
logic coupled to the boot processor and the plurality of 
non-boot processors, wherein the pervasive logic randomly 
selects the boot processor from a plurality of processors, 
wherein the plurality of processors comprise the boot pro 
cessor and the plurality of non-boot processors. 

14. The system of claim 8, wherein the data processing 
system is a heterogeneous multiprocessor System-on-a-chip 
having a first processor the operates according to a first 
instruction set and one or more second processors that 
operate according to a second instruction set different from 
the first instruction set. 

15. A computer program product comprising a computer 
useable medium having a computer readable program, 
wherein the computer readable program, when executed on 
a data processing system, causes the data processing system 
tO: 

execute a boot code sequence on a boot processor to 
thereby boot the data processing system to an opera 
tional state; 

execute a first masking code sequence on at least one first 
non-boot processor, of the plurality of non-boot pro 
cessors, to thereby generate at least one of electromag 
netic or thermal signatures that approximate an elec 
tromagnetic or thermal signature of the execution of the 
boot code sequence on the boot processor, thereby 
masking the execution of the boot code sequence on the 
boot processor, and 

execute a second masking code sequence on a second 
non-boot processor, of the plurality of non-boot pro 
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cessors, to thereby generate at least one of electromag 
netic or thermal signatures that are different from the 
electromagnetic or thermal signature of the execution 
of the boot code sequence on the boot processor, 
thereby making the second non-boot processor appear 
to be the boot processor. 

16. The computer program product of claim 15, wherein 
the computer readable program further causes the data 
processing system to: 

randomly select the second masking code sequence from 
a plurality of masking code sequences. 

17. The computer program product of claim 15, wherein 
the computer readable program further causes the data 
processing system to: 

randomly select the second non-boot processor from a 
plurality of non-boot processors. 
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18. The computer program product of claim 17, wherein 
the at least one first non-boot processor is all non-boot 
processors of the plurality of non-boot processors that were 
not randomly selected to be the second non-boot processor. 

19. The computer program product of claim 17, wherein 
the second non-boot processor is randomly selected from the 
plurality of non-boot processors with each power-on reset 
operation of the data processing system. 

20. The computer program product of claim 15, wherein 
the computer readable program further causes the data 
processing system to: 

randomly select the boot processor from a plurality of 
processors, wherein the plurality of processors com 
prise the boot processor, the at least one first non-boot 
processor, and the second non-boot processor. 
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