PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C07D 211/16, C07C 317/44, 311/21, 311/16, C07D 207/14, 211/46, 211/18, 401/12, 211/54, 295/22, 401/04, 405/12, 409/12, 405/14, 309/12, 401/14, A61K 31/16, 31/445, A61P 19/02

(11) International Publication Number: WO 00/69819

(43) International Publication Date: 23 November 2000 (23.11.00)

A1

(21) International Application Number: PCT/US00/06713

(22) International Filing Date:
12 May 2000 (12.05.00)

(30) Priority Data:
09/310,813 12 May 1999 (12.05.99) US

(71) Applicant (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Department, P.O. Box 5110, Chicago, IL 60680-5110 (US).

(72) Inventors and

(74) Agents: WARNER, James, W. et al.; G.D. Searle & Co., Corporate Patent Department, P.O. Box 5110, Chicago, IL 60680-5110 (US).

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HYDROXYAM ACID DERIVATIVES AS MATRIX METALLOPROTEASE INHIBITORS

(a)

(57) Abstract

A sulfonfyl aromatic or heteroaromatic ring hydroxamic acid compound that inter alia inhibits matrix metalloprotease activity is disclosed as are a treatment process that comprises administering a contemplated sulfonfyl aromatic or heteroaromatic ring hydroxamic acid compound in an MMP enzyme-inhibiting effective amount to a host having a condition associated with pathological matrix metalloprotease activity. A contemplated compound corresponds in structure to formula (a) wherein W and the R groups are defined elsewhere.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HYDROXAMIC ACID DERIVATIVES AS MATRIX METALLOPROTEASE INHIBITORS

Description

Technical Field

This invention is directed to proteinase (protease) inhibitors, and more particularly to sulfonyl aryl or heteroaryl hydroxamic acid compounds that, inter alia, inhibit the activity of matrix metalloproteinases, compositions of those inhibitors, intermediates for the syntheses of those compounds, processes for the preparation of the compounds and processes for treating pathological conditions associated with pathological matrix metalloproteinase activity.

Background of the Invention

Connective tissue, extracellular matrix constituents and basement membranes are required components of all mammals. These components are the biological materials that provide rigidity, differentiation, attachments and, in some cases, elasticity to biological systems including human beings and other mammals. Connective tissues components include, for example, collagen, elastin, proteoglycans, fibronectin and laminin. These biochemicals make up, or are components of structures, such as skin, bone, teeth, tendon, cartilage, basement membrane, blood vessels, cornea and vitreous humor.

Under normal conditions, connective tissue turnover and/or repair processes are
controlled and in equilibrium. The loss of this balance for whatever reason leads to a number of disease states. Inhibition of the enzymes responsible for the loss of equilibrium provides a control mechanism for this tissue decomposition and, therefore, a treatment for these diseases.

Degradation of connective tissue or connective tissue components is carried out by the action of proteinase enzymes released from resident tissue cells and/or invading inflammatory or tumor cells. A major class of enzymes involved in this function are the zinc metalloproteinases (metalloproteases, or MMPs).

The metalloprotease enzymes are divided into classes with some members having several different names in common use. Examples are: collagenase I (MMP-1, fibroblast collagenase; EC 3.4.24.3); collagenase II (MMP-8, neutrophil collagenase; EC 3.4.24.34), collagenase III (MMP-13), stromelysin 1 (MMP-3; EC 3.4.24.17), stromelysin 2 (MMP-10; EC 3.4.24.22), proteoglycanase, matrilysin (MMP-7), gelatinase A (MMP-2, 72kDa gelatinase, basement membrane collagenase; EC 3.4.24.24), gelatinase B (MMP-9, 92kDa gelatinase; EC 3.4.24.35), stromelysin 3 (MMP-11), metalloelastase (MMP-12, HME, human macrophage elastase) and membrane MMP (MMP-14). MMP is an abbreviation or acronym representing the term Matrix Metalloprotease with the attached numerals providing differentiation between specific members of the MMP group.

The uncontrolled breakdown of connective tissue by metalloproteases is a feature of many
pathological conditions. Examples include rheumatoid arthritis, osteoarthritis, septic arthritis; corneal, epidermal or gastric ulceration; tumor metastasis, invasion or angiogenesis; periodontal disease; proteinuria; Alzheimer's Disease; coronary thrombosis and bone disease. Defective injury repair processes can also occur. This can produce improper wound healing leading to weak repairs, adhesions and scarring. These latter defects can lead to disfigurement and/or permanent disabilities as with post-surgical adhesions.

Matrix metalloproteases are also involved in the biosynthesis of tumor necrosis factor (TNF) and inhibition of the production or action of TNF and related compounds is an important clinical disease treatment mechanism. TNF-α, for example, is a cytokine that at present is thought to be produced initially as a 20 kD cell-associated molecule. It is released as an active, 17 kD form that can mediate a large number of deleterious effects in vitro and in vivo. For example, TNF can cause and/or contribute to the effects of inflammation, rheumatoid arthritis, autoimmune disease, multiple sclerosis, graft rejection, fibrotic disease, cancer, infectious diseases, malaria, mycobacterial infection, meningitis, fever, psoriasis, cardiovascular/pulmonary effects such as post-ischemic reperfusion injury, congestive heart failure, hemorrhage, coagulation, hyperoxic alveolar injury, radiation damage and acute phase responses like those seen with infections and sepsis and during shock such as
-4-

septic shock and hemodynamic shock. Chronic release of active TNF can cause cachexia and anorexia. TNF can be lethal.

TF-α convertase is a metalloproteinase involved in the formation of active TNF-α. Inhibition of TNF-α convertase inhibits production of active TNF-α. Compounds that inhibit both MMPs activity have been disclosed in WIPO International Publication Nos. WO 94/24140, WO 94/02466 and WO 97/20824. There remains a need for effective MMP and TNF-α convertase inhibiting agents. Compounds that inhibit MMPs such as collagenase, stromelysin and gelatinase have been shown to inhibit the release of TNF (Gearing et al. Nature 376, 555-557 (1994), McGeehan et al., Nature 376, 558-561 (1994)).

MMPs are involved in other biochemical processes in mammals as well. Included is the control of ovulation, post-partum uterine involution, possibly implantation, cleavage of APP (β-Amyloid Precursor Protein) to the amyloid plaque and inactivation of α1-protease inhibitor (α1-PI). Inhibition of these metalloproteases permits the control of fertility and the treatment or prevention of Alzheimers Disease. In addition, increasing and maintaining the levels of an endogenous or administered serine protease inhibitor drug or biochemical such as α1-PI supports the treatment and prevention of diseases such as emphysema, pulmonary diseases, inflammatory diseases and diseases of aging such as loss of skin or organ stretch and resiliency.
Inhibition of selected MMPs can also be desirable in other instances. Treatment of cancer and/or inhibition of metastasis and/or inhibition of angiogenesis are examples of approaches to the treatment of diseases wherein the selective inhibition of stromelysin (MMP-3), gelatinase (MMP-2), gelatinase B (MMP-9) or collagenase III (MMP-13) may be relatively more important than inhibition of collagenase I (MMP-1). A drug that does not inhibit collagenase I can have a superior therapeutic profile. Osteoarthritis, another prevalent disease wherein it is believed that cartilage degradation in inflamed joints is at least partially caused by MMP-13 released from cells such as stimulated chondrocytes, may be best treated by administration of drugs one of whose modes of action is inhibition of MMP-13. See, for example, Mitchell et al., J. Clin. Invest., 97:761-768 (1996) and Reboul et al., J. Clin. Invest., 97:2011-2019 (1996).

Inhibitors of metalloproteases are known. Examples include natural biochemicals such as tissue inhibitor of metalloproteinase (TIMP), α2-macroglobulin and their analogs or derivatives. These are high molecular weight protein molecules that form inactive complexes with metalloproteases. A number of smaller peptide-like compounds that inhibit metalloproteases have been described. Mercaptoamide peptidyl derivatives have shown ACE inhibition in vitro and in vivo. Angiotensin converting enzyme (ACE) aids in the production of angiotensin II, a potent pressor substance in
mammals and inhibition of this enzyme leads to the lowering of blood pressure.

Thiol group-containing amide or peptidyl amide-based metalloprotease (MMP) inhibitors are known as is shown in, for example, WO95/12389, WO96/11209 and U.S. 4,595,700. Hydroxamate group-containing MMP inhibitors are disclosed in a number of published patent applications such as WO 95/29892, WO 97/24117, WO 97/49679 and EP 0 780 386 that disclose carbon back-boned compounds, and WO 90/05719, WO 93/20047, WO 95/09841 and WO 96/06074 that disclose hydroxamates that have a peptidyl back-bones or peptidomimetic back-bones, as does the article by Schwartz et al., Progr. Med. Chem., 29:271-334 (1992) and those of Rasmussen et al., Pharmacol. Ther., 75(1): 69-75 (1997) and Denis et al., Invest. New Drugs, 15(3): 175-185 (1997).

One possible problem associated with known MMP inhibitors is that such compounds often exhibit the same or similar inhibitory effects against each of the MMP enzymes. For example, the peptidomimetic hydroxamate known as batimastat is reported to exhibit IC$_{50}$ values of about 1 to about 20 nanomolar (nM) against each of MMP-1, MMP-2, MMP-3, MMP-7, and MMP-9. Marimastat, another peptidomimetic hydroxamate was reported to be another broad-spectrum MMP inhibitor with an enzyme inhibitory spectrum very similar to batimastat, except that marimastat exhibited an IC$_{50}$ value against MMP-3 of 230 nM. Rasmussen et al., Pharmacol. Ther., 75(1): 69-75 (1997).

Meta analysis of data from Phase I/II studies using marimastat in patients with advanced,
rapidly progressive, treatment-refractory solid tumor cancers (colorectal, pancreatic, ovarian, prostate) indicated a dose-related reduction in the rise of cancer-specific antigens used as surrogate markers for biological activity. Although marimastat exhibited some measure of efficacy via these markers, toxic side effects were noted. The most common drug-related toxicity of marimastat in those clinical trials was musculoskeletal pain and stiffness, often commencing in the small joints in the hands, spreading to the arms and shoulder. A short dosing holiday of 1-3 weeks followed by dosage reduction permits treatment to continue. Rasmussen et al., Pharmacol. Ther., 75(1): 69-75 (1997). It is thought that the lack of specificity of inhibitory effect among the MMPs may be the cause of that effect.

In view of the importance of hydroxamate MMP inhibitor compounds in the treatment of several diseases and the lack of enzyme specificity exhibited by two of the more potent drugs in clinical trials, it would be a great benefit if hydroxamates of greater enzyme specificity could be found. This would be particularly the case if the hydroxamate inhibitors exhibited strong inhibitory activity against one or more of MMP-2, MMP-9 or MMP-13 that are associated with several pathological conditions, while at the same time exhibiting limited inhibition of MMP-1, an enzyme that is relatively ubiquitous and as yet not associated with any pathological condition. The disclosure that follows describes one family of
hydroxamate MMP inhibitors that exhibit those desirable activities

Brief Summary of the Invention

The present invention is directed to a family of molecules that among other properties inhibit matrix metalloprotease (MMP) activity and particularly inhibit the activity of one or more of MMP-2, MMP-9, or MMP-13, while generally exhibiting little activity against MMP-1. The present invention is also directed to intermediates useful in the synthesis of inhibitors, processes for preparing a contemplated compound and for treating a mammal having a condition associated with pathological matrix metalloprotease activity.

Briefly, one embodiment of the present invention is directed to a sulfonyl aryl or heteroaryl hydroxamic acid compound, or a pharmaceutically acceptable salt of such a compound that can act as a matrix metalloprotease enzyme inhibitor, a precursor to such a compound or a pro-drug form of such a compound. A contemplated compound corresponds in structure to Formula C.

\[\text{Formula C} \]

wherein

the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;
R¹ is (i) a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical bonded directly to the depicted SO₂-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, said R¹ defining a three-dimensional volume, when rotated about an axis drawn through the SO₂-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO₂-bonded 1-position and the center of 3,4-bond of a 5-membered ring radical, whose widest dimension in a direction transverse to the axis of rotation is about that of one furanyl ring to about that of two phenyl rings. Alternatively, R¹ is an -NR⁷R⁸ group in which R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydrocarbyl, aryl, substituted aryl, arylhydrocarbyl, and substituted arylhydrocarbyl. More preferably, R⁷ and R⁸ are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, R₆oxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, and a heterocyclo substituent, each of which substituent groups is optionally substituted with an -A-R-E-Y substituent; in such an -A-R-E-Y substituent, A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR⁷⁻;
(4) -CO-N(R⁷) or -N(R⁷)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;

(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k)- or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or

(18) A is absent and R is directly bonded
to R^7 or R^8, or both R^7 and R^8;
the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl,
cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl,
heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl,
heterocycloalkoxyalkyl, aryloxyalkyl,
heteroaryloxyalkyl, arylthioalkyl,
heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl,
heteroaryl, cycloalkyl or heterocycloalkyl
substituent is (i) unsubstituted or (ii) substituted
with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, amino, alkoxyalkylalkyl,
alkoxy, C_1-C_2-alkylenedioxy, hydroxycarbonylalkyl,
hydroxycarbonylalkylamino, nitro, hydroxy,
hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the group E is selected from the group consisting of

5
(1) \(-\text{COR}^g\) or \(-\text{R}^g\text{CO}^-\);
(2) \(-\text{CON}^\text{R}^k\) or \(-\text{(R}^k\text{NCO}^-\);
(3) \(-\text{CO}^-\);
(4) \(-\text{SO}_2\text{R}^g\) or \(-\text{R}^g\text{SO}_2^-\);
(5) \(-\text{SO}_2^-\);

10
(6) \(-\text{N}^\text{R}^k\text{-SO}_2^-\) or \(-\text{SO}_2^-\text{N}^\text{R}^k\) ; or
(7) E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, \(^g\text{R}^{\text{oxy}}\text{alkyl}, \text{perfluoroalkoxy}, \text{perfluoroalkylthio}, \text{trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; or
R7 and R8 taken together with the nitrogen atom to which they are bonded form a group -G-A-R-E-Y wherein

G is a N-heterocyclo group;

the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NRkk-;
(4) -CO-N(Rk) or -N(Rk)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C=C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(Rk)- or -N(Rk)-CS-;
(13) -CH\textsubscript{2}--;
(14) -O-CH\textsubscript{2}-- or -CH\textsubscript{2}-O-;
(15) -S-CH\textsubscript{2}-- or -CH\textsubscript{2}-S-;
(16) -SO-- and
(17) -SO\textsubscript{2}-; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;

the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylstioalkyl, cycloalkylthioalkyl, and a
heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C1-C2-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the moiety E is selected from the group consisting of

(1) -COR9- or -R9CO-;
(2) -CON(Rk)- or -(Rk)NCO-;
(3) -CO-;
(4) -SO2-R9- or -R9-SO2-;
(5) -SO2-;
(6) -N(Rk)-SO2- or -SO2-N(Rk)-; or

(7) E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, alkoxy, heteroaryloxy, heteroaralkyl, R8oxyalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two
radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group.

Alternatively, and still more preferably, \(R^7 \) and \(R^8 \) taken together with the nitrogen atom to which they are bonded; i.e., a \(-NR^7R^8\) group, form a group \(-G-A-R-E-Y\) wherein

\(G \) is a N-heterocyclo group;

the substituent \(A \) is selected from the group consisting of

\[
\begin{align*}
(1) & \quad -O-; \\
(2) & \quad -S-; \\
(3) & \quad -NR^k-; \\
(4) & \quad -CO-N(R^k) \text{ or } -N(R^k)-CO-; \\
(5) & \quad -CO-O- \text{ or } -O-CO-; \\
(6) & \quad -O-CO-O-; \\
(7) & \quad -HC=CH-; \\
(8) & \quad -NH-CO-NH-; \\
(9) & \quad -C≡C-; \\
(10) & \quad -N≡N-; \\
(11) & \quad -NH-NH-; \\
(12) & \quad -CS-N(R^k) - \text{ or } -N(R^k)-CS-; \\
(13) & \quad -CH_2-; \\
(14) & \quad -O-CH_2- \text{ or } -CH_2-O-; \\
(15) & \quad -S-CH_2- \text{ or } -CH_2-S-; \\
(16) & \quad -SO-; \text{ and} \\
(17) & \quad -SO_2-; \text{ or}
\end{align*}
\]
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;
the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C₁-C₂-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and an alkoxy carbonyl group;
the moiety E is selected from the group consisting of

1. \(-\text{COR}^g\) or \(-\text{R}^g\text{CO}-\);
2. \(-\text{CON}(\text{R}^k)\) or \(-(\text{R}^k)\text{NCO}-\);
3. \(-\text{CO}-\);
4. \(-\text{SO}_2-\text{R}^g\) or \(-\text{R}^g-\text{SO}_2-\);
5. \(-\text{SO}_2-\);
6. \(-\text{N}(\text{R}^k)\text{-SO}_2\) or \(-\text{SO}_2-\text{N}(\text{R}^k)\); or
7. E is absent and R is bonded directly to Y; and
the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy,
haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, R³oxyalkyl, perfluoroalkoxy, perfluoroalkylthio,

trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxycarbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group.

Substituents R⁵ and R⁶ are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a R⁶R⁶aminoalkyl substituent, thiol (-SH), alkylthio, arylthio, cycloalkylthio, cycloalkkxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a R⁶R⁶aminoalkyloxy substituent;

or R⁵ and R⁶ together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members.

A R²⁰ group is (a) -O-R²¹, where R²¹ is selected from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl group and a pharmaceutically acceptable cation, (b) -NR¹³-O-R²² wherein R²² is a
selectively removable protecting group such as a 2-tetrahydropyranyl, benzyl, p-methoxybenzyl, C₁-C₆-alkoxycarbonyl, trisubstituted silyl group or o-nitrophenyl group, peptide synthesis resin and the like, wherein the trisubstituted silyl group is substituted with C₁-C₆-alkyl, aryl, or ar-C₁-C₆-alkyl or a mixture thereof, and R¹³ is a hydrido, C₁-C₆-alkyl or benzyl group, (c) -NR¹³-O-R¹⁴, where R¹³ is as before and R¹⁴ is hydrido, a pharmaceutically acceptable cation or C(V)R¹⁵ where V is O (oxo) or S (thioxo) and R¹⁵ is selected from the group consisting of an C₁-C₆-alkyl, aryl, C₁-C₆-alkoxy, heteroaryl-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, aryloxy, ar-C₁-C₆-alkoxy, ar-C₁-C₆-alkyl, heteroaryl and amino C₁-C₆-alkyl group wherein the amino C₁-C₆-alkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two substituents independently selected from the group consisting of an C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, ar-C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxycarbonyl, and C₁-C₆-alkanoyl radical, or (iii) wherein the amino C₁-C₆-alkyl nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring, or (d) -NR²³R²⁴, where R²³ and R²⁴ are independently selected from the group consisting of a hydrido, C₁-C₆-alkyl, amino C₁-C₆-alkyl, hydroxy C₁-C₆-alkyl, aryl, and an ar-C₁-C₆-alkyl group, or R²³ and R²⁴ together with the depicted nitrogen atom form a 5- to 8-membered ring
containing zero or one additional heteroatom that is oxygen, nitrogen or sulfur.

In the formula above, R\(^{a}\) is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, ary1, alkanoyl, aroy1, arylalkycarbony1, R\(^{b}\)R\(^{c}\)aminoalkanoyl, haloalkanoyl, R\(^{b}\)R\(^{c}\)aminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

R\(^{b}\) and R\(^{c}\) are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroy1, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, arloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylmthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroarylsulfonyl, carboxyalkyl,

alkoxycarbonylalkyl, aminocarbony1, alkyliminocarbony1, aryliminocarbony1, heterocycloiminocarbony1, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbony1, arloxyalkyl, aminoalkylcarbony1, hydroxyalkyl, aminoalkyl, aminoalkylsulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two R\(^{d}\) radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three
groups independently selected from \(R^d \) substituents or
a heteroaryl group optionally substituted with one,
two or three groups independently selected from \(R^f \)
substituents;

\(R^d \) and \(R^e \) are independently selected from
the group consisting of a hydrido, alkyl, alkenyl,
alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylalkycarbonyl, alkoxy carbonyl or
arylalkyloxycarbonyl group;

\(R^f \) is selected from the group consisting of a
nitro, hydroxy, alkyl, halogen (halo; F, Cl, Br, I),
aryl, alkoxy, cyano, and \(R^dR^e \) amino group;

\(R^g \) is selected from the group consisting of a
hydrido, aryl, heteroaryl, heterocyclo, aroyl,
alcanoyl, heteroaroyl, halogen (F, Cl, Br, I), cyano,
aldehyde (CHO, formyl), hydroxy, amino, alkyl,
alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy,
aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy,
alkoxyaryl, alkoxyheteroaryl, \(R^{hR^i} \) amino,
alkoxyalkyl, alkylenedioxy, aryloxyalkyl,
perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio,
arylalkycarbonyl, alkoxy carbonyloxy,
arlyoxycarbonyl, arylalkyloxycarbonyl,
arlyalkyloxycarboxy lamino, aryloxycarbonyloxy,
carboxy, \(R^{hR^i} \) aminocarbonyloxy, \(R^{hR^i} \) aminocarbonyl,
\(R^{hR^i} \) amnoalkanoyl, hydroxyaminocarbonyl, \(R^{hR^i}\)
aminosulfonyle, \(R^{hR^i} \) aminocarbonyl(R\(^h\)) amino,
trifluoromethylsulfonyle(R\(^h\)) amino, heteroarylsulfonyle-
(R\(^h\)) amino, arylsulfonyle(R\(^h\)) amino, arylsulfonyle(R\(^h\))-
aminocarbonyl, alkylsulfonyle(R\(^h\)) amino, arylcarbonyl-
(Rh)aminosulfonyl, and an alkylsulfonyl(Rh)-aminocarbonyl substituent;

Rh is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkylxoycarbonyl, arylalkylxoycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups is optionally substituted by one or two groups independently selected from Rj substituents as are the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups;

Ri is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl, alkylxoycarbonyl, arylalkylxoycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups are optionally substituted by one or two Rj substituents;

Rj is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkylxoycarbonyl, arylalkylxoycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl
groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl and an alkyloxy carbonyl group; and

\[R^k \] is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl, alkyloxycarbonyl, \(R^C R^d \) amino carbonyl, \(R^C R^d \) aminosulfonyl, \(R^C R^d \) aminoalkanoyl and \(R^C R^d \) aminoalkysulfonyl.

In some preferred embodiments, \(R^5 \) and \(R^6 \) are independently selected from the group consisting of hydrido, hydrocarbyl, preferably \(C_1-C_4 \) hydrocarbyl, hydroxylhydrocarbyl, hydroxyl, amino, dihydrocarbylamino, heterocyclo,

heterocyclohydrocarbyl, heterocyclooxy, and heterocyclothio.

In preferred embodiments, the 5- or 6-membered aromatic or heteroaromatic ring \(W \) is a 1,2-phenylene, 2,3-pyridinylene, 3,4-pyridinylene, 4,5-pyridinylene, 2,3-pyrazinylene, 4,5-pyrimidinylene, or 5,6-pyrimidinylene group.

In some preferred embodiments, \(R^{20} \) is \(-NR^{13}-O-R^{14}\), whereas in other preferred embodiments, \(R^{20} \) is \(-NR^{13}-O-R^{22}\). In particularly preferred embodiments, \(R^{20} \) is \(-NHOH \) so that a compound of Formula C corresponds in structure to Formula C.1
wherein W, R^1, R^5, R^6, R^{13} and R^{14} are as defined before.

In one preferred embodiment, a contemplated compound corresponds in structure to Formula C2,

![Chemical Structure](attachment:structure.png)

wherein W, R^5, R^6 and R^{14} are as defined above and Ph is a phenyl group substituted at the 4-position with substituent R^4. A R^4 substituent can be a single-ringed cyclohydrocarbyl, heterocyclo, aryl such as phenyl or heteroaryl group or another substituent having a chain length of 3 to about 14 carbon atoms such as a hydrocarbyl or hydrocarbyloxy group [e.g., C_3-C_{14} hydrocarbyl or O-C_2-C_{14} hydrocarbyl], a phenoxy group [-OC_6H_5], a thiophenoxy group [phenylsulfanyl; -SC_6H_5], an anilino group [-N=C_6H_5], a phenylazo group [-N_2C_6H_5], a phenylureido group [aniline carbonylamino; -NHC(O)NH-C_6H_5], a benzamido group [-NHC(O)C_6H_5], a nicotinamido group [3-NHC(O)C_5H_4N], an isonicotinamido group [4-NHC(O)C_5H_4N], or a picolinamido group [2-NHC(O)C_5H_4N]. A R^4 substituent is further defined hereinafter.

In another aspect of the invention, a contemplated compound corresponds in structure to Formula VI-1.
wherein each of \(R^5, R^6, R^7, R^8 \) and \(R^{20} \) is as defined before and each of A, B, C and D is carbon, nitrogen, sulfur or oxygen and is present or absent so that the depicted ring has 5- or 6-members.

When \(R^{20} \) is NH-OH, compound of one of the above formulas such as Formula C or Cl is a hydroxamate that is a selective inhibitor of MMP-2 over MMP-1 and usually also over MMP-13. That is, a hydroxamate compound of one of the formulas such as Formula C or Cl exhibits greater activity in inhibiting MMP-2 than in inhibiting MMP-1 and usually also MMP-13. When \(R^{20} \) is other than NH-OH, a compound of Formula VI-1 can be a precursor, pro-drug or active carboxylate as is the compound of Example 13.

A particularly preferred embodiment of this aspect is a compound that corresponds in structure to Formulas VIA or VIA-1

wherein \(R^{20}, R^4, R^5 \) and \(R^6 \) are as defined before and ring structure \(W^2 \) including the depicted nitrogen atom is a heterocyclic ring that contains 5- or 6-members, and \(R^4 \) is bonded at the 4-position
relative to that depicted nitrogen atom when \(W^2 \) is a 6-membered ring and at the 3- or 4-position relative to that depicted nitrogen when \(W^2 \) is a 5-membered ring.

Another particularly preferred embodiment of this aspect is a compound that corresponds in structure to Formulas VIB, VIB-1, VIB-2 or VIB-3

\[
\begin{align*}
\text{VIB} & : \quad \text{VIB-1} \\
\text{VIB-2} & : \quad \text{VIB-3}
\end{align*}
\]

wherein \(R^{20}, R^5, R^6, R^7, \) and \(R^8 \) are as defined before.

A particularly preferred group of compounds of this class are the compounds whose structure corresponds to Formula D

\[
\begin{align*}
\text{D}
\end{align*}
\]
wherein the substituent groups or moieties A, R, E, Y, R^{20}, R^5 and R^6 are as before described.

A process for treating a host mammal having a condition associated with pathological matrix metalloprotease activity is also contemplated. That process comprises administering to a mammalian host having such a condition a compound corresponding in structure to Formula C, such as a compound corresponding in structure to Formula C1, below, or a salt of such a compound, that selectively inhibits one or more MMPs, while exhibiting less activity against at least MMP-1 in an MMP enzyme-inhibiting effective amount. A contemplated compound also does not substantially inhibit the production of TNF.

\[
\begin{align*}
W & \quad \text{Cl} \\
R^{14} & \quad R^{13} \\
R^5 & \quad R^6
\end{align*}
\]

wherein W, R^1, R^5, R^6, R^{13} and R^{14} are as defined before.

Among the several benefits and advantages of the present invention are the provision of compounds and compositions that are effective for the inhibition of metalloproteinases implicated in diseases and disorders involving uncontrolled breakdown of connective tissue.

More particularly, a benefit of this invention is the provision of a compound and composition effective for inhibiting metalloproteinases, particularly MMP-13 and/or MMP-2, associated with pathological conditions such as, for
example, rheumatoid arthritis, osteoarthritis, septic arthritis, corneal, epidermal or gastric ulceration, tumor metastasis, invasion or angiogenesis, periodontal disease, proteinuria, Alzheimer's Disease, coronary thrombosis, plaque formation and bone disease.

An advantage of the invention is the provision of a method for preparing such compounds and compositions. Another benefit is the provision of a method for treating a pathological condition associated with abnormal matrix metalloproteinase activity.

Another advantage of the invention is the provision of compounds, compositions and methods effective for treating such pathological conditions by selective inhibition of a metalloproteinase such as MMP-13 and MMP-2 associated with such conditions with minimal side effects resulting from inhibition of other proteinases such as MMP-1, whose activity is necessary or desirable for normal body function.

Still further benefits and advantages of the invention will be apparent to the skilled worker from the disclosure that follows.

25 Detailed Description of Preferred Embodiments

In accordance with the present invention, it has been found that certain sulfonyl aryl or heteroaryl hydroxamic acids (hydroxamates) are effective, inter alia, for inhibition of matrix metalloproteinases ("MMPs") believed to be associated with uncontrolled or otherwise pathological breakdown of connective tissue. In particular, it has been found that these certain sulfonyl aryl or heteroaryl
hydroxamic acid compounds are effective for inhibition of collagenase III (MMP-13) and also gelatinase A (MMP-2), which can be particularly destructive to tissue if present or generated in abnormal quantities or concentrations, and thus exhibit a pathological activity.

Moreover, it has been discovered that many of these aromatic sulfonyl alpha-cycloamino hydroxamic acids are selective in the inhibition of MMPs associated with diseased conditions without excessive inhibition of other collagenases essential to normal bodily function such as tissue turnover and repair. More particularly, it has been found that particularly preferred sulfonyl aryl or heteroaryl hydroxamic acid compounds or salts of such compounds are particularly active in inhibiting of MMP-13 and/or MMP-2, while having a limited or minimal effect on MMP-1, and some compounds such as that of Example 8, also exhibit minimal inhibition of MMP-7.

This point is discussed in detail hereinafter and is illustrated in the Inhibition Table hereinafter.

One embodiment of the present invention is directed to a sulfonyl aryl or heteroaryl hydroxamic acid compound, a pharmaceutically acceptable salt of such a compound that can act as a matrix metalloprotease enzyme inhibitor, a precursor to such a compound or a pro-drug form of such a compound. A contemplated compound corresponds in structure to Formula C.
wherein

the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;

\[R^1 \]

is (i) a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical bonded directly to the depicted SO2-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, the R^1 group defining a three-dimensional volume, when rotated about an axis drawn through the SO2-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO2-bonded 1-position and the center of 3,4-bond of a 5-membered ring radical, whose widest dimension in a direction transverse to the axis of rotation is about that of one furanyl ring to about that of two phenyl rings. Alternatively, a R^1 group is (ii) an \(-NR^7R^8\) group in which R^7 and R^8 are independently selected from the group consisting of hydrido, hydrocarbyl, aryl, substituted aryl, aryhydrocarbyl, and substituted aryhydrocarbyl. More preferably, a R^1 group is an \(-NR^7R^8\) group in which R^7 and R^8 are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, R^3oxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, and a
heterocyclo substituent, each of which substituent

groups is optionally substituted with an -A-R-E-Y
substituent;

in such an -A-R-E-Y substituent, A is

selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k) - or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded
to R^7 or R^8, or both R^7 and R^8;

the moiety R is selected from the group

consisting of alkyl, alkoxyalkyl, aryl, heteroaryl,
cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl,
heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl,
heterocycloalkoxyalkyl, aryloxyalkyl,
heteroaryloxyalkyl, arythioalkyl,
heteroaryltioalkyl, cycloalkylthioalkyl, and a
heterocycloalkylthioalkyl group wherein the aryl,
-30-
heteroaryl, cycloalkyl or heterocycloalkyl
substituent is (i) unsubstituted or (ii) substituted
with one or two radicals selected from the group
consisting of a halo, alkyl, perfluoroalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, amino, alkoxy carbonylalkyl,
alkoxy, C₁-C₂-alkylene-dioxy, hydroxycarbonylalkyl,
hydroxycarbonylalkylamino, nitro, hydroxy,
hydroxymethyl, alkanoylamino, and a alkoxy carbonyl
10 group;
the group E is selected from the group
consisting of
(1) -COR⁻ or -R⁻CO⁻;
(2) -CON(R⁻) or -(R⁻)NCO⁻;
15 (3) -CO⁻;
(4) -SO₂(R⁻) or -(R⁻)SO₂⁻;
(5) -SO₂⁻;
(6) -N(R⁻)SO₂⁻ or -SO₂⁻N(R⁻); or
(7) E is absent and R is bonded directly
to Y; and
the moiety Y is absent or is selected from
the group consisting of a hydrido, alkyl, alkoxy,
haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl,
hydroxy, nitrile, nitro, aryloxy, aralkoxy,
heteroaryloxy, heteroaralkyl, R⁻oxyalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, alkenyl, heterocycloalkyl,
cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a
aminoalkyl group, wherein the aryl, heteroaryl,
aralkyl or heterocycloalkyl group is (i)
unsubstituted or (ii) substituted with one or two
radicals independently selected from the group
consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; or

R^7 and R^8 taken together with the nitrogen atom to which they are bonded (-NR^7R^8) form a group wherein

-G-A-R-E-Y wherein

G is a N-heterocyclo group;

the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k) or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or

(18) A is absent and R is directly bonded to the N-heterocyclo group, G.
The moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C₁–C₂-alkylene-dioxo, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and an alkoxy carbonyl group.

The moiety E is selected from the group consisting of

1. \(-\text{COR}^\text{R}^\text{G}\) or \(-\text{R}^\text{G}\text{CO}^{-}\);
2. \(-\text{CON}(\text{R}^\text{K})^{-}\) or \(-(\text{R}^\text{K})\text{NCO}^{-}\);
3. \(-\text{CO}^{-}\);
4. \(-\text{SO}_2(\text{R}^\text{G})^{-}\) or \(-(\text{R}^\text{G})\text{SO}_2^{-}\);
5. \(-\text{SO}_2^{-}\);
6. \(-\text{N}(\text{R}^\text{K})\text{-SO}_2^{-}\) or \(-\text{SO}_2\text{-N}(\text{R}^\text{K})^{-}\); or
7. E is absent and \(R\) is bonded directly to \(Y\); and

the moiety \(Y\) is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, \(R^\text{a}\)oxyalkyl,
perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group;

R^5 and R^6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, and a R^bR^c aminoalkyl substituent; or

R^5 and R^6 together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members.

In an above formula, R^a is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, R^bR^c aminoalkanoyl, haloalkanoyl, R^bR^c aminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

R^b and R^c are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl,
perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroarylsulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkylaminocarbonyl, heterocycloiminocarbonyl, arythioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylalkyl, halo alkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxy alkyl, alkoxy carbonyl, aryloxycarbonyl, aminoalkylcarbonyl, hydroxy alkyl, amino alkyl, aminoalkylsulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two R^d radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from R^d substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from R^e substituents;

R^d and R^e are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, alkoxy carbonyl or aryloxy carbonyl group;
R^f is selected from the group consisting of a nitro, hydroxy, alkyl, halogen (halo; F, Cl, Br, I), aryl, alkoxy, cyano, and R^dR^e amino;

R^g is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen (F, Cl, Br, I), cyano, aldehydo (CHO, formyl), hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxyheteroaryl, R^hR^i-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkoxy carbonyl, alkoxy carbonyloxy, aryloxy carbonyl, aryloxyloxy carbonyl, aryloxyloxy carbonylamino, aryloxy carbonyloxy, carboxy, R^hR^i-aminocarbonyloxy, R^hR^i-aminocarbonyl, R^hR^i-amino alkanoyl, hydroxyaminocarbonyl, R^hR^i-aminosulfonyle, R^hR^i-aminocarbonyl (R^h) amino, trifluoromethylsulfonyle (R^h) amino, heteroarylsulfonyle (R^h) amino, arylsulfonyl (R^h) amino, arylsulfonyle (R^h)-aminocarbonyl, alkylsulfonyle (R^h) amino, aryl carbonyl- (R^h) aminosulfonyle, and an alkylsulfonyle (R^h)-aminocarbonyl substituent;

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkoxy carbonyl, aryl alkoxy carbonyl, carboxy alkyl, halo alkyl, alkanoyl, aroyl, substituted or unsubstituted amino alkanoyl, halo alkanoyl and a hydroxy alkyl group, each of which groups is optionally substituted by one or two groups.
independently selected from \(R^j \) substituents as are the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups;

\(R^i \) is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl, alkylloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups are optionally substituted by one or two \(R^j \) substituents;

\(R^j \) is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkylloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl and an alkylloxycarbonyl group; and

\(R^k \) is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl, alkylloxycarbonyl, \(R^cR^d \) amino carbonyl, \(R^cR^d \) aminosulfonyl, \(R^cR^d \) aminoalkanoyl and \(R^cR^d \) aminoalkysulfonyl.

\(R^{20} \) is (a) \(-O-R^{21}\), where \(R^{21} \) is selected from the group consisting of a hydrido, \(C_1-C_6 \)-alkyl, aryl,
ar-C₁-C₆-alkyl group and a pharmaceutically
acceptable cation, (b) -NR₁³-O-R²² wherein R²² is a
selectively removable protecting group such as a 2-
tetrahydropyranyl, benzyl, p-methoxybenzyl (MOZ), C₁-
C₆-alkoxycarbonyl, trisubstituted silyl group or o-
nitrophenyl group, peptide synthesis resin and the
like, wherein the trisubstituted silyl group is
substituted with C₁-C₆-alkyl, aryl, or ar-C₁-C₆-alkyl
or a mixture thereof, and R¹³ is a hydrido, C₁-C₆-
alkyl or benzyl group, (c) -NR₁³-O-R¹⁴, where R¹³ is
as before and R¹⁴ is hydrido, a pharmaceutically
acceptable cation or C(V)R¹⁵ where V is O (oxo) or S
(thioxo) and R¹⁵ is selected from the group
consisting of an C₁-C₆-alkyl, aryl, C₁-C₆-alkoxy,
heteroaryl-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl,
aryloxy, ar-C₁-C₆-alkoxy, ar-C₁-C₆-alkyl, heteroaryl
and amino C₁-C₆-alkyl group wherein the amino C₁-C₆-
alkyl nitrogen is (i) unsubstituted or (ii)
substituted with one or two substituents
independently selected from the group consisting of
an C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, C₃-C₈-
cycloalkyl-C₁-C₆-alkyl, ar-C₁-C₆-alkoxycarbonyl, C₁-
C₆-alkoxycarbonyl, and C₁-C₆-alkanoyl radical, or
(iii) wherein the amino C₁-C₆-alkyl nitrogen and two
substituents attached thereto form a 5- to 8-membered
heterocyclo or heteroaryl ring, or (d) -NR²³R²⁴,
where R²³ and R²⁴ are independently selected from the
group consisting of a hydrido, C₁-C₆-alkyl, amino C₁-
C₆-alkyl, hydroxy C₁-C₆-alkyl, aryl, and an ar-C₁-C₆-
alkyl group, or R23 and R24 together with the depicted nitrogen atom form a 5- to 8-membered ring containing zero or one additional heteroatom that is oxygen, nitrogen or sulfur.

A compound of Formula C embraces a useful precursor compound, a pro-drug form of a hydroxamate and the hydroxamate itself, as well as amide compounds that can be used as intermediates and also as MMP inhibitor compounds. Thus, for example, where R20 is -O-R21, in which R21 is selected from the group consisting of a hydrido, C\textsubscript{1}-C\textsubscript{6}-alkyl, aryl, ar-C\textsubscript{1}-C\textsubscript{6}-alkyl group and a pharmaceutically acceptable cation, a precursor carboxylic acid or ester is defined that can be readily transformed into a hydroxamic acid, as is illustrated in several Examples hereinafter. Such a carboxyl compound that is a precursor to a hydroxamate can also have activity as an inhibitor of MMP enzymes as is seen from the Inhibition Table of those Examples.

Another useful precursor compound is defined when R20 is -NR13-O-R22, wherein R22 is a selectively removable protecting group and R13 is a hydrido or benzyl group, preferably a hydrido group. A selectively removable protecting group is exemplified as a 2-tetrahydropyranyl, benzyl, p-methoxybenzyloxycarbonyl (MOZ), benzyloxycarbonyl (BOC), C\textsubscript{1}-C\textsubscript{6}-alkoxycarbonyl, C\textsubscript{1}-C\textsubscript{6}-alkoxy-CH\textsubscript{2}-, C\textsubscript{1}-C\textsubscript{6}-alkoxy-C\textsubscript{1}-C\textsubscript{6}-alkoxy-CH\textsubscript{2}-, trisubstituted silyl group, an o-nitrophenyl group, peptide synthesis resin and the like. A trisubstituted silyl group is
a silyl group substituted with C₁-C₆-alkyl, aryl, or ar-C₁-C₆-alkyl substituent groups or a mixture thereof such as a trimethyisilyl, triethyisilyl, dimethyisopropylsilyl, triphenylsilyl, t-butyldiphenylsilyl, diphenylmethyisilyl, a tribenzylsilyl group, and the like. Exemplary trisubstituted silyl protecting groups and their uses are discussed at several places in Greene et al., Protective Groups In Organic Synthesis, 2nd ed., John Wiley & Sons, Inc., New York (1991).

A contemplated peptide synthesis resin is solid phase support also known as a so-called Merrifield's Peptide Resin that is adapted for synthesis and selective release of hydroxamic acid derivatives as is commercially available from Sigma Chemical Co., St. Louis, MO. An exemplary peptide synthesis resin so adapted and its use in the synthesis of hydroxamic acid derivatives is discussed in Floyd et al., Tetrahedron Let., 37(44):8048-8048(1996).

A 2-tetrahydropyranyl (THP) protecting group is a particularly preferred selectively removable protecting group and is often used when R₁₃¹³ is a hydrido group. A contemplated THP-protected hydroxamate compound of Formula A can be prepared by reacting the carboxylic acid precursor compound of Formula A [where R²⁰²⁰ is -O-R²¹²¹ and R²¹²¹ is a hydrido group] in water with O-(tetrahydro-2H-pyran-2-yl)hydroxylamine in the presence of N-methylmorpholine, N-hydroxybenzotriazole hydrate and a water-soluble carbodiimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride. The resulting THP-protected hydroxamate corresponds in structure to Formula C3, below, where W, R¹, R⁵ and R⁶ are as defined previously and more fully hereinafter. The THP protecting group is readily removable in an aqueous acid solution such as an aqueous mixture of p-toluenesulfonic acid or HCl and acetonitrile or methanol.

Another aspect of the invention contemplates a compound that corresponds in structure to Formula VI-1, below,

wherein each of R⁵, R⁶, R⁷, R⁸ and R²⁰ is as defined before, and in greater detail hereinafter, and each of A, B, C and D is carbon, nitrogen, sulfur or oxygen and is present or absent so that the depicted ring has 5- or 6-members. A hydroxamate compound of Formula VI-1 is a selective inhibitor of MMP-2 over both of MMP-1 and MMP-13. That is, a hydroxamate compound of Formula VI exhibits greater
activity in inhibiting MMP-2 than in inhibiting either MMP-1 and usually also MMP-13.

A particularly preferred embodiment of this aspect of the invention is a compound that corresponds in structure to Formulas VIA or VIA-1

wherein R^2, R^5, R^6 and R^4 are as defined before, ring structure W^2 including the depicted nitrogen atom is a heterocyclic ring that contains 5- or 6-members, and R^4 is bonded at the 4-position relative to that depicted nitrogen atom when W^2 is a 6-membered ring and at the 3- or 4-position relative to that depicted nitrogen when W^2 is a 5-membered ring. The ring structure W^2 is preferably a N-piperidinyl group that is itself preferably substituted as is discussed hereinafter.

Another particularly preferred embodiment of this aspect is a compound that corresponds in structure to Formula VIB
wherein R20, R5, R6, R7, and R8 are as defined before.

A further embodiment of the present invention is directed to a sulfonyl aryl or heteroaryl hydroxamic acid compound that can act as a matrix metalloprotease enzyme inhibitor. That compound corresponds in structure to Formula C4

\[
\begin{array}{c}
\text{HONH} \\
\text{W} \\
\text{SO}_2 \\
\text{R}^1 \\
\text{R}^5 \\
\text{R}^6
\end{array}
\]

wherein

the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;

R1 is a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical bonded directly to the depicted SO\textsubscript{2}-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, said R1 defining a three-dimensional volume, when rotated about an axis drawn through the SO\textsubscript{2}-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO\textsubscript{2}-bonded 1-position and the center of 3,4-bond of a 5-membered ring radical, whose widest dimension in a direction transverse to the axis of rotation is about that of one furanyl ring to about that of two phenyl rings; and
R⁵ and R⁶ are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a

R⁵RCaminoalkyl substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a R⁵RCaminoalkyloxy substituent;

or R⁵ and R⁶ together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members.

Again, in some preferred embodiments, (ii), R¹ is an -NR⁷R⁸ group in which R⁷ and R⁸ are independently selected from the group consisting of hydrido, hydrocarbonyl, aryl, substituted aryl, arylhydrocarbonyl, and substituted arylhydrocarbonyl.

More preferably still, R⁷ and R⁸ are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, R¹oxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, and a heterocyclo substituent, each of which substituent groups is optionally substituted with an -A-R-E-Y substituent;

in such an -A-R-E-Y substituent, A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR⁴⁻;
(4) -CO-N(R⁴) or -N(R⁴)-CO-;
(5) -CO-O- or -O-CO-;
(6) \(-O-CO-O-\);
(7) \(-HC=CH-\);
(8) \(-NH-CO-NH-\);
(9) \(-C≡C-\);
(10) \(-N≡N-\);
(11) \(-NH-NH-\);
(12) \(-CS-N(R^k)-\text{ or } -N(R^k)-CS-\);
(13) \(-CH_2-\);
(14) \(-O-CH_2-\text{ or } -CH_2-O-\);
(15) \(-S-CH_2-\text{ or } -CH_2-S-\);
(16) \(-SO-\text{ and } \);
(17) \(-SO2-\text{ or } \);
(18) \(A\text{ is absent and } R\text{ is directly bonded to } R^7 \text{ or } R^8, \text{ or both } R^7 \text{ and } R^8;\)
the moiety \(R\) is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl, heteroaryl, cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, \(C_1-C_2\)-alkylene-dioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;
the group E is selected from the group consisting of

1. \(-\text{COR}^g-\) or \(-\text{R}^g\text{CO}-\);
2. \(-\text{CON}(\text{R}^k)-\) or \(-\text{(R}^k)\text{NCO}-\);
3. \(-\text{CO}-\);
4. \(-\text{SO}_2(\text{R}^g)-\) or \(-\text{(R}^g)\text{SO}_2-\);
5. \(-\text{SO}_2-\);
6. \(-\text{N}(\text{R}^k)\text{-SO}_2-\) or \(-\text{SO}_2\text{-N}(\text{R}^k)-\); or
7. E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxyl, heteroaralkyl, \(R^g\text{oxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group.

More preferably yet, \(R^7\) and \(R^8\) taken together with the nitrogen atom to which they are bonded (\(-\text{NR}^7\text{R}^8\)) form a group \(-\text{G-A-R-E-Y}\) wherein G is a N-heterocyclo group;
the substituent A is selected from the group consisting of
(1) -O-;
(2) -S-;
(3) -NRk--;
(4) -CO-N(Rk) or -N(Rk)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(Rk)- or -N(Rk)-CS-;
(13) -CH\textsubscript{2}-;
(14) -O-CH\textsubscript{2}- or -CH\textsubscript{2}-O-;
(15) -S-CH\textsubscript{2}- or -CH\textsubscript{2}-S-;
(16) -SO-; and
(17) -SO\textsubscript{2}-; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;
the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroaryl-thioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a
-47-

halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C1-C2-alkylene-dioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the moiety E is selected from the group consisting of

(1) -COR9- or -R9CO-;
(2) -CONRk- or -RkNCO-;
(3) -CO-;
(4) -SO2(R9)- or -(R9)SO2-;
(5) -SO2-;
(6) -N(Rk)SO2- or -SO2-N(Rk)-; or
(7) E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, R\textsubscript{a}oxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or
(ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group.

The superscripted "R" groups, R³, R⁴ and the like above and hereinafter are as defined before.

In one preferred embodiment, R⁵ and R⁶ are independently selected from the group consisting of a hydrido, hydrocarbyl, preferably C₁-C₄ hydrocarbyl, hydroxyhydrocarbyl, hydroxy, amino, R⁷R⁸C amino hydrocarbyl, halo, nitro, cyano, hydrocarbyloxy, halohydrocarbyl, halohydrocarbyloxy, hydroxyhydrocarbyl, dihydrocarbylamino, heterocyclo, heterocyclohydrocarbyl, heterocycloxy, and a heterocyclothio group. More preferably, R⁵ and R⁶ are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, and a R⁷R⁸C aminoalkyl substituent.

Contemplated aromatic or heteroaromatic rings include 1,2-phenylene, 2,3-pyridinylene, 3,4-pyridinylene, 4,5-pyridinylene, 2,3-pyrazinylene, 4,5-pyrimidinylene, and 5,6-pyrimidinylene groups. 1,2-Phenylene (a 1,2-disubstituted phenyl ring) is a particularly preferred aromatic or heteroaromatic ring, and is used illustratively herein as W.

As noted above, an R¹ substituent contains a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical bonded directly to the depicted SO₂-group. An R¹ substituent also has length, width and substitution requirements that are discussed in detail below. It is noted here, however, that a single- ringed or fused ring
cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical is not itself long enough to fulfill the length requirement for a preferred compound, particularly where R^1 is NR^7R^8. As such, that cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical should itself be substituted.

Exemplary 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radicals that can constitute a portion of a R^1 substituent and are themselves substituted as discussed herein include phenyl, 2-, 3-, or 4-pyridyl, 2-naphthyl, 2-pyrazinyl, 2- or 5-pyrimidinyl, 2- or 3-benzo(b)thienyl, 8-purinyl, 2- or 3-furyl, 2- or 3-pyrrolyl, 2-imidazolyl, cyclopentyl, cyclohexyl, 2- or 3-piperidinyl, 2- or 3-morpholinyl, 2- or 3-tetrahydropyranyl, 2-imidazolidinyl, 2- or 3-pyrazolidinyl and the like. A phenyl radical is particularly preferred and is used illustratively herein.

When examined along its longest chain of atoms, an R^1 substituent (including NR^7R^8 as an R^1 substituent), including its own substituent when present, has a total length equivalent to a length that is greater than that of a fully extended saturated chain of six carbon atoms (a hexyl group); i.e., a length of a heptyl chain in staggered conformation or longer, and a length that is less than that of a fully extended saturated chain of about 20 carbons (an eicosyl group). Preferably, that length is about 8 to about 18 carbon atoms, even though many more atoms may be present in ring structures or substituents. This length requirement is discussed further below.
-50-

Looked at more generally, and aside from specific moieties from which it is constructed, an \(R^1 \) substituent (radical, group or moiety) has a length of a heptyl group or greater. Such an \(R^1 \) substituent also has a length that is less than that of an eicosyl group. That is to say that a \(R^1 \) is a substituent having a length greater than that of a fully extended saturated six carbon chain and shorter than that of a fully extended saturated twenty carbon chain, and more preferably, a length greater than that of an octyl group and less than that of a palmityl group. The radical chain lengths are measured along the longest linear atom chain in the radical, following the skeletal atoms of a ring where necessary. Each atom in the chain, e.g. carbon, oxygen or nitrogen, is presumed to be carbon for ease in calculation.

Such lengths can be readily determined by using published bond angles, bond lengths and atomic radii, as needed, to draw and measure a chain, or by building models using commercially available kits whose bond angles, lengths and atomic radii are in accord with accepted, published values. Radical (substituent) lengths can also be determined somewhat less exactly by presuming, as is done here, that all atoms have bond lengths of saturated carbon, that unsaturated and aromatic bonds have the same lengths as saturated bonds and that bond angles for unsaturated bonds are the same as those for saturated bonds, although the above-mentioned modes of measurement are preferred. For example, a 4-phenyl or 4-pyridyl group has a length of a four carbon chain, as does a propoxy group, whereas a biphenyl
group has a length of about an eight carbon chain using a contemplated measurement mode.

In addition, an \(R^1 \) substituent, when rotated about an axis drawn through the \(\text{SO}_2 \)-bonded 1-position and the 4-position of a 6-membered ring radical or the \(\text{SO}_2 \)-bonded 1-position and through the 3,4 bond of a 5-membered ring radical defines a three-dimensional volume whose widest dimension has the width of about one furanyl ring to about the width of two phenyl rings in a direction transverse to that axis to rotation.

When utilizing this width or volume criterion, a fused ring system such as a naphthyl or purinyl radical is considered to be a 6- or 5-membered ring that is substituted at appropriate positions numbered from the \(\text{SO}_2 \)-linkage that is deemed to be at the 1-position as discussed before. Thus, a 2-naphthyl substituent or an 8-purinyl substituent is an appropriately sized \(R^1 \) radical as to width when examined using the above rotational width criterion. On the other hand, a 1-naphthyl group or a 7- or 9-purinyl group is too large upon rotation and is excluded.

As a consequence of these length and width requirements, \(R^1 \) substituents such as 4-(phenyl)phenyl [biphenyl], 4-(4'-methoxyphenyl)-phenyl, 4-(phenoxy)phenyl, 4-(thiophenyl)phenyl [4-(phenylthio)phenyl], 4-(phenylazo)phenyl 4-(phenylureido)phenyl, 4-(anilino)phenyl, 4-

(nicotinamide)phenyl, 4-(isonicotinamido)phenyl, 4-(picolinamido)phenyl and 4-(benzamido)phenyl are among particularly preferred \(R^1 \) substituents, with
4-(phenoxy)phenyl and 4-(thiophenyl)phenyl being most preferred.

An SO$_2$-linked cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical is a 5- or 6-membered single-ring that is itself substituted with one other substituent, R4. The SO$_2$-linked single-ringed cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical is R4-substituted at its own 4-position when a 6-membered ring and at its own 3- or 4-position when a 5-membered ring. The cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical to which R4 is bonded in some embodiments is preferably a phenyl group, so that R1 is preferably PhR4 in which R4 is bonded at the 4-position of the SO$_2$-linked phenyl (Ph) radical, and in which R4 can itself be optionally substituted as is discussed hereinafter. In other embodiments, a heterocyclo or heteroaryl radical is preferred over a phenyl radical, with the R4 substituent being linked at the 4-position relative to the bond between the ring and the SO$_2$ group.

A contemplated R4 substituent can be a single-ringed cyclohydrocarbyl, heterocyclo, aryl or heteroaryl group or another substituent having a chain length of 3 to about 14 carbon atoms such as a hydrocarbyl or hydrocarbyloxy group [e.g., C$_3$-C$_{14}$ hydrocarbyl or O-C$_2$-C$_{14}$ hydrocarbyl], a phenyl group, a phenoxy group [-OC$_6$H$_5$], a thiophenoxy group [phenylsulfanyl; -SC$_6$H$_5$], an anilino group [-NHC$_6$H$_5$], a phenylazo group [-N$_2$C$_6$H$_5$], a phenylureido group [aniline carbonylamino; -NHC(O)NH-C$_6$H$_5$], a benzamido
group [-NHC(O)C₆H₅], a nicotamido group
[3-NHC(O)C₅H₄N], an isonicotamido group
[4-NHC(O)C₅H₄N], or a picolinamido group
[2-NHC(O)C₅H₄N]. Additionally contemplated R⁴ substituent groups include a heterocyclo,
heterocyclohydrocarbyl, arylhydrocarbyl, ary1heterocyclohydrocarbyl, heteroarylhydrocarbyl,
hetearoarylhetearocyclo-hydrocarbyl,
arylhydrocarbyloxyhydrocarbyl, aryloxyhydrocarbyl,
hydrocarboylhydrocarbyl, arylhydrocarboxyhydrocarbyl,
arylcarbonylhydrocarbyl, arylazoaryl,
arylhydrazinoaryl, hydrocarbyl-thiohydrocarbyl,
hydrocarbylthioaryl, arylthiohydrocarbyl,
heteroarylthiohydrocarbyl,
hydrocarbylthioarylhydrocarbyl, arylhydrocarbyl-
thiohydrocarbyl, arylhydrocarbylthioaryl,
arylhydrocarbylamino, heteroarylhydrocarbylamino, or a heteroarylthio group.

A contemplated R⁴ substituent can itself also be substituted with one or more substituent radicals at the meta- or para-position or both of a six-membered ring with a single atom or a substituent containing a longest chain of up to ten atoms, excluding hydrogen. Exemplary substituent radicals include a halo, hydrocarbyl, hydrocarbyloxy, nitro,
cyano, perfluorohydrocarbyl, trifluoromethyl-
hydrocarbyl, hydroxy, mercapto, hydroxycarbonyl,
aryloxy, arylthio, arylamino, arylhydrocarbyl, aryl,
heteroaryloxy, heteroarylthio, heteroarylamino,
heteroaryhydrocarbyl, hydrocarbyloxycarbonyl-
hydrocarbyl, heterocycloxy, hydroxycarbonyl-
hydrocarbyl, heterocyclothio, heterocycloamino,
cyclohydrocarbyloxy, cyclohydrocarbylthio, cyclohydrocarblamino, heteroarylhydrocarbyloxy, heteroarylhydrocarbylthio, heteroarylhydrocarblamino, arylhydrocarbyloxy, arylhydrocarbylthio, arylhydrocarblamino, heterocyclic, heteroaryl, hydroxycarbonylhydrocarbyloxy, alkoxy carbonylalkoxy, hydrocarbyloxy1, aryl carbonyl, arylhydrocarbyloxy1, hydrocarbyloxy, aryl hydrocarbyloxy, hydroxy hydrocarbyl, hydroxyhydrocarbyloxy, hydrocarbylthio, hydrocarbyloxyhydrocarbylthio, hydrocarbyloxy carbonyl, hydroxy carbonyl hydrocarbyloxy, hydrocarbyloxy carbonyl hydrocarbyl, hydrocarbyl hydroxycarbonyl hydrocarbyl, hydrocarbyloxycarbonyl hydrocarbyl, aryl hydrocarbylthio, amino, hydrocarbyl carbamino, aryl carbamino, cyclohydrocarbyl carbamino, heterocyclo hydrocarbyl carbamino, arylhydrocarbyl carbamino, heteroaryl carbamino, heteroarylhydrocarbyl carbamino, heterocyclo hydrocarbyl oxo, hydrocarbylsulfonylamino, aryl sulfonylamino, aryl hydrocarbylsulfonylamino, heteroaryl sulfonylamino, heteroaryl hydrocarbylsulfonylamino, cyclohydrocarbylsulfonylamino, heterocyclo hydrocarbylsulfonylamino and N-monosubstituted or N,N-disubstituted aminohydrocarbyl group wherein the substituent(s) on the nitrogen are selected from the group consisting of hydrocarbyl, aryl, arylhydrocarbyl, cyclohydrocarbyl, arylhydrocarbyloxy carbonyl, hydrocarbyloxy carbonyl, and hydrocarbyloxy, or wherein the nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclic or heteroaryl ring group.
Thus, initial studies indicate that so long as the length, substitution and width (volume upon rotation) requirements of an SO$_2$-linked R1 substituent discussed herein are met, an R1 substituent can be extremely varied.

A particularly preferred R4 substituent of an SO$_2$-linked Ph group is a single-ringed aryl or heteroaryl, phenoxy, thiophenoxy, phenylazo, phenylureido, nicotinamido, isonicotinamido, picolinamido, anilino or benzamido group that is unsubstituted or is itself substituted (optionally substituted) at the para-position when a 6-membered ring or the 3- or 4-position when a 5-membered ring. Here, single atoms such as halogen moieties or substituents that contain one to a chain of about ten atoms other than hydrogen such as C$_1$-C$_{10}$ hydrocarbyl, C$_1$-C$_9$ hydrocarbyloxy or carboxyethyl groups can be used.

Exemplary particularly preferred PhR4 (particularly preferred R1) substituents include biphenyl, 4-phenoxyphenyl, 4-thiophenoxyphenyl, 4-benzamidophenyl, 4-phenylureido, 4-anilinophenyl, 4-nicotinamido, 4-isonicotinamido, and 4-picolinamido. Exemplary particularly preferred R4 groups contain a 6-membered aromatic ring and include a phenyl group, a phenoxy group, a thiophenoxy group, a phenylazo group, a phenylureido group, an anilino group, a nicotinamido group, an isonicotinamido group, a picolinamido group and a benzamido group.

More specifically, a particularly preferred sulfonyl butanhydroxamate compounds has an R4 substituent that is a phenyl group, a phenoxy group,
a thiophenoxy group, a phenylazo group, a
phenylureido group, an anilino group, a nicotinamido
group, an isonicotinamido group, a picolinamido group
or a benzamido group that is itself optionally
substituted at its own meta or para-position or both
with a moiety that is selected from the group
consisting of a halogen, a halohydrocarbyl group, a
halo C₁-C₉ hydrocarbyloxy group, a perfluoro C₁-C₉
hydrocarbyl group, a C₁-C₉ hydrocarbyloxy (-O-C₁-C₉
hydrocarbyl) group, a C₁-C₁₀ hydrocarbyl group, a di-
C₁-C₉ hydrocarbylamino [-N(C₁-C₉ hydrocarbyl)(C₁-C₉
hydrocarbyl)] group, a carboxyl C₁-C₈ hydrocarbyl
(C₁-C₈ hydrocarbyl-CO₂H) group, a C₁-C₄
hydrocarbyloxy carbonyl C₁-C₄ hydrocarbyl [C₁-C₄
hydrocarbyl-O-(CO)-C₁-C₄ hydrocarbyl] group, a C₁-C₄
hydrocarbyloxy carbonyl C₁-C₄ hydrocarbyl [C₁-C₄
hydrocarbyl(CO)-O-C₁-C₄ hydrocarbyl] group and a C₁-
C₈ hydrocarbyl carboxamido [-NH(CO)-C₁-C₈
hydrocarbyl] group, or is substituted at the meta-
and para-positions by two methyl groups or by a C₁-C₂
alkylenedioxy group such as a methylenedioxy group.

Inasmuch as a contemplated SO₂-linked
cyclohydrocarbyl, heterocyclo, aryl or heteroaryl
radical is itself preferably substituted with a 6-
membered aromatic ring, two nomenclature systems are
used together herein for ease in understanding
substituent positions. The first system uses
position numbers for the ring directly bonded to the
SO₂-group, whereas the second system uses ortho, meta
or para for the position of one or more substituents
of a 6-membered ring bonded to a SO₂-linked
cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical. When a R^4 substituent is other than a 6-membered ring, substituent positions are numbered from the position of linkage to the aromatic or heteroaromatic ring. Formal chemical nomenclature is used in naming particular compounds.

Thus, the 1-position of an above-discussed SO_2-linked cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical is the position at which the SO_2-group is bonded to the ring. The 4- and 3-positions of rings discussed here are numbered from the sites of substituent bonding from the SO_2-linkage as compared to formalized ring numbering positions used in heteroaryl nomenclature.

\[
\begin{align*}
&\text{In some preferred embodiments, a} \\
&\hspace{1cm}\text{contemplated compound corresponds in structure to} \\
&\hspace{1cm}\text{Formula C2, wherein W, R^5, R^6 and R^{14} are as defined} \\
&\hspace{1cm}\text{above, Ph is phenyl substituted at the 4-position} \\
&\hspace{1cm}\text{with substituent R^4 that is defined hereinabove.} \\
&\hspace{1cm}\text{The length of a R^1 substituent bonded to} \\
&\hspace{1cm}\text{the SO_2 group is believed to play a role in the} \\
&\hspace{1cm}\text{overall activity of a contemplated inhibitor compound} \\
&\hspace{1cm}\text{against MMP enzymes generally. Thus, a compound} \\
&\hspace{1cm}\text{having an R^1 substituent that is shorter in length}
\end{align*}
\]
than a heptyl group, e.g., a 4-methoxyphenyl group, typically exhibits moderate to poor inhibitory activity against all of the MMP enzymes, whereas compounds whose \(R_1 \) substituents have a length of about an heptyl chain or longer, e.g., a 4-phenoxyphenyl group that has a length of about a nine-carbon chain, typically exhibit good to excellent potencies against MMP-13 or MMP-2 and also selectivity against MMP-1. Exemplary data are provided in the Inhibition Tables hereinafter in which the activities of the above two compounds can be compared.

In view of the above-discussed preferences, compounds corresponding in structure to particular formulas constitute particularly preferred embodiments.

In one of those embodiments, a contemplated compound corresponds in structure to Formula C4, below,

\[
\begin{array}{c}
\text{HONH} \\
\text{O} \\
\text{W} \\
\text{O} \\
\text{SO} \\
\text{R}^1 \\
\text{R}^5 \\
\text{R}^6 \\
\end{array}
\]

C4

wherein \(W, R^1, R^5, \) and \(R^6 \) are as defined above, and \(R^1 \) is preferably PhR\(^4\), as is also defined above.

Again taking into account the before-stated preference that \(W \) be a 1,2-phenylene radical and the preference for \(R^1 \) being PhR\(^4\), particularly preferred compounds correspond in structure to Formulas VIB,
VIB-1, VIB-2 VIB-3, VII, VII-B, VIIC, VIID, VIIIE, VIII and, VIIIIB, below, wherein the above definitions for -A-R-E-Y, -G-A-R-E-Y, W², R¹, R⁵, R⁶, R⁷, R⁸ and R²⁰ also apply, and wherein the substituent -A-R-E-Y is bonded to ring structure W² or a depicted ring structure.
The compounds that correspond in structure to Formulas D, D1, D2, D3 and D4, below, wherein the above definitions for \(-A\)-R-E-Y, R^4, R^5, R^6, and R^{20} also apply and wherein each of A, B, C and D of the ring structure is carbon, nitrogen, sulfur or oxygen that is present or absent so that the depicted ring has 5- or 6-members, are also among the particularly preferred compounds contemplated herein and can be viewed as subsets of compounds of Formula VIB.
The compound of Example 24 has a structure that corresponds to that of Formula D2. In that compound, R^5 and R^6 are both methoxy, the A moiety is a sulfur atom, $-S-$, R is 1,4-phenylene, E is absent and the moiety Y is hydrido. The compound of Example 25 also corresponds in structure to Formula D2. There, R^5 and R^6 are again both methoxy, the A moiety is an oxygen atom, $-O-$, R is 1,4-phenylene, E is absent and the moiety Y is a dialkoxy-substituted phenyl (aryl) group.

Particularly preferred compounds contemplated herein are illustrated hereinbelow, along with the number of the specific Example in which each is prepared.
The word "hydrocarbyl" is used herein as a short hand term to include straight and branched chain aliphatic as well as alicyclic groups or radicals that contain only carbon and hydrogen. Thus, alkyl, alkenyl and alkynyl groups are contemplated, whereas aromatic hydrocarbons such as phenyl and naphthyl groups, which strictly speaking are also hydrocarbyl groups, are referred to herein as aryl groups or radicals, as discussed hereinafter. Where a specific aliphatic hydrocarbyl substituent group is intended, that group is recited; i.e., C₁-C₄ alkyl, methyl or dodecenyl. Exemplary hydrocarbyl groups contain a chain of 1 to about 12 carbon atoms, and preferably one to about 10 carbon atoms.

A particularly preferred hydrocarbyl group is an alkyl group. As a consequence, a generalized, but more preferred substituent can be recited by replacing the descriptor "hydrocarbyl" with "alkyl" in any of the substituent groups enumerated herein.

Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl and the like. Examples of suitable alkenyl radicals include ethenyl (vinyl), 2-propenyl, 3-propenyl, 1,4-pentadienyl, 1,4-butadienyl, 1-butenyl, 2-butenyl, 3-butenyl, decenyl and the like. Examples of alkynyl radicals include ethynyl, 2-propynyl, 3-propynyl,
decynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.

Usual chemical suffix nomenclature is followed when using the word "hydrocarbyl" except that the usual practice of removing the terminal "yl" and adding an appropriate suffix is not always followed because of the possible similarity of a resulting name to one or more substituents. Thus, a hydrocarbyl ether is referred to as a "hydrocarbyloxy" group rather than a "hydrocarboxy" group as may possibly be more proper when following the usual rules of chemical nomenclature. On the other hand, a hydrocarbyl group containing a -C(O)O- functionality is referred to as a hydrocarbyl group inasmuch as there is no ambiguity in using that suffix. As a skilled worker will understand, a substituent that cannot exist such as a C₁ alkenyl group is not intended to be encompassed by the word "hydrocarbyl".

The term "carbonyl", alone or in combination, means a -C(=O)- group wherein the remaining two bonds (valences) are independently substituted. The term "thiol" or "sulfhydryl", alone or in combination, means a -SH group. The term "thio" or "thia", alone or in combination, means a thiaether group; i.e., an ether group wherein the ether oxygen is replaced by a sulfur atom, as in a thiophenoxy group (C₆H₅-S-).

The term "amino", alone or in combination, means an amine or -NH₂ group, whereas the term mono-substituted amino, alone or in combination, means a substituted amine -N(H)(substituent) group wherein one hydrogen atom is replaced with a substituent, and
disubstituted amine means a \(-N(\text{substituent})_2\) wherein two hydrogen atoms of the amino group are replaced with independently selected substituent groups. Amines, amino groups and amides are classes that can be designated as primary (I\(^o\)), secondary (II\(^o\)) or tertiary (III\(^o\)) or unsubstituted, mono-substituted or di-substituted depending on the degree of substitution of the amino nitrogen. Quaternary amine (IV\(^o\)) means a nitrogen with four substituents \([-N^+(\text{substituent})_4]\) that is positively charged and accompanied by a counter ion or N-oxide means one substituent is oxygen and the group is represented as \([-N^+(\text{substituent})_3\cdot\text{O}^-]\); i.e., the charges are internally compensated.

The term "cyano", alone or in combination, means a -C-triple bond-N (-CN) group. The term "azido", alone or in combination, means an -N-double bond-N-double bond-N- (-N=N=N-).

The term "hydroxyl", alone or in combination, means a -OH group. The term "nitro", alone or in combination, means a -NO\(_2\) group.

The term "azo", alone or in combination, means a -N=N- group wherein the bonds at the terminal positions are independently substituted. The term "hydrazino", alone or in combination, means a -NH-NH- group wherein the remaining two bonds (valences) are independently substituted. The hydrogen atoms of the hydrazino group can be replaced, independently, with substituents and the nitrogen atoms can form acid addition salts or be quaternized.

The term "sulfonyl", alone or in combination, means a -S(O)\(_2\)- group wherein the remaining two bonds (valences) can be independently
substituted. The term "sulfoxido", alone or in combination, means a -S(=O)- group wherein the remaining two bonds (valences) can be independently substituted. The term "sulfonylamide", alone or in combination, means a -S(=O)2-N= group wherein the remaining three bonds (valences) are independently substituted. The term "sulfinamido", alone or in combination, means a -S(=O)=N= group wherein the remaining three bonds (valences) are independently substituted. The term "sulfenamide", alone or in combination, means a -S-N= group wherein the remaining three bonds (valences) are independently substituted.

The term "hydrocarbyloxy", alone or in combination, means an hydrocarbyl ether radical wherein the term hydrocarbyl is as defined above. Examples of suitable hydrocarbyl ether radicals include methoxy, ethoxy, n-propoxy, isopropoxy, allyloxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy and the like. The term "cyclohydrocarbyl", alone or in combination, means a hydrocarbyl radical that contains 3 to about 8 carbon atoms, preferably from about 3 to about 6 carbon atoms, and is cyclic. The term "cyclohydrocarbylhydrocarbyl" means an hydrocarbyl radical as defined above which is substituted by a cyclohydrocarbyl as also defined above. Examples of such cyclohydrocarbylhydrocarbyl radicals include cyclopropyl, cyclobutyl, cyclopentenyl, cyclohexyl, cyclooctynyl and the like.

The term "aryl", alone or in combination, means a phenyl or naphthyl radical that optionally carries one or more substituents selected from hydrocarbyl, hydrocarbyloxy, halogen, hydroxy, amino,
nitro and the like, such as phenyl, p-tolyl, 4-methoxyphenyl, 4-(tert-butoxy)phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-hydroxyphenyl, and the like. The term "arylhydrocarbonyl", alone or in combination, means an hydrocarbonyl radical as defined above in which one hydrogen atom is replaced by an aryl radical as defined above, such as benzyl, 2-phenylethyl and the like. The term "arylhydrocarbonyloxy carbonyl", alone or in combination, means a radical of the formula -C(O)-Oarylhydrocarbonyl in which the term "arylhydrocarbonyl" has the significance given above. An example of an arylhydrocarbonyloxy carbonyl radical is benzyloxy carbonyl. The term "aryloxy" means a radical of the formula aryl-O- in which the term aryl has the significance given above. The term "aromatic ring" in combinations such as substituted-aromatic ring sulphonamide, substituted-aromatic ring sulfinamide or substituted-aromatic ring sulfenamide means aryl or heteroaryl as defined above.

The terms "hydrocarbonyl" or "hydrocarbonylcarbonyl", alone or in combination, mean an acyl radical derived from an hydrocarbonylcarboxylic acid, examples of which include acetyl, propionyl, acryloyl, butyryl, valeryl, 4-methylvaleryl, and the like. The term "cyclohydrocarbonylcarbonyl" means an acyl group derived from a monocyclic or bridged cyclohydrocarbonylcarboxylic acid such as cyclopropanecarbonyl, cyclohexenecarbonyl, adamantanecarbonyl, and the like, or from a benz-fused monocyclic cyclohydrocarbonylcarboxylic acid that is optionally substituted by, for example, a hydrocarbonyloxylamino group, such as 1,2,3,4-
tetrahydro-2-naphthoyl, 2-acetamido-1,2,3,4-tetrahydro-2-naphthoyl. The terms "arylhydrocarbonyl" or "arylhydrocarbonylcarbonyl" mean an acyl radical derived from an aryl-substituted hydrocarbonylcarboxylic acid such as phenylacetyl, 3-phenylpropenyl (cinnamoyl), 4-phenylbutyryl, (2-naphthyl)acetyl, 4-chlorohydrocinnamoyl, 4-aminocinnamoyl, 4-methoxycinnamoyl and the like.

The terms "aroyl" or "arylcarbonyl" means an acyl radical derived from an aromatic carboxylic acid. Examples of such radicals include aromatic carboxylic acids, an optionally substituted benzoic or naphthoic acid such as benzoyl, 4-chlorobenzoyl, 4-carboxybenzoyl, 4-(benzyloxy carbonyl) benzoyl, 2-naphthoyl, 6-carboxy-2 naphthoyl, 6-(benzyloxy carbonyl)-2-naphthoyl, 3-benzyloxy-2-naphthoyl, 3-hydroxy-2-naphthoyl, 3-(benzyloxyformamido)-2-naphthoyl, and the like.

The heterocyclyl (heterocyclo) or heterocyclylcarbonyl portion of a heterocyclylcarbonyl, heterocyclyloxy carbonyl, heterocyclylhydrocarbonylcarbonyl, or heterocyclyhydrocarbonyl group or the like is a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle that contains one to four hetero atoms selected from nitrogen, oxygen and sulphur, which is optionally substituted on one or more carbon atoms by a halogen, alkyl, alkoxy, oxo group, and the like, and/or on a secondary nitrogen atom (i.e., -NH-) by an hydrocarbonyl, arylhydrocarbonyloxycarbonyl, hydrocarbonyloyl, aryl or arylhydrocarbonyl or on a tertiary nitrogen atom (i.e. =N-) by oxido and that is attached via a carbon atom.
The tertiary nitrogen atom with three substituents can also form a N-oxide [\(=\text{N}^+(\text{O})^-\)] group. Examples of such heterocyclyl groups are pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiamorpholinyl, and the like.

The heteroaryl portion of a heteroaroyl, heteroaryloxycarbonyl, or a heteroarylhydrocarbyloyl (heteroarylhydrocarbyl carbonyl) group or the like is an aromatic monocyclic, bicyclic, or tricyclic heterocycle that contains the hetero atoms and is optionally substituted as defined above with respect to the definition of heterocyclyl. A "heteroaryl" group is an aromatic heterocyclic ring substituent that preferably contains one, or two, up to three or four, atoms in the ring other than carbon. Those heteroatoms can be nitrogen, sulfur or oxygen. A heteroaryl group can contain a single 5- or 6-membered ring or a fused ring system having two 6-membered rings or a 5- and a 6-membered ring.

Exemplary heteroaryl groups include 6-membered ring substituents such as pyridyl, pyrazyl, pyrimidinyl, and pyridazinyl; 5-membered ring substituents such as 1,3,5-, 1,2,4- or 1,2,3-triazinyl, imidazyl, furanyl, thiophenyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-oxadiazolyl and isothiazolyl groups; 6-/5-membered fused ring substituents such as benzothiofuranyl, isobenzothiofuranyl, benzisoxazolyl, benzoazolyl, purinyl and anthranilyl groups; and 6-/6-membered fused rings such as 1,2-, 1,4-, 2,3- and 2,1-benzopyronyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, and 1,4-benzoazinyl groups.
The term "cyclohydrocarbylhydrocarbyloxy-carbonyl" means an acyl group derived from a
cyclohydrocarbylhydrocarbyloxyarboxylic acid of the
formula cyclohydrocarbylhydrocarbaryl-0-COOH wherein
cyclohydrocarbylhydrocarbaryl has the significance given
above. The term "aryloxyhydrocarbyloyl" means an
acyl radical of the formula aryl-0-hydrocarbyloyl
wherein aryl and hydrocarbyloyl have the significance
given above. The term "heterocyclyloxyarbonyl"
means an acyl group derived from heterocyclyl-0-COOH
wherein heterocyclyl is as defined above. The term
"heterocyclylhydrocarbyloyl" is an acyl radical
derived from a heterocyclyl-substituted
hydrocarbylcarboxylic acid wherein heterocyclyl has
the significance given above. The term
"heterocyclylhydrocarbyloxyarbonyl" means an acyl
radical derived from a heterocyclyl-substituted
hydrocarbyl-0-COOH wherein heterocyclyl has the
significance given above. The term
"heteroaryloxyarbonyl" means an acyl radical derived
from a carboxylic acid represented by heteroaryl-0-
COOH wherein heteroaryl has the significance given
above.

The term "aminocarbonyl" alone or in
combination, means an amino-substituted carbonyl
(carbamoyl) group derived from an amino-substituted
carboxylic acid wherein the amino group can be a
primary, secondary or tertiary amino group containing
substituents selected from hydrogen, hydrocarbyl,
aril, aralkyl, cyclohydrocarbyl,
cyclohydrocarbylhydrocarbyl radicals and the like.
The term "aminohydrocarbyloyl" means an acyl group
derived from an amino-substituted hydrocarbyl-
carboxylic acid wherein the amino group can be a primary, secondary or tertiary amino group containing substituents independently selected from hydrogen, alkyl, aryl, aralkyl, cyclohydrocarbyl, cyclohydrocarbylhydrocarbyl radicals and the like.

The term "halogen" means fluorine, chlorine, bromine or iodine. The term "halohydrocarbyl" means a hydrocarbyl radical having the significance as defined above wherein one or more hydrogens are replaced with a halogen. Examples of such halohydrocarbyl radicals include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1,1,1-trifluoroethyl and the like. The term perfluorohydrocarbyl means a hydrocarbyl group wherein each hydrogen has been replaced by a fluorine atom. Examples of such perfluorohydrocarbyl groups, in addition to trifluoromethyl above, are perfluorobutyl, perfluoroisopropyl, perfluorododecyl and perfluorodecyl.

Table 1 through Table 88, below, show several contemplated sulfonyl aryl or heteroaryl hydroxamic acid compounds as structural formulas that illustrate substituent groups. Each group of compounds of Tables 1 through 70 is illustrated by a generic formula, followed by a series of preferred moieties or groups that constitute various substituents that can be attached at the position clearly shown in the generic structure. The substituent symbols, e.g., R^1, R^2, X, are as shown in each Table, and are often different from those shown elsewhere herein in structural formulas bearing Roman numerals of capital letters. One or two bonds (straight lines) are shown with those substituents to
indicate the respective positions of attachment in
the illustrated compound. This system is well known
in the chemical communication arts and is widely used
in scientific papers and presentations. Tables 71
through 88 illustrate specific compounds of the
previous tables as well as other contemplated
compounds using complete molecular formulas.
Table 1

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
<th>Structure 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R⁴ can be various substituents depending on the specific compound.
Table 2

<table>
<thead>
<tr>
<th>R⁴</th>
<th>R⁴</th>
<th>R⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Compound 1</th>
<th>Compound 2</th>
<th>Compound 3</th>
<th>Compound 4</th>
<th>Compound 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- R^4
Table 4

<table>
<thead>
<tr>
<th>R^4</th>
<th>R^4</th>
<th>R^4</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hexyl</td>
<td>2-pyridyl</td>
<td>3-pyridyl</td>
<td>4-pyridyl</td>
</tr>
<tr>
<td>1-cyclohexyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-dimethyl</td>
<td></td>
<td>1-chloro</td>
<td>1-trifluoro-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4-dimethyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4-dimethyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4-dimethyl</td>
<td></td>
</tr>
<tr>
<td>1,4-dimethyl</td>
<td>1-chloro</td>
<td>1-trifluoro-</td>
<td></td>
</tr>
<tr>
<td>1,4-dimethyl</td>
<td></td>
<td>1,4-dimethyl</td>
<td></td>
</tr>
</tbody>
</table>
Table 5

Chemical structures and their corresponding identifiers.
Table 7

-\textbf{R}^4 -

\(\text{HO-} \text{NH} - \text{O-S} \text{N-N} - \text{N-N} \text{O} - \text{H}_3 \text{C} \)
Table 8

\[
\begin{align*}
\text{R}^4 & \quad \text{R}^4 \\
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \}
Table 9

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- R^4
Table 10

<table>
<thead>
<tr>
<th>Example</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>2</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>3</td>
<td>(\text{NH} - \text{CH}_3)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{NH} - \text{CH}_3)</td>
</tr>
<tr>
<td>5</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{N} - \text{CH}_3)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{N} - \text{CH}_3)</td>
</tr>
<tr>
<td>8</td>
<td>(\text{N} - \text{CH}_3)</td>
</tr>
<tr>
<td>9</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>10</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>11</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>12</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>13</td>
<td>(\text{NH} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>14</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>15</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>16</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>17</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>18</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>19</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>20</td>
<td>(\text{N} - \text{C}_6\text{H}_5)</td>
</tr>
</tbody>
</table>
Table 11

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>-[N,N]</td>
<td>9</td>
<td>S</td>
<td>-[N,N]</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>-[N,N]</td>
<td>10</td>
<td>S</td>
<td>-[N,N]</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>-[N]</td>
<td>11</td>
<td>S</td>
<td>-[N]</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>-[N]</td>
<td>12</td>
<td>S</td>
<td>-[N]</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>-[N,N-CH₃]</td>
<td>13</td>
<td>S</td>
<td>-[N,N-CH₃]</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>-[N,N-Ph]</td>
<td>14</td>
<td>S</td>
<td>-[N,N,N-Ph]</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>-[N,N-Ph]</td>
<td>15</td>
<td>S</td>
<td>-[N,N-Ph]</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>-[N,P]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12
Table 13

![Chemical Structures](image)

- **R^4**

- ![Chemical Structures](image)
Table 14

[R4]

-95-
Table 16

- R^4 -
<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>O</td>
<td>12</td>
<td>S</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>Cl</td>
<td>13</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>O</td>
<td>14</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>O</td>
<td>15</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>CH$_3$</td>
<td>16</td>
<td>S</td>
<td>CH$_3$</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>CH$_3$</td>
<td>17</td>
<td>S</td>
<td>CH$_3$</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>O</td>
<td>18</td>
<td>S</td>
<td>CH$_3$</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>O</td>
<td>19</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>O</td>
<td>N</td>
<td>20</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td>F</td>
<td>21</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td>O</td>
<td>22</td>
<td>S</td>
<td>O</td>
</tr>
<tr>
<td>Example</td>
<td>X</td>
<td>Example</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-N</td>
<td>8</td>
<td>-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-N</td>
<td>9</td>
<td>-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-N</td>
<td>10</td>
<td>-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-N</td>
<td>11</td>
<td>-N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>piperidin-4-yl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>X</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>X</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21
Table 23

-104-
Table 25

```
  /\                        /\                     /\                        /\                     \\
 /    \  N\    O\    C\    O\      /    \  N\    O\    C\    O\      /    \  N\    O\    C\    O\      \\
 \  H\    O\    H\    A\    R\ \  \  H\    O\    H\    A\    R\ \  \  H\    O\    H\    A\    R\ \  \\
 \____\   \____\   \____\   \____\ \  \____\   \____\   \____\   \____\ \  \____\   \____\   \____\   \____\ \  \\
```

- R^4

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

- Image descriptions of various molecular structures are shown in the table.
Table 26

```
R^4

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
<th>Structure 4</th>
<th>Structure 5</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Structure 1" /></td>
<td><img src="image2.png" alt="Structure 2" /></td>
<td><img src="image3.png" alt="Structure 3" /></td>
<td><img src="image4.png" alt="Structure 4" /></td>
<td><img src="image5.png" alt="Structure 5" /></td>
</tr>
<tr>
<td><img src="image6.png" alt="Structure 6" /></td>
<td><img src="image7.png" alt="Structure 7" /></td>
<td><img src="image8.png" alt="Structure 8" /></td>
<td><img src="image9.png" alt="Structure 9" /></td>
<td><img src="image10.png" alt="Structure 10" /></td>
</tr>
<tr>
<td><img src="image11.png" alt="Structure 11" /></td>
<td><img src="image12.png" alt="Structure 12" /></td>
<td><img src="image13.png" alt="Structure 13" /></td>
<td><img src="image14.png" alt="Structure 14" /></td>
<td><img src="image15.png" alt="Structure 15" /></td>
</tr>
</tbody>
</table>
```

- Structure 1: ![Structure 1](image1.png)
- Structure 2: ![Structure 2](image2.png)
- Structure 3: ![Structure 3](image3.png)
- Structure 4: ![Structure 4](image4.png)
- Structure 5: ![Structure 5](image5.png)
- Structure 6: ![Structure 6](image6.png)
- Structure 7: ![Structure 7](image7.png)
- Structure 8: ![Structure 8](image8.png)
- Structure 9: ![Structure 9](image9.png)
- Structure 10: ![Structure 10](image10.png)
- Structure 11: ![Structure 11](image11.png)
- Structure 12: ![Structure 12](image12.png)
- Structure 13: ![Structure 13](image13.png)
- Structure 14: ![Structure 14](image14.png)
- Structure 15: ![Structure 15](image15.png)
Table 27

<table>
<thead>
<tr>
<th>R⁴</th>
<th>R⁴</th>
<th>R⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28
Table 29

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>-[benzofuran]</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>-[benzyl]CH₃</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>-[benzene]F</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>-[benzyl]CH₃</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>-[cyclohexane]</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>-[cyclopentane]</td>
</tr>
</tbody>
</table>
Table 30

<table>
<thead>
<tr>
<th>Example</th>
<th>R^1</th>
<th>R^2</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>S</td>
<td>-Cl</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>S</td>
<td>-OCH$_3$</td>
</tr>
<tr>
<td>Example</td>
<td>X</td>
<td>Ar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 32

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td>12</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
<td>13</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td></td>
<td>14</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>Cl</td>
<td>15</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>Cl</td>
<td>16</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>Cl</td>
<td>17</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>Cl</td>
<td>18</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>Cl</td>
<td>19</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>9</td>
<td>O</td>
<td>Cl</td>
<td>20</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td>Cl</td>
<td>21</td>
<td>S</td>
<td>Cl</td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td>Cl</td>
<td>22</td>
<td>S</td>
<td>Cl</td>
</tr>
</tbody>
</table>
Table 33

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR^7R^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-\text{NCH}_2\text{CH}_3)</td>
</tr>
<tr>
<td>2</td>
<td>(-\text{NCH}_2\text{NHCH}_3)</td>
</tr>
<tr>
<td>3</td>
<td>(-\text{NCH}_2\text{NCH}_2\text{OCH}_3)</td>
</tr>
<tr>
<td>4</td>
<td>(-\text{NCH}_2\text{NCH}_2\text{OH})</td>
</tr>
<tr>
<td>5</td>
<td>(-\text{NCH}_2\text{CH}_3)</td>
</tr>
<tr>
<td>6</td>
<td>(-\text{NCH}_2\text{NCH}_2\text{OCH}_3)</td>
</tr>
<tr>
<td>7</td>
<td>(-\text{NCH}_2\text{CF}_3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR^7R^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(-\text{NCH}_2\text{OCH}_2\text{CH}_3)</td>
</tr>
<tr>
<td>9</td>
<td>(-\text{NCH}_2\text{OCH}_2\text{OCH}_3)</td>
</tr>
<tr>
<td>10</td>
<td>(-\text{NCH}_2\text{OCH}_2\text{Cl})</td>
</tr>
<tr>
<td>11</td>
<td>(-\text{NCH}_2\text{OCH}2\text{C}{6}\text{H}_5)</td>
</tr>
</tbody>
</table>
Table 34

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR²R₈</th>
<th>Example</th>
<th>-NR²R₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HN–CH₃</td>
<td>11</td>
<td>HN–CH₃</td>
</tr>
<tr>
<td>2</td>
<td>N–CH₃</td>
<td>12</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>3</td>
<td>N–CH₃</td>
<td>13</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>4</td>
<td>N–CH₃</td>
<td>14</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>5</td>
<td>N–CH₃</td>
<td>15</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>6</td>
<td>N–CH₃</td>
<td>16</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>7</td>
<td>N–CH₃</td>
<td>17</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>8</td>
<td>N–CH₃</td>
<td>18</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>9</td>
<td>N–CH₃</td>
<td>19</td>
<td>N–CH₃</td>
</tr>
<tr>
<td>10</td>
<td>N–CH₃</td>
<td>20</td>
<td>N–CH₃</td>
</tr>
</tbody>
</table>
Table 35

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>N</td>
<td>9</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>N</td>
<td>10</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>N</td>
<td>11</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>N</td>
<td>12</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>N, N-CH₃</td>
<td>13</td>
<td>S</td>
<td>N, N-CH₃</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>N, N-Ph</td>
<td>14</td>
<td>S</td>
<td>N, N-Ph</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>N, Ph</td>
<td>15</td>
<td>S</td>
<td>N, Ph</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>N, N-Ph</td>
<td>16</td>
<td>S</td>
<td>N, N-Ph</td>
</tr>
</tbody>
</table>

5
Table 36
Table 37

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
<th>Structure 4</th>
<th>Structure 5</th>
<th>Structure 6</th>
<th>Structure 7</th>
<th>Structure 8</th>
<th>Structure 9</th>
<th>Structure 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 38
Table 39

\[
\begin{align*}
\text{R}^4 & \quad \text{R}^4 \\
\text{N} & \quad \text{N} \\
\text{Cl} & \quad \text{Cl} \\
\text{CF}_3 & \quad \text{CF}_3 \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{OCH}_3 & \quad \text{OCH}_3 \\
\end{align*}
\]
Table 40
Table 41
Table 42

Chemical Structures
Table 43

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>
Table 44

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR⁷R⁸</th>
<th>Example</th>
<th>-NR⁷R⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure</td>
<td>8</td>
<td>Structure</td>
</tr>
<tr>
<td>2</td>
<td>Structure</td>
<td>9</td>
<td>Structure</td>
</tr>
<tr>
<td>3</td>
<td>Structure</td>
<td>10</td>
<td>Structure</td>
</tr>
<tr>
<td>4</td>
<td>Structure</td>
<td>11</td>
<td>Structure</td>
</tr>
<tr>
<td>5</td>
<td>Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 45

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR<sup>7</sup>R<sup>8</sup></th>
<th>Example</th>
<th>-NR<sup>7</sup>R<sup>8</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
<td>11</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
</tr>
<tr>
<td>2</td>
<td>(\text{HN})</td>
<td>12</td>
<td>(\text{HN})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{HN} - \text{CH}_3)</td>
<td>13</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{HN} - \text{CH}_3)</td>
<td>14</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
</tr>
<tr>
<td>5</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
<td>15</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{O} - \text{CH}_3)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
<td>16</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{O} - \text{CH}_3)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{HN} - \text{CH}_3)</td>
<td>17</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{Cl})</td>
</tr>
<tr>
<td>8</td>
<td>(\text{HN} - \text{CH}_3)</td>
<td>18</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{Cl})</td>
</tr>
<tr>
<td>9</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
<td>19</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{CH}_3)</td>
</tr>
<tr>
<td>10</td>
<td>(\text{HN} - \text{C}_6\text{H}_4)</td>
<td>20</td>
<td>(\text{HN} - \text{C}_6\text{H}_4 - \text{CH}_3)</td>
</tr>
</tbody>
</table>
Table 46

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td>9</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
<td>10</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td></td>
<td>11</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td></td>
<td>12</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td></td>
<td>13</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td></td>
<td>14</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td></td>
<td>15</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 47

<table>
<thead>
<tr>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 48

<table>
<thead>
<tr>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ph} \text{N} \text{O})</td>
</tr>
<tr>
<td>(\text{Ph} \text{N} \text{O} \text{Py})</td>
</tr>
<tr>
<td>(\text{Ph} \text{N} \text{O} \text{Py})</td>
</tr>
<tr>
<td>(\text{Ph} \text{N} \text{O} \text{Cyclohexyl})</td>
</tr>
<tr>
<td>(\text{Ph} \text{N} \text{O} \text{Py} \text{N} \text{N} \text{OCH}_3)</td>
</tr>
</tbody>
</table>
Table 49

\[
\text{Chemical Structures}
\]

- \(\text{R}^4 \)
Table 52

<table>
<thead>
<tr>
<th>R⁴</th>
<th>R⁴</th>
<th>R⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Structure 1]</td>
<td>[Structure 2]</td>
<td>[Structure 3]</td>
</tr>
<tr>
<td>[Structure 4]</td>
<td>[Structure 5]</td>
<td>[Structure 6]</td>
</tr>
<tr>
<td>[Structure 7]</td>
<td>[Structure 8]</td>
<td>[Structure 9]</td>
</tr>
<tr>
<td>[Structure 10]</td>
<td>[Structure 11]</td>
<td>[Structure 12]</td>
</tr>
<tr>
<td>[Structure 13]</td>
<td>[Structure 14]</td>
<td>[Structure 15]</td>
</tr>
<tr>
<td>[Structure 16]</td>
<td>[Structure 17]</td>
<td>[Structure 18]</td>
</tr>
<tr>
<td>[Structure 19]</td>
<td>[Structure 20]</td>
<td>[Structure 21]</td>
</tr>
<tr>
<td>[Structure 22]</td>
<td>[Structure 23]</td>
<td>[Structure 24]</td>
</tr>
</tbody>
</table>
Table 53

[Chemical structures and formulas]

\(-R^4\)
Table 54

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td>12</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
<td>13</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td></td>
<td>14</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td></td>
<td>15</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td></td>
<td>16</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td></td>
<td>17</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td></td>
<td>18</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td></td>
<td>19</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>O</td>
<td></td>
<td>20</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>O</td>
<td></td>
<td>21</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td></td>
<td>22</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>
Table 55

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR²R⁸</th>
<th>Example</th>
<th>-NR²R⁸</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Table 56

<table>
<thead>
<tr>
<th>Example</th>
<th>-NR<sup>7</sup>R<sup>8</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>2</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4)</td>
</tr>
<tr>
<td>3</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>5</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>8</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>9</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>10</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>11</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>12</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>13</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>14</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>15</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>16</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>17</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>18</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>19</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
<tr>
<td>20</td>
<td>(\text{H} - \text{N} - \text{C}_6\text{H}_4\text{CH}_3)</td>
</tr>
</tbody>
</table>
Table 57

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td></td>
<td>9</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td></td>
<td>10</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td></td>
<td>11</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td></td>
<td>12</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td></td>
<td>13</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td></td>
<td>14</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td></td>
<td>15</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td></td>
<td>16</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>
Table 58
Table 59

[Chemical structures and formulas are shown here, but the text is not transcribed due to the complexity and density of the diagram.]
Table 60

- R^4

- $\text{phenyl-CH}_3\text{-I}$
- phenyl-Cl
- $\text{phenyl-O-CH}_2\text{-CH}=$
- $\text{phenyl-CH}_3\text{-Br}$
- phenyl-F
- $\text{phenyl-O-CH}=$
- $\text{phenyl-CH}_3\text{-OH}$
- phenyl-N-CF_3 phenyl-N-CH_3
- $\text{phenyl-CO}_2\text{-H}$ phenyl-N-CH_3
- phenyl-N-CH_3
Table 61
Table 62

[Chemical structures depicted in the image]
Table 63
Table 64

![Chemical Structures](image-url)
Table 65

\[
\begin{array}{c}
\text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{O} & \text{O} & \text{O} \\
\text{H} & \text{H} & \text{H} & \text{H} \\
\text{N} & \text{N} & \text{N} & \text{N} \\
\text{R}^4 & \text{R}^4 & \text{R}^4 & \text{R}^4 \\
\end{array}
\]
Table 66

<table>
<thead>
<tr>
<th>R^4</th>
<th>R^4</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Structure 1}]</td>
<td>[\text{Structure 2}]</td>
<td>[\text{Structure 3}]</td>
</tr>
<tr>
<td>[\text{Structure 4}]</td>
<td>[\text{Structure 5}]</td>
<td>[\text{Structure 6}]</td>
</tr>
<tr>
<td>[\text{Structure 7}]</td>
<td>[\text{Structure 8}]</td>
<td>[\text{Structure 9}]</td>
</tr>
<tr>
<td>[\text{Structure 10}]</td>
<td>[\text{Structure 11}]</td>
<td>[\text{Structure 12}]</td>
</tr>
<tr>
<td>[\text{Structure 13}]</td>
<td>[\text{Structure 14}]</td>
<td>[\text{Structure 15}]</td>
</tr>
<tr>
<td>[\text{Structure 16}]</td>
<td>[\text{Structure 17}]</td>
<td>[\text{Structure 18}]</td>
</tr>
<tr>
<td>[\text{Structure 19}]</td>
<td>[\text{Structure 20}]</td>
<td>[\text{Structure 21}]</td>
</tr>
<tr>
<td>[\text{Structure 22}]</td>
<td>[\text{Structure 23}]</td>
<td>[\text{Structure 24}]</td>
</tr>
<tr>
<td>[\text{Structure 25}]</td>
<td>[\text{Structure 26}]</td>
<td>[\text{Structure 27}]</td>
</tr>
<tr>
<td>[\text{Structure 28}]</td>
<td>[\text{Structure 29}]</td>
<td>[\text{Structure 30}]</td>
</tr>
<tr>
<td>[\text{Structure 31}]</td>
<td>[\text{Structure 32}]</td>
<td>[\text{Structure 33}]</td>
</tr>
<tr>
<td>[\text{Structure 34}]</td>
<td>[\text{Structure 35}]</td>
<td>[\text{Structure 36}]</td>
</tr>
<tr>
<td>[\text{Structure 37}]</td>
<td>[\text{Structure 38}]</td>
<td>[\text{Structure 39}]</td>
</tr>
<tr>
<td>[\text{Structure 40}]</td>
<td>[\text{Structure 41}]</td>
<td>[\text{Structure 42}]</td>
</tr>
<tr>
<td>[\text{Structure 43}]</td>
<td>[\text{Structure 44}]</td>
<td>[\text{Structure 45}]</td>
</tr>
<tr>
<td>[\text{Structure 46}]</td>
<td>[\text{Structure 47}]</td>
<td>[\text{Structure 48}]</td>
</tr>
<tr>
<td>[\text{Structure 49}]</td>
<td>[\text{Structure 50}]</td>
<td>[\text{Structure 51}]</td>
</tr>
<tr>
<td>[\text{Structure 52}]</td>
<td>[\text{Structure 53}]</td>
<td>[\text{Structure 54}]</td>
</tr>
<tr>
<td>[\text{Structure 55}]</td>
<td>[\text{Structure 56}]</td>
<td>[\text{Structure 57}]</td>
</tr>
<tr>
<td>[\text{Structure 58}]</td>
<td>[\text{Structure 59}]</td>
<td>[\text{Structure 60}]</td>
</tr>
<tr>
<td>[\text{Structure 61}]</td>
<td>[\text{Structure 62}]</td>
<td>[\text{Structure 63}]</td>
</tr>
<tr>
<td>[\text{Structure 64}]</td>
<td>[\text{Structure 65}]</td>
<td>[\text{Structure 66}]</td>
</tr>
</tbody>
</table>
Table 67

<table>
<thead>
<tr>
<th>Example</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{H-N-} \text{Ph})</td>
</tr>
<tr>
<td>2</td>
<td>(\text{N-Ph})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{N-CH}_3)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{N-CH}_3)</td>
</tr>
<tr>
<td>5</td>
<td>(\text{N-Ph})</td>
</tr>
<tr>
<td>6</td>
<td>(\text{N-CH}_3)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{N-CH}_3)</td>
</tr>
<tr>
<td>8</td>
<td>(\text{N-Ch}_3)</td>
</tr>
<tr>
<td>9</td>
<td>(\text{N-Py})</td>
</tr>
<tr>
<td>10</td>
<td>(\text{N-Py})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>R^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(\text{H-N-} \text{Ph})</td>
</tr>
<tr>
<td>12</td>
<td>(\text{N-Ph})</td>
</tr>
<tr>
<td>13</td>
<td>(\text{N-CH}_3)</td>
</tr>
<tr>
<td>14</td>
<td>(\text{N-Ch}_3)</td>
</tr>
<tr>
<td>15</td>
<td>(\text{N-Ph-O-Ch}_3)</td>
</tr>
<tr>
<td>16</td>
<td>(\text{N-Ph-O-Ch}_3)</td>
</tr>
<tr>
<td>17</td>
<td>(\text{N-Ph-Cl})</td>
</tr>
<tr>
<td>18</td>
<td>(\text{N-Ph-Cl})</td>
</tr>
<tr>
<td>19</td>
<td>(\text{N-Ph-Ch}_3)</td>
</tr>
<tr>
<td>20</td>
<td>(\text{N-Ph-Ch}_3)</td>
</tr>
</tbody>
</table>
Table 68

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Ar</th>
<th>Example</th>
<th>X</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>[structure]</td>
<td>9</td>
<td>S</td>
<td>[structure]</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>[structure]</td>
<td>10</td>
<td>S</td>
<td>[structure]</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>[structure]</td>
<td>11</td>
<td>S</td>
<td>[structure]</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>[structure]</td>
<td>12</td>
<td>S</td>
<td>[structure]</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>[structure] N-Ch₃</td>
<td>13</td>
<td>S</td>
<td>[structure] N-Ch₃</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>[structure] N-Ph</td>
<td>14</td>
<td>S</td>
<td>[structure] N-Ph</td>
</tr>
<tr>
<td>7</td>
<td>O</td>
<td>[structure] N-Ph</td>
<td>15</td>
<td>S</td>
<td>[structure] N-Ph</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>[structure]</td>
<td>16</td>
<td>S</td>
<td>[structure]</td>
</tr>
</tbody>
</table>
Table 70
Table 72
Table 73
Table 74

<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Table 76

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

HO-O-NHOH

HO-O-NHOH

HO-O-NHOH

HO-O-NHOH

CH_3-O-S-N-S-N-O

O-S-N-S-N-O

O-S-N-S-N-O

F_3C-N-C-N-S-N-O
Table 77

Chemical structures labeled 1 to 12.
Table 78

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Table 80
Table 81

<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Table 82

<table>
<thead>
<tr>
<th></th>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Structure 3</th>
<th>Structure 4</th>
<th>Structure 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 83
Table 84

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 85

<table>
<thead>
<tr>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Table 87
Table 88
Treatment Process
A process (method) for treating a host
mammal having a condition associated with
pathological matrix metalloprotease activity is also
contemplated. That process comprises administering a
compound described hereinbefore in an MMP enzyme-
inhibiting effective amount to a mammalian host
having such a condition. The use of administration
repeated a plurality of times is particularly
contemplated.
A contemplated compound is used for
treating a host mammal such as a mouse, rat, rabbit,
dog, horse, primate such as a monkey, chimpanzee or
human that has a condition associated with
pathological matrix metalloprotease activity.
Also contemplated is the similar use of a
contemplated compound in the treatment of a disease
state that can be affected by the activity of
metalloproteases such as TNF-α convertase. Exemplary
of such disease states are the acute phase responses
of shock and sepsis, coagulation responses,
hemorrhage and cardiovascular effects, fever and
inflammation, anorexia and cachexia.
In treating a disease condition associated
with pathological matrix metalloproteinase activity,
a contemplated MMP inhibitor compound can be used,
where appropriate, in the form of an amine salt
derived from an inorganic or organic acid. Exemplary
acid salts include but are not limited to the
following: acetate, adipate, alginate, citrate,
aspartate, benzoate, benzenesulfonate, bisulfate,
butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydriodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, mesylate and undecanoate.

Also, a basic nitrogen-containing group can be quaternized with such agents as lower alkyl (C_1-C_6) halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain (C_8-C_20) halides such as decyl, lauryl, myristyl and dodecyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others to provide enhanced water-solubility.

Water or oil-soluble or dispersible products are thereby obtained as desired. The salts are formed by combining the basic compounds with the desired acid.

Other compounds useful in this invention that are acids can also form salts. Examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases or basic quaternary ammonium salts.

In some cases, the salts can also be used as an aid in the isolation, purification or resolution of the compounds of this invention.

Total daily dose administered to a host mammal in single or divided doses of an MMP enzyme-
inhibiting effective amount can be in amounts, for example, of about 0.001 to about 100 mg/kg body weight daily, preferably about 0.001 to about 30 mg/kg body weight daily and more usually about 0.01 to about 10 mg. Dosage unit compositions can contain such amounts or submultiples thereof to make up the daily dose. A suitable dose can be administered, in multiple sub-doses per day. Multiple doses per day can also increase the total daily dose, should such dosing be desired by the person prescribing the drug.

The dosage regimen for treating a disease condition with a compound and/or composition of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex, diet and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound employed, whether a drug delivery system is utilized and whether the compound is administered as Part of a drug combination. Thus, the dosage regimen actually employed can vary widely and therefore can deviate from the preferred dosage regimen set forth above.

A compound useful in the present invention can be formulated as a pharmaceutical composition. Such a composition can then be administered orally, parenterally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration can also involve the use of transdermal administration such as transdermal

Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. Dimethyl acetamide, surfactants including ionic and non-ionic detergents, polyethylene glycols can be used. Mixtures of solvents and wetting agents such as those discussed above are also useful.

Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa
butter, synthetic mono- di- or triglycerides, fatty acids and polyethylene glycols that are sold at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.

Solid dosage forms for oral administration can include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the compounds of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds can be admixed with lactose, sucrose, starch powder, cellulose esters of alkanolic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets can contain a controlled-release formulation as can be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. In the case of capsules, tablets, and pills, the dosage forms can also comprise buffering agents such as sodium citrate, magnesium or calcium carbonate or bicarbonate. Tablets and pills can additionally be prepared with enteric coatings.

For therapeutic purposes, formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions can be prepared from sterile powders or granules having one or more of the carriers or
diluents mentioned for use in the formulations for oral administration. The compounds can be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions can also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the mammalian host treated and the particular mode of administration.

Preparation of Useful Compounds

Procedures are provided in the discussion and schemes that follow of exemplary chemical transformations that can be useful for the preparation of compounds of this invention. These syntheses, as with all of the reactions discussed herein, can be carried out under a dry inert atmosphere such a nitrogen or argon if desired. Selected reactions known to those skilled in the art, can be carried out under a dry atmosphere such as dry air whereas other synthetic steps, for example,
aqueous acid or base ester or amide hydrolyses, can be carried out under laboratory air.

Aryl and heteroaryl aryl compounds of this invention as defined above by W can be prepared in a similar manner as is known to those skilled in the art. It should be understood that the discussion below refers to both aromatic systems, i.e., heteroaromatics and carbon aromatics, even though only one may be specifically mentioned.

In general, the choices of starting material and reaction conditions can vary as is well known to those skilled in the art. Usually, no single set of conditions is limiting because variations can be applied as required and selected by one skilled in the art. Conditions will also will be selected as desired to suit a specific purpose such as small scale preparations or large scale preparations. In either case, the use of less safe or less environmentally sound materials or reagents will usually be minimized. Examples of such less desirable materials are diazomethane, diethyl ether, heavy metal salts, dimethyl sulfide, some halogenated solvents, benzene and the like. In addition, many starting materials can be obtained from commercial sources from catalogs or through other arrangements.

An aromatic compound of this invention where y is 1 can be prepared as illustrated by converting a carbonyl group bonded to an aromatic (e.g., benzene) ring ortho-substituted with a sulfide. The sulfide can be prepared via a nucleophilic displacement reaction of the ortho fluoride.

The nucleophile can be a thiol or thiolate anion prepared from a aryl thiol discussed below. A
preferred thiol is 4-phenoxybenzenethiol converted in situ into its anion (thiolate) using potassium carbonate in iso-propyl alcohol at reflux temperature.

The carbonyl group can be a aldehyde, ketone or carboxylic acid derivative, i.e., a protected carboxylic acid or hydroxamate. A preferred carbonyl group is an aldehyde and a preferred aldehyde is 2-flourobenzaldehyde (ortho-fluorobenzaldehyde). A ketone can be converted by oxidation into an acid and/or an acid derivative using reagents such as those discussed below for oxidation of a sulfide or other methods well known in the art. It is noted that this oxidation can accomplish the oxidation of a sulfide intermediate into the corresponding sulfone in the same reaction system; i.e., in the same pot, if desired.

The carbonyl group can then be homologated if desired by reaction with an anion to form an addition compound. An example of a homologation reagent is a tri-substituted methane compound such as tetraethyl dimethylammoniummethylenediphosphonate or trimethylorthoformate. Tetraethyl dimethylammonium-methylenediphosphonate is preferred. Hydrolysis of the reaction product can provide a phenylacetic substituted on the aromatic ring with a sulfide of this invention. Acid hydrolysis is preferred. Acids and bases are discussed below and hydrochloric acid is preferred.

The sulfide can then be oxidized to form a sulfone in one or two steps as discussed below. A preferred oxidizing agent is hydrogen peroxide in acetic acid. The carboxylic acid product or
intermediate of this invention can then be converted into a protected derivative such as an ester or converted into an activated carboxyl group for reaction with hydroxylamine or and protected hydroxylamine; i.e., a hydroxamate. The conversion of an acid into a hydroxamate is discussed below as is the coupling process and removal of a protecting group if required.

The preferred protected hydroxamic acid derivative is the O-tetrahydropyranyl compound and the preferred coupling procedure utilizes a diimide (EDC), hydroxybenzotriazol and DMF solvent for the coupling reaction to form the intermediate hydroxybenzotriazol activated ester. A preferred reagent for removal of the THF protecting group is hydrochloric acid.

Alkylation of the acid at the carbon alpha to the carbonyl group to form the compounds of this invention can be carried out by first forming an anion using a base. Bases are discussed below. The preferred bases are strong bases that are either hindered and/or non-nucleophilic such as lithium amides, metal hydrides or lithium alkyls.

Following or during formation of the anion, an alkylating agent (an electrophile) is added that undergoes a nucleophilic substitution reaction. Non-limiting examples of such alkylating agents are haloalkanes, dihaloalkanes, haloalkanes also substituted by an activated ester group or activated esters and alkanes substituted with sulfate esters.

Activated ester groups are well known in the art and can include, for example, an activated ester of an alcohol or a halo compound, an ester of a
haloalcohol such as a bromo-, iodo- or chloro-
derivative of a tosylate, triflate or mesylate
activated ester. Compounds wherein, for example, R²
and R³ are taken together as defined above, can be
prepared using disubstituted alkylating agent; i.e.,
alkylating agents with two leaving groups in the same
molecule. For example, 1,5-dihalo-diethylether or
analogous reagents containing one or more sulfate
ester leaving groups replacing one or more halogens
can be used to form a pyran ring. A similar sulfur,
nitrogen or protected nitrogen alkylating agent can
be used to form a thiapyran or piperidine ring. A
thiapyran can be oxidized to form a sulfoxide or a
sulfone using methods discussed herein. A leaving
group in an electrophilic reagent, as is well known
in the art, can be a halogen such as chlorine,
bromine or iodine or an active ester such as a
sulfonate ester, e.g., toluenesulfonate (tosylate),
triflate, mesylate and the like as discussed above.

The conversion of a cyclic amino acid,
heterocycle or alpha-amino acid defined by R² and R³
that can include an amino acid (nitrogen
heterocycle), which can be protected or unprotected,
into a compound of this invention can be accomplished
by alkylation or acylation. The carboxylic acid
group can be protected with a group such as an alkyl
ester such as methyl, ethyl, tert-butyl and the like
or a tetrahydropyranyl ester or an arylalkyl ester
such as benzyl or it can remain as a carboxylic acid.
A protected amino acid such as an ethyl ester is
preferred. The substituent on the heterocycle group
is as defined above and can include hydrogen, tert-
butoxycarbonyl (BOC or tBOC), benzyloxy carbonyl (Z)
and iso-butyloxy carbonyl groups. In addition, the amine can be considered as being a protected intermediate as well as being a product of this invention when the N-substituent is not hydrogen.

The nitrogen substituent on the amino acid portion of the compounds of this invention can be varied. In addition, that variation can be accomplished at different stages in the synthetic sequence based on the needs and objectives of the skilled person preparing the compounds of this invention. The nitrogen side chain variations can include replacing the hydrogen substituent with a alkyl, arylalkyl, alkene or alkyne.

This can be accomplished by methods well known in the art such as alkylation of the amine with an electrophile such as halo- or sulfate ester (activated ester) derivative of the desired sidechain. An alkylation reaction is typically carried out in the presence of a base such as those discussed above and in a pure or mixed solvent as discussed above. A preferred base is postassium carbonate and a preferred solvent is DMF.

The alkenes, arylalkenes, arylalkynes and alkynes so formed can be reduced, for example, by hydrogenation with a metal catalyst and hydrogen, to an alkyl or arylalkyl compound of this invention and a alkyne or arylalkyne can be reduced to a alkene, arylalkene, arylakane or alkane with under catalytic hydrogenation conditions as discussed herein or with an deactivated metal catalyst. Catalysts can include, for example, Pd, Pd on Carbon, Pt, PtO₂ and the like. Less robust catalysts (deactivated)
include such thing as Pd on BaCO₃ or Pd with quinoline or/and sulfur.

An alternative method for alkylation of the amine nitrogen is reductive alkylation. This process, well known in the art, allows treatment of the secondary amine with an aldehyde or ketone in the presence of a reducing agent such as borane, borane:THF, borane:pyridine, lithium aluminum hydride. Alternatively, reductive alkylation can be carried out under hydrogenation conditions in the presence of a metal catalyst. Catalysts, hydrogen pressures and temperatures are discussed and are well known in the art. A preferred reductive alkylation catalyst is borane:pyridine complex.

In the case where an intermediate is a carboxylic acid, standard coupling reactions well known in the art can be used to form the compounds of this invention including protected intermediates. For example, the acid can be converted into an acid chloride, mixed anhydride or activated ester and reacted with an alcohol, amine, hydroxylamine or a protected hydroxylamine in the presence of base to form the amide, ester, hydroxamic acid, protected hydroxamic acid. This is the same product as discussed above. Bases are discussed above and include N-methyl-morpholine, triethylamine and the like.

Coupling reactions of this nature are well known in the art and especially the art related to peptide and amino acid chemistry. Removal of the protecting group can be accomplished, if desired, using standard hydrolysis conditions such as base
hydrolysis or exchange or acid exchange or hydrolysis as discussed.

The Schemes and/or discussion also illustrate conversion of a carboxylic acid protected as an ester or amide into an hydroxamic acid derivative such as a O-arylalkylether or O-cycloalkoxyalkylether group such as the THP group. Methods of treating an acid or acid derivative with hydroxylamine or a hydroxylamine derivative to form a hydroxamic acid or hydroxamate derivative are discussed above. Hydroxylamine can be used in an exchange reaction by treatment of a precursor compound where the carboxyl is protected as an ester or amide with one or more equivalents of hydroxylamine hydrochloride or hydroxylamine at room temperature or above to provide a hydroxamic acid directly. The solvent or solvents, usually protic or protic solvent mixtures such as those listed herein.

This exchange process can be further catalyzed by the addition of additional acid. Alternatively, a base such as a salt of an alcohol used as a solvent, for example, sodium methoxide in methanol, can be used to form hydroxylamine from hydroxylamine hydrochloride in situ which can exchange with an ester or amide. As mentioned above, exchange can be carried out with a protected hydroxyl amine such as tetrahydropyranyl-hydroxyamine (THPONH₂), benzylhydroxylamine (BnONH₂), O-(trimethylsilyl)hydroxylamine and the like, in which case the compounds formed are tetrahydropyranyl (THP), benzyl (Bn) or TMS hydroxamic acid derivatives. Removal of the protecting groups when desired, for example, following further
transformations in another Part of the molecule or following storage, can be accomplished by standard methods well known in the art such as acid hydrolysis of the THP group as discussed above or reductive removal of the benzyl group with hydrogen and a metal catalyst such as palladium, platinum, palladium on carbon or nickel.

alpha-Amino acids or alpha-hydroxy carboxylic acids or protected carboxylic acids, hydroxamates or hydroxamic acid derivatives or intermediates (precursors) of this invention can be prepared by displacing, for example, a halogen, sulfate ester or other electrophile, from the alpha carbon of an acid or a derivative as listed. Methods for the halogenation of acids, esters, acid chlorides and like are well known in the art and include, for example, the HVZ reaction, treatment with CuCl₂, N-bromo- or N-chloro-succinimide, I₂, carbon tetraiodide or bromide and the like. The halogen can be displaced with a nucleophile in an SN₂ reaction. Nucleophiles can include hydroxide, ammonia or amines.

The aryl or heteroaryl carboxylic acids of this invention where Y is 0 and z is 1 can be prepared from heteroaryl or aryl fused lactones. An example of a fused lactone is phthalide. A preferred starting material is phthalide. This compound can be treated with an thiol, thiolate or metal -SH in order to undergo a SN₂ displacement at the methylene carbon to provide a sulfide or thiol compound of this invention or intermediate to a compound of this invention. A preferred thiol is 4-phenoxy-benzenethiol that is used in the presence of
potassium carbonate as a preferred base. The sulfide can be oxidized, before or after conversion of the acid to a hydroxamate or hydroxamic acid, to a sulfone of this invention. A preferred oxidizing agent is meta-chloroperbenzoic acid.

A preferred acid activating group is the chloride prepared by reaction of an acid with oxalyl chloride as a preferred reagent. A phthalide or a heteroaryl analog of a phthalide can be treated with a Lewis acid such as zinc chloride or zinc bromide along with a halogenating reagent such as phosphorus trichloride or thionyl bromide or the like to form a ortho-(haloalkyl)-aryl acid or ortho-(haloalkyl)-heteroaryl acid derivative. Examples include bromomethyl acid bromides and chloromethyl acid chlorides. These carboxylic acids can be derivatized with protecting groups, hydroxamic acids or hydroxamic acid precursors (hydroxamates) or hydrolyzed to the acid as required. A preferred hydroxamate forming reagent is O-(trimethylsilyl)hydroxylamine (TMS-hydroxylamine) and removal of the TMS protecting group is preferably accomplished by acid hydrolysis using hydrochloric acid.

Displacement (SN₂) of the halogen in this example by a thiol in the presence of base or a preformed thiolate can be accomplished as discussed and/or shown and as is well known in the art. Again, oxidation of the sulfide can be carried out before or after derivatization of the carboxylic acid as discussed to prepare the hydroxamic acids of this invention. Removal of the protecting groups can be
carried out using acid hydrolysis or reduction as discussed elsewhere in this document.

The alcohols of this invention can be protected or deprotected as required or desired. Protecting groups can include THP ethers, acylated compounds and various silyl derivatives. These groups, including there protection and removal, are well known in the art.

Examples of bases that can be used include, for example, metal hydroxides such as sodium, potassium, lithium or magnesium hydroxide, oxides such as those of sodium, potassium, lithium, calcium or magnesium, metal carbonates such as those of sodium, potassium, lithium, calcium or magnesium, metal bicarbonates such as sodium bicarbonate or potassium bicarbonate, primary (I°), secondary (II°) or tertiary (III°) organic amines such as alkyl amines, arylalkyl amines, alkylarylalkyl amines, heterocyclic amines or heteroaryl amines, ammonium hydroxides or quaternary ammonium hydroxides. As non-limiting examples, such amines can include triethyl amine, trimethyl amine, diisopropyl amine, methyl-diisopropyl amine, diazabicyclononane, tribenzyl amine, dimethylbenzyl amine, morpholine, N-methylmorpholine, N,N'-dimethylpiperazine, N-ethylpiperidine, 1,1,5,5-tetramethylpiperidine, dimethylaminopyridine, pyridine, quinoline, tetramethylethylenediamine and the like.

Non-limiting examples of ammonium hydroxides, usually made from amines and water, can include ammonium hydroxide, triethyl ammonium hydroxide, trimethyl ammonium hydroxide, methyl-diisopropyl ammonium hydroxide, tribenzyl
ammonium hydroxide, dimethylbenzyl ammonium hydroxide, morpholinium hydroxide, N-methylmorpholinium hydroxide, N,N'-dimethylpiperazinium hydroxide, N-ethylpiperidinium hydroxide, and the like. As non-limiting examples, quaternary ammonium hydroxides can include tetraethyl ammonium hydroxide, tetramethyl ammonium hydroxide, dimethylidiospropyl ammonium hydroxide, benzylmethylidiospropyl ammonium hydroxide, methylidiazabicyclononyl ammonium hydroxide, methyltribenzyl ammonium hydroxide, N,N-dimethylmorpholinium hydroxide, N,N,N', N'-tetramethylpiperazinium hydroxide, and N-ethyl-N'-hexylpiperidinium hydroxide and the like. Metal hydrides, amide or alcohohates such as calcium hydride, sodium hydride, potassium hydride, lithium hydride, sodium methoxide, potassium tert-butoxide, calcium ethoxide, magnesium ethoxide, sodium amide, potassium diisopropyl amide and the like can also be suitable reagents. Organometallic deprotonating agents such as alkyl or aryl lithium reagents such as methyl, phenyl, butyl, iso-butyl, sec-butyl or tert-butyl lithium, nodium or potassium salts of dimethylsulfoxide, Grignard reagents such as methylmagnesium bromide or methymagnesium chloride, organocadium reagents such as dimethylcadmium and the like can also serve as bases for causing salt formation or catalyzing the reaction. Quaternary ammonium hydroxides or mixed salts are also useful for aiding phase transfer couplings or serving as phase transfer reagents. Preferred base for use in the alkylation reaction is lithium diisopropyl amide as mentioned above.
Reaction media in general can be comprised of a single solvent, mixed solvents of the same or different classes or serve as a reagent in a single or mixed solvent system. The solvents can be protic, non-protic or dipolar aprotic. Non-limiting examples of protic solvents include water, methanol (MeOH), denatured or pure 95% or absolute ethanol, isopropanol and the like.

Typical non-protic solvents include acetone, tetrahydrofuran (THF), dioxane, diethylether, tert-butylmethyl ether (TBME), aromatics such as xylene, toluene, or benzene, ethyl acetate, methyl acetate, butyl acetate, trichlороethane, methylene chloride, ethylendichloride (EDC), hexane, heptane, isoooctane, cyclohexane and the like. Dipolar aprotic solvents include compounds such as dimethylformamide (DMF), dimethylacetamide (DMAC), acetonitrile, nitromethane, tetramethylurea, N-methylpyrrolidone and the like.

Non-limiting examples of reagents that can be used as solvents or as Part of a mixed solvent system include organic or inorganic mono- or multi-protic acids or bases such as hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, citric acid, succinic acid, triethylamine, morpholine, N-methylmorpholine, piperidine, pyrazine, piperazine, pyridine, potassium hydroxide, sodium hydroxide, alcohols or amines for making esters or amides or thiols for making the products of this invention and the like. Room temperature or less or moderate warming (-10°C to 60°C) are the preferred temperatures of the reaction. If desired, the reaction temperature might be about
-78°C to the reflux point of the reaction solvent or solvents. The preferred solvent for an alkylation reaction is tetrahydrofurane (THF).

Acids are used in many reactions during various synthesis. The Schemes as well as this discussion preparative methods illustrate acid use for the removal of the THP protecting group to produce a hydroxamic acid, removal of a tert-butoxy carbonyl group, hydroxylamine/ester exchange and the like. Acid hydrolysis of carboxylic acid protecting groups or derivatives is well known in the art. These methods, as is well known in the art, can use acid or acidic catalysts. The acid can be mono-, di- or tri-protic organic or inorganic acids. Examples of acids include hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid, citric acid, succinic acid, hydrobromic acid, hydrofluoric acid, carbonic acid, phosphorus acid, p-toluene sulfonic acid, trifluoromethane sulfonic acid, trifluoroacetic acid, difluoroacetic acid, benzoic acid, methane sulfonic acid, benzene sulfonic acid, 2,6-dimethylbenzene sulfonic acid, trichloroacetic acid, nitrobenzoic acid, dinitrobenzoic acid, trinitrobenzoic acid, and the like. They can also be Lewis acids such as aluminum chloride, boron trifluoride, antimony pentafluoride and the like.

Contemplated compounds can include compounds wherein a nitrogen of an amine is acylated to provide, for example, amino acid carbamates. Non-limiting examples of these carbamates are the carbobenzoxy carbonyl (Z, CBZ, benzyloxycarbonyl), iso-butoxycarbonyl and tert-butoxycarbonyl (BOC, t-
BOC) compounds. The materials can be made, as discussed above, at various stages in the synthesis based on the needs and decisions made by a person skilled in the art using methods well known in the art.

Useful synthetic techniques and reagents include those used in protein, peptide and amino acid synthesis, coupling and transformation chemistry. The use of the tert-butoxycarbonyl (BOC) and benzylloxycarbonyl (Z) as well as their synthesis and removal are examples of such protection or synthesis schemes. Transformations of amino acids, amino esters, amino acid hydroxamates, amino acid hydroxamate derivatives and amino acid amides of this invention or compounds used in this invention is discussed herein or/and shown in the schemes. This includes, for example, active ester or mixed anhydride couplings wherein preferred bases, if required, are tertiary amines such as N-methylmorpholine. Reagents for protection of the amine group of the protected amino acids include carbobenzoxy chloride, iso-butylchloroformate, tert-butoxycarbonyl chloride, di-tert-butyl dicarbonate and the like which are reacted with the amine in non-protic or dipolar aprotic solvents such as DMF or THF or mixtures of solvents.

Removal of protecting groups such as carbamates, silyl groups and benzyl, p-methoxybenzyl, or other substituted benzyl groups or diphenylmethyl (benzydryl) or triphenylmethyl (trityl) can be carried out at different stages in the synthesis of the compounds of this invention as required by methods selected by one skilled in the art. These
methods are well known in the art including the amino acid, amino acid coupling, peptide synthesis, peptide mimetic synthesis art. Removal methods can include catalytic hydrogenation, base hydrolysis, carbonyl addition reactions, acid hydrolysis and the like. Both the preparation and removal of protecting groups, for example, carbamates, benzyl groups and/or substituted arylalkyl groups is discussed in Green, T., Protecting Groups in Organic Chemistry, Second ed., John Wiley & Sons, New York (1991). A preferred method of removal of a BOC group is HCl gas in methylene chloride which, following normal workup, provides directly an HCl salt of an aminoacid of this invention.

Sulfone compounds such as those where R^1 is nitrobenzene can be prepared as compounds of this invention by synthesis of a thiol, displacement of an electrophile by the nucleophilic thiol or thiolate and oxidation of the product thiol ether to the sulfone. For example, displacement of the electrophilic group with a nitro-benzene thiol can yield a compound where R^1 is nitrobenzene, whose nitro group can be reduced to provide a useful amino compound wherein R^1 is an aniline. It should be noted that nitrobenzenethiol is an example and not to be considered as limiting or required. Oxidation of the thioether product can be carried out as discussed below when desired.

The reduction of nitro groups to amines is well known in the art with a preferred method being hydrogenation. There is usually a metal catalyst such as Rh, Pd, Pt, Ni or the like with or without an additional support such as carbon, barium carbonate
and the like. Solvents can be protic or non-protic pure solvents or mixed solvents as required. The reductions can be carried out at atmospheric pressure to a pressure of multiple atmospheres with atmospheric pressure to about 40 pounds per square inch (psi) preferred.

The resulting amino group can be alkylated if desired. It can also be acylated with, for example, an aroyl chloride, heteroaryl chloride or other amine carbonyl forming agent to form an R^1 amide of this invention. The amino sulfone or thioether can also be reacted with a carbonic acid ester chloride, a sulfonyl chloride, a carbamoyl chloride or an isocyanate to produce the corresponding carbamate, sulfonamides, or ureas of this invention. Acylation of amines of this type are well known in the art and the reagents are also well known.

Usually these reactions are carried out in aprotic solvents under an inert or and dry atmosphere at about 45°C to about -10°C. An equivalent of a non-competitive base is usually used with sulfonyl chloride, acid chloride or carbonyl chloride reagents. Following or before this acylation step, synthesis of the hydroxamic acid products of this invention can proceed as discussed.

Other thiol reagents can also be used in the preparation of compounds of this invention. Examples are fluoroaryl, fluoro heteroaryl, azidoaryl or azidoheteroaryl or heteroaryl thiol reagents. These thiols can be used a nucleophiles to as discussed above. Oxidation to the corresponding sulfone can then be carried out.
The sulfones, if substituted by a hydrazine or substituted hydrazine, can be oxidized to a hydrazone of this invention. The fluoro substituted sulfone can be treated with a nucleophile such as ammonia, a primary amine, a quaternary ammonium or metal azide salt or a hydrazine under pressure if desired, to provide an azido, amino, substituted amino or hydrazino group. Azides can be reduced to an amino group using, for example, hydrogen with a metal catalyst or metal chelate catalyst or by an activated hydride transfer reagent. The amines can be acylated as discussed above.

Methods of preparing useful aminethiol intermediates include protection of an aromatic or heteroaromatic thiol with trityl chloride to form the trityl thiol derivative, treatment of the amine with as reagent such as an aromatic or heteraromatic acid chloride to form the amide, removal of the trityl group, with acid to form the thiol. Acylating agents include benzoyl chloride and trityl removing reagents include trifluoroacetic acid and trisopropylsilane.

The fluorine on the fluorosulfones of this invention can also be displaced with other aryl or heteroaryl nucleophiles for form compounds of this invention. Examples of such nucleophiles include salts of phenols, thiophenols, -OH group containing aromatic heterocyclic compounds or -SH containing heteroaryl compounds. Tautomers of such groups azo, hydrazo, -OH or -SH are specifically included as useful isomers.

A preferred method of preparing intermediates in the synthesis of the substituted sulfones is by oxidation of an appropriate
acetophenone, prepared from a fluoroacetophenone, with for example, peroxymonosulfate, to form the corresponding phenol-ether. The phenol-ether is converted into its dimethylthiocarbamoyl derivative using dimethylthiocarbamoyl chloride, rearranged into the dimethylthiocarbamoyl derivative with heat to provide the thiol required for preparation of the thioether intermediate discussed and/or shown in the schemes.

The compounds of this invention including protected compounds or intermediates can be oxidized to the sulfones as shown in the schemes and/or discussed above. The selection of the stage of the alternative synthesis to implement this conversion of sulfides into the sulfones or sulfoxides can be carried out by one skilled in the art.

Reagents for this oxidation process may, in a non-limiting example, include peroxymonosulfate (OXONE®), hydrogen peroxide, meta-chloroperbenzoic acid, perbenzoic acid, peracetic acid, perlactic acid, tert-butyl peroxide, tert-butyl hydroperoxide, tert-butyl hypochlorite, sodium hypochlorite, hypochlorous acid, sodium meta-periodate, periodic acid, ozone and the like. Protic, non-protic, dipolar aprotic solvents, either pure or mixed, can be chosen, for example, methanol/water. The oxidation can be carried out at temperature of about -78° to about 50° degrees centigrade and normally selected from a range -10°C to about 40°C.

Preparation of the sulfones can also be carried out in two steps by the oxidation of a sulfide to a sulfoxide followed by oxidation of the sulfoxide to the sulfone. This can occur in one pot.
or by isolation of the sulfoxide. This latter oxidation can be carried out in a manner similar to the oxidation directly to the sulfone except that about one equivalent of oxidizing agent can be used preferably at a lower temperature such as about zero degrees C. Preferred oxidizing agents include peroxymonosulfate and meta-chloroperbenzoic acid.

A sulfonamide of this invention can be prepared in a similar manner using methods and procedures discussed hereinbefore. Aryl, substituted aryl, heteroaryl or substituted heteroaryl dicarboxylic anhydrides, imides (e.g., phthalic anhydrides or imides), their sulfonyl analogs or mixed carboxylic-sulfonic acid amides, imides (e.g., 1,2-benzenethiazole-3(2H)-one 1,1-dioxides) or anhydrides are useful starting material substrates. Reactions utilizing such substrates can be carried out before or after changes in the substitution patterns of the aryl or heteroaryl rings are made.

The sulfonamides can also be prepared from heterocyclic compounds such as saccharine, saccharine analogs and saccharine homologs. Such compounds and methods are well known in the literature. For example, alkylation of sodium saccharine followed by ring opening or ring opening followed by alkylation permits coupling toto form a protected hydroxamic acid derivative such as a THP (tetrahydropyranyl) or TMS (trimethylsilyl) derivative. Hydrolysis of the protecting group provides the hydroxamic acid. The sulfonamide nitrogen can be further alkylated, acylated or otherwise treated to form various compounds of, for example, Formula VI at this stage of prior to coupling and deprotection.
As a non-limiting example, treatment of a mixed sulfonic/carboxylic anhydride (2-sulfobenzoic acid cyclic anhydride) with an alcohol or the salt of an alcohol or a protected hydroxamic acid provides a ring opened carboxylic acid derivative (ester or anhydride, respectively) as a sulfonic acid or salt. The carboxylic acid derivative so prepared is a product of this invention, and can be converted by standard procedures with reagents such as thionyl chloride, phosphorus pentachloride or the like into a sulfonylhalide.

Reaction of the sulfonylhalide with a primary amine, secondary amine or ammonia with or without added base provides a sulfonamide or sulfonimide of this invention, a sulfonamide that can be alkylated to produce a sulfonamide of this invention or an intermediate to a sulfonamide of this invention. These imides or amides of sulfonamides can be alkylated as desired before or after opening to a benzoic acid substituted sulfonamide or phenylacetic acid substituted sulfonamide.

Compounds prepared as above with protected carboxyl groups are readily converted by exchange, combination exchange/hydrolysis or hydrolysis-coupling processes into the hydroxamic acids of this invention. The exchange/conversion of esters, amides and protected hydroxylamines (protected hydroxamic acids) into hydroxamic acids is discussed herein. For example, a sulfonamide-ester can be hydrolyzed to a carboxylic acid that is coupled via a benzotriazole active ester with a THP-hydroxylamine reagent and then deprotected. Phenylacetic acid analogs of the above sulfo benzoic acid compounds can also be used
in processes similar to those above to prepare the corresponding phenylacetic-derived compounds of this invention.

Aryl or heteraryl 5- or 6-membered ring thiolactones or dithiolactones are also desirable starting materials for the preparation of compounds of this invention. Such thiolactones can be opened to form protected carboxylic acid derivatives such as esters, amides or hydroxylamides before or after changes in the substitution patterns of the aryl or heteroaryl rings are made. Oxidation of the thiol function can be achieved prior to or following substitution changes depending upon the needs and wishes of the skilled chemist. Sulfur compounds can also be oxidized directly to sulfonyl chloride compounds using oxidizing agents whose mechanism involved putative positive chlorine species. Oxidizing agents and methods are discussed hereinafore. The sulfonic acid derivatives so obtained are then converted into the sulfonamides of this invention as previously discussed.

Changes in substitution patterns on the rings of the compounds of this invention can be carried out by processes well known in the art. Non-limiting examples of such processes include diazonium chemistry, aromatic ring substitution reactions or addition-elimination sequences, metatation reactions and halogen metal exchange reactions.

A substituted or unsubstituted aryl or heteroaryl sulfonic acid, sulfonic acid derivative or sulfonamide of this invention can be prepared starting with a halo-sulfonic acid or a sulfonic acid substituted in such a manner that the corresponding
anion can be reacted with carbon dioxide, a carbonyl compound, isocyanate, a halogenating reagent, alkylation reagent, acylating reagent, a protected hydroxylamine isocyanate or isothiocyanate derivative to form a compound of this invention or an intermediate to a compound of this invention. An anion can be formed via, for example, direct metallation or metal-halogen exchange. The substituted or unsubstituted aryl or heteroaryl sulfonic acid, sulfonic acid derivative or sulfonamide can be prepared by sulfonation or chlorosulfonation of the substituted or unsubstituted aryl or heteroaryl compound. Metallation reactions as well as halogen-metal exchange reactions to form the salts of the corresponding anions or complexed anions can be carried out by direct treatment with a metal such as lithium, sodium, potassium, palladium, platinum or their complexes, and the like or treatment with a strong base such as tert-butyl lithium, sec-butyl lithium, and the like as discussed above. These intermediates are then quenched with a reagent such as is discussed elsewhere. The resulting carboxylic acids or carboxylic acid derivatives are converted into the sulfonamides of this invention by methods and processes known in the art and discussed herein.

Salts of the compounds or intermediates of this invention are prepared in the normal manner wherein acidic compounds are reacted with bases such as those discussed above to produce metal or nitrogen containing cation salts. Basic compounds such as amines can be treated with an acid to form an amine salt.
It is noted that some compounds of this invention can be synthesized by biochemical processes, including mammalian metabolic processes. For example, methoxy groups can be converted by the liver in situ into alcohols and/or phenols. Where more than one methoxy group is present, either or both groups can be independently metabolized to hydroxy compounds.

Compounds of the present can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or nonracemic mixtures thereof. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes well known in the art, for example by formation of diastereoisomeric salts by treatment with an optically active acid or base.

Examples of appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers.

Still another available method involves synthesis of covalent diastereoisomeric molecules, e.g., esters, amides, acetics, ketalis, and the like, by reacting compounds of Formula I with an optically active acid in an activated form, a optically active diol or an optically active isocyanate. The synthesized diastereoisomers can be separated by
conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound. In some cases hydrolysis to the parent optically active drug is not necessary prior to dosing the patient since the compound can behave as a prodrug. The optically active compounds of Formula I can likewise be obtained by utilizing optically active starting materials.

In addition to the optical isomers or potentially optical isomers discussed above, other types of isomers are specifically intended to be included in this discussion and in this invention. Examples include cis isomers, trans isomers, E isomers, Z isomers, syn- isomers, anti- isomers, tautomers and the like. Aryl, heterocyclo or heteroaryl tautomers, heteroatom isomers and ortho, meta or para substitution isomers are also included as isomers. Solvates or solvent addition compounds such as hydrates or alcohohates are also specifically included both as chemicals of this invention and in, for example, formulations or pharmaceutical compositions for drug delivery.

Where a substituent is designated as, or can be, a hydrogen, the exact chemical nature of a substituent which is other than hydrogen at that position, e.g., a hydrocarbyl radical or a halogen, hydroxy, amino and the like functional group, is not critical so long as it does not adversely affect the overall activity and/or synthesis procedure. For example, two hydroxyl groups, two amino groups, two thiol groups or a mixture of two hydrogen-heteroatom
groups on the same carbon are known not to be stable without protection or as a derivative.

The chemical reactions described above are generally disclosed in terms of their broadest application to the preparation of the compounds of this invention. Occasionally, the reactions can not be applicable as described to each compound included within the disclosed scope. The compounds for which this occurs will be readily recognized by those skilled in the art. In all such cases, either the reactions can be successfully performed by conventional modifications known to those skilled in the art, e.g., by appropriate protection of interfering groups, by changing to alternative conventional reagents, by routine modification of reaction conditions, and the like, or other reactions disclosed herein or otherwise conventional, will be applicable to the preparation of the corresponding compounds of this invention. In all preparative methods, all starting materials are known or readily preparable from known starting materials.

Other compounds of this invention that are acids can also form salts. Examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases or basic quaternary ammonium salts.

In some cases, the salts can also be used as an aid in the isolation, purification or resolution of the compounds of this invention.
Scheme 1

H₂O₂/HOAc
100 degrees

Example 1
Scheme 2

Example 2
Scheme 3

\[
\begin{align*}
\text{HO}_2\text{C-} & \quad \text{MeO}_2\text{C-} \\
\text{SO} & \quad \text{O-SO} \\
\text{PhOPh} & \quad \text{PhOPh}
\end{align*}
\]

\[
\begin{align*}
\text{SOCl}_2 & \quad \text{MeOH} \\
\text{O(CH}_2\text{CH}_2\text{Br})_2 & \quad \text{NaH/DMF}
\end{align*}
\]

\[
\begin{align*}
\text{MeO}_2\text{C-} & \quad \text{O-SO} \\
\text{PhOPh} & \quad \text{PhOPh}
\end{align*}
\]

1) NaOH
2) THPONH_2
 EDC/HOBt/DMF
3) HCl

\[
\begin{align*}
\text{HO-N} & \quad \text{N} \\
\text{O-} & \quad \text{O} \\
\text{PhOPh} & \quad \text{PhOPh}
\end{align*}
\]
Scheme 4

R⁷ and R⁸ are as in Formula VI
Scheme 5

R^2, R^5, R^6, R^7, and R^8 are as discussed for Formula VI, and

P = is a selectively removable protecting group

as discussed for R^{20}
Scheme 6

\[R^2, R^5, R^6, R^7, R^8, A, B, C, \text{ and } D \]

are as discussed for Formula VI
Scheme 7

1. butyllithium
2. CO₂
Scheme 8

![Chemical reaction diagram](Image)

Scheme 9

![Chemical reaction diagram](Image)
Best Mode for Carrying Out the Invention

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting of the remainder of the disclosure in any way whatsoever.

Example 1: N-hydroxy-2-[[4-(phenoxyphenyl)-sulfonyl]methyl]benzamide

\[
\begin{align*}
&\text{HOHN} \\
&\text{O} \\
&\text{S} \\
&\text{O} \\
&\text{AC} \\
&\text{O} \\
&\text{N} \\
&\text{H}
\end{align*}
\]

Part A: To a solution of phthalide (6.30 g, 47.0 mmol) in DMF (100 mL) was added K₂CO₃ (10.0 g, 49.4 mmol) and 4-(phenoxy)benzenethiol (9.59 g, 49.4 mmol) and the solution was heated to one hundred degrees Celsius for 2 hours. The solution was diluted with H₂O and acidified with 1N HCl to pH = 1. The resulting tan solid was collected and washed with H₂O. The solid was dissolved into ethyl ether and dried over MgSO₄. Concentration in vacuo followed by recrystallization (ethyl ether/hexane) provided the sulfide as a white solid (9.12 g, 58 %). MS(CI) MH⁺ calculated for C₂₀H₁₉O₃S: 337, found 337. Analytical calculation for C₂₀H₁₉O₃S: C, 71.41; H, 4.79; S, 9.53. Found: C, 71.28; H, 4.67; S, 9.19.

Part B: To a solution of the sulfide of Part A (3.00 g, 8.92 mmol) in dichloromethane (28 mL) and
DMF (1 drop) was added oxalyl chloride (1.08 mL, 12.4 mmol) and the solution was stirred for one hour. After concentration in vacuo, the residue was dissolved into dichloromethane (16 mL) and the solution was cooled to zero degrees Celsius. Tetramethylsilyl hydroxylamine (2.55 mL, 20.8 mmol) was added and the solution was stirred for 1.5 hours. The solution was diluted with dichloromethane and washed with 1 N HCl, H₂O and saturated NaCl and dried over MgSO₄. Chromatography (on silica, ethyl acetate/hexane/ toluene) provide the hydroxylamine as a clear paste (970 mg, 31%).

Part C: To a solution of the hydroxylamine of Part B (970 mg, 2.76 mmol) in dichloromethane (25 mL) cooled to zero degrees Celsius was added 3-chloroperbenzoic acid (60%, 2.14 g, 7.45 mmol) and the solution was stirred for 3 hours at ambient temperature. The solution was diluted with ethyl ether and washed with saturated Na₂SO₃, saturated NaHCO₃ and saturated NaCl and dried over MgSO₄. Reverse phase chromatography (on silica, acetonitrile/H₂O) provided the title compound as a white solid (345 mg, 33%). MS(CI) MH⁺ calculated for C₂₀H₁₇NO₅S: 384, found 384. Analytical calculation for C₂₀H₁₇NO₅S•0.3H₂O: C, 61.70; H, 4.56; N, 3.60; S, 8.25. Found: C, 61.74; H, 4.42; N, 3.61; S, 8.31.

Example 2: N-hydroxy-2-[(4-phenoxypyphenyl)-sulfonyl]benzeneacetamide
Part A: To a solution of 4-(phenoxy)-benzenethiol (6.06 g, 30.0 mmol) and K₂CO₃ (4.55 g, 33.0 mmol) in isopropanol (30 mL) was added 2-fluorobenzaldehyde (3.2 mL, 30.0 mmol). The solution was refluxed for 20 hours. The reaction was quenched by the addition of ice-H₂O and was extracted with CHCl₃. The organic layer was dried over MgSO₄. Filtration through a pad of silica gel provided the sulfide as a yellow solid (7.43 g, 81%).

Part B: A solution of NaH (60% dispersion in mineral oil, washed with hexane, 264 mg, 6.6 mmol) in THF (12 mL) was cooled to zero degrees Celsius and tetraethyl dimethylammoniummethylenediphosphonate (1.99 g, 6.0 mmol) was added. The solution was warmed to ambient temperature and the sulfide of Part A (1.84 g, 6.0 mmol) was added. The solution was stirred for 4 hours at ambient temperature. The solution was extracted with ethyl acetate and washed with H₂O and dried over MgSO₄. Concentration in vacuo provided a brown oil which was dissolved in 6M HCl (10 mL) and the solution was heated to one hundred degrees Celsius for 1 hour. The solution was extracted with CHCl₃ and the organic layer was dried over MgSO₄. Concentration in vacuo provided the acid as an oil (918 mg, 48%).

Part C: To a solution of the acid of Part B (918 mg, 3 mmol) in acetic acid (30 mL) was added 30%
hydrogen peroxide (1.2 mL, 12 mmol) and the solution was heated to one hundred degrees Celsius for 40 minutes. The solution was lyophilized and chromatography (hexane/ethyl acetate) provided the sulfone as a foam (697 mg, 63%).

Part D: To a solution of the sulfone of Part C (695 mg, 1.89 mmol) in acetonitrile (2 mL) was added O-tetrahydropyranyl hydroxylamine (270 mg, 2.3 mmol). After 5 minutes EDC (442 mg, 2.3 mmol) was added and the solution was stirred for 3 hours. The solution was concentrated in vacuo and the residue was partitioned between ethyl acetate and H₂O. The organic layer was dried over MgSO₄. Chromatography (on silica gel, ethyl acetate/hexane) provided the THP-ether as a white foam (688 mg, 77%).

Part E: To a solution of the THP-ether of Part D (565 mg, 1.2 mmol) in methanol (10 mL) was added p-toluenesulfonic acid (25 mg) and the solution was stirred at ambient temperature for 2 hours. The solution was concentrated in vacuo and chromatography (chloroform/methanol) provided the title compound as a white solid (339 mg, 74%).

Example 3: N-hydroxy-2-[[4-(phenylmethyl)-1-piperidinyl]sulfonyl]benzamide
Part A: To a solution of 2-chlorosulfonyl-benzoic acid ethyl ester, prepared per Nagasawa, et al. J. Med. Chem. 1995, 38, 1865-1871, (5.80 g, 23.0 mmol) in acetonitrile (50 mL) was added 4-benzylpiperidine (4.38 mL, 25 mmol), triethylamine (3.78 mL, 27 mmol) and 4-dimethylaminopyridine (50 mg). The solution was stirred for 4 hours at ambient temperature and concentrated in vacuo. The residue was dissolved into 1N HCl and extracted with ethyl acetate. The organic layer was dried over MgSO₄ and filtered through a pad of silica gel to provide the sulfonamide as an oil (7.45 g, 84%).

Part B: To a solution of the sulfonamide of Part A (1.08 g, 2.80 mmol) in methanol (50 mL) and H₂O (20 mL) was added KOH (2 g) and the solution was stirred for 3 hours at ambient temperature. The solution was concentrated in vacuo and the remaining aqueous solution was acidified with 1N HCl. The solution was extracted with chloroform and the organic layer was dried over MgSO₄ and filtered through a pad of silica gel. Concentration in vacuo provided the acid as a white foam (996 mg, quantitative yield).

Part C: To a solution of the acid of Part B (415 mg, 1.2 mmol) in acetonitrile (2 mL) was added O-tetrahydropyranyl hydroxylamine (200 mg, 1.7 mmol). After the solution was stirred for 5 minutes EDC (325 mg, 1.7 mmol) was added and the solution was stirred for 3 hours at ambient temperature. The solution was concentrated in vacuo and the residue was dissolved into H₂O and extracted with ethyl acetate. The organic layer was dried over MgSO₄. Chromatography
(on silica, ethyl acetate/hexane) provided the THP-ether as a white solid (437 mg, 82 %).

Part D: To a solution of the THP-ether of Part C (437 mg, 0.98 mmol) in methanol (5 mL) was added p-toluenesulfonic acid (40 mg) and the solution was stirred for 1 hour at ambient temperature. The solution was concentrated in vacuo. Chromatography (ethyl acetate, 1% NH₄OH) provided the title compound as an oil (122 mg, 34 %).

Example 4: 2-[(1,1'-biphenyl)-4-ylmethyl)-sulfonyl]-N-hydroxybenzamide

![Chemical Structure]

Part A: To a solution of thiosalicylic acid (5.00 g, 32.4 mmol) and 4-phenylbenzyl chloride (6.57 g, 32.4 mmol) in ethanol (81 mL) and H₂O (40 mL) was added K₂CO₃ (4.48 g, 32.4 mmol) and the solution was heated to reflux for 2 hours. Upon cooling to ambient temperature a white solid formed. To this mixture is added 1N HCl (200 mL) and vacuum filtration provided the sulfide as a white solid (7.32 g, 70 %).

Part B: To a solution of the sulfide of Part A (1.00 g, 3.12 mmol) in formic acid (17 mL) heated to fifty degrees Celsius was added 30% hydrogen peroxide (1.16 mL). The solution was stirred at fifty-five degrees Celsius for 3 hours followed by 40 hours at ambient temperature. The solution was concentrated
and reverse phase chromatography (acetonitrile/H₂O) provided the sulfone as a white solid (500 mg, 45 %).

Part C: To a solution of the sulfone of Part B (500 mg, 1.42 mmol) in DMF (2.8 mL) was added O-tetrahydropyranyl hydroxylamine (173 mg, 1.48 mmol), N-hydroxybenzotriazole (211 mg, 1.56 mmol) and EDC (299 mg, 1.56 mmol) and the solution was stirred for 18 hours at ambient temperature. The solution was concentrated in vacuo and the residue was dissolved into H₂O. The solution was extracted with ethyl acetate and the organic layer was washed with 1 N HCl, saturated NaHCO₃, H₂O and saturated NaCl and dried over MgSO₄. Concentrated in vacuo provided the ester as a white solid (571 mg, 89 %). MS(CI) MH⁺ calculated for C₂₅H₂₃NO₄S: 452, found 452.

Part D: To a solution of the ester of Part C (570 mg, 1.26 mmol) in methanol (10 mL) was added p-toluenesulfonic acid (15 mg) and the solution was stirred at ambient temperature for 1.5 hours. The solution was concentrated in vacuo and reverse phase chromatography (acetonitrile/H₂O) provided the title compound as a white solid (244 mg, 53 %). MS(EI) M⁺ calculated for C₂₅H₂₄NO₄S: 367, found 367. Analytical calculation for C₂₀H₁₇NO₄S: C, 65.38; H, 4.66; N, 3.81. Found: C, 65.01; H, 4.64; N, 4.04.

Example 5: N-hydroxy-2-[[4-(phenoxyphenyl)-sulfonyllamino]benzamide
Part A: To a solution of isatoic anhydride (1.00 g, 6.13 mmol) in acetonitrile (3 mL) was added 0-tetrahydropyranyl hydroxylamine (1.56 g, 6.74 mmol) and the solution was heated to reflux for 2 hours. The solution was concentrated in vacuo and recrystallization of the residue (ethyl acetate/hexane) provided the THP-ether as a white solid (760 mg, 52 %). MS(CI) MH\(^+\) calculated for \(\text{C}_{12}\text{H}_{14}\text{N}_2\text{O}_3\): 237, found 237. Analytical calculation for \(\text{C}_{12}\text{H}_{14}\text{N}_2\text{O}_3\): C, 61.00; H, 6.83; N, 11.86. Found: C, 60.82; H, 6.95; N, 11.76.

Part B: To a solution of 4-(phenoxy)benzene sulfonyl chloride, prepared per J. Am. Chem. Soc., 1931, 93, 1112-1115) (341 mg, 1.27 mmol) in pyridine (2 mL) cooled to zero degrees Celsius was added the THP-ether of Part B (300 mg, 1.27 mmol) and the solution was stirred at zero degrees Celsius for 3 hours. The solution was concentrated in vacuo and the residue was dissolved in 1 N HCl and was extracted with ethyl acetate. The organic layer was washed with 1 N HCl, H\(_2\)O and saturated NaCl and dried over MgSO\(_4\). Chromatography (on silica gel, ethyl acetate/hexane) provided the sulfone as a white solid (321 mg, 54%). MS(CI) MH\(^+\) calculated for \(\text{C}_{24}\text{H}_{24}\text{N}_2\text{O}_6\text{S}\): 469, found 469. Analytical calculation for \(\text{C}_{24}\text{H}_{24}\text{N}_2\text{O}_6\text{S}\): C, 61.53; H, 5.16; N, 5.98; S, 6.84. Found: C, 61.10; H, 4.93; N, 5.86; S, 6.41.

Part C: Into a solution of the sulfone of Part B (320 mg, 0.68 mmol) in methanol (3 mL) cooled to zero degrees Celsius was bubbled HCl gas for 5 minutes. The solution was concentrated in vacuo and the residue was triturated with ethyl ether.
Collection by vacuum filtration provided the title compound as a pink solid (163 mg, 62%). MS(CI) MH\(^+\) calculated for C\(_{19}\)H\(_{16}\)N\(_2\)O\(_4\)S: 385, found 385. Analytical calculation for C\(_{19}\)H\(_{16}\)N\(_2\)O\(_4\)S\(\cdot\)0.2H\(_2\)O: C, 58.81; H, 4.26; N, 7.22; S, 8.26. Found: C, 58.88; H, 4.37; N, 6.98; S, 7.83.

Example 6: N-hydroxy-2-[(4-methoxyphenyl)-sulfonyl]methyl]benzamide

Part A: A 500 mL round bottom flask equipped with magnetic stir bar and N\(_2\) inlet was charged with 1.5 mL (1.7 g, 12.0 mM) 4-methoxybenzenethiol and 2.5 g (10.9 mM) methyl (2-bromomethyl)benzoate in acetone (100 mL). The solution was treated with 1.8 g (13.1 mM) potassium carbonate and heated at 55°C in an oil bath. The reaction mixture was stirred at 55°C for 17 hours, then concentrated in vacuo. The residue was partitioned between EtOAc and H\(_2\)O, the layers were separated and the aqueous layer was extracted with EtOAc (1X), the organic phases were combined, washed with 5% citric acid solution, saturated sodium bicarbonate solution and brine, dried (Na\(_2\)SO\(_4\)), and concentrated in vacuo to yield 3.3 g of product suitable for the next reaction.

Part B: A 500 mL round bottom flask equipped with magnetic stir bar and N\(_2\) inlet was charged with
3.1 g (10.8 mM) of product from Part A in 90 mL MeOH. The solution was then treated with 15 mL water and 13.9 g (22.6 mM) Oxone®. The reaction mixture was stirred 17 hours, then filtered. The filter cake was washed with MeOH, and the filtrate was concentrated in vacuo. The residue was partitioned between EtOAc and H₂O, the layers were separated and the aqueous layer was extracted with EtOAc (2x). The organic phases were combined, washed with saturated sodium bicarbonate solution and brine, dried (MgSO₄), and concentrated in vacuo to yield the 3.3 g of crude product. This was chromatographed on silica gel using 25-45% ethyl acetate/hexane to yield 2.1 g of pure product, m/z= 321 (M+H).

Part C: A 250 mL round bottom flask equipped with magnetic stir bar and N₂ inlet was charged with 2.1 g (6.6 mM) of product from Part B in acetic acid (25 mL) and conc. HCl solution (25 mL) and the solution was heated to reflux for a total of 24 hours. The reaction mixture was concentrated in vacuo, then two aliquots of toluene were added and stripped, then dried under high vacuum to yield 2.0 g of product suitable for the next reaction.

Part D: A 2-necked 50 mL round bottom flask equipped with addition funnel, thermometer, magnetic stir bar and N₂ inlet was charged with 1.0 mL of DMF in 10 mL CH₂Cl₂. The solution was cooled in an ice bath, then treated with 3.5 mL (0.9 g, 6.9 mM) of a 2.0 M oxalyl chloride solution in CH₂Cl₂, then with a solution of 1.0 g (3.3 mM) of product from Part C in 5 mL DMF. The bath was removed and the reaction was stirred for 1 hour. That reaction mixture was added to a 2-necked 100 mL round-bottomed flask equipped
with addition funnel, thermometer, magnetic stir bar and N₂ inlet and containing a cooled solution of 2.1 mL (1.1 g, 37.7 mM) of 50% aqueous hydroxylamine in THF (25 mL). The bath was then removed and the reaction mixture was stirred for 2 hours. The reaction was filtered, the filtrate was concentrated in vacuo, the residue was partitioned between EtOAc/water, the layers were separated, the aqueous layer was extracted with EtOAc (1X), the organic phases were combined and washed with water and brine, dried (Na₂SO₄) and concentrated in vacuo to yield 1.3 g of crude product. That material was chromatographed on silica gel using 80% ethyl acetate/hexane to yield 0.5 g of pure product, m/z = 328 (M+Li).

Example 7 : N-hydroxy-2-[(4-methoxyanilino)-sulfonyl]benzamide

Part A : A 3-necked 100 mL round bottom flask equipped with addition funnel, thermometer, magnetic stir bar and N₂ inlet was charged with 0.5 g (4.3 mM) of p-anisidine and 1.8 mL (1.3 g, 12.8 mM) triethylamine in CH₂Cl₂ (20 mL). The solution was cooled in an ice bath, then treated with a solution of 1.0 g (4.3 mM) methyl (2-chlorosulfonyl)benzoate in CH₂Cl₂ (10 mL). The reaction mixture was stirred for 17 hours, then concentrated in vacuo. The residue was partitioned between EtOAc and H₂O, the
layers were separated and the organic phase was washed with 5% citric acid solution, saturated sodium bicarbonate solution and brine, dried (Na₂SO₄), and concentrated in vacuo to yield 0.9 g of crude product. This was chromatographed on silica gel using 20-30% ethyl acetate/hexane to yield 0.7 g of pure product, m/z= 328 (M+Li).

Part B: A 100 mL round bottom flask equipped with magnetic stir bar and N₂ inlet was charged with 0.7 g (2.1 mM) of the product from Part A and 0.7 g (10.2 mM) of hydroxylamine hydrochloride in 10 mL MeOH. The reaction was cooled to zero degrees C and charged with 0.4 g (16.4 mM) of sodium metal. After stirring for 17 hours, the reaction was concentrated in vacuo, the residue was slurried in 20 mL of water, then acidified using 2 N HCl solution. The aqueous slurry was extracted with EtOAc (3X). The organic layers were combined and washed with brine, dried (Na₂SO₄), and concentrated in vacuo to yield 0.6 g of crude product. The addition of methylene chloride to the crude product precipitated an off-white solid. Filtration gave 0.2 g of pure product, m/z= 323 (M+Li).

Example 8: N-hydroxy-2-[(benzylamino)sulfonyl]benzamide
Part A: A 3-necked 100 mL round bottom flask equipped with addition funnel, thermometer, magnetic stir bar and N₂ inlet was charged with 0.5 mL (0.5 g, 4.3 mM) of benzylationmid and 1.8 mL (1.3 g, 12.8 mM) triethylamine in CH₂Cl₂ (20 mL). The solution was cooled in an ice bath, then treated with a solution of 1.0 g (4.3 mM) methyl (2-chlorosulfonyl)benzoate in CH₂Cl₂ (10 mL). The reaction mixture was stirred for 2 hours, then concentrated in vacuo. The residue was partitioned between EtOAc and H₂O, the layers were separated and the organic phase was washed with 5% citric acid solution, saturated sodium bicarbonate solution and brine, dried (Na₂SO₄), and concentrated in vacuo to yield 0.9 g of crude product. This was chromatographed on silica gel using 20% ethyl acetate/hexane to yield 0.7 g of pure product, m/z= 312 (M+Li).

Part B: A 100 mL round bottom flask equipped with magnetic stir bar and N₂ inlet was charged with 0.7 g (2.1 mM) of the product from Part A and 0.7 g (10.6 mM) of hydroxylamine hydrochloride in 10 mL MeOH. The reaction was cooled to zero degrees C and charged with 0.4 g (17.0 mM) of sodium metal. After stirring for 17 hours, the reaction was concentrated in vacuo, the residue was slurried in 20 mL of water, then acidified using 2 N HCl solution. The aqueous slurry was extracted with EtOAc (3X). The organic layers were combined and washed with brine, dried (Na₂SO₄), and concentrated in vacuo to yield 0.3 g of crude product. The addition of methylene chloride to the crude product precipitated a white solid. Filtration gave 0.1 g of pure product, m/z= 307 (M+H).
Example 9: Preparation of N-Hydroxy-2-[[4-(phenyl)-1-piperidinyl]sulfonyll]benzamide

\[
\text{NH}_2\text{OH}
\]

5

Part A: 2-Carboethoxybenzenesulfonyl chloride (3.72 g, 15 mmol) was dissolved in methylene chloride (60 mL). 4-Phenylpiperidine (2.89 g, 18 mmol) was added, followed by triethylamine (2.5 mL, 18 mmol) and 4-(dimethylamino)piperidine (100 mg). After 5 hours, the mixture was diluted with 10 percent aqueous HCl (100 mL). The organic layer was separated and dried over magnesium sulfate. The solution was filtered through a silica pad and concentrated affording the ester sulfonamide as an oil (3.27 g, 63%).

Part B: The ester sulfonamide from Part A (938 mg, 2.51 mmol) was stirred for 20 hours at ambient temperature in the presence of potassium hydroxide (940 mg, 17 mmol), ethanol (15 mL), and water (5 mL). The mixture was diluted with water (20 mL) and acidified using concentrated HCl to approximately pH 4. The product was extracted using chloroform (2 X 100 mL), and the combined organic layers were dried using anhydrous magnesium sulfate. Concentration afforded carboxylic acid (768 mg, 89%), which was carried on to the next step.

Part C: To a solution of the acid from Part B (764 mg, 2.2 mmol) dissolved in acetonitrile (15 mL)
was added O-tetrahydropyranyl hydroxylamine (351 mg, 3.0 mmol) and N-hydroxybenzotriazole (405 mg, 3.0 mmol), followed by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (600 mg, 3 mmol). The reaction was stirred for 16 hours and then concentrated. The residue was diluted with half-saturated brine (15 mL) and extracted with ethyl acetate (100 mL). The organic phase was dried using magnesium sulfate, concentrated, and the residue was purified by silica gel chromatography affording, on concentration, the desired THP-protected hydroxamate as a white foam (833 mg, 82%).

Part D: The THP-protected hydroxamate from Part C (833 mg, 1.8 mmol) was dissolved in absolute methanol (3 mL). Acetyl chloride (0.28 mL, 4 mmol) was added drop-wise. After 3 hours, the reaction was concentrated, and the residue was subjected to purification by chromatography, affording the title compound (430 mg, 66%) as a white foam. Anal. calculated for C₁₈H₂₀N₂O₄S(H₂O): C, 57.08; H, 5.81; N, 7.40. Found: C, 57.02; H, 5.61; N, 6.90.

Example 10: Preparation of N,2-Dihydroxy-2-methyl-2-[(4-phenyl-1-piperidinyl)-sulfonyl]benzeneacetamide

![Chemical Structure]

Part A: 2-Bromobenzenesulfonyl chloride (2.56 g, 10 mmol) was added to a solution of 4-
phenylpiperidine (1.61 g, 10 mmol), triethylamine (2.0 mL, 14 mmol), 4-dimethylaminopyridine (75 mg), and acetonitrile (20 mL). After 24 hours, water (100 mL) was added. The mixture was extracted with ethyl acetate (100 mL, then 50 mL). The combined organic layers were dried over magnesium sulfate, filtered through silica, and concentrated to afford the bromo sulfonamide as a white solid (3.47 g, 96%).

Part B: The bromo sulfonamide (359 mg, 1 mmol) was dissolved in dry tetrahydrofuran (2 mL) and cooled to minus seventy-eight degrees. t-Butyllithium (0.68 mL, 1.7 M in pentane) was added drop-wise and the anion was permitted to form over 15 minutes. Ethyl pyruvate (0.11 mL, 1.15 mmol) was added. The cooling bath was removed. When the reaction reached ambient temperature, the mixture was quenched with water (10 mL) and extracted with ethyl acetate (100 mL). The organic layer was dried over magnesium sulfate, filtered through silica, concentrated, and chromatographed to afford the desired hydroxy ester as a glass (163 mg 40%).

Part C: The hydroxy ester from Part B (134 mg, 0.33 mmol) was stirred in the presence of potassium hydroxide (134 mg, 2.4 mmol) in ethanol (1 mL) and water (1 mL). After 4 hours the mixture was heated at 50 degrees Celsius for one hour, then cooled, neutralized with dilute hydrochloric acid, concentrated, and azeotroped to dryness with acetonitrile to afford the crude hydroxy acid, which was used directly as is. The hydroxy acid was diluted with acetonitrile (1 mL). 0-Tetrahydropyrylhydroxylamine (117 mg, 1.0 mmol) and N-hydroxybenzotriazole (135 mg, 1.0 mmol) were added,
followed by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (191 mg, 1 mmol). The reaction was stirred overnight (about 18 hours), then diluted with water (10 mL) and extracted with ethyl acetate (50 mL). The organic layer was dried over ethyl acetate, concentrated and chromatographed to afford the THP-protected hydroxamate as a glass (80 mg, 48%).

Part D: The THP-protected hydroxamate from Part C (80 mg) was diluted with absolute methanol (4 mL), and toluenesulfonic acid (6 mg) was added. After 3 hours, the reaction mixture was concentrated, and the residue was chromatographed using 1:1 hexane:ethyl acetate 1% NH₄OH. The title compound was isolated as a white foam (40 mg, 60%). Analysis calculated for C₂₀H₂₄N₂O₅S(1.33 H₂O): C, 53.75; H, 5.90; N, 6.27. Found: C, 53.80; H, 5.65; N, 5.84.

Example 11: Preparation of N-Hydroxy-2-[[3-[(4-methoxybenzoyl)amino]-1-pyrroldinyl]-sulfonfyl]benzamide

Part A: 3-Aminopyrrolidine (636 mg, 4 mmol), triethylamine (2.7 mL, 20 mmol), and 4-(dimethylamino)pyridine (75 mg) were suspended in acetonitrile. After 10 minutes, the reaction was chilled to zero degrees Celsius. 4-Methoxybenzoyl chloride (0.54 mL, 4 mmol) was added, drop-wise.
After 30 minutes, 2-carboethoxybenzenesulfonyl chloride (0.996 g, 4.0 mmol) was introduced, drop-wise, by syringe. The mixture was stirred at zero Celsius for 1 hour, then at ambient temperature for 2 hours. Water was added (50 mL). The mixture was extracted using ethyl acetate (2 X 50 mL). The organic layer was dried over magnesium sulfate, filtered through silica, and concentrated. The residue was purified using silica gel chromatography using 1:1 ethyl acetate:hexane to ethyl acetate as eluant. The desired amide sulfonamide was isolated as a foam (282 mg, 16%).

Part B: The amide sulfonamide from Part A (272 mg, 0.63 mmol) was combined with potassium hydroxide (156 mg, 2.8 mmol), ethanol (3 mL), and water (2 mL) and was brought to reflux. After 40 minutes, the reaction was permitted to cool. Acetic acid (0.1 mL) and absolute ethanol (20 mL) were added. Concentration followed by chromatography (9:1 ethyl acetate: methanol to methanol; 20 g silica gel) afforded the desired acid as a crystalline solid (229 mg, 96%). The acid (229 mg, 0.57 mmol) was dissolved in acetonitrile (1 mL). O-Tetrahydropyranyl hydroxylamine (117 mg, 1.0 mmol) and N-hydroxybenzotriazole (135 mg, 1.0 mmol) were added, followed by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (191 mg, 1 mmol). The mixture was stirred at ambient temperature overnight (about 18 hours), then concentrated and chromatographed (ethyl acetate to 9:1 ethyl acetate: methanol), affording the THP-protected hydroxamate as a white crystalline solid (98 mg, 33%).
Part C: The THP-protected hydroxamate (76 mg, 0.15 mmol) was dissolved in methanol (2 mL). Acetyl chloride (0.01 mL, 1 mmol) was added. After 30 minutes, the solution was concentrated, and then azeotroped with chloroform/acetonitrile affording the title compound as a solid (65 mg, quantitative.). MS (EI) MH⁺: calculated for C₁₉H₂₁N₃O₆S: 420, found 420.

Example 12: Preparation of N-Hydroxy-2-[[4-[4-(trifluoromethoxy)phenoxy]-1-piperidinyl]sulfonyl]benzamide

Part A: Diethyl azodicarboxylate (4.11 g, 23.6 mmol) was added at ambient temperature under an atmosphere of nitrogen to a mixture of N-(tert-butyloxycarbonyl)-4-piperidinol (4.31 g, 21.4 mmol) (Wells, Kenneth M.; et al; Tetrahedron Lett., 1996, 37, 6439-6442), 4-trifluoromethoxyphenol (4.20 g, 23.6 mmol) and triphenylphosphine (6.19 g, 23.6 mmol) in THF (200 mL). After 1.5 hours, the reaction mixture was concentrated. The residue was diluted with ethyl ether, filtered, and purified by chromatography (on silica, methyl tert-butyl ether/hexane) to afford the impure BOC-amine as an off-white solid (5.23 g). To the off-white solid cooled to zero degrees Celsius under an atmosphere of nitrogen was added a solution of 4 N HCl in dioxane
(36.1 mL, 145 mmol). After two hours, the reaction mixture was concentrated and diluted with ethyl ether to give a white solid. The white solid was diluted with H₂O (15 mL) and a solution of NaHCO₃ (1.68 g, 20.0 mmol) in water (10 mL) was added. The precipitate was extracted into ethyl ether. The organic layer was washed with brine, dried over MgSO₄, and concentrated to give the amine as a white solid (1.93 g, 34%); MS MH⁺ calculated for C₁₂H₁₄NO₂F₃: 262, found 262.

Part B: A solution of the amine of Part A (1.90 g, 7.28 mmol), ethyl 2-chlorosulfonylbenzoate (1.70, 6.85 mmol), triethylamine (1.15 mL, 8.22 mmol), and 4-dimethylaminopyridine (10 mg) in acetonitrile (20 mL) was stirred under an atmosphere of nitrogen at ambient temperature for 18 hours. After concentrating the solution, the residue was diluted with H₂O and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, saturated NaHCO₃, H₂O, and brine; and then dried over MgSO₄ and concentrated to a yellow oil. Chromatography (on silica, ethyl acetate/hexane) provided the sulfonamide as a white solid (1.59 g, 51%); MS MH⁺ calculated for C₂₃H₂₂NO₆F₃S: 474, found 474.

Part C: A solution of the sulfonamide of Part B (1.45 g, 3.17 mmol) and potassium hydroxide (1.77 g, 31.7 mmol) in a mixture of MeOH (30 mL), H₂O (10 mL), and THF (10 mL) was heated at reflux for 1.5 hours. After the solution was concentrated in vacuo, the residue was triturated with ethyl ether, dissolved into H₂O, acidified with concentrated HCl, and extracted into ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated
in vacuo to provide the acid as a clear oil (1.04 g, 74%); Anal. calculated for C_{19}H_{18}NO_{6}F_{3}S: C, 51.23; H, 4.07; N, 3.14; S, 7.20. Found: C, 51.34; H, 3.78; N, 3.15; S, 7.30.

Part D: A solution of the acid of Part C (0.97 g, 2.18 mmol), N-hydroxybenzotriazole (0.89 g, 6.50 mmol), 4-methylmorpholine (0.71 mL, 6.50 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (0.51 g, 4.36 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.25 g, 6.50 mmol) in DMF (19 mL) was stirred at ambient temperature under a nitrogen atmosphere for 20 hours. The mixture was concentrated in vacuo, diluted with water, and extracted with ethyl acetate. The organic layer was washed with 1.0 N KHSO_{4}, saturated NaHCO_{3}, H_{2}O, and brine; and then dried over MgSO_{4} and concentrated in vacuo to afford the THP-protected hydroxamate as a white solid (1.05 g, 88%): Anal. calculated. for C_{24}H_{27}N_{2}O_{7}F_{3}S: C, 52.94; H, 5.00; N, 5.14; S, 5.89. Found: C, 52.80; H, 4.84; N, 5.23; S, 6.14.

Part E: The THP-protected hydroxamate of Part D (1.01 g, 1.86 mmol) was dissolved in methanol (10 mL). Acetyl chloride (0.36 mL, 5.0 mmol) was added. After 1 hour, the solution was concentrated, and the residue was subjected to chromatography (1:1 hexane:ethyl acetate; 1% NH_{4}OH to ethyl acetate; 1% NH_{4}OH) affording the title compound as foam (643 mg, 75%). Anal. calculated for C_{19}H_{19}F_{3}N_{2}O_{6}S: C, 49.56; H, 4.13; N, 6.09. Found: C, 49.27; H, 3.72; N, 5.87.
Example 13: Preparation of N-hydroxy-2-[[4-[4-(trifluoromethyl)phenoxy]-1-piperidinyl]sulfonyl]benzamide

\[
\begin{align*}
\text{HN-} & \\
\text{\text{O}} & \\
\text{\text{S}} & \\
\text{O} & \\
\text{O} & \\
\text{CF}_3 & \\
\end{align*}
\]

5

Part A: A solution of N-(tert-butyloxy-carbonyl)-4-piperidinol (5.00 g, 2.48 mmol), 4-fluorobenza-trifluoride (3.46 mL, 2.73 mmol), and cesium carbonate (12.1 g, 3.72 mmol) in DMF (60 mL) was heated at 120 degrees Celsius under an atmosphere of nitrogen for 2 days. The mixture was concentrated, diluted with H₂O, and extracted with ethyl acetate. The organic layer was washed with H₂O and brine, dried with MgSO₄, and concentrated in vacuo. Chromatography (on silica, ethyl acetate/hexane) provided the BOC-aminoether as a white solid (6.97 g, 81%); Anal. calculated for C₁₇H₂₂NO₃F₃: C, 59.12; H, 6.42; N, 4.06. Found: C, 59.29; H, 6.47; N, 3.99.

Part B: A solution of the BOC-aminoether of Part A (4.00 g, 11.6 mmol) and p-toluenesulfonic acid (6.61 g, 34.7 mmol) in CH₂Cl₂ (30 mL) at ambient temperature under an atmosphere of nitrogen was stirred for 3 hours and then concentrated in vacuo. The residue was partitioned between aqueous NaHCO₃ and ethyl acetate. The organic layer was dried over MgSO₄ and concentrated to provide the free amine as a clear, yellow oil (1.57 g, 55%); MS MH⁺ calculated for C₁₂H₁₄NO₃F₃: 246, found 246.
Part C: A solution of the amine of Part B (1.57 g, 6.40 mmol), ethyl 2-chlorosulfonylbenzoate (1.57 g, 6.03 mmol), triethylamine (1.00 mL, 7.24 mmol), and 4-dimethylaminopyridine (10 mg) in acetonitrile (20 mL) was stirred under an atmosphere of nitrogen at ambient temperature for around 1.5 hours. After concentrating the solution, the residue was diluted with H$_2$O and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO$_4$, saturated NaHCO$_3$, H$_2$O, and brine; and then dried over MgSO$_4$ and concentrated to provide the sulfonamide as a clear, yellow oil (2.52 g, 92%); MS MH$^+$ calculated for C$_{21}$H$_{22}$NO$_5$F$_3$S: 458, found 458.

Part D: A solution of the sulfonamide of Part C (2.50 g, 5.46 mmol) and potassium hydroxide (3.06 g, 54.6 mmol) in a mixture of MeOH (49 mL) and H$_2$O (24 mL) was heated at reflux for 4 hours. After the solution was concentrated in vacuo, the residue was triturated with ethyl ether, dissolved into H$_2$O, acidified with concentrated HCl, and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO$_4$, H$_2$O, and brine, dried over MgSO$_4$, and concentrated in vacuo to provide the acid as an oil (2.17 g, 93%); MS MH$^+$ calculated for C$_{19}$H$_{18}$NO$_5$F$_3$S: 430, found 430.

Part E: A solution of the acid of Part D (2.10 g, 4.89 mmol), N-hydroxybenzotriazole (1.97 g, 14.6 mmol), 4-methylmorpholine (1.61 mL, 14.6 mmol), 0-tetrahydro-2H-pyran-2-yl-hydroxylamine (1.15 g, 9.79 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.80 g, 14.6 mmol) in DMF (43 mL) was stirred at ambient temperature under a nitrogen atmosphere for about 18 hours. The
mixture was concentrated in vacuo, diluted with water, and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, H₂O, and brine, and then dried over MgSO₄ and concentrated in vacuo. Chromatography (on silica, ethanol/CHCl₃) provided the THP-protected hydroxamate as a white solid (2.09 g, 81%): MS MH⁺ calculated for C₃₄H₇₇N₂O₆F₃S: 529, found 529.

Part F: To a solution of the THP-protected hydroxamate of Part C (1.80 g, 3.41 mmol) in methanol (24 mL) was added acetyl chloride (0.73 mL, 10.2 mmol) and the solution was stirred at ambient temperature under a nitrogen atmosphere for 1.5 hours. The solution was concentrated in vacuo and chromatography (on silica, MeOH/CHCl₃) provided the title compound as an off white solid (1.18 g, 78%): Anal. calculated. for C₁₉H₁₉N₂O₅F₃S·0.2%H₂O: C, 50.94; H, 4.36; N, 6.25; S, 7.16. Found: C, 50.88; H, 4.31; N, 6.20; S, 7.43. MS MH⁺ calculated. for C₁₉H₁₉N₂O₅F₃S: 445, found 445.

Example 14: Preparation of N-hydroxy-2-[[4-[[4-(trifluoromethyl)phenyl]methoxy]-1-piperidinyl]sulfonyl]benzamide

![Chemical structure](image)

Part A: A solution of 4-(trifluoromethyl)benzyl bromide (2.00 mL, 12.9 mmol) in THF (6 mL) was added drop-wise under an atmosphere of nitrogen to a -52
-233-
degrees Celsius mixture of N-(tert-butoxycarbonyl)-
4-piperidinol (2.85, 14.9 mmol) and 60% sodium
hydride (0.600 g, 14.9 mmol) in THF (15 mL) and then
stirred at ambient temperature for about 20 hours.
The reaction mixture was quenched with a saturated
NH₄Cl solution, concentrated in vacuo, diluted with
H₂O, and extracted with ethyl acetate. The organic
layer was washed with 1.0 N HCl, a saturated NaHCO₃
solution, H₂O, and brine; and then dried over MgSO₄
and concentrated in vacuo to provide the BOC-
aminoether as an off white solid (3.35 g, 72%); MS MH⁺
calculated for C₁₅H₂₄NO₃P₃: 360, found 360.

Part B: A zero degrees Celsius solution of the
BOC-aminoether of Part A (3.35 g, 9.32 mmol) in ethyl
acetate (40 mL) was saturated with HCl (gas) and the
stirred at ambient temperature for 1 hour. After
concentrating in vacuo and triturating with ethyl ether, the crude free base was partitioned between
aqueous NaHCO₃ and ethyl ether. The organic layer was
washed with H₂O and brine, dried over MgSO₄, and
concentrated in vacuo to provide the amine as a
clear, yellow oil (2.11 g, 87%), which had a proton
NMR spectrum consistent for the desired product.

Part C: A solution of the amine of Part B (2.11
g, 8.14 mmol), ethyl 2-chlorosulfonylbenzoate (2.65
g, 10.7 mmol), triethylamine (1.75 mL, 12.6 mmol),
and 4-dimethylaminopyridine (50 mg) in acetonitrile
(25 mL) was stirred under an atmosphere of nitrogen
at ambient temperature for about 18 hours. After
concentrating the solution, the residue was diluted
with 1.0 N KHSO₄ and extracted into ethyl acetate.
The organic layer was washed with 1.0 N KHSO₄,
saturated NaHCO₃, H₂O, and brine, and then dried over
MgSO₄ and concentrated to a yellow oil.
Chromatography (on silica, ethyl acetate/hexane) provided the sulfonamide as a clear oil (2.48 g, 65%); MS MH⁺ calculated for C₂₂H₂₄NO₅F₃S: 472, found 472.

Part D: A solution of the sulfonamide of Part C (2.10 g, 4.45 mmol) and potassium hydroxide (2.49 g, 44.5 mmol) in a mixture of MeOH (40 mL), H₂O (20 mL), and THF (4 mL) was heated at reflux for 1.5 hours. After the solution was concentrated in vacuo, the residue was triturated with ethyl ether, dissolved into H₂O, acidified with concentrated HCl, and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, H₂O, and brine, dried over MgSO₄, and concentrated in vacuo to provide the acid as a white solid (2.08 g, 1.06%); Anal. Calculated for C₂₀H₂₀NO₅F₃S: C, 54.17; H, 4.55; N, 3.16; S, 7.23. Found: C, 54.29; H, 4.68; N, 3.11; S, 7.19.

Part E: A solution of the acid of Part D (2.00 g, 4.51 mmol), N-hydroxybenzotriazole (1.83 g, 13.5 mmol), 4-methylmorpholine (1.48 mL, 13.5 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (1.06 g, 9.02 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.59 g, 13.5 mmol) in DMF (40 mL) was stirred at ambient temperature under a nitrogen atmosphere for about 20 hours. The mixture was concentrated in vacuo, diluited with water, and extracted into ethyl acetate. The organic layer was washed with saturated NaHCO₃, H₂O, and brine, and then dried over MgSO₄ and concentrated in vacuo to provide the THP-protected hydroxamate as a white solid (2.01 g, 82%): Anal. calculated. for
C_{25}H_{39}N_{2}O_{6}F_{3}S: C, 55.34; H, 5.39; N, 5.16; S, 5.91.
Found: C, 55.36; H, 5.63; N, 5.20; S, 6.12.

Part F: To a solution of the THP-protected hydroxamate of Part E (2.00 g, 3.69 mmol) in methanol (25.9 mL) was added acetyl chloride (0.78 mL, 11.1 mmol), and the solution was stirred at ambient temperature under a nitrogen atmosphere for 1.5 hours. The solution was concentrated in vacuo and chromatography (on silica, MeOH/CHCl₃) provided the title compound as an off-white solid (1.07 g, 63%): Anal. calculated. for C_{29}H_{31}N_{2}O_{5}F_{3}S: C, 52.40; H, 4.62; N, 6.11; S, 6.99. Found: C, 52.53; H, 4.74; N, 6.25; S, 7.16. MS MH⁺ calculated. for C_{29}H_{31}N_{2}O_{5}SF_{3}: 459, found 459.

Example 15: Preparation of N-Hydroxy-2-[[[4-phenoxyphenyl]aminol]sulfonyl]benzamide

\[
\begin{align*}
\text{HN} & \text{O} \\
\text{O} & \text{S} \\
\text{NH} & \text{OH} \\
\text{O} & \text{S} \\
\text{NH} & \text{OH}
\end{align*}
\]

Part A: A solution of 4-phenoxyaniline (3.43 g, 18.5 mmol), ethyl 2-chlorosulfonylbenzoate (4.25 g, 17.1 mmol), triethylamine (2.81 mL, 20.1 mmol), and 4-dimethylaminopyridine (50 mg) in acetonitrile (40 mL) was stirred under an atmosphere of nitrogen at ambient temperature for about 18 hours. After concentrating the solution, the residue was diluted with 1.0 N KHSO₄ and extracted into ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, H₂O, and brine, and then dried over MgSO₄ and concentrated.
in vacuo. Chromatography (on silica, ethyl acetate/hexane) provided the sulfonamide as a tan solid (4.94 g, 73%); Anal. calculated for C$_{21}$H$_{19}$NO$_5$S: C, 63.46; H, 4.82; N, 3.52; S, 8.07. Found: C, 63.36; H, 4.78; N, 3.45; S, 8.31. MS M$^+$ calculated for C$_{21}$H$_{19}$NO$_5$S: 397, found 397.

Part B: A solution of the sulfonamide of Part A (3.00 g, 7.55 mmol) and potassium hydroxide (4.23 g, 75.5 mmol) in a mixture of MeOH (68 mL), THF (8 mL), and H$_2$O (33 mL) was heated at reflux for 2 hours. After the solution was concentrated in vacuo, the residue was triturated with ethyl ether, dissolved into H$_2$O, acidified with concentrated HCl, and extracted into ethyl acetate. The organic layer was washed with 1.0 N HCl, H$_2$O, and brine, dried over MgSO$_4$, and concentrated in vacuo to provide the acid as a tan solid (2.31 g, 83%); Anal. calculated for C$_{19}$H$_{15}$NO$_5$S: C, 61.78; H, 4.09; N, 3.79; S, 8.68. Found: C, 61.66; H, 4.22; N, 3.73; S, 8.70. MS M$^+$ calculated for C$_{19}$H$_{15}$NO$_5$S: 369, found 369.

Part C: A solution of the acid of Part B (2.30 g, 6.23 mmol), N-hydroxybenzotriazole (2.52 g, 18.6 mmol), 4-methylmorpholine (2.04 mL, 18.6 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (1.46 g, 12.5 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (3.57 g, 18.6 mmol) in DMF (55 mL) was stirred at ambient temperature under a nitrogen atmosphere for about 18 hours. The mixture was diluted with water, and extracted into ethyl acetate. The organic layer was washed with saturated NaHCO$_3$, H$_2$O, and brine, and then dried over MgSO$_4$ and concentrated in vacuo to provide the saccharin compound as a white solid (2.13 g, 97%).
Anal. calculated for C$_{19}$H$_{13}$NO$_4$S: C, 64.95; H, 3.73; N, 3.99; S, 9.13. Found: C, 64.98; H, 3.82; N, 4.17; S, 9.07. MS MH$^+$ calculated for C$_{19}$H$_{13}$NO$_4$S: 352, found 352.

Part D: A solution of the saccharin of Part C (0.500 g, 1.42 mmol) and O-tetrahydro-2H-pyran-2-yl-hydroxylamine (0.183 g, 1.56 mmol) in dioxane (2 mL) under an atmosphere of nitrogen was stirred for 6 days at ambient temperature and 1 day at 50 degrees Celsius. The solution was concentrated and chromatography provided the THP-protected hydroxamate as a white solid (0.285 g, 43%); MS MH$^+$ calculated for C$_{24}$H$_{24}$N$_2$O$_6$S: 469, found 469.

Part E: To a solution of the THP-protected hydroxamate of Part D (0.275 g, 0.587 mmol) in methanol (5 mL) was added acetyl chloride (0.150 mL, 2.13 mmol) and the solution was stirred at ambient temperature under a nitrogen atmosphere for 2 hours. The solution was concentrated in vacuo and chromatography (on silica, MeOH/CHCl$_3$) provided the title compound as an off-white solid (1.18 g, 78%). The proton NMR was consistent for the desired product.

Example 16: Preparation of N-Hydroxy-2,3-dimethoxy-6-[[4-[4-(trifluoromethyl)phenoxy]-1-piperidinyl)sulfonyl]benzamide
Part A: The piperidine from Example 13, Part B
(as the hydrochloride) (1.12 g, 4.0 mmol) was
dissolved in a mixture of acetonitrile (6 mL),
triethylamine (1.3 mL, 9.0 mmol), and N,N-
dimethylaminopyridine (80 mg). 3,4-
Dimethoxybenzenesulfonyl chloride (947 mg, 4.0 mmol)
was added, and the mixture was stirred at ambient
temperature for 6 hours. The reaction mixture was
concentrated, and the residue was extracted with
ethyl acetate (100, then 25 mL). The combined
organic layers were dried over magnesium sulfate,
filtered through silica, and concentrated to afford
the desired sulfonamide as a white solid (1.05 g,
59%)

Part B: The sulfonamide from Part A (1.05 g,
2.38 mmol) was dissolved in tetrahydrofuran (20 mL)
and was cooled to zero degrees Celsius. t-
Butyllithium (1.7 M in pentane, 2.8 mL) was added
drop-wise. Fifteen minutes after complete addition of
the base, the solution was rapidly saturated with dry
carbon dioxide gas. After an additional 15 minutes,
the solution was acidified with a minimum of
concentrated hydrogen chloride. The reaction mixture
was concentrated, azeotroped with absolute ethanol,
and the residue was subjected to silica gel
chromatography, using 8:1 ethyl acetate:methanol,
affording the desired acid as a glass (279 mg, 24%).

Part C: The acid from Part B (231 mg, 0.47
mmol) was dissolved in methylene chloride (4 mL).
N,N-Dimethylformamide (2 drops) was added, followed
by oxalyl chloride (0.35 mL, 4 mmol). The reaction
was stirred for 1.5 hours at ambient temperature,
during which time gas was evolved. The reaction
mixture was concentrated, and dried in vacuo, affording crude acid chloride, which was used as is. To the acid chloride was added a solution of O-tetrahydropyranylhydroxylamine (234 mg, 2.0 mmol) and pyridine (0.5 mL, 6.0 mmol) in acetonitrile (2-3 mL). The reaction was stirred at ambient temperature for 16 hours, then was diluted with water (3 mL). The mixture was extracted with ethyl acetate (100 mL, then 50 mL). The combined organic layers were dried over magnesium sulfate, filtered through a silica pad, and concentrated, affording 376 mg of crude THP-protected hydroxamate. The THP-protected hydroxamate was used directly without purification and was diluted with absolute methanol (10 mL). Acetyl chloride (0.36 mL, 5.0 mmol) was added, drop-wise. After 2.5 hours, the mixture was concentrated and the residue was chromatographed (ethyl acetate:1% NH₄OH). The desired hydroxamate was obtained as a glass (121 mg, 51% from acid). MS MH⁺ calculated for C₂₁H₂₃F₃N₂O₇S: 505, found 505.

Example 17: Preparation of N-Hydroxy-2-[[3-[4-(trifluoromethyl)phenoxy]-1-pyrrolidinyl]sulfonyl]benzamide

Part A: Diethyl azodicarboxylate (2.03 mL, 12.9 mmol) was added under an atmosphere of nitrogen to a
solution of 1-(tert-butoxycarbonyl)-3-
hydroxypyrrolidine (2.31 g, 12.3 mmol), p-
trifluoromethylphenol (2.09 g, 12.9 mmol), and
triphenylphosphine (3.38 g, 12.9 mmol) in anhydrous
THF (40 mL) at ambient temperature. After stirring
for 2 hours, the reaction was concentrated in vacuo.
The residue was diluted with ether, filtered through
a silica gel bed, concentrated, and purified by flash
chromatography (on silica, ethyl acetate/hexane) to
afford the BOC-protected amine as a white solid (1.85
g, 45%); Anal. Calculated for C_{16}H_{20}NO_{3}F_{3}: C, 58.00; H,
6.08; N, 4.23. Found: C, 57.86; H, 6.17; N, 3.92.

Part B: To the BOC-protected amine of Part A
(1.75 g, 5.28 mmol) was added a solution of 4 N HCl
in dioxane (13.2 mL, 52.8 mmol). After 1 hour, the
reaction mixture was concentrated, diluted with ethyl
ether, and concentrated to give an oil. The oil was
dissolved in water and saturated NaHCO_{3} solution was
added until the pH value was 8. The mixture was
extracted with ethyl acetate. The organic layer was
washed with H_{2}O and brine, dried over MgSO_{4}, and
concentrated in vacuo to give the amine as a clear,
yellow oil (0.75 g, 61%); MS MH^{+} calculated for
C_{11}H_{12}NO_{3}F_{3}: 231, found 232.

Part C: A solution of the amine of Part B
(0.680 g, 2.94 mmol), ethyl 2-chlorosulfonylbenzoate
(0.688, 2.77 mmol), triethylamine (0.46 mL, 3.3
mmol), and 4-dimethylaminopyridine (10 mg) in
acetonitrile (10 mL) was stirred under an atmosphere
of nitrogen at ambient temperature for 18 hours.
After concentrating in vacuo, the residue was diluted
with H_{2}O and extracted with ethyl acetate. The
organic layer was washed with 1.0 N KH_{2}SO_{4}, saturated
NaHCO₃, H₂O, and brine, dried over MgSO₄ and concentrated to a yellow oil. Chromatography (on silica, ethyl acetate/hexane) provided the sulfonamide as a clear, colorless oil (0.95 g, 76%); MS MH⁺ calculated for C₂₀H₂₀NO₅F₃S: 443, found 444. Anal. Calculated for C₂₀H₂₀NO₅F₃S: C, 54.17; H, 4.55; N, 3.16; S, 7.23. Found: C, 53.82; H, 4.35; N, 3.13.

Part D: A solution of the sulfonamide of Part C (0.85 g, 1.9 mmol) and potassium hydroxide (1.07 g, 19.2 mmol) in a mixture of MeOH (17 mL) and H₂O (8 mL) was heated at reflux for 4 hours. After the solution was concentrated in vacuo, the residue was dissolved into H₂O, acidified with concentrated HCl, and extracted into ethyl acetate. The organic layer was washed with H₂O and brine, dried over MgSO₄, and concentrated in vacuo to provide the acid as a clear, colorless wax (0.74 g, 93%); MS MH⁺ calculated for C₁₈H₁₈NO₅F₃S: 415, found 416.

Part E: A solution of the acid of Part D (0.690 g, 1.56 mmol), N-hydroxybenzotriazole (0.629 g, 4.65 mmol), 4-methylmorpholine (0.51 mL, 4.7 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (0.340 g, 2.90 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.891 g, 4.65 mmol) in DMF (13 mL) was stirred at ambient temperature under a nitrogen atmosphere for 3 days. The mixture was concentrated in vacuo, diluted with 1.0 N KHSO₄, and extracted with ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, saturated NaHCO₃, H₂O, and brine, dried over MgSO₄, and concentrated in vacuo. Chromatography on silica, with ethyl acetate/hexane as eluant afforded the THP-protected hydroxamate as a white foam (0.575 g, 71.6%): Anal.
calculated: for C_{23}H_{25}N_{2}O_{6}P_{3}S: C, 53.69; H, 4.90; N, 5.44; S, 6.23. Found: C, 53.48; H, 4.95; N, 5.37; S, 6.35.

Part F: To a solution of the THP-protected hydroxamate of Part E (0.500 g, 0.972 mmol) in methanol (6 mL) was added acetyl chloride (0.24 mL, 3.5 mmol) and the solution was stirred at ambient temperature under a nitrogen atmosphere for 4.5 hours. The solution was concentrated in vacuo and chromatography (on silica, MeOH/CHCl₃) provided the title compound as a white solid (0.325 g, 77.8%): MS MH+ calculated: for C_{18}H_{17}N_{2}O_{5}S_{3}: 430, found 431.

Example 18: Preparation of N-alpha-Dihydroxy-2-[[4-[(4-(trifluoromethyl)phenoxy]-1-piperidinyl)sulfonyl]benzeneacetamide

Part A: A mixture of 4-[(4-trifluoromethyl)phenoxy]piperidine hydrochloride (the hydrochloride from the product of Example 13, Part B (2.50 g, 8.87 mmol), 2-bromobenzenesulfonyl chloride (2.16 g, 8.45 mmol), triethylamine (2.51 mL, 18.0 mmol), and 4-(dimethylamino)pyridine (20 mg) in acetonitrile (25 mL) was stirred at ambient temperature under an atmosphere of nitrogen for 18 hours, concentrated in vacuo, and partitioned between H₂O and ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, saturated NaHCO₃, H₂O, and brine, dried over MgSO₄,
and concentrated in vacuo. The oil was purified by chromatography (on silica, ethyl acetate/hexane) to provide the bromide as a clear oil (3.38 g, 82.8%): MS+ calculated for C_{16}H_{17}NO_3SF_3Br 464, found 464.

Part B: To a -78 degree Celsius solution of the sulfonamide from Part A (3.68 g, 7.93 mmol) in anhydrous THF (40 mL) under an atmosphere of nitrogen was added 1.7 M tert-butyl lithium (9.35 mL, 15.9 mmol). The reaction was maintained at -78 degrees Celsius for 1 hour, warmed up to -30 degrees Celsius, and then cooled down to -78 degrees Celsius. A 50% ethyl glyoxalate solution in toluene was added drop-wise while maintaining the reaction mixture at a temperature below -50 degrees Celsius. The solution was warmed up slowly to ambient temperature, stirred 2 days at ambient temperature, poured into a saturated NH_4Cl solution, diluted with H_2O, and extracted with ethyl acetate. The organic layer was washed with H_2O and brine, dried over MgSO_4, and concentrated in vacuo. Chromatography on silica, with ethyl acetate/hexane as eluant provided the ester as a yellow oil (1.55 g, 40%); Anal. calculated for C_{22}H_{24}NO_6F_3S: C, 54.20; H, 4.96; N, 2.87. Found: C, 54.18; H, 4.72; N, 2.77. MS MH^+

Part C: A solution of the ester of Part B (1.35 g, 2.77 mmol) and potassium hydroxide (1.55 g, 27.7 mmol) in a mixture of MeOH (24.5 mL) and H_2O (14.7 mL) was stirred at ambient temperature for 1 hour. The solution was concentrated in vacuo, dissolved into a mixture of H_2O and acetonitrile, acidified with concentrated HCl, and extracted with ethyl acetate. The organic layer was washed with 1.0 N KHSO_4, H_2O,
and brine, dried over MgSO₄, and concentrated in vacuo to provide the acid as a wax (1.09 g, 85.8%); Anal. calculated. for C₂₀H₂₉NO₆F₃S: C, 52.29; H, 4.39; N, 3.05; S, 6.98. Found: C, 52.06; H, 4.41; N, 2.90; S, 7.11.

Part D: A solution of the acid of Part C (1.00 g, 2.18 mmol), N-hydroxybenzotriazole (0.876 g, 6.48 mmol), 4-methylmorpholine (0.712 mL, 6.48 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (0.474 g, 4.05 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.24 g, 6.48 mmol) in DMF (15 mL) was stirred at ambient temperature under a nitrogen atmosphere for 18 hours. The mixture was concentrated in vacuo, diluted with water, and extracted with ethyl acetate. The organic layer was washed with 1.0 N KHSO₄, saturated NaHCO₃, H₂O, and brine, dried over MgSO₄ and concentrated in vacuo. Chromatography on silica with ethyl acetate/hexane as eluant provided the THP-protected hydroxamate as a white solid (0.81 g, 66%); Anal. calculated. for C₂₅H₂₅N₂O₅F₃S: C, 53.76; H, 5.23; N, 5.02; S, 5.74. Found: C, 53.73; H, 5.39; N, 4.85; S, 5.72.

Part E: A solution of the THP-protected hydroxamate of Part D (0.800 g, 1.43 mmol) and acetyl chloride (0.36 mL, 5.2 mmol) in methanol (15 mL) was stirred at ambient temperature under a nitrogen atmosphere for 1.5 hours. The solution was concentrated in vacuo and purified by preparatory HPLC (CH₃CN/H₂O) to provide the title compound as a white solid (0.310 g, 45%); Anal. calculated. for C₂₀H₂₁N₂O₆SF₃·0.2H₂O: C, 50.25; H, 4.51; N, 5.86; S, 6.71. Found: C, 50.18; H, 4.52; N, 5.82; S, 6.58.

Part A: A solution of the piperidine from Example 13, Part B (as the hydrochloride) (2.0 g, 6.72 mmol), 3-flourobenzenesulphonyl chloride (1.19 g, 6.11 mmol), triethylamine (2.13 mL, 15.3 mmol), and 4-dimethylaminopyridine (10 mg) in acetonitrile (10 mL) was stirred under an atmosphere of argon at ambient temperature for 18 hours. After concentrating the solution, the residue was diluted with H₂O and extracted into ethyl acetate. The organic layer was washed with saturated NaHSO₄, H₂O, and brine; and dried over MgSO₄ and concentrated to an oil. Chromatography (on silica, 20% ethyl acetate/hexane) provided the sulfonamide as a viscous oil (2.35 g, 95%); MS H⁺ calculated for C₁₅H₁₇NSO₂F₄: 404, found 404.

Part B: t-Butyl lithium (3.5 mL, 5.96 mmol) was added to a solution of the sulfonamide of Part A (1.2 g, 2.98 mmol) in dry THF (10 mL) at 0°C. The solution was stirred at this temperature for 15 minutes. Carbon dioxide was bubbled into the reaction mixture for 7 minutes at 0°C, and the mixture was stirred for 0.5 hours. Water was added to the solution, the
mixture was acidified to pH = 1.0 with 1 N HCl, and concentrated in vacuo to give an oil. Chromatography (on silica, 1% acetic acid/5% methanol/ethyl acetate) provided the acid as a white powder (0.970 mg, 73%). MS H+ calculated for C_{19}H_{18}NSO_{3}F_{4}: 448, found 448.

Part C: A solution of the acid of Part B (880 mg, 1.97 mmol), N-hydroxybenzotriazole (319 mg, 2.36 mmol), 4-methylmorpholine (0.649 mL, 5.91 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (346 mg, 2.95 mmol), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (528 mg, 2.76 mmol) in DMF (10 mL) was stirred at ambient temperature under an argon atmosphere for 18 hours, followed by stirring at 60°C for 24 hours. The mixture was concentrated in vacuo, diluted with water, and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo to give a solid. Chromatography on a C-18 reverse phase column, eluting with acetonitrile/water afforded the THP-protected hydroxamate as a white solid (240 mg, 30%).

Part D: To a solution of the THP-protected hydroxamate of Part C (230 mg, 0.422 mmol), in dioxane (5 mL) was added 4 N HCl (1 mL), and the solution was stirred at ambient temperature under argon atmosphere for 1 hour. The solution was concentrated in vacuo to give an oil. Chromatography on a C-18 reverse phase column, eluting with acetonitrile/water afforded the titled hydroxamate as a white foam (180 mg, 92%).

Part A: A solution of the amine of piperidine from Example 13, Part B (as the hydrochloride) (2.00 g, 6.72 mmol), 3-chlorobenzenesulphonyl chloride (1.29 g, 6.11 mmol), triethylamine (2.2 mL, 15.3 mmol), and 4-dimethylaminopyridine (10 mg) in acetonitrile (10 mL) was stirred under an atmosphere of argon at ambient temperature for 18 hours. After concentrating the solution, the residue was diluted with H₂O and extracted into ethyl acetate. The organic layer was washed with saturated NaHSO₄, H₂O, and brine, and dried over MgSO₄ and concentrated to an oil. Chromatography (on silica, 20% ethyl acetate/hexane) provided the sulfonamide as a viscous oil (2.44 g, 95%); MS H+ calculated for C₁₈H₁₄NSO₃F₃Cl: 419, found 419.

Part B: t-Butyl lithium (3.4 mL, 5.7 mmol) was added to a solution of the sulfonamide of Part A (1.2 g, 2.9 mmol) in dry THF (10 mL) at 0°C. The solution was stirred at this temperature for 15 minutes. Carbon dioxide was bubbled into the reaction mixture for 7 minutes at 0°C, then the reaction was stirred for 1.5 hours. Water was added to the solution, which was then acidified to pH = 1.0 with 1 N HCl, and then concentrated in vacuo to give an oil. Chromatography (on silica, 1% acetic acid/5%
methanol/ethyl acetate) provided the acid as a white powder (320 mg, 24%).

Part C: Oxalyl chloride (0.154 mL) was added to a solution of the acid of Part B (410 mg, 0.88 mmol) in methylene chloride (4 mL) at ambient temperature and the solution was stirred under argon atmosphere for 1 hour. The solution was concentrated in vacuo to give the acid chloride. To the acid chloride in DMF (5 mL) was added 4-methylmorpholine (0.200 mL, 1.77 mmol), O-tetrahydro-2H-pyran-2-yl-hydroxylamine (155 mg, 1.30 mmol) and the reaction was stirred at ambient temperature under an argon atmosphere for 4 hours. The mixture was diluted with water, and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo to give an oil. Chromatography on a C-18 reverse phase column, eluting with acetonitrile/water afforded the THP-protected hydroxamate as a white foam (260 mg, 52%).

Part D: To a solution of the THP-protected hydroxamate of Part C in dioxane was added 4 N HCl and the was solution stirred at ambient temperature under argon atmosphere for 1 hour. The solution was concentrated in vacuo to give a semi-solid. Chromatography (on silica, 60% ethyl acetate/hexane) provided the title compound.

Example 21: Preparation of N-Hydroxy-2-[[4-(4-pyridinyl)oxy]-1-piperidinyl]sulfonyl]-benzamide, monohydrochloride
Part A: To a solution of N-BOC-4-hydroxypiperidine (3.00 g, 14.9 mmol) in dimethylsulfoxide (10 mL) are sequentially added 4-chloropyridine hydrochloride (2.35 g, 15.6 mmol) and potassium-t-butoxide (30.5 mL of a 1.0 M solution in tetrahydrofuran, 30.5 mmol). After 16 hours at ambient temperature, the reaction mixture is diluted with diethyl ether (100 mL) and washed with water (3X) and brine, and then dried over sodium sulfate. Concentration of the organic solution gives the desired 4-pyridyloxypiperidine (4.24 g, 100%) as a white solid. Analytical calculation for C_{15}H_{22}N_{2}O_{3}: C, 64.73; H, 7.97; N, 10.06. Found: C, 64.48; H, 8.14; N, 9.82.

Part B: A solution of hydrogen chloride in 1,4-dioxane (20 mL of a 4 N solution, 80 mmol) is added to a solution of pyridyloxypiperidine of Part A (3.81 g, 13.7 mmol) in 1,4-dioxane (28 mL) at ambient temperature. After one hour, the suspension is concentrated and the residue triturated with hot isopropanol. The resulting solid is dried at 50 degrees Celsius under vacuum to afford the desired piperidine hydrochloride salt as a white powder (3.03 g, 88%). Analytical calculation for C_{10}H_{14}N_{2}O_{2}HCl: C, 47.82; H, 6.42; N, 11.15. Found: C, 47.40; H, 6.64; N, 11.04.
Part C: The solid piperidine hydrochloride from Part B (450 mg, 1.79 mmol) is added to a solution of 2-carboxyethoxy-benzenesulfonyl chloride (580 mg, 2.33 mmol) in acetonitrile (5 mL), followed by the addition of neat triethylamine (0.95 mL, 7.16 mmol) and dimethylaminopyridine (10 mg, 0.08 mmol). Additional acetonitrile (10 mL) is added, along with methylene chloride (3 mL) to aid in dissolution. After 16 hours at ambient temperature, water (100 mL) is added and the mixture is extracted twice with ethyl acetate. The combined organic extracts are washed successively with water (3X) and brine, and then dried over sodium sulfate. Concentration gives a residue (0.49 g) that is chromatographed on silica gel eluting with ethanol/ethyl acetate (4/96) to afford the desired aryl sulfonamide (462 mg, 66%) as a pale yellow foam. Analytical calculation for C_{19}H_{22}N_{2}O_{5}S·0.5H_{2}O: C, 56.49; H, 5.86; N, 6.93. Found: C, 56.36; H, 5.88; N, 6.68.

Part D: Sodium hydroxide (10 equivalents) is added to a solution of the aryl sulfonamide of Part C in ethanol, water and tetrahydrofuran, and the solution is heated to 60 degrees Celsius for 24 hours. The solution is cooled and then diluted with water followed by 10% aqueous hydrochloric acid to bring the pH value to 3. The resulting solution is extracted with ethyl acetate. The organic extracts are combined and washed with water and brine, and dried over sodium sulfate to afford the desired carboxylic acid.

Part E: To a solution of the carboxylic acid of Part D in N,N-dimethylformamide are added 4-methylmorpholine (6.0 equivalents), N-
hydroxybenzotriazole (1.2 equivalents), and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (1.3 equivalents), followed by O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (1.3 equivalents). After stirring for 2 days at ambient temperature the solution is concentrated. Water is added and the mixture is extracted with ethyl acetate. The organic extracts are washed with water and brine, and dried over sodium sulfate. Concentration affords a residue that is chromatographed on silica gel eluting with ethyl acetate/hexane (20/80 to 90/10) as eluate to afford the THP-protected hydroxamate derivative.

Part F: To a solution of the THP-protected hydroxamate of Part E in 1,4-dioxane is added 4 N HCl in 1,4-dioxane (10 equivalents), and the solution is permitted to stir at ambient temperature for 3 hours. Concentration gives a residue that is then triturated with diethyl ether to afford the title compound.

Example 22: Preparation of N-Hydroxy-2,3-dimethoxy-6-[(4-[(2'-methoxy[1,1'-biphenyl]-4-yl)-oxy-1-piperidinyl]sulfonyl]benzamide

Part A: To a solution of N-BOC-4-hydroxypiperidine (25 mmol, 5.0 g) in 1 methyl-2-pyrrolidinone (20 mL) was added hexane-washed sodium hydride (26 mmol, 1.01 g). The reaction mixture was stirred at ambient temperature for 15 minutes, then heated to 65 degrees Celsius for 30 minutes. Bromo-
4-fluorobenzene (25 mmol, 4.38 g) was added, and the solution was heated at 120 degrees Celsius for 24 hours. The reaction mixture was permitted to cool to ambient temperature, was diluted with water (100 mL), and was extracted with ethyl acetate (150 mL). The organic layer was washed with brine (50 mL), dried over magnesium sulfate, and concentrated in vacuo to afford an oil, which was further purified by passage through silica pad, eluting with ethyl acetate. 7.28 g (82%) were obtained. MS calculated for C_{16}H_{22}NO_3Br: 356, found 356.

Part B: To a solution of the bromide of part A (20 mmol, 7.2 g) in dioxane (20 mL) was added 4N HCl (50 mL). The solution was stirred at ambient temperature for two hours, then concentrated to give a solid. The solid was triturated with diethyl ether, affording the desired piperidine hydrochloride (5.8 g 99%).

Part C: To a solution of 3,4-dimethoxybenzenesulfonyl chloride (18 mmol, 4.26 g) in acetonitrile (75 mL) was added the hydrochloride from part B (20 mmol, 5.8 g), followed by triethylamine (36 mmol, 7.5 mL) and N,N-dimethylaminopyridine (100 mg). The solution was stirred at ambient temperature for 75 hours. The mixture was diluted with water (200 mL) and extracted with ethyl acetate (300 mL). The ethyl acetate layer was washed with brine (100 mL), and dried over magnesium sulfate. Concentration followed by chromatography (1:1 hexane:ethyl acetate) provided the desired sulfonamide as a solid (5.45 g, 66%). MS calculated for C_{15}H_{22}BrNSO_3 456, found 456.
Part D: To a solution of the compound of Part C (2.96 g, 6.49 mmol) in ethylene glycol dimethyl ether (30 mL) at ambient temperature under an atmosphere of nitrogen was added tetrakis(triphenylphosphine)palladium(0) (0.375 g, 0.325 mmol). After stirring for 5 minutes, 2-methoxyphenylboronic acid (1.18 g, 7.79 mmol) was added followed by a solution of sodium carbonate (0.954 g, 9.00 mmol) in water (18 mL). The mixture was refluxed for 1.5 hours and then stirred overnight (about 18 hours) at ambient temperature. The mixture was diluted with water (50 mL) and extracted with methylene chloride (50 mL). The solution was filtered through a silica bed and concentrated in vacuo to a black solid. Chromatography (on silica, acetone/hexane) provided the biphenyl as a white solid (2.69 g, 86% yield); Anal. calcd for C_{26}H_{29}NO_{6}S: C, 64.58; H, 6.04; N, 2.90; S, 6.63. Found: C, 64.30; H, 6.16; N, 2.86; S, 6.90. MS (EI) MH+ calcd. for C_{26}H_{29}NO_{6}S 484, found 484.

Part E: To a solution of the biphenyl of Part D (2.85 g, 5.89 mmol) in THF (80 mL) at -80 degrees Celsius under a nitrogen atmosphere was added a solution of 1.6 M n-butyllithium in hexane (5.17 mL, 8.27 mmol). After stirring at ambient temperature for 30 minutes, the solution was cooled to -80 degrees Celsius and carbon dioxide was bubbled into the solution for 7 minutes. The solution was diluted with 1N HCl (50 mL) and extracted with ethyl acetate (3x50 mL). The organic layer was washed with water (2x50 mL) and brine (50 mL), dried with MgSO_{4}, and concentrated in vacuo to provide the carboxylic acid as a tan solid (3.00 g, 96% yield)); Anal.
calcd for C_{27}H_{29}NO_{8}S: C, 61.47; H, 5.54; N, 2.65; S, 6.08. Found: C, 61.46; H, 5.94; N, 2.48; S, 5.70. MS (EI) MH⁺ calcd. for C_{27}H_{29}NO_{8}S 528, found 528.

Part F: To a solution of the carboxylic acid of Part E (2.92 g, 5.53 mmol) and DMF (2 drops, catalytic amount) in 1,2-dichloroethane (50 mL) was added oxalyl chloride (4.07 mL, 46.7 mmol). After stirring for 1.5 hours at ambient temperature under a nitrogen atmosphere, the solution was concentrated in vacuo to a yellow oil. To the oil were added N-methylmorpholine (1.57 mL, 14.2 mmol), O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (1.66 g, 14.2 mmol), and 1,2-dichloroethane (19 mL). After stirring for about 20 hours at ambient temperature under an atmosphere of nitrogen, the mixture was diluted with water (150 mL) and extracted with ethyl acetate (3x50 mL). The organic layer was washed with 1N HCl (50 mL), saturated NaHCO₃ (50 mL), water (50 mL), and brine (50 mL), dried with MgSO₄, and concentrated in vacuo to a tan solid. Chromatography (on silica, ethyl acetate/hexane) provided the O-protected hydroxamate as a white solid (2.41 g, 69% yield); MS (EI) MH⁺ calcd. for C_{32}H_{38}N₂O₉S 627, found 627.

Part G: To a solution of acetyl chloride (2.61 mL, 38.1 mmol) in MeOH (39 mL) was added the O-protected hydroxamate of Part F (2.39 g, 3.81 mmol) and stirred at ambient temperature under a nitrogen atmosphere for 1.5 hours. The solution was concentrated, trituated with ether, concentrated, and dried to give a white solid. Chromatography (on silica, MeOH/CHCl₃) provided the title compound as a white solid (1.36 g, 66% yield); Anal. calcd for C_{27}H_{30}N₂O₉S: C, 59.77; H, 5.57; N, 5.16; S, 5.91.
Example 23: Preparation of N-Hydroxy-2-(2-methoxy-ethoxy)-6-\{[4-\{4-(trifluoromethyl)-phenoxy\}]-1-piperidinyld sulfonyl\} benzamide

Part A: A solution of 1-\{3-fluorophenyl\}-sulfonyl]-4-[4 (trifluoromethyl)phenoxy)piperidine (7.00 g, 17.4 mmol), 60% sodium hydride (1.13 g, 28.2 mmol) and 2-methoxy-1-ethanol (2.19 mL, 27.7 mmol) in 1-methyl-2-pyrrolidinone (10 mL) was heated at 120 degrees Celsius for 5 hours. The solution was diluted with water (300 mL) and extracted with ethyl acetate (3x100 mL). The organic layer was washed with water (2x100 mL) and brine (100 mL), dried with MgSO4, and concentrated in vacuo to a brown paste. Recrystallization from methyl tert-butyl ether/hexane provided the ether as a white solid (6.59 g, 83% yield). The proton NMR spectrum was consistent for the desired ether.

Part B: To a solution of the ether of Part A (6.59 g, 14.3 mmol) in THF (120 mL) at -10 degrees Celsius under a nitrogen atmosphere was added a solution of 1.7 M t-butyllithium in pentane (16.8 mL, 26.8 mmol). After stirring at -60 degrees Celsius for 30 minutes, carbon dioxide was bubbled into the solution for 7 minutes, the resulting solution was
poured into a solution of 1N HCl (100 mL) and water (500 mL), and extracted with ethyl acetate (3x100 mL). The organic layer was washed with 1N HCl (100 mL), water (2x100 mL) and brine (100 mL), dried with MgSO₄, and concentrated in vacuo. Chromatography (acetic acid/ MeOH/CHCl₃) provided the carboxylic acid as a yellow oil (4.67 g, 64% yield); Anal. calcd for C₂₂H₂₄NO₇P₃S: C, 52.48; H, 4.80; N, 2.78; S, 6.37. Found: C, 52.49; H, 4.70; N, 2.69; S, 6.31. MS (EI) MH⁺ calcd. for C₂₂H₂₄NO₇P₃S 504, found 504.

Part C: To a solution of the carboxylic acid of Part B (5.45 g, 10.8 mmol) and DMF (4 drops, catalytic amount) in dichloromethane (99 mL) was added oxalyl chloride (8.03 mL, 92.0 mmol). After stirring for 2 hours at ambient temperature, the solution was concentrated in vacuo to a dark brown mixture. To the mixture were added N-methylmorpholine (4.76 mL, 43.3 mmol), O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (5.07 g, 43.3 mmol), and dichloromethane (77 mL). After stirring for about 4 hours at ambient temperature, the solution was washed with water, 1.0 N HCl, saturated NaHCO₃, water, and brine, dried with MgSO₄, and concentrated in vacuo to a paste. Chromatography (on silica, MeOH/ethyl acetate) provided the O-protected hydroxamate as a pink solid (5.23 g, 80% yield); Anal. calcd for C₂₇H₃₃N₂O₇P₃S: C, 53.81; H, 5.52; N, 4.65; S, 5.32. Found: C, 53.67; H, 5.43; N, 4.77; S, 5.17. MS (EI) MH⁺ calcd. C₂₇H₃₃N₂O₇P₃S for 603, found 603.

Part D: A solution of acetyl chloride (5.90 mL, 86.3 mmol) in MeOH (89 mL) was added to the O-protected hydroxamate of Part C (5.20 g, 8.63 mmol) and stirred at ambient temperature for 3 hours. The
solution was concentrated, triturated with ether, and concentrated to give an off white solid. Chromatography (on silica, MeOH/methylene chloride) provided the title compound as a white solid (2.25 g, 50% yield); Anal. calcd for C_{22}H_{25}N_{2}O_{7}S: C, 50.96; H, 4.86; N, 5.40; S, 6.18. Found: C, 50.57; H, 4.91; N, 5.37; S, 6.08. MS (EI) MH+ calcd. for C_{22}H_{25}N_{2}O_{7}S 519, found 519.

Example 24: Preparation of N-Hydroxy-2,3-dimethoxy-6-[[4-(phenylthio)-1-piperidinyl]-sulfonyl]benzamide

Part A: 4-Hydroxypiperidine (55 mmol, 5.56 g) was diluted with acetonitrile (100 mL), triethylamine (55 mmol, 7.7 mL), and N,N-dimethyl-aminopyridine (500 mg). 3,4-dimethoxy-benzenesulfonyl chloride (50 mmol, 11.84 g) was added. The mixture was stirred overnight (about 18 hours), then concentrated by rotary evaporation. The residue was diluted with water (100 mL) and extracted with dichloromethane (2 X 150 mL). The combined organic phases were dried using magnesium sulfate, filtered through a silica plug, and concentrated to afford the desired alcohol as a foam (7.31 g, 51%).

Part B: The alcohol from Part A (6.39 g, 22.4 mmol) was combined with methylene chloride (65 mL) and triethylamine (3.46 mL, 25 mmol). The solution was chilled to zero degrees Celsius. Methanesulfonyl chloride (1.79 mL, 23 mmol) was added. The reaction was stirred at ambient
temperature for 4 hours, then diluted to 150 ml with additional methylene chloride, and washed with water (2 X 25 mL). The organic phase was dried over magnesium sulfate, filtered through silica, and concentrated to provide the mesylate as a white solid (3.51 g, 41%).

Part C: 60% Sodium hydride in mineral oil (324 mg, 8.1 mmol) was washed with hexanes. The washed hydride was covered with N,N-dimethylformamide (12 mL) and chilled to zero degrees Celsius. Thiophenol (0.83 mL, 8.1 mmol) was added, and the mixture was stirred for 20 minutes. Solid mesylate from Part B, above, (3.0 g, 7.9 mmol) was added. Mesylate displacement was slow at ambient temperature; the reaction was warmed at 55 degrees Celsius for 3 hours. Work-up comprised of azeotropic removal of the DMF assisted by toluene, followed by chromatography of the residue, affording 1.45 g (44%) of the sulfide as a white foam.

Part D: The sulfide was dissolved in tetrahydrofuran (24 mL) and cooled to zero degrees Celsius. T-BuLi (1.7 M in pentane, 4.1 mL) was added over 1 minute. After 15 minutes, the reaction was quenched with carbon dioxide gas. After 10 minutes, the mixture was acidified using concentrated HCl, concentrated, and chromatographed to give the desired acid as a foam (1.067 g, 70%)

Part E: The acid from Part C was diluted with methylene chloride (15 mL). Three drops of N,N-dimethylformamide were added, followed by oxalyl chloride (0.35, 4 mmol). The reaction was stirred at ambient temperature for 2 hours, then concentrated. The crude acid chloride was added using about 3 mL of
methylene chloride to a mixture of tetrahydropyran-hydroxylamine (0.47 g, 4 mmol), pyridine (0.47 ml, 6 mmol) and acetonitrile (3 mL). The mixture was stirred overnight (about 18 hours), then subjected to aqueous extraction (50 mL methylene chloride/50 mL water). The organic phase was dried over magnesium sulfate, concentrated, and chromatographed to afford the O-THP hydroxamate as a foam (619 mg).

The O-THP hydroxamate (614 mg) was diluted with dry methanol (20 mL). Acetyl chloride (0.6 mL, 8 mmol) was added. After 1 hour, the mixture was concentrated and chromatographed, affording the desired hydroxamate as a foam (428 mg, 31%). MS (EI) MH+ calculated for C₂₀H₂₄N₂O₆S₂: 453, found 453.

The following analogs were made in good yield using similar procedures:

Example 25: 6-[[4-[(3′-Dimethoxy[1,1′-biphenyl]-4-y1)-1-piperidiny1]sulfonyl]-N hydroxy-2,3-dimethoxybenzamide

![Chemical Structure]

MS (EI) MH+ calculated for C₂₈H₃₂N₆O₅S: 573, found 573.

Example 26: N-Hydroxy-2,3-dimethoxy-6-[[4-4-(trifluoromethyl)phenyl]-1-piperaziny1]sulfonyl]benzamide
Example 27: N-Hydroxyl-2,3-dimethoxy-6-[[4-[[3'-
(trifluoromethyl)[1,1'-biphenyl]-4-
yl]oxy]-1-piperidinyl]sulfonyl]benzamide

MS (EI) calculated for C_{28}H_{22}F_{3}N_{3}O_{6}S: 490, found 490.

Example 28: 6-[[4-(1,1'-Biphenyl)-4-yloxy)-
1-piperidinyl)sulfonyl]-N-hydroxy-
2,3-dimethoxybenzamide

MS (EI) calculated for C_{27}H_{27}F_{3}N_{2}O_{7}S: 581, found 581.

Example 29: 2-[[4-(2,3-Dihydro-2-oxo-1H-
benzimidazol-1-yl)-1-piperidinyl]-
sulfonyl]N-hydroxybenzamide

MS (EI) calculated for C_{15}H_{20}N_{4}O_{5}S: 417, found 417.

Example 30: 2,3-Dihydro-N-hydroxy-6-[(4-methoxy-
1-piperidinyl)sulfonyl]-1,4-benzodioxin-5-carboxamide

MS (EI) calculated for $C_{15}H_{20}N_2O_7S$: 372, found 373.

Example 31: 2,3-Dihydro-N-hydroxy-6-[[4-
[4-(trifluoromethyl)phenoxy-1-piperidinyl)sulfonyl]-1,4-
benzodioxin-5-carboxamide

MS (EI) calculated for $C_{21}H_{21}F_3N_2O_7S$: 502, found 503.

Example 32: 2,5-Dichloro-N-hydroxy-4-[[4-
{4-(trifluoromethyl)phenoxy]-1-piperidinyl)sulfonyl]-3-
thiophene carboxamide

Example 33: N-Hydroxy-2,3-dimethoxy-6-[[4-
[4-(trifluoromethoxy)phenoxy]-1-piperidinyl)sulfonyl]benzamide
Example 34: N-Hydroxy-2,3-dimethoxy-6-[[4-(2-methoxyphenoxy)-1-piperidinyl]-
sulfonyl]benzamide

\[
\begin{array}{c}
\text{MeO} \ \text{MeO} \\
\text{O} \ \text{NH} \ \text{O} \ \text{MeO} \\
\text{S} \ \text{N} \ \text{O} \ \text{O}
\end{array}
\]

Anal. Calc.'d for C_{21}H_{16}N_{2}O_{8}S: C, 50.07; H, 5.62; N, 6.00. Found: C, 53.77; H, 5.64; N, 5.79.

Example 35: N-Hydroxy-3,6-dimethoxy-2-[[4-(trifluoromethyl)phenoxy]-1-
piperidinyl]sulfonyl]benzamide

\[
\begin{array}{c}
\text{O} \ \text{S} \ \text{N} \ \text{O} \\
\text{MeO} \ \text{CH}_3 \ \text{O} \\
\text{CH}_3 \ \text{O}
\end{array}
\]

Example 36: N-Hydroxy-5-[[4-[(4-(trifluoromethyl)phenoxy)-1-piperidinyl]sulfonyl]-1,3-
benzodioxole-4-carboxamide

\[
\begin{array}{c}
\text{O} \ \text{S} \ \text{N} \ \text{O} \\
\text{MeCN} \ \text{O} \ \text{O} \\
\text{CF}_3
\end{array}
\]

MS (EI) calculated for C_{26}H_{19}F_{3}N_{2}O_{7}S: 489, found 489.

Example 37: 6-[[4-[[2',5'-Dimethoxy[1,1'-biphenyl]-
4-yl]oxy]-1-piperidinyl]sulfonyl]-N-
hydroxy-2,3-dimethoxybenzamide

\[
\begin{array}{c}
\text{MeO} \ \text{MeO} \\
\text{O} \ \text{S} \ \text{N} \ \text{O} \\
\text{O} \ \text{Me}
\end{array}
\]
Anal. Calc.'d for C_{28}H_{32}N_{2}O_{9}S: C, 58.73; H, 5.63; N, 4.89. Found: C, 58.55; H, 5.82; N, 4.81.

Example 38: N-Hydroxy-2,3-dimethoxy-6-[[4-[[2'-(trifluoromethyl)[1,1'-biphenyl]-4-yl]oxy]-1-piperidinyl]sulfonyl]benzamide

Anal. Calc.'d for C_{27}H_{37}F_{3}N_{2}O_{7}S: C, 55.86; H, 4.69; N, 4.83. Found: C, 55.77; H, 4.75; N, 4.77.

Example 39: N-Hydroxy-2,3-dimethoxy-6-[[4-[[2'-(trifluoromethyl)[1,1'-biphenyl]-4-yl]oxy]-1-piperidinyl]sulfonyl]benzamide

Anal. Calc.'d for C_{30}H_{36}N_{2}O_{8}S: C, 61.63; H, 6.21; N, 4.79. Found: C, 61.36; H, 6.29; N, 4.64.

Example 40: 6-[[4-[(2'-Ethoxy[1,1'-biphenyl]-4-yl)oxy-1-piperidinyl]sulfonyl]-N-hydroxy-2,3-dimethoxybenzamide

Anal. Calc.'d for C_{28}H_{32}N_{2}O_{9}S: C, 60.42; H, 5.79; N, 5.03. Found: C, 60.30; H, 5.94; N, 4.88.

Example 41: N-Hydroxy-2,3-dimethoxy-6-[[4-[(4-
methoxyphenyl]-1-piperazinyl]sulfonyl]-benzamide, monohydrochloride

MS (EI) MH+ calculated for C_{29}H_{25}N_{3}O_{5}S (free base):
5 452, found 452.

Example 42: N-hydroxy-2-[[4-(2-pyridinyl)oxy]-1-
piperidinyl]sulfonyl]benzamide, monohydrochloride

MS (EI) MH+ calculated for C_{17}H_{19}N_{3}O_{5}S (free base):
378, found 378.

Example 43: 5-[[4-Butoxy-1-piperidinyl]sulfonyl]-
N-hydroxy-1,3-benzodioxole-4-carboxamide

Anal. Calc.'d for C_{15}H_{24}N_{2}O_{7}S: C, 50.99; H, 6.04; N,
7.00. Found: C, 50.97; H, 6.27; N, 6.88.

Example 44: 5-[[4-Heptyloxy-1-piperidinyl]sulfonyl]-
N-hydroxy-1,3-benzodioxole-4-carboxamide
Anal. Calc.'d for C_{20}H_{26}N_{2}O_{7}S: C, 54.28; H, 6.33; N, 6.33. Found: C, 53.91; H, 7.10; N, 6.25.

Example 45: N-Hydroxy-2,3-dimethoxy-6-[(4-(4-methoxyphenoxy-1-piperidinyl)sulfonyl]benzamide

Anal. Calc.'d for C_{21}H_{26}N_{2}O_{8}S: C, 54.07; H, 5.62; N, 6.00. Found: C, 53.69; H, 5.87; N, 5.79.

Example 46: 6-[(4-(4-Chlorophenoxy)-1-piperidinyl)sulfonyl]-N-hydroxy-2,3-dimethoxybenzamide

Anal. Calc.'d for C_{26}H_{23}ClN_{2}O_{8}S: C, 51.01; H, 4.92; N, 5.95. Found: C, 50.62; H, 4.93; N, 5.92.

Example 47: N-Hydroxy-2,3-dimethoxy-6-[(4-phenoxy-1-piperidinyl)sulfonyl]benzamide

MS (EI) calculated for C_{20}H_{24}N_{2}O_{7}S: 436, found 437.

To analyze the content of the document, we can start by examining the chemical structures and the corresponding examples provided. Here is a breakdown of the information:

Example 49

Chemical Structure:

![Chemical Structure](image)

Description:

Example 49: 5-[[4-((1,3-Benzodioxol)-5-yloxy)-1-piperidinyl]sulfonyl]-N-hydroxy-1,3-benzodioxole-4-carboxamide

Example 50

Chemical Structure:

![Chemical Structure](image)

Description:

Example 50: 6-[[4-((1,3-Benzodioxole-5-yloxy)-1-piperinyl]sulfonyl]-N-hydroxy-2,3-dimethoxybenzamide

Mass Spectrometry (EI):

Calculated for C_{21}H_{24}N_{2}O_{9}S: 481, found 481.

Example 51

Chemical Structure:

![Chemical Structure](image)

Description:

Example 51: 2-[(4-Benzoyl-1-piperazinyl)sulfonyl]-N-hydroxybenzamide

Mass Spectrometry (EI):

MH+ calculated for C_{18}H_{19}N_{3}O_{5}S: 390, found 390.

Example 52

Chemical Structure:

![Chemical Structure](image)

Description:

Example 52: N-Hydroxy-2,3-dimethoxy-6-[[4-(phenylmethyl)-1-piperazinyl]sulfonyl]-
benzamide, monohydrochloride

MS (EI) MH+ calculated for C_{26}H_{25}N_{3}O_{6}S (free base) : 436, found 436.

Example 53: N-Hydroxy-2,3-dimethoxy-6-[[4-[[4-(trifluoromethoxy)phenyl]methyl]-1-piperazinyl]sulfonyl]benzamide,
monohydrochloride

MS (EI) MH+ calculated for C_{23}H_{24}F_{3}N_{3}O_{7}S: 520, found 520.

Example 54: 6-[[4-(4-Butoxyphenoxy)-1-piperidinyl]-sulfonyl]-N-hydroxy-2,3-dimethoxybenzamide

MS (EI) MH+ calculated for C_{24}H_{32}N_{2}O_{6}S: 509, found 509.

Example 55: N-Hydroxy-2-[[4-(4-pyridinyl oxy)-1-piperidinyl]sulfonyl]benzamide,
monohydrochloride
MS (EI) MH+ calculated for C_{17}H_{15}N_{3}O_{5}S (free base): 378, found 378.

Example 56: 6-[[4-(4-Butoxy-3-methylphenyl)-1-piperaziny]sulfonyl]-N-hydroxy-2,3-dimethoxybenzamide, monohydrochloride

MS (EI) MH+ calculated for C_{24}H_{33}N_{3}O_{5}S (free base): 508, found 508.

Example 57: N-Hydroxy-2,3-dimethoxy-6-[[4-(3-methoxyphenoxy-1-piperidiny]sulfonyl]benzamide

Anal. Calc.'d for C_{21}H_{26}N_{2}O_{5}S: C, 54.07; H, 5.62; N, 6.00. Found: C, 53.77; H, 5.64; N, 5.79.

Example 58: **In Vitro Metalloprotease Inhibition**

The compounds prepared in the manner described in the Examples above were assayed for activity by an in vitro assay. Following the procedures of Knight et al., *FEBS Lett.* 296(3):263 (1992). Briefly, 4-aminophenylmercuric acetate (APMA) or trypsin-activated MMPs were incubated with various concentrations of the inhibitor compound at room temperature for 5 minutes.

More specifically, recombinant human MMP-13, MMP-1 and MMP-2 enzymes were prepared in

MMP-1 expressed in transfected HT-1080 cells was provided by Dr. Harold Welgus of Washington University, St. Louis, MO. The enzyme was also activated using APMA and was then purified over a hydroxamic acid column. Dr. Welgus also provided transfected HT-1080 cells that expressed MMP-9. Transfected cells that expressed MMP-2 were provided by Dr. Gregory Goldberg, also of Washington University. Studies carried out using MMP-2 in the presence of 0.02% 2-mercaptoethanol are shown in the table below with an asterisk. Further specifics for preparation and use of these enzymes can be found in the scientific literature describing these enzymes. See, for example, Enzyme Nomenclature, Academic Press, San Diego, Ca (1992) and the citations

The enzyme substrate is a methoxycoumarin-containing polypeptide having the following sequence:

MCA-ProLeuGlyLeuDpaAlaArgNH₂, wherein MCA is methoxycoumarin and Dpa is 3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl alanine. This substrate is commercially available from Baychem as product M-1895.

The buffer used for assays contained 100 mM Tris-HCl, 100 mM NaCl, 10 mM CaCl₂ and 0.05 percent polyethyleneglycol (23) lauryl ether at a pH value of 7.5. Assays were carried out at room temperature, and dimethyl sulfoxide (DMSO) at a final concentration of 1 percent was used to dissolve inhibitor compound.

The assayed inhibitor compound in DMSO-buffer solution was compared to an equal amount of DMSO-buffer with no inhibitor as control using Microfluor™ White Plates (Dynatech). The inhibitor or control solution was maintained in the plate for 10 minutes and the substrate was added to provide a final concentration of 4 μM.

In the absence of inhibitor activity, a fluorogenic peptide was cleaved at the gly-leu peptide bond, separating the highly fluorogenic peptide from a 2,4-dinitrophenyl quencher, resulting in an increase of fluorescence intensity (excitation at 328 nm/emission at 415 nm). Inhibition was measured as a reduction in fluorescent intensity as a function of inhibitor concentration, using a Perkin Elmer L550 plate reader. The IC₅₀ values were calculated from those values. The results are set
forth in the Inhibition Tables A and B below, reported in terms of IC$_{50}$ to three significant figures, where appropriate.

Inhibition Table A

(IC$_{50}$ values in nM)

<table>
<thead>
<tr>
<th>Example</th>
<th>MMP-1</th>
<th>MMP-2</th>
<th>MMP-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>10,000</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>900</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>>10,000</td>
<td>148</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>>10,000</td>
<td>>10,000</td>
<td>>10,000</td>
</tr>
<tr>
<td>5</td>
<td>>10,000</td>
<td>3500</td>
<td>>10,000</td>
</tr>
<tr>
<td>6</td>
<td>>10,000</td>
<td>--</td>
<td>4000</td>
</tr>
<tr>
<td>7</td>
<td>>10,000</td>
<td>--</td>
<td>>10,000</td>
</tr>
<tr>
<td>8</td>
<td>>10,000</td>
<td>--</td>
<td>>10,000</td>
</tr>
<tr>
<td>9</td>
<td>>10,000</td>
<td>45.0</td>
<td>1500</td>
</tr>
<tr>
<td>10</td>
<td>>10,000</td>
<td>70.0</td>
<td>520</td>
</tr>
<tr>
<td>11</td>
<td>>10,000</td>
<td>2.300</td>
<td>2,200</td>
</tr>
<tr>
<td>12</td>
<td>>10,000</td>
<td>2.2</td>
<td>33.0</td>
</tr>
<tr>
<td>13D</td>
<td>>10,000</td>
<td>3300</td>
<td>3800</td>
</tr>
<tr>
<td>13</td>
<td>>10,000</td>
<td>1.3</td>
<td>28.5</td>
</tr>
<tr>
<td>14</td>
<td>>10,000</td>
<td>35</td>
<td>900</td>
</tr>
<tr>
<td>15</td>
<td>>10,000</td>
<td>3.500</td>
<td>9,000</td>
</tr>
<tr>
<td>16</td>
<td>>10,000</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>17</td>
<td>>10,000</td>
<td>1.800</td>
<td>2,000</td>
</tr>
<tr>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>19</td>
<td>>10,000</td>
<td>5.0</td>
<td>12.3</td>
</tr>
<tr>
<td>20</td>
<td>>10,000</td>
<td>1.8</td>
<td>14.8</td>
</tr>
<tr>
<td>21</td>
<td>>10,000</td>
<td>5.9</td>
<td>63</td>
</tr>
</tbody>
</table>
Inhibition Table B

(IC₅₀ values in nM)

<table>
<thead>
<tr>
<th>Example Number</th>
<th>MMP-1</th>
<th>MMP-2</th>
<th>MMP-3</th>
<th>MMP-8</th>
<th>MMP-9</th>
<th>MMP-13</th>
<th>MT1-MMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>>10,000</td>
<td>15.5</td>
<td>170</td>
<td>800</td>
<td>300</td>
<td>5.5</td>
<td>2500</td>
</tr>
<tr>
<td>23</td>
<td>>10,000</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>>10,000</td>
<td>0.9</td>
<td>400</td>
<td>10.7</td>
<td>10.0</td>
<td>3.0</td>
<td>25.4</td>
</tr>
<tr>
<td>25</td>
<td>>10,000</td>
<td>3.3</td>
<td>100</td>
<td>115</td>
<td>370</td>
<td>2.6</td>
<td>1700</td>
</tr>
<tr>
<td>26</td>
<td>>10,000</td>
<td>6.5</td>
<td>1750</td>
<td>37.2</td>
<td>970</td>
<td>40</td>
<td>1920</td>
</tr>
<tr>
<td>27</td>
<td>>10,000</td>
<td>3.3</td>
<td>300</td>
<td>210</td>
<td>520</td>
<td>3.0</td>
<td>690</td>
</tr>
<tr>
<td>28</td>
<td>>10,000</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>>10,000</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>>10,000</td>
<td>>10,000</td>
<td></td>
<td></td>
<td></td>
<td>>10,000</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>>10,000</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>>10,000</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>>10,000</td>
<td>0.9</td>
<td>100</td>
<td>1.5</td>
<td>5.0</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>>10,000</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>>10,000</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>>10,000</td>
<td>3.0</td>
<td>600</td>
<td>12.2</td>
<td>8.0</td>
<td>18.0</td>
<td>300</td>
</tr>
<tr>
<td>37</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>20</td>
<td></td>
<td>1700</td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>120</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td></td>
<td>4400</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>>10,000</td>
<td>6.0</td>
<td>8000</td>
<td>120</td>
<td>470</td>
<td>100</td>
<td>4000</td>
</tr>
<tr>
<td>42</td>
<td>>10,000</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>>10,000</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>3700</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>>10,000</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>>10,000</td>
<td>1.8</td>
<td>900</td>
<td>11.4</td>
<td>3.0</td>
<td>13.9</td>
<td>300</td>
</tr>
<tr>
<td>46</td>
<td>>10,000</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>>10,000</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>>10,000</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>>10,000</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>>10,000</td>
<td>1.1</td>
<td>1300</td>
<td>12.2</td>
<td>9.0</td>
<td>18.6</td>
<td>270</td>
</tr>
<tr>
<td>51</td>
<td>>10,000</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>6700</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>>10,000</td>
<td>1500</td>
<td>>10,000</td>
<td></td>
<td></td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>>10,000</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>>10,000</td>
<td>0.8</td>
<td>31.6</td>
<td>70.0</td>
<td>2.0</td>
<td>1.6</td>
<td>200</td>
</tr>
<tr>
<td>55</td>
<td>>10,000</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>>10,000</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>>10,000</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Example 59: In Vivo Angiogenesis Assay

The study of angiogenesis depends on a reliable and reproducible model for the stimulation and inhibition of a neovascular response. The corneal micropocket assay provides such a model of angiogenesis in the cornea of a mouse. See, A Model

In this assay, uniformly sized Hydron™ pellets containing bFGF and sucralfate are prepared and surgically implanted into the stroma mouse cornea adjacent to the temporal limbus. The pellets are formed by making a suspension of 20 μL sterile saline containing 10 μg recombinant bFGF, 10 mg of sucralfate and 10 μL of 12 percent Hydron™ in ethanol. The slurry is then deposited on a 10 x 10 mm piece of sterile nylon mesh. After drying, the nylon fibers of the mesh are separated to release the pellets.

The corneal pocket is made by anesthetizing a 7 week old C57Bl/6 female mouse, then proptosing the eye with a jeweler’s forceps. Using a dissecting microscope, a central, intrastromal linear keratotomy of approximately 0.6 mm in length is performed with a #15 surgical blade, parallel to the insertion of the lateral rectus muscle. Using a modified cataract knife, a lamellar micropocket is dissected toward the temporal limbus. The pocket is extended to within 1.0 mm of the temporal limbus. A single pellet is placed on the corneal surface at the base of the pocket with a jeweler’s forceps. The pellet is then advanced to the temporal end of the pocket. Antibiotic ointment is then applied to the eye.

Mice are dosed on a daily basis for the duration of the assay. Dosing of the animals is based on bioavailability and overall potency of the compound. An exemplary dose is 50 mg/kg bid, po. Neovascularization of the corneal stroma begins at
about day three and is permitted to continue under the influence of the assayed compound until day five. At day five, the degree of angiogenic inhibition is scored by viewing the neovascular progression with a slit lamp microscope.

The mice are anesthetized and the studied eye is once again proptosed. The maximum vessel length of neovascularization, extending from the limbal vascular plexus toward the pellet is measured. In addition, the contiguous circumferential zone of neovascularization is measured as clock hours, where 30 degrees of arc equals one clock hour. The area of angiogenesis is calculated as follows.

\[
area = \frac{(0.4 \times \text{clock hours} \times 3.14 \times \text{vessel length (in mm)})}{2}
\]

The studied mice are thereafter compared to control mice and the difference in the area of neovascularization is recorded. A contemplated compound typically exhibits about 25 to about 75 percent inhibition, whereas the vehicle control exhibits zero percent inhibition.

It will be observed that numerous modifications and variations can be effectuated without departing from the spirit and scope of the novel concepts of the present invention. No limitation with respect to the specific examples presented is intended or should be inferred. The disclosure is intended to encompass such modifications as fall within the scope of the claims.
WHAT IS CLAIMED IS:

1. A compound corresponding to Formula C, or a pharmaceutically acceptable salt thereof:

\[\begin{align*}
\text{R}^{20} & \text{O} \\
\text{R}^{5} & \text{S} \text{O} \text{C} \\
\text{W} & \\
\text{R}^{6} & \\
\text{R}^{1} & \\
\end{align*} \]

wherein

the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;

\(\text{R}^{1} \) is (i) a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical that is bonded directly to the depicted SO₂-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, said \(\text{R}^{1} \) defining a three-dimensional volume, when rotated about an axis drawn through the SO₂-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO₂-bonded 1-position and the center of 3,4-bond of a 5-membered ring radical, whose widest dimension in a direction transverse to the axis of rotation is about that of one furanyl ring to about that of two phenyl rings;

\(\text{R}^{5} \) and \(\text{R}^{6} \) are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a
R^bR^c\text{aminoalkyl} \text{ substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocycloxy and a}
\text{R}^bR^c\text{aminoalkyloxy} \text{ substituent;}
\text{ or } R^5 \text{ and } R^6 \text{ together with the atoms to}
\text{which they are bonded form a further aliphatic or}
\text{aromatic carbocyclic or heterocyclic ring having 5-}
\text{to 7-members; and}

R^{20} \text{ is } (a) \text{-}O\text{-}R^{21}, \text{ where } R^{21} \text{ is selected}
\text{from the group consisting of a hydrido, C}_1\text{-C}_6\text{-alkyl,}
\text{aryl, ar-C}_1\text{-C}_6\text{-alkyl group and a pharmaceutically}
\text{acceptable cation, (b) -NR}^{13}\text{-O-R}^{22} \text{ wherein } R^{22} \text{ is a}
\text{selectively removable protecting group and } R^{13} \text{ is a}
\text{hydrido, C}_1\text{-C}_6\text{-alkyl or benzyl group, (c) -NR}^{13}\text{-O-}
\text{R}^{14}, \text{ where } R^{13} \text{ is as before and } R^{14} \text{ is hydrido, a}
\text{pharmaceutically acceptable cation or C(V)R}^{15} \text{ where } V
\text{is O or S and } R^{15} \text{ is selected from the group}
\text{consisting of an C}_1\text{-C}_6\text{-alkyl, aryl, C}_1\text{-C}_6\text{-alkoxy,}
\text{heteroaryl-C}_1\text{-C}_6\text{-alkyl, C}_3\text{-C}_8\text{-cycloalkyl-C}_1\text{-C}_6\text{-alkyl,}
\text{aryloxy, ar-C}_1\text{-C}_6\text{-alkoxy, ar-C}_1\text{-C}_6\text{-alkyl, heteroaryl}
\text{and amino C}_1\text{-C}_6\text{-alkyl group wherein the amino C}_1\text{-C}_6-
\text{alkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two substituents}
\text{independently selected from the group consisting of}
\text{an C}_1\text{-C}_6\text{-alkyl, aryl, ar-C}_1\text{-C}_6\text{-alkyl, C}_3\text{-C}_8-
\text{cycloalkyl-C}_1\text{-C}_6\text{-alkyl, ar-C}_1\text{-C}_6\text{-alkoxycarbonyl, C}_1-
\text{C}_6\text{-alkoxycarbonyl, and C}_1\text{-C}_6\text{-alkanoyl radical, or}
\text{(iii) wherein the amino C}_1\text{-C}_6\text{-alkyl nitrogen and two}
\text{substituents attached thereto form a 5- to 8-membered}
heterocyclo or heteroaryl ring, or (d) \(-\text{NR}^{23}\text{R}^{24}\),
where \(\text{R}^{23}\) and \(\text{R}^{24}\) are independently selected from the
group consisting of a hydrido, \(\text{C}_1\text{-C}_6\)-alkyl, amino \(\text{C}_1\text{-C}_6\)-alkyl, hydroxy \(\text{C}_1\text{-C}_6\)-alkyl, aryl, and an ar-\(\text{C}_1\text{-C}_6\)-
alkyl group, or \(\text{R}^{23}\) and \(\text{R}^{24}\) together with the
depicted nitrogen atom form a 5- to 8-membered ring
containing zero or one additional heteroatom that is
oxygen, nitrogen or sulfur;
wherein:

\(\text{R}^b\) and \(\text{R}^c\) are independently selected from
the group consisting of a hydrido, alkanoyl,
arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl,
perfluoroalkyl, trifluoromethylalkyl,
perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl,
heterocycloalkyl, heterocycloalkylcarbonyl, aryl,
heterocyclo, heteroaryl, cycloalkylalkyl,
aryloxyalkyl, heteroaryloxyalkyl,
heteroarylalkoxyalkyl, heteroarylmethoxalkyl,
arylsulfonyl, aralkanoyl, alkylsulfonyl,
heteroarylsulfonyl, carboxyalkyl,
alkoxycarbonylalkyl, aminocarbonyl,
arylaminocarbaonyl, arylaminocarbonyl,
heterocycloaminocarbonyl, aryloxyalkyl,
alloythioalkyl, aryloxyalkyl, alkylthioalkyl,
heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl,
thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl,
alloyxycarbonyl, aryloxyalkyl, aminocarbonyl,
hydroxyalkyl, aminoalkyl, aminoalkylsulfonyl,
aminoalkylsulfonyl wherein the amino nitrogen is (i)
unsubstituted or (ii) independently substituted with
one or two \(\text{R}^d\) radicals, or the substituents on the
amino group taken together with the amino nitrogen
form a saturated or partially unsaturated heterocyclo
group optionally substituted with one, two or three
groups independently selected from R^d substituents or
a heteroaryl group optionally substituted with one,
two or three groups independently selected from R^e
substituents;

R^d and R^e are independently selected from
the group consisting of a hydrido, alkyl, alkenyl,
alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylalkycarbonyl, alkoxy carbonyl and an
arylalkyloxy carbonyl group; and

R^f is selected from the group consisting of
a nitro, hydroxy, alkyl, halogen, aryl, alkoxy,
cyano, and a R^dR^e amino group.

2. The compound or salt according to claim
1 wherein said R^1 is (i) an $-NR^7R^8$ group in which R^7
and R^8 are independently selected from the group
consisting of hydrido, hydrocarbonyl, aryl, substituted
aryl, arylhydrocarbonyl, and substituted
aryl hydrocarbonyl, or (ii) R^7 and R^8 are independently
selected from the group consisting of a hydrido,
al, alkenyl, alkenyl, alkoxy alkyl, halo alkyl,
R^a oxy alkyl, cyclo alkyl, cyclo alkyl alkyl, aryl,
arlylalkyl, heteroaryl, heteroaryl alkyl, and a
heterocyclo substituent, each of which substituent
groups is optionally substituted with an $-A-R-E-Y$
substituent;

in said $-A-R-E-Y$ substituent, A is selected
from the group consisting of
(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;

(10) -N≡N-;
(11) -NH-NH-;
(12) -CS-N(R^k) or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded to R^7 or R^8, or both R^7 and R^8;

the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl, heteroaryl, cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio,
trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C₁-C₂-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxycarbonyl group;

the group E is selected from the group consisting of

1. \(-\text{COR}^9-\) or \(-\text{R}^9\text{CO}-\);
2. \(-\text{CON}(\text{R}^k)-\) or \(-\text{(R}^k)\text{NCO}-\);
3. \(-\text{CO}-\);
4. \(-\text{SO}_2\text{R}^9-\) or \(-\text{R}^9\text{SO}_2-\);
5. \(-\text{SO}_2-\);
6. \(-\text{N}(\text{R}^k)\text{-SO}_2-\) or \(-\text{SO}_2\text{-N}(\text{R}^k)-\); or
7. \(\text{E}\) is absent and \(\text{R}\) is bonded directly to \(\text{Y}\); and

the moiety \(\text{Y}\) is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, \(\text{R}^\text{a}x\)oxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently
selected from hydrido, alkyl, and an aralkyl group; or

R^7 and R^8 taken together with the nitrogen atom to which they are bonded form a group -G-A-R-E-Y

wherein

G is a N-heterocyclo group;
the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k) or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;
the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl,
heteroaryloxyalkyl, arylthioalkyl,
heteroarylthioalkyl, cycloalkylthioalkyl, and a
heterocycloalkylthioalkyl group wherein the aryl or
heteroaryl or cycloalkyl or heterocycloalkyl
substituent is (i) unsubstituted or (ii) substituted
with one or two radicals selected from the group
consisting of a halo, alkyl, perfluoroalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, amino, alkoxy carbonylalkyl,
alkoxy, C\textsubscript{1}-C\textsubscript{2}-alkylenedioxy, hydroxycarbonylalkyl,
hydroxycarbonylalkylamino, nitro, hydroxy,
hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl
group;

the moiety E is selected from the group
consisting of

(1) -COR9 or -R9CO-;
(2) -CON(Rk) or -(Rk)NCO-;
(3) -CO-;
(4) -SO\textsubscript{2}-R9 or -R9SO\textsubscript{2}-;
(5) -SO\textsubscript{2}--;
(6) -N(Rk)-SO\textsubscript{2} or -SO\textsubscript{2}-N(Rk)-; or
(7) E is absent and R is bonded directly
to Y; and

the moiety Y is absent or is selected from
the group consisting of a hydrido, alkyl, alkoxy,
haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl,
hydroxy, nitrile, nitro, arloxy, aralkoxy,
heteroaryloxy, heteroaralkyl, Raoxyalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, alkenyl, heterocycloalkyl,
cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a
aminoalkyl group, wherein the aryl, heteroaryl,
aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group;

wherein RA is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, RbRcAminoalkanoyl, haloalkanoyl, RbRcAminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

RG is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehyde, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxyheteroaryl, RhRi-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkylxycarbonyl, alkylxycarbonyloxy, aryloxyxycarbonyl, arylalkxycarbonyl, arylalkxycarbonyloxy, arylalkxycarbonylamino, aryloxyxycarbonyloxy, carboxy, RhRi-aminocarbonyloxy, RhRi-aminocarbonyl, RhRi-aminoalkanoyl, hydroxyaminocarbonyl, RhRi-aminosulfonyl, RhRi-aminocarbonyl(Rh) amino, trifluoromethyl-sulfonyl(Rh) amino, heteroarylsulfonyl(Rh) amino, arylsulfonyl(Rh) amino, arylsulfonyl(Rh) aminocarbonyl, alkylsulfonyl(Rh) amino,
arylcarbonyl(R^h) aminosulfonyl, and an
alkylsulfonyl(R^h) aminocarbonyl substituent;

R^h is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups is
optionally substituted by one or two groups
independently selected from R^j substituents as are
the substituents of the substituted aminoalkyl and
substituted aminoalkanoyl groups;

R^i is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups are
optionally substituted by one or two R^j substituents;

R^j is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, wherein the substituents of the
substituted aminoalkyl and substituted aminoalkanoyl
groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl and an alkyloxycarbonyl group; and
5 \(R^k \) is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl, alkyloxycarbonyl, \(R^d \) amino carbonyl, \(R^d \) aminosulfonyl, \(R^d \) aminoalkanoyl and \(R^d \) aminoalkysulfonyl.

3. The compound or salt according to claim 1 wherein said \(R^5 \) and \(R^6 \) are independently selected from the group consisting of a hydrido, hydrocarbonyl, hydroxy hydrocarbonyl, hydroxyl, amino, dihydrocarbonylamino, heterocyclo, heterocyclohydrocarbonyl, heterocycloxy, and a heterocyclothio group.

4. The compound or salt according to claim 1 wherein said 5- or 6-membered aromatic or heteroaromatic ring \(W \) is selected from the group consisting of a 1,2-phenylene, 2,3-pyridinylene, 3,4-pyridinylene, 4,5-pyridinylene, 2,3-pyrazinylene, 4,5-pyrimidinylene, and 5,6-pyrimidinylene group.

5. The compound or salt according to claim 1 wherein said \(R^{20} \) is \(-NR^{13}_3-O-R^{14}_4\).

6. The compound or salt according to claim 1 wherein said \(R^{20} \) is \(-NR^{13}_3-O-R^{22}_2\).
7. The compound or salt according to claim 1 wherein the compound corresponds in structure to Formula C1

\[
\begin{align*}
\text{C1} & \quad R^{14}ONR^{13} \quad \text{O} \quad \text{O} \\
\text{W} & \quad \text{S} \quad \text{SO} \quad \text{R}^{1} \\
\text{R}^{5} & \quad \text{R}^{6} \\
\end{align*}
\]

wherein \(W, R^1, R^5, R^6, R^{13} \) and \(R^{14} \) are as defined before.

8. The compound or salt according to claim 1 wherein the compound corresponds in structure to Formula C2

\[
\begin{align*}
\text{C2} & \quad R^{14}ONH \quad \text{O} \quad \text{O} \\
\text{W} & \quad \text{S} \quad \text{SO} \quad \text{PhR}^{4} \\
\text{R}^{5} & \quad \text{R}^{6} \\
\end{align*}
\]

Wherein \(W, R^5, R^6 \) and \(R^{14} \) are as defined before, Ph is phenyl substituted at its own 4-position with a substituent \(R^4 \), wherein \(R^4 \) is a substituent that has a chain length of 3 to about 14 carbon atoms.

9. The compound or salt according to claim 8 wherein said \(R^4 \) substituent is selected from the group consisting of a phenyl group, a phenoxy group, a thiophenoxy group, an anilino group, a phenylazo
group, a phenylureido, a benzamido, a nicotinamido, an isonicotinamido, a picolinamido group, a heterocyclo, heterocyclohydrocarbaryl, arylheterocyclohydrocarbaryl, arylhydrocarbaryl, heteroarylhydrocarbaryl, heteroarylheterocyclohydrocarbaryl, arylhydrocarbaryl, hydrocarbaryl, arylhydrocarbaryl, hydrocarbaryl, arylhydrocarbaryl, arylhydrocarbaryl, hydrocarbaryl, arylhydrocarbaryl, hydrocarbaryl, hydrocarbaryl, heteroarylthiohydrocarbaryl, hydrocarbarylthiohydrocarbaryl, aryldiazoaryl, arylhydrazinoaryl, hydrocarbarylthiohydrocarbaryl, hydrocarbarylthiohydrocarbaryl, arylhydrocarbarylthioaryl, arylhydrocarbarylthioaryl, arylhydrocarbarylthioaryl, arylhydrocarbarylthioaryl, heteroarylhydrocarbarylthioaryl, arylhydrocarbarylamicino, heteroarylhydrocarbarylthioaryl, and a heteroarylthio group.

10. The compound or salt according to claim 9 wherein said R⁴ substituent is itself substituted by one or more substituents selected from the group consisting of a halogen, hydrocarbaryl, hydrocarbaryl, oxo, cyano, perfluorohydrocarbaryl, trifluoromethyl-hydrocarbaryl, hydroxy, mercapto, hydroxycarbonyl, aryloxy, arylthio, arylaminocarbonyl, arylhydrocarbaryl, aryl, heteroaryloxy, heteroarylthio, heteroarylamino, heteroarcarbarylthio, hydrocarbaryl, hydrocarbaryl, heterocyclo, hydrocarbaryl, heterocycloxy, hydroxycarbonyl-hydrocarbaryl, heterocyclohexyl, heterocyclohexyl, heterocyclohexyl, heterocyclohexyl, cyclohydrocarbaryl, cyclohydrocarbaryl, cyclohydrocarbaryl, heteroarylhydrocarbarylthio, heteroarylhydrocarbaryl-
hydrocarbyloxy, alkoxy carbonyl alkoxy, hydrocarbyl oxy, aryl carbonyl, aryl hydrocarbyloxy, hydroxy hydrocarbyl, hydroxy hydrocarbyloxy, hydrocarbyl thio, hydrocarbyloxy hydrocarbyl thio, hydrocarbyloxy carbonyl, hydroxy carbonyl hydrocarbyloxy, hydrocarbyloxy carbonyl hydrocarbyl, hydrocarbyl hydroxy carbonyl hydrocarbyl thio, hydrocarbyl hydroxy carbonyl hydrocarbyloxy, hydrocarbyloxy carbonyl hydrocarbyl thio, amino, hydrocarbyl carbonylamino, aryl carbonylamino, cyclo hydrocarbyl carbonylamino, heterocyclo hydrocarbyl carbonylamino, aryl hydrocarbyl carbonylamino, heteroaryl carbonylamino, heterocyclo hydrocarbyl oxo, hydrocarbyl sulfonylamino, aryl sulfonylamino, aryl hydrocarbyl sulfonylamino, heteroaryl sulfonylamino, heteroaryl hydrocarbyl sulfonylamino, cyclo hydrocarbyl sulfonylamino, heterocyclo hydrocarbyl sulfonylamino and N-monosubstituted or N,N-disubstituted aminohydrocarbyl group, wherein the substituent(s) on the nitrogen are selected from the group consisting of hydrocarbyl, aryl, aryl hydrocarbyl, cyclo hydrocarbyl, aryl hydrocarbyloxycarbonyl, hydrocarbyloxycarbonyl, and hydrocarbyl, or wherein the nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclic or heteroaryl ring group.

11. The compound or salt according to claim 1 wherein the compound corresponds in structure to Formula D3
Wherein R^5, R^6 and R^{20} are as defined before, and R^4 is a substituent that has a chain length of 3 to about 14 carbon atoms.

12. The compound or salt according to claim 11 wherein said R^4 substituent is selected from the group consisting of a phenyl group, a phenoxy group, a thiophenoxy group, an anilino group, a phenylazo group, a phenylureido, a benzamido, a nicotinamido, an isonicotinamido, a picolinamido group, a heterocyclo, heterocyclohydrocarbyl, arylheterocyclohydrocarbyl, arylhydrocarbyl, heteroarylhydrocarbyl, heteroarylheterocyclohydrocarbyl, arylhydrocarbyloxyhydrocarbyl, arlyoxyhydrocarbyl, hydrocarboylhydrocarbyl, arylhydrocarboylhydrocarbyl, arylcarbonylhydrocarbyl, arylazoaryl, arylhydrazinoaryl, hydrocarbathyiohydrocarbyl, hydrocarbathyioaryl, arylthiohydrocarbyl, heteroarylthiohydrocarbyl, hydrocarbathyioarylhydrocarbyl, arylhydrocarbathyioarylhydrocarbyl, arylhydrocarbathyioaryl, arylhydrocarbylamino, heteroarylhydrocarbylamino, and a heteroarylthio group.

13. The compound or salt according to claim 12 wherein said R^4 substituent is itself substituted by one or more substituents selected from
the group consisting of a halogen, hydrocarbyl, hydrocarbyloxy, nitro, cyano, perfluorohydrocarbyl, trifluoromethyl-hydrocarbyl, hydroxy, mercapto, hydroxycarbonyl, aryloxy, arlythio, arylamino, arylhydrocarbyl, aryl, heteroaryloxy, heteroarylthio, heteroarylamino, heteroarhydrocarbyl, hydrocarbyloxy-carbonyl-hydrocarbyl, heterocyclooxy, hydroxycarbonyl-hydrocarbyl, heterocyclothio, heterocycloamino, cyclohydrocarbyloxy,
cyclohydrocarbylthio, cyclohydrocarbylamino, heteroarylhydrocarbyloxy, heteroarylhydrocarbylthio, heteroarylhydrocarbyl-amin, arylhydrocarbyloxy, arylhydrocarbylthio, arylhydrocarbylamino, heterocyclic, heteroaryl, hydroxycarbonyl-
hydrocarbyloxy, alkoxy-carbonylalkoxy, hydrocarbyloxy1, arylcarbonyl, arylhydrocarbyloxy1, hydrocarboyloxy, arylhydrocarboyloxy, hydroxyhydrocarbyl, hydroxyhydrocarbyloxy, hydrocarbylthio, hydrocarbyloxyhydrocarbylthio,
hydrocarbyloxy-carbonyl, hydroxycarbonyl-
hydrocarbyloxy, hydrocarbyloxy-carbonylhydrocarbyl, hydrocarbylhydroxycarbonyl-hydrocarbylthio, hydrocarbyloxy-carbonylhydrocarbyloxy, hydrocarbyloxy-carbonylhydrocarbylthio, amino,
hydrocarbylcarbonylamino, arylcarbonylamino, cyclohydrocarbylcarbonylamino, heterocyclo-
hydrocarbylcarbonylamino, arylhydrocarbyl-
carbonylamino, heteroarylcarbonylamino, heteroarylhydrocarbylcarbonylamino,
heterocyclohydrocarbyloxy, hydrocarbylsulfonylamino, arylsulfonylamino, arylhydrocarbylsulfonylamino, heteroaryl-sulfonylamino, heteroarylhydrocarbyl-
sulfonylamino, cyclohydrocarbylsulfonylamino,
heterocyclohydrocarbaryl sulfonlamino and N-monomosubstituted or N,N-disubstituted aminohydrocarbaryl group, wherein the substituent(s) on the nitrogen are selected from the group consisting of hydrocarbaryl, aryl, arylhydrocarbaryl, cyclohydrocarbaryl, arylhydrocarbaryl oxycarbonyl, hydrocarbaryl oxycarbonyl, and hydrocarbaryl, or wherein the nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclic or heteroaryl ring group.

14. The compound or salt according to claim 1 wherein the compound corresponds in structure to Formula VI-1

![VI-1](image)

wherein each of R⁵, R⁶, R⁷, R⁸ and R²⁰ is as defined before and each of A, B, C and D is carbon, nitrogen, sulfur or oxygen that is present or absent so that the depicted ring has 5- or 6-members.

15. A compound corresponding to Formula C⁴, or a pharmaceutically acceptable salt thereof:

![C⁴](image)

wherein
the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;

R^1 is a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical bonded directly to the depicted SO_2-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, said R^1 defining a three-dimensional volume, when rotated about an axis drawn through the SO_2-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO_2-bonded 1-position and the center of 3,4-bond of a 5-membered ring radical, whose widest dimension in a direction transverse to the axis of rotation is about that of one furanyl ring to about that of two phenyl rings; and

R^5 and R^6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a R^bR^caminoalkyl substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a R^bR^caminoalkyloxy substituent;

or R^5 and R^6 together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members;

R^b and R^c are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl,
perfluoropropyl, trifluoromethylalkyl,
perfluorobutoxyalkyl, alkoxyalkyl, cycloalkyl,
heterocycloalkyl, heterocycloalkylcarbonyl, aryl,
heterocyclo, heteroaryl, cycloalkylalkyl,
aryloxyalkyl, heteroaryloxyalkyl,
heteroaryloxyalkyl, heteroarylthioalkyl,
arylsulfonyl, aralkanoyl, alkylsulfonyl,
heteroarylsulfonyl, carboxyalkyl,
alkoxycarbonylalkyl, aminocarbonyl,
alkyliminocarbonyl, aryliminocarbonyl,
heterocycloiminocarbonyl, arylthioalkyl,
alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl,
heteroaryllalkyl, haloalkanoyl, hydroxyalkanoyl,
thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl,
alkoxycarbonyl, aryloxycarbonyl, aminoalkylcarbonyl,
hydroxyalkyl, aminoalkyl, aminoalkylsulfonyl,
aminosulfonyl wherein the amino nitrogen is (i)
unsubstituted or (ii) independently substituted with
one or two R^d radicals, or the substituents on the
amino group taken together with the amino nitrogen
form a saturated or partially unsaturated heterocyclo
group optionally substituted with one, two or three
groups independently selected from R^d substituents or
a heteroaryl group optionally substituted with one,
two or three groups independently selected from R^f
substituents;

R^d and R^e are independently selected from
the group consisting of a hydrido, alkyl, alkenyl,
alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylalkycarbonyl, alkoxy carbonyl and an
arylalkyloxycarbonyl group; and
R² is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a R¹R²amino group.

16. The compound or salt according to claim 15 wherein said 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical of R¹ is substituted with a substituent, R⁴, that has a chain length of 3 to about 14 carbon atoms.

17. The compound or salt according to claim 16 wherein said R⁴ substituent is selected from the group consisting of a phenyl group, a phenoxy group, a thiophenoxy group, an anilino group, a phenylazo group, a phenylureido, a benzamido, a nicotinamido, an isonicotinamido, a picolinamido group, a heterocyclo, heterocyclohydrocarbyl, arylheterocyclohydrocarbyl, arylhydrocarbyl, heteroarylhydrocarbyl, heteroarylheterocyclohydrocarbyl, arylhydrocarbyloxhydrocarbyl, aryloxyhydrocarbyl, hydrocarbonylhydrocarbyl, arylhydrocarbonylhydrocarbyl, arylcarbonylhydrocarbyl, arylazoaryl, arylhydrazinoaryl, hydrocarbultylthiohydrocarbyl, hydrocarbultylthioaryl, arylthiohydrocarbyl, heteroarylthiohydrocarbyl, hydrocarbultylthioaryl, arylhydrocarbutoxyhydrocarbyl, arylhydrocarbuthiaoaryl, arylhydrocarbylamino, heteroarylhydrocarbylamino, and a heteroarylthio group.
18. The compound or salt according to claim 17 wherein said R⁴ substituent is itself substituted by one or more substituents selected from the group consisting of a halogen, hydrocarbonyl, hydrocarboxyloxy, nitro, cyano, perfluorohydrocarbonyl, trifluoromethylhydrocarbonyl, hydroxy, mercapto, hydroxycarbonyl, aryloxy, arylthio, arylamino, arylhydrocarbonyl, aryl, heteroaryloxy, heteroarylthio, heteroarylamin, heteroarhydrocarbonyl, hydrocarboxyloxy, heterocyclooxy, hydroxycarbonylhydrocarbonyl, heterocyclothio, heterocycloamino, cyclohydrocarboxyloxy, cyclohydrocarbonylthio, cyclohydrocarbylamino, heteroarylhydrocarboxyloxy, heteroarylhydrocarbonylthio, heteroarylhydrocarbylamino, arylhydrocarboxyloxy, arylhydrocarbonylthio, arylhydrocarbylamino, heterocyclic, heteroaryl, hydroxycarbonylhydrocarboxyloxy, alkoxy, carbonylalkoxy, hydrocarbyloxy, arylcarbonyl, arylhydrocarbyloxy, hydrocarboxyloxy, hydroxyhydrocarbonyl, hydroxyhydrocarboxyloxy, hydrocarbonylthio, hydrocarbyloxyhydrocarbonylthio, hydrocarboxyloxy, hydroxycarbonylhydrocarboxyloxy, hydrocarboxyloxy-carbonylhydrocarbonyl, hydrocarbonylhydroxycarbonyl-hydrocarbonylthio, hydrocarboxyloxy, hydrocarbyloxy, hydrocarbonylhydroxycarbonylhydrocarbonylthio, amino, hydrocarbonylcarbonylamino, arylcarbonylamino, cyclohydrocarbonylcarbonylamino, heterocyclo-
hydrocarbonylcarbonylamino, arylhydrocarbonyl-
carbonylamino, heteroarylcarbonylamino, heteroarylhydrocarbonylcarbonylamino, heterocyclohydrocarboxyloxy, hydrocarborylsulfonylamino,
aryl sulfonylamino, arylhydrocarbylsulfonylamino, heteroaryl sulfonylamino, heteroarylhydrocarbylsulfonylamino, cyclohydrocarbylsulfonylamino, heterocyclohydrocarbylsulfonylamino and N-
monosubstituted or N,N-disubstituted aminohydrocarbyl group, wherein the substituent(s) on the nitrogen are selected from the group consisting of hydrocarbyl, aryl, arylhydrocarbyl, cyclohydrocarbyl, arylhydrocarbyloxy carbonyl, hydrocarbyloxy carbonyl, and hydrocarboyl, or wherein the nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclic or heteroaryl ring group.

19. The compound or salt according to claim 18 wherein said R¹ substituent is itself substituted with a substituent R⁴ that is selected from the group consisting of one other single-ringed cyclohydrocarbyl, heterocyclo, aryl or heteroaryl group, a C₃-C₁₄ hydrocarbyl group, a C₂-C₁₄ hydrocarbyloxy group, a phenoxy group, a thiophenoxy group, a 4-thiopyridyl group, a phenylazo group, a phenylureido group, a nicotinamido group, an isonicotinamido group, a picolinamido group, an anilino group and a benzamido group.

20. The compound or salt according to claim 19 wherein said R¹ substituent is PhR⁴ in which Ph is phenyl substituted with R⁴ at the 4-position, and said R⁴ is selected from the group consisting of a phenyl, phenoxy, thiophenoxy, phenylazo, benzamido, anilino, nicotinamido, isonicotinamido, picolinamido or phenylureido group that is optionally substituted.
at the meta- or para-position or both with a moiety that is selected from the group consisting of a halogen, a C1-C9 hydrocarbyloxy group, a C1-C10 hydrocarbyl group, a di- C1-C9 hydrocarbylamino group, a carboxyl C1-C8 hydrocarbyl group, a C1-C4 hydrocarbyloxy carbonyl C1-C4 hydrocarbyl group, a C1-C4 hydrocarbyloxycarbonyl C1-C4 hydrocarbyl group and a carboxamido C1-C8 hydrocarbyl group, or is substituted at the meta- and para-positions by two methyl groups or by a methylenedioxy group.

21. The compound or salt according to claim 15 wherein said R1 substituent has a length greater than that of an octyl group and less than that of a stearyl group.

22. A compound corresponding to Formula D, or a pharmaceutically acceptable salt thereof:

![Chemical Structure](image)

wherein

each of A, B, C and D is carbon, nitrogen, sulfur or oxygen that is present or absent so that the depicted ring has 5- or 6-members;

R5 and R6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy,
haloalkyl, haloalkyloxy, hydroxyalkyl, a
R^bR^cAminoalkyl substituent, thiol, alkylthio,
arylthio, cycloalkylthio, cycloalkkoxy, alkoxyalkoxy,
perfluoroalkyl, haloalkyl, heterocyclooxy and a
5 R^bR^cAminoalkyloxy substituent; and
or R^5 and R^6 together with the atoms to
which they are bonded form a further aliphatic or
aromatic carbocyclic or heterocyclic ring having 5-
to 7-members;
10 in said -A-R-E-Y substituent, A is selected
from the group consisting of
(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
15 (9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k) or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded
to the depicted ring;
the moiety R is selected from the group
consisting of alkyl, alkoxyalkyl, aryl, heteroaryl,
cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, 5 heteroarylmethyl, cycloalkylmethioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl, heteroaryl, cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C₁-C₂-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, 10 hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the group E is selected from the group consisting of

(1) \(-\text{COR}^G\) or \(-\text{R}^G\text{CO}\);
(2) \(-\text{CON(R}^k\text{)}\) or \(-\text{(R}^k\text{)NCO}\);
(3) \(-\text{CO}\);
(4) \(-\text{SO}_2\text{R}^G\) or \(-\text{R}^G\text{SO}_2\);
(5) \(-\text{SO}_2\);
(6) \(-\text{N(R}^k\text{)}\text{-SO}_2\) or \(-\text{SO}_2\text{-N(R}^k\text{)}\); or
(7) E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, 30 heteroaryloxy, heteroaralkyl, R⁰oxyalkyl, perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; or wherein R³ is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, R⁴R⁵Caminoalkanoyl, haloalkanoyl, R⁶R⁷Caminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

R⁴ and R⁵ are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl carbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroaryl sulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkyliminocarbonyl, aryliminocarbonyl, heterocycloiminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl,
heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxy carbonyl, aryloxycarbonyl, aminoa alkylcarbonyl, hydroxyalkyl, aminalkyl, aminalkylsulfonyl, aminosulfon yl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two R^d radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from R^d substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from R^f substituents;

R^d and R^e are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, aroylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, alkoxycarbonyl and an arylalkyloxycarbonyl group; and

R^f is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a R^dR^et ammo group;

R^g is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehyde, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxyheteroaryl, R^hR^i-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkyloxy carbonyl, alkylxoycarbonyloxy, aryloxy carbonyl, arylalkyloxycarbonyl,
arylalkyloxycarbonylamino, aryloxy carbonyloxy, carboxy, \(R^h R^i \)-aminocarbonyloxy, \(R^h R^i \)-aminocarbonyl,
\(R^h R^i \)-aminoalkanoyl, hydroxyaminocarbonyl, \(R^h R^i \)-aminosulfonyl, \(R^h R^i \)-aminocarbonyl(\(R^h \)amino),
trifluoromethyl-sulfonyl(\(R^h \)amino),
heteroarylsulfonyl(\(R^h \)amino), arylsulfonyl(\(R^h \)amino),
arylsulfonyl(\(R^h \)aminocarbonyl),
alkylsulfonyl(\(R^h \)amino),
arylcarbonyl(\(R^h \)aminosulfonyl), and an
alkylsulfonyl(\(R^h \)aminocarbonyl) substituent;

\(R^h \) is selected from the group consisting of an aryllkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, aryalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups is optionally substituted by one or two groups
independently selected from \(R^j \) substituents as are the substituents of the substituted aminoalkyl and
substituted aminoalkanoyl groups;

\(R^i \) is selected from the group consisting of an aryllkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, aryalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups are
optionally substituted by one or two \(R^j \) substituents;
wherein \(R^j \) is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl and an alkyloxycarbonyl group; and

\[R^k \] is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxycarbonyl, alkyloxycarbonyl, \(\text{RCR}^\text{d} \text{amino carbonyl} \), \(\text{RCR}^\text{d} \text{aminosulfonyl} \), \(\text{RCR}^\text{d} \text{aminoalkanoyl} \) and \(\text{RCR}^\text{d} \text{aminoalkylsulfonyl} \).

A compound corresponding to Formula VIA, or a pharmaceutically acceptable salt thereof:

![Chemical Structure](image)

wherein:

\(R^4 \) is a substituent that has a chain length of 3 to about 14 carbon atoms;
ring structure W² including the depicted nitrogen atom is a heterocyclic ring that contains 5- or 6-members, and R⁴ is a substituent bonded at the 4-position relative to that depicted nitrogen atom. When W² is a 6-membered ring and at the 3- or 4-position relative to that depicted nitrogen when W² is a 5-membered ring;

R⁵ and R⁶ are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a R²⁺R⁴⁺Caminoalkyl substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkkoxo, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a R²⁺R⁴⁺Caminoalkyloxy substituent;

or R⁵ and R⁶ together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members; and

R²⁰ is (a) -O-R²¹, where R²¹ is selected from the group consisting of a hydrido, C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl group and a pharmaceutically acceptable cation, (b) -NR₁³⁻O-R²² wherein R²² is a selectively removable protecting group and R¹³ is a hydrido, C₁-C₆-alkyl or benzyl group, (c) -NR¹³⁻O-R¹⁴, where R¹³ is as before and R¹⁴ is hydrido, a pharmaceutically acceptable cation or C(V)R¹⁵ where V is O or S and R¹⁵ is selected from the group consisting of an C₁-C₆-alkyl, aryl, C₁-C₆-alkoxy, heteroaryl-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl,
aryloxy, ar-C₁-C₆-alkoxy, ar-C₁-C₆-alkyl, heteroaryl and amino C₁-C₆-alkyl group wherein the amino C₁-C₆-alkyl nitrogen is (i) unsubstituted or (ii) substituted with one or two substituents independently selected from the group consisting of an C₁-C₆-alkyl, aryl, ar-C₁-C₆-alkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, ar-C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxycarbonyl, and C₁-C₆-alkanoyl radical, or (iii) wherein the amino C₁-C₆-alkyl nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring, or (d) -NR²₃R²₄, where R²₃ and R²₄ are independently selected from the group consisting of a hydrido, C₁-C₆-alkyl, amino C₁-C₆-alkyl, hydroxy C₁-C₆-alkyl, aryl, and an ar-C₁-C₆-alkyl group, or R²₃ and R²₄ together with the depicted nitrogen atom form a 5- to 8-membered ring containing zero or one additional heteroatom that is oxygen, nitrogen or sulfur; wherein R²₅ and R²₆ are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroaryloxythioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroarylsulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkyliminocarbonyl, aryliminocarbonyl,
heterocycloiminocarbonyl, arylthioalkyl,
akylthioalkyl, arylthioalkenyl, alkylthioalkenyl,
heteroarylmalkyl, haloalkanoyl, hydroxyalkanoyl,
thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl,
alkoxycarbonyl, aryloxycarbonyl, aminooalkylcarbonyl,
hydroxyalkyl, aminoalkyl, aminoalkyl sulfonyl,
aminosulfonyl wherein the amino nitrogen is (i)
unsubstituted or (ii) independently substituted with
one or two R^d radicals, or the substituents on the
amino group taken together with the amino nitrogen
form a saturated or partially unsaturated heterocyclo
group optionally substituted with one, two or three
groups independently selected from R^d substituents or
a heteroaryl group optionally substituted with one,
two or three groups independently selected from R^f
substituents;

R^d and R^e are independently selected from
the group consisting of a hydrido, alkyl, alkenyl,
alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylmalkycarbonyl, alkoxy carbonyl and an
arylmalkyloxycarbonyl group; and

R^f is selected from the group consisting of
a nitro, hydroxy, alkyl, halogen, aryl, alkoxy,
cyano, and a R^dR^e amino group.

24. The compound or salt according to
claim 23 wherein said R^d substituent is selected from
the group consisting of a phenyl group, a phenoxy
group, a thiophenoxy group, an anilino group, a
phenylazo group, a phenylureido, a benzamido, a
nicotinamido, an isonicotinamido, a picolinamido
group, a heterocyclo, heterocyclohydrocarbonyl,
arylheterocyclohydrocarbyl, arylhydrocarbyl, heteroarylhydrocarbyl, heteroarylheterocyclohydrocarbyl, arylhydrocarbyloxyhydrocarbyl, aryloxyhydrocarbyl, hydrocarbonylhydrocarbyl, arylhydrocarbonylhydrocarbyl, arylcarbonylhydrocarbyl, arylazoaryl, arylhydrazinoaryl, hydrocarbarylthiohydrocarbyl, hydrocarbarylthioaryl, arylthiohydrocarbyl, heteroarylthiohydrocarbyl, hydrocarbarylthioarylhydrocarbyl, arylhydrocarbarylthioaryl, arylhydrocarbylamino, heteroarylhydrocarbylamino, and a heteroarylthio group.

25. The compound or salt according to claim 24 wherein said R⁴ substituent is itself substituted by one or more substituents selected from the group consisting of a halogen, hydrocarbyl, hydrocarbyloxy, nitro, cyano, perfluorohydrocarbyl, trifluoromethyl-hydrocarbyl, hydroxy, mercapto, hydroxycarbonyl, aryloxy, arylthio, arylamino, arylhydrocarbyl, aryl, heteroarylxy, heteroarylthio, heteroarylamino, heteroarylhydrocarbyl, hydrocarbarylthioarylhydrocarbyl, heterocycloxy, hydroxycarbonyl-hydrocarbyl, heterocyclothio, heterocycloamino, cyclohydrocarbyloxy, cyclohydrocarbarylthio, cyclohydrocarbylamino, heteroarylhydrocarbyloxy, heteroarylhydrocarbarylthio, heteroarylhydrocarbyl-amin, arylhydrocarbyloxy, arylhydrocarbarylthio, arylhydrocarbylamino, heterocyclic, heteroaryl, hydroxycarbonylhydrocarbyl, alkoxycarbonylalkoxy, hydrocarbaryl, arylcarbonyl, arylhydrocarbyloxy, hydrocarbaryl, arylhydrocarboxyloxy, hydroxyhydrocarbyl,
hydroxyhydrocarbyloxy, hydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, hydrocarblyloxyhydrocarblythio, amino, hydrocarblycarbonylamino, arylcarbonylamino, cyclohydrocarblycarbonylamino, heterocyclohydrocarblycarbonylamino, arylhydrocarblycarbonylamino, heteroarylcarbonylamino, heteroarylhydrocarblycarbonylamino, heterocyclohydrocarblyloxy, hydrocarblysulfonylamino, arylsulfonylamino, arylhydrocarblysulfonylamino, heteroarylsulfonylamino, heteroarylhydrocarblysulfonylamino, cyclohydrocarblysulfonylamino, heterocyclohydrocarblysulfonylamino and N-monosubstituted or N,N-disubstituted aminohydrocarbly group, wherein the substituent(s) on the nitrogen are selected from the group consisting of hydrocarbly, aryl, arylhydrocarbly, cyclohydrocarbly, arylhydrocarblyoxycarbonyl, hydrocarblyoxycarbonyl, and hydrocarbly, or wherein the nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclic or heteroaryl ring group.

26. The compound or salt according to claim 23 wherein said R²⁰ is -NR¹³-O-R¹⁴.

27. The compound or salt according to claim 26 wherein said R¹³ is hydrido.
28. The compound or salt according to claim 23 wherein said R^{20} is $-NR^{13}-O-R^{22}$.

29. The compound or salt according to claim 28 wherein said R^{13} is hydrido and said R^{22} is selected from the group consisting of a 2-tetrahydropyranyl, benzyl, p-methoxybenzyl, C_1-C_6-alkoxycarbonyl, trisubstituted silyl group, o-nitrophenyl group, and a peptide synthesis resin, wherein said trisubstituted silyl group is substituted with a C_1-C_6-alkyl, aryl, or ar-C_1-C_6-alkyl group or a mixture thereof.

30. The compound or salt according to claim 23 wherein the compound corresponds in structure to Formula VIA-1

![Chemical Structure VIA-1](image)

31. A compound corresponding to Formula VIIC, or a pharmaceutically acceptable salt thereof:

![Chemical Structure VIIC](image)

wherein:
R⁵ and R⁶ are independently selected from
the group consisting of a hydrido, alkyl, cycloalkyl,
acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy,
haloalkyl, haloalkyloxy, hydroxyalkyl, a

-311-

(11) -NH·NH-;

(12) -CS·N(R^k) - or -N(R^k)·CS-;

(13) -CH_2-;

(14) -O·CH_2- or -CH_2·O-;

(15) -S·CH_2- or -CH_2·S-;

(16) -SO-; and

(17) -SO_2-; or

(18) A is absent and R is directly bonded to ring structure W^2;

the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylothioalkyl, heteroarylothioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl, heteroaryl, cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C_1-C_2-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoyl amino, and a alkoxy carbonyl group;

the group E is selected from the group consisting of

(1) -COR^g- or -R^gCO-;

(2) -CON(R^k) - or -(R^k)NCO-;

(3) -CO-;
(4) -SO₂R⁹⁻ or -R⁹SO₂⁻;
(5) -SO₂⁻;
(6) -N(R⁴⁻)SO₂⁻ or -SO₂-N(R⁴⁻)⁻; or
(7) E is absent and R is bonded directly to Y; and
the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy,
haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy,
heteroaryloxy, heteroaralkyl, R³oxyalkyl,
perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, alkenyl, heterocycloalkyl,
cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a
aminoalkyl group, wherein the aryl, heteroaryl,
aralkyl or heterocycloalkyl group is (i)
unsubstituted or (ii) substituted with one or two radicals independently selected from the group
consisting of an alkanoyl, halo, nitro, nitrile,
haloalkyl, alkyl, aralkyl, aryl, alkoxy,
perfluoroalkyl, perfluoroalkoxy and an amino group
wherein the amino nitrogen is (i) unsubstituted or
(ii) substituted with one or two groups independently
selected from hydrido, alkyl, and an aralkyl group;
wherein
R³ is selected from the group consisting of
a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl,
alkanoyl, aroyl, arylalky carbonyl, R⁴R⁶Caminoalkanoyl,
ahaloalkanoyl, R⁴R⁶Caminoalkyl, alkoxyalkyl, haloalkyl
and an arylalkyloxy group;
R⁴ and R⁶ are independently selected from
the group consisting of a hydrido, alkanoyl,
arlyalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl,
-313-

perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylmethoxyalkyl, arylylsulfonyl, aralkanoyl, alkylsulfonyl, heteroarylsulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkyliminocarbonyl, aryliminocarbonyl, heterocycloiminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylmethoxyalkyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxy carbonyl, aryloxycarbonyl, aminoalkylcarbonyl, hydroxyalkyl, aminoalkyl, aminoalkylsulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two \(R^d \) radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from \(R^d \) substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from \(R^f \) substituents;

\(R^d \) and \(R^e \) are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, aryloxycarbonyl, alkoxy carbonyl and an aryloxycarbonyl group;
R^f is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a R^dR^e amino group;

R^g is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehydo, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynylxloxy, alkoxyaryl, alkoxyhetearoyl, R^hR^i-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkyloxy carbonyl, alkyloxy carbonyloxy, aryloxy carbonyl, arylalkyloxy carbonyl, arylalkyloxy carbonylamino, aryloxy carbonyloxy, carboxy, R^hR^i-aminocarbonyloxy, R^hR^i-aminocarbonyl, R^hR^i-amino alkanoyl, hydroxyaminocarbonyl, R^hR^i-aminosulfonil, R^hR^i-aminocarbonyl (R^h) amino, trifluoromethylsulfonil (R^h) amino, heteroarylsulfonil- (R^h) amino, arylsulfonil (R^h) amino, aryloxy carbonyl, alkylsulfonil (R^h) amino, arylcarbonyl- (R^h) aminosulfonil, and an alkylsulfonil (R^h)-aminocarbonyl substituent;

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkyloxy carbonyl, arylalkyloxy carbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups is optionally substituted by one or two groups
independently selected from R^j substituents as are the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups;

R^i is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl, alkylxocycarbonyl, arylalkyloxyxocarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups are optionally substituted by one or two R^j substituents;

wherein R^j is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl, alkylxocycarbonyl, arylalkyloxyxocarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylxocycarbonyl and an alkylxocycarbonyl group; and

R^K is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylxocycarbonyl, alkylxocycarbonyl, R^dCR^d amino carbonyl, R^dCR^d aminosulfonyl,

R^dCR^d aminoalkanoyl and R^dCR^d aminoalkysulfonyl.
32. A compound corresponding to Formula VIIB, or a pharmaceutically acceptable salt thereof:

\[
\begin{array}{c}
\text{O} \\
\text{HONH} \\
\text{R}^5 \\
\text{R}^6 \\
\text{VIIB} \\
\end{array}
\]

wherein:

R5 and R6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a

RbRcaminoalkyl substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a

RbRcaminoalkyloxy substituent; and

or R5 and R6 together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members;

G is a N-heterocyclo group;

the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NRk-;
(4) -CO-N(Rk) or -N(Rk)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k)- or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;
the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloarylthioalkyl, and a heterocycloarylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxycarbonylalkyl, alkoxy, C_1-C_2-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;
the moiety E is selected from the group consisting of
(1) -COR^9- or -R^9CO-;
(2) \(-\text{CON}(R^k)\) or \(-(R^k)\text{NCO}\);
(3) \(-\text{CO}\);
(4) \(-\text{SO}_2\text{-R}^\text{G}\) or \(-\text{R}^\text{G}\text{-SO}_2\);
(5) \(-\text{SO}_2\);
(6) \(-\text{N}(R^k)\text{-SO}_2\) or \(-\text{SO}_2\text{-N}(R^k)\); or
(7) \(E\) is absent and \(R\) is bonded directly to \(Y\); and
the moiety \(Y\) is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy,
haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy,
heteroaryloxy, heteroaralkyl, \(\text{R}^a\text{oxyalkyl}\), perfluoroalkoxy, perfluoroalkylthio,
trifluoromethylalkyl, alkenyl, heterocycloalkyl,
cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a
aminoalkyl group, wherein the aryl, heteroaryl,
aralkyl or heterocycloalkyl group is (i)
unsubstituted or (ii) substituted with one or two
radicals independently selected from the group
consisting of an alkanoyl, halo, nitro, nitrile,
haloalkyl, alkyl, aralkyl, aryl, alkoxy
perfluoroalkyl, perfluoroalkoxy and an amino group
wherein the amino nitrogen is (i) unsubstituted or
(ii) substituted with one or two groups independently
selected from hydrido, alkyl, and an aralkyl group;
wherein
\(\text{R}^a\) is selected from the group consisting of
a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl,
alkanoyl, aroyl, arylalkycarbonyl, \(\text{R}^b\text{R}^c\text{aminoalkanoyl}\),
haloalkanoyl, \(\text{R}^b\text{R}^c\text{aminoalkyl}\), alkoxy alkyl, haloalkyl
and an arylalkyl oxy group;
R^b and R^c are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylmethoxyalkyl, heteroarylmethoxycarbonyl, arylalkoxyalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroarylsulfonyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonyl, alkylaminocarbonyl, aryloaminocarbonyl, heterocycloaminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylmethyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, aryloxycarbonyl, aminoalkylcarbonyl, hydroxyalkyl, aminoalkyl, aminoalkylsulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two R^d radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from R^d substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from R^e substituents;

R^d and R^e are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylalkycarbonyl, alkoxy carbonyl and an ary lalkyloxy carbonyl group;

\(R^f \) is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a \(R^qR^e \) amino group;

\(R^g \) is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehyde, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxy heteroaryl, \(R^hR^i \)-amino, alkoxyalkyl, alkyl enedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkoxy carbonyl, alkyloxy carbonyloxy,

aryl oxy carbonyl, ary lalkyloxy carbonyl, ary lalkyloxy carbonyl amino, aryloxy carbonyloxy, carboxy, \(R^hR^i \)-aminocarbonyloxy, \(R^hR^i \)-aminocarbonyl, \(R^hR^i \)-amino alkanoyl, hydroxyaminocarbonyl, \(R^hR^i \)-aminosulfon yl, \(R^hR^i \)-aminocarbonyl(\(R^h \)) amino,

trifluoromethyl-sulfon yl(\(R^h \)) amino, heteroaryl sulfon yl(\(R^h \)) amino, aryl sulfon yl(\(R^h \)) amino, aryl sulfon yl(\(R^h \)) aminocarbonyl, alkyl sulfon yl(\(R^h \)) amino, aryl carbonyl(\(R^h \)) aminosulfon yl, and an alkyl sulfon yl(\(R^h \)) aminocarbonyl substituent;

\(R^h \) is selected from the group consisting of an arylalk yl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxy alkyl, alkoxy alkyl, substituted or unsubstituted amino alkyl,

alkyloxy carbonyl, ary lalk yloxy carbonyl, carbox yl alkyl, halo alkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups is optionally substituted by one or two groups independently selected from R^1 substituents as are the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups;

R^1 is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl, alkoxy carbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups are optionally substituted by one or two R^1 substituents;

R^1 is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkoxy carbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylalkyloxycarbonyl and an alkoxy carbonyl group; and

R^k is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylalkyloxycarbonyl, alkoxy carbonyl,
RCR^d_{amine} carbonyl, RCR^d_{aminosulfonyl},
RCR^d_{aminoalkanoyl} and RCR^d_{aminoalkysulfonyl}.

33. The compound or salt according to claim 32 wherein the compound corresponds to the formula

![Chemical Structure](attachment:image.png)

34. The compound or salt according to claim 32 wherein the compound corresponds to the formula

![Chemical Structure](attachment:image.png)

35. The compound or salt according to claim 32 wherein the compound corresponds to the formula

![Chemical Structure](attachment:image.png)

36. The compound or salt according to claim 32 wherein the compound corresponds to the formula
37. The compound or salt according to claim 32 wherein the compound corresponds to the formula

38. The compound or salt according to claim 32 wherein the compound corresponds to the formula

39. The compound or salt according to claim 32 wherein the compound corresponds to the formula
40. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{OH} \\
\text{NH} \\
\text{HN} \\
\text{O} \\
\text{S} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{S} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{CF}_3
\]

41. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{OH} \\
\text{NH} \\
\text{HN} \\
\text{O} \\
\text{S} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{S} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{CF}_3
\]

42. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{OH} \\
\text{NH} \\
\text{HN} \\
\text{O} \\
\text{S} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{S} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{CF}_3
\]

43. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{CH}_3 \\
\text{O} \\
\text{HN} \\
\text{OH} \\
\text{CH}_3 \\
\text{O} \\
\text{S} \\
\text{N} \\
\text{O} \\
\text{S} \\
\text{O} \\
\text{CF}_3
\]
44. The compound or salt according to claim 32 wherein the compound corresponds to the formula

```
  O
/\N
|  O
\N
  CF3
```

5

45. The compound or salt according to claim 32 wherein the compound corresponds to the formula

```
  F
/\NH
|  O
\N
  CF3
```

46. The compound or salt according to claim 32 wherein the compound corresponds to the formula

```
  Cl
/\NH
|  O
\N
  CF3
```

47. The compound or salt according to claim 32 wherein the compound corresponds to the formula

```
  HN
/\O
|  O
\N
  HCl
```

10

15
48. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{\includegraphics{formula1.png}}
\]

5. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{\includegraphics{formula2.png}}
\]

50. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{\includegraphics{formula3.png}}
\]

51. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{\includegraphics{formula4.png}}
\]

52. The compound or salt according to claim 32 wherein the compound corresponds to the formula

\[
\text{\includegraphics{formula5.png}}
\]
53. The compound or salt according to claim 32 wherein the compound corresponds to the formula

54. The compound or salt according to claim 32 wherein the compound corresponds to the formula

55. The compound or salt according to claim 32 wherein the compound corresponds to the formula

56. The compound or salt according to claim 32 wherein the compound corresponds to the formula

57. The compound or salt according to claim 32 wherein the compound corresponds to the formula
58. The compound or salt according to claim 32 wherein the compound corresponds to the formula

59. The compound or salt according to claim 32 wherein the compound corresponds to the formula

60. The compound or salt according to claim 32 wherein the compound corresponds to the formula

61. The compound or salt according to claim 32 wherein the compound corresponds to the formula

62. The compound or salt according to claim 32 wherein the compound corresponds to the formula
63. The compound or salt according to claim 32 wherein the compound corresponds to the formula

64. The compound or salt according to claim 32 wherein the compound corresponds to the formula

65. The compound or salt according to claim 32 wherein the compound corresponds to the formula

66. The compound or salt according to claim 32 wherein the compound corresponds to the formula
67. The compound or salt according to claim 32 wherein the compound corresponds to the formula

68. The compound or salt according to claim 32 wherein the compound corresponds to the formula

69. The compound or salt according to claim 32 wherein the compound corresponds to the formula

70. The compound or salt according to claim 32 wherein the compound corresponds to the formula

71. The compound or salt according to claim 32 wherein the compound corresponds to the formula
72. The compound or salt according to claim 32 wherein the compound corresponds to the formula

73. The compound or salt according to claim 32 wherein the compound corresponds to the formula

74. The compound or salt according to claim 32 wherein the compound corresponds to the formula

75. The compound or salt according to claim 32 wherein the compound corresponds to the formula

76. The compound or salt according to claim 32 wherein the compound corresponds to the formula
77. The compound or salt according to claim 32 wherein the compound corresponds to the formula

78. The compound or salt according to claim 32 wherein the compound corresponds to the formula

79. The compound or salt according to claim 32 wherein the compound corresponds to the formula

80. The compound or salt according to claim 32 wherein the compound corresponds to the formula
81. The compound or salt according to claim 32 wherein the compound corresponds to the formula

82. The compound or salt according to claim 32 wherein the compound corresponds to the formula

83. The compound or salt according to claim 32 wherein the compound corresponds to the formula

84. The compound or salt according to claim 32 wherein the compound corresponds to the formula

85. The compound or salt according to claim 32 wherein the compound corresponds to the formula

86. A compound corresponding to Formula VIIIE, or a pharmaceutically acceptable salt thereof:
wherein:

R^5 and R^6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a $R^bRCaminoalkyl$ substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocyclooxy and a $R^bRCaminoalkyloxy$ substituent; and

or R^5 and R^6 together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5-15 to 7-members;

G is a N-heterocyclo group;
the substituent A is selected from the group consisting of

(1) $-O-$;
(2) $-S-$;
(3) $-NR^k-$;
(4) $-CO-N(R^k)$ or $-N(R^k)-CO-$;
(5) $-CO-O-$ or $-O-CO-$;
(6) $-O-CO-O-$;
(7) $-HC\equiv CH-$;
(8) $-NH-CO-NH-$;
(9) $-C\equiv C-$;
(10) $-N=N-$;
(11) -NH-NH-;
(12) -CS-N(R^k) - or -N(R^k)-CS-;
(13) -CH_2-;
(14) -O-CH_2- or -CH_2-O-;
(15) -S-CH_2- or -CH_2-S-;
(16) -SO-; and
(17) -SO_2-; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;

the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylstioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C_1-C_2-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the moiety E is selected from the group consisting of

(1) -COR^g- or -R^GCO-;
(2) -CON(R^k)- or -(R^k)NCO-;
(3) -CO-;
-336-

(4) \(-\text{SO}_2-\text{RG}^-\) or \(-\text{RG}^-\text{SO}_2-\);

(5) \(-\text{SO}_2-\);

(6) \(-\text{N(R}^k\text{-SO}_2^-\) or \(-\text{SO}_2^-\text{N(R}^k\text{)-}\); or

(7) \(E\) is absent and \(R\) is bonded directly to \(Y\); and

the moiety \(Y\) is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, \(R^a\)oxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxycarbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; wherein

\(R^a\) is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, \(R^bR^c\text{aminoalkanoyl},\)
haloalkanoyl, \(R^bR^c\text{aminoalkyl},\) alkoxyalkyl, haloalkyl and an arylalkoxyloxy group;

\(R^b\) and \(R^c\) are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl,
perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl,

aryloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroaryl sulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkyliminocarbonyl, aryliminocarbonyl, heterocycloiminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxy carbonyl, aryloxycarbonyl, aminoalkylcarbonyl, hydroxyalkyl, aminoalkyl, aminoalkyl sulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two \(\text{R}^d \) radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from \(\text{R}^d \) substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from \(\text{R}^e \) substituents;

\(\text{R}^d \) and \(\text{R}^e \) are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, alkoxy carbonyl and an arylalkyloxy carbonyl group.
R^6 is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a R^6R^8 amino group;

R^9 is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehydo, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxyheteroaryl, R^{hR_1}-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkylloxycarbonyl, alkyloxycarbonyloxy, aryloxy carbonyl, arylalkyloxycarbonyl, arylalkyloxycarbonylamino, aryl oxycarbonyloxy, carboxy, R^{hR_2}-aminocarbonyloxy, R^{hR_2}-aminocarbonyl, R^{hR_1}-aminoalkanoyl, hydroxyaminocarbonyl, R^{hR_2}-aminosulfonyle, R^{hR_2}-aminocarbonyl(R^h) amino, trifluoromethyl-sulfonyle(R^h) amino, heteroarylsulfonyle(R^h) amino, arylsulfonyle(R^h) amino, ary lsulfonyle(R^h) aminocarbonyl, alkylsulfonyle(R^h) amino, arylcarbonyl(R^h) aminosulfonyle, and an alkylsulfonyle(R^h) aminocarbonyl substituent;

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkylloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups is
optionally substituted by one or two groups
independently selected from R^j substituents as are
the substituents of the substituted aminoalkyl and
substituted aminoalkanoyl groups;

R^i is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups are
optionally substituted by one or two R^j substituents;

R^j is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, wherein the substituents of the
substituted aminoalkyl and substituted aminoalkanoyl
groups are selected from the group consisting of an
alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl,
heteroarylalkyl, aryloxycarbonyl and an
alkyloxycarbonyl group; and

R^k is selected from hydrido, alkyl, alkenyl,
alkenyl, aryl, arylalkyl, heteroaryl,
heteroarylalkyl, aryloxycarbonyl, alkyloxycarbonyl,
R^damino carbonyl, R^daminosulfonyl,
R^daminoalkanoyl and R^daminoalkysulfonyl.
87. The compound according to claim 86 wherein the compound corresponds to the formula

88. The compound according to claim 86 wherein the compound corresponds to the formula

89. The compound according to claim 86 wherein the compound corresponds to the formula

90. The compound according to claim 86 wherein the compound corresponds to the formula

91. The compound according to claim 86 wherein the compound corresponds to the formula
92. The compound according to claim 86 wherein the compound corresponds to the formula

93. The compound according to claim 86 wherein the compound corresponds to the formula

94. The compound according to claim 86 wherein the compound corresponds to the formula

95. The compound according to claim 86 wherein the compound corresponds to the formula
96. The compound according to claim 86 wherein the compound corresponds to the formula

97. The compound according to claim 86 wherein the compound corresponds to the formula

98. The compound according to claim 86 wherein the compound corresponds to the formula

99. The compound according to claim 86 wherein the compound corresponds to the formula
100. A process for treating a host mammal having a condition associated with pathological matrix metalloprotease activity that comprises

administering a compound corresponding in structure to Formula C or a pharmaceutically acceptable salt thereof in an MMP enzyme-inhibiting effective amount to a mammalian host having such a condition:

\[
\begin{align*}
\text{HN} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{SO}_2 \\
\end{align*}
\]

10

wherein

the ring structure W is a 5- or 6-membered aromatic or heteroaromatic ring;

15

R^1 is (i) a substituent containing a 5- or 6-membered cyclohydrocarbyl, heterocyclo, aryl or heteroaryl radical that is bonded directly to the depicted SO_2-group and having a length greater than about that of a hexyl group and less than about that of an eicosyl group, said R^1 defining a three-dimensional volume, when rotated about an axis drawn through the SO_2-bonded 1-position and the 4-position of a 6-membered ring radical or drawn through the SO_2-bonded 1-position and the center of 3,4-bond of a
5-membered ring radical, whose widest dimension in a
direction transverse to the axis of rotation is about
that of one furanyl ring to about that of two phenyl
rings;

R^5 and R^6 are independently selected from
the group consisting of a hydrido, alkyl, cycloalkyl,
acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy,
haloalkyl, haloalkyloxy, hydroxyalkyl, a
$R^{6R}_{R^{5}}$ aminoalkyl substituent, thiol, alkylthio,
arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy,
perfluoroalkyl, haloalkyl, heterocycloxoxy and a
$R^{6R}_{R^{5}}$ aminoalkyloxy substituent;

or R^5 and R^6 together with the atoms to
which they are bonded form a further aliphatic or
aromatic carbocyclic or heterocyclic ring having 5-
to 7-members; and

R^{20} is (a) -O-R^{21}, where R^{21} is selected
from the group consisting of a hydrido, C_1-C_6-alkyl,
aryl, ar-C_1-C_6-alkyl group and a pharmaceutically
acceptable cation, (b) -NR13-O-R^{22} wherein R^{22} is a
selectively removable protecting group and R^{13} is a
hydrido, C_1-C_6-alkyl or benzyl group, (c) -NR13-O-
R^{14}, where R^{13} is as before and R^{14} is hydrido, a
pharmaceutically acceptable cation or C(V)R^{15} where V
is O or S and R^{15} is selected from the group
consisting of an C_1-C_6-alkyl, aryl, C_1-C_6-alkoxy,
heteroaryl-C_1-C_6-alkyl, C_3-C_8-cycloalkyl-C_1-C_6-alkyl,
aryloxy, ar-C_1-C_6-alkoxy, ar-C_1-C_6-alkyl, heteroaryl
and amino C_1-C_6-alkyl group wherein the amino C_1-C_6-
alkyl nitrogen is (i) unsubstituted or (ii)
substituted with one or two substituents independently selected from the group consisting of an \(\text{C}_1-\text{C}_6 \)-alkyl, aryl, \(\text{ar-C}_1-\text{C}_6 \)-alkyl, \(\text{C}_3-\text{C}_8 \)-cycloalkyl-\(\text{C}_1-\text{C}_6 \)-alkyl, \(\text{ar-C}_1-\text{C}_6 \)-alkoxy carbonyl, \(\text{C}_1-\text{C}_6 \)-alkoxy carbonyl, and \(\text{C}_1-\text{C}_6 \)-alkanoyl radical, or (iii) wherein the amino \(\text{C}_1-\text{C}_6 \)-alkyl nitrogen and two substituents attached thereto form a 5- to 8-membered heterocyclo or heteroaryl ring, or (d) \(-\text{NR}^{23}\text{R}^{24}\), where \(\text{R}^{23} \) and \(\text{R}^{24} \) are independently selected from the group consisting of a hydrido, \(\text{C}_1-\text{C}_6 \)-alkyl, amino \(\text{C}_1-\text{C}_6 \)-alkyl, hydroxy \(\text{C}_1-\text{C}_6 \)-alkyl, aryl, and an \(\text{ar-C}_1-\text{C}_6 \)-alkyl group, or \(\text{R}^{23} \) and \(\text{R}^{24} \) together with the depicted nitrogen atom form a 5- to 8-membered ring containing zero or one additional heteroatom that is oxygen, nitrogen or sulfur; wherein:

\(\text{R}^b \) and \(\text{R}^c \) are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl, heteroaryl sulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkyliminocarbonyl, aryliminocarbonyl, heterocycloiminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkeny1, alkylthioalkeny1, heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl,
thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl, alkoxy carbonyl, aryloxycarbonyl, aminoaalkylcarbonyl, hydroxyalkyl, aminoaalkyl, aminoaalkylsulfonyl, aminosulfonyl wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two R^d radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from R^d substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from R^f substituents;

R^d and R^e are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, alkoxy carbonyl and an arylalkyloxycarbonyl group; and

R^f is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a R^dR^e amino group.

101. The process according to claim 100 wherein said R^1 is (i) an $-NR^7R^8$ group in which R^7 and R^8 are independently selected from the group consisting of hydrido, hydrocarbyle, aryl, substituted aryl, arylhydrocarbyle, and substituted arylhydrocarbyle, or (ii) R^7 and R^8 are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, R^aoxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, and a
heterocyclo substituent, each of which substituent
groups is optionally substituted with an -A-R-E-Y
substituent;
in said -A-R-E-Y substituent, A is selected
from the group consisting of
(1) -O-;
(2) -S-;
(3) -NR^k-;
(4) -CO-N(R^k) or -N(R^k)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R^k) or -N(R^k)-CS-;
(13) -CH₂-;
(14) -O-CH₂- or -CH₂-O-;
(15) -S-CH₂- or -CH₂-S-;
(16) -SO-; and
(17) -SO₂-; or
(18) A is absent and R is directly bonded
to R⁷ or R⁸, or both R⁷ and R⁸;
the moiety R is selected from the group
consisting of alkyl, alkoxyalkyl, aryl, heteroaryl,
cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl,
heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl,
heterocycloalkoxyalkyl, aryloxyalkyl,
heteroarylthioalkyl, arylthioalkyl,
heteroarylthioalkyl, cycloalkylthioalkyl, and a
heterocycloalkylthioalkyl group wherein the aryl,
heteroaryl, cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C1-C2-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the group E is selected from the group consisting of

(1) -CORG- or -RGGCO-;
(2) -CON(Rk)- or -(Rk)NCO-;
(3) -CO-;
(4) -SO2RG- or -RGGSO2-;
(5) -SO2-;
(6) -N(Rk)SO2- or -SO2N(Rk)-; or
(7) E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, R'oxyalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group
consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or

(ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; or

R⁷ and R⁸ taken together with the nitrogen atom to which they are bonded form a group -G-A-R-E-Y

wherein
G is a N-heterocyclo group;
the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR⁷⁻;
(4) -CO-N(R⁷⁻) or -N(R⁷⁻)-CO⁻;
(5) -CO-O⁻ or -O-CO⁻;
(6) -O-CO-O⁻;
(7) -HC=CH⁻;
(8) -NH-CO-NH⁻;
(9) -C=C⁻;
(10) -N=N⁻;
(11) -NH-NH⁻;
(12) -CS-N(R⁷⁻) or -N(R⁷⁻)-CS⁻;
(13) -CH₂⁻;
(14) -O-CH₂⁻ or -CH₂-O⁻;
(15) -S-CH₂⁻ or -CH₂-S⁻;
(16) -SO⁻; and
(17) -SO₂⁻; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;
the moiety \(R \) is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, \(C_1-C_2 \)-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the moiety \(E \) is selected from the group consisting of

1. \(-\text{COR}^\text{G}^- \) or \(-\text{R}^\text{G}\text{CO}^-\);
2. \(-\text{CON}(\text{R}^\text{K})^- \) or \(-\text{(R}^\text{K})\text{NCO}^-\);
3. \(-\text{CO}^-\);
4. \(-\text{SO}_2\text{-R}^\text{G}^- \) or \(-\text{R}^\text{G}\text{-SO}_2^-\);
5. \(-\text{SO}_2^-\);
6. \(-\text{N}(\text{R}^\text{K})\text{-SO}_2^- \) or \(-\text{SO}_2^-\text{-N}(\text{R}^\text{K})^-\); or
7. \(E \) is absent and \(R \) is bonded directly to \(Y \); and

the moiety \(Y \) is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy,
-351-
heteroaryloxy, heteroaralkyl, Ra\textsubscript{oxyalkyl}, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group;

wherein Ra is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, R\textsubscript{b}R\textsubscript{c}aminoalkanoyl, haloalkanoyl, R\textsubscript{b}R\textsubscript{c}aminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

Rg is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehydo, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynylloxy, alkoxyaryl, alkoxyheteroaryl, R\textsubscript{h}R\textsubscript{i}-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkoxy carbonyl, alkoxy carbonyloxy, aryloxy carbonyl, arylalkyloxycarbonyl, arylalkyloxycarbonylamino, aryloxy carbonyloxy, carboxy, R\textsubscript{h}R\textsubscript{i}-aminocarbonyloxy, R\textsubscript{h}R\textsubscript{i}-aminocarbonyl, R\textsubscript{h}R\textsubscript{i}-aminoalkanoyl, hydroxyaminocarbonyl, R\textsubscript{h}R\textsubscript{i}-
aminsulfonyl, R^hR^i-aminocarbonyl(R^h)amino,
trifluoromethyl-sulfonyl(R^h)amino,
heteroarylsulfonyl(R^h)amino, arylsulfonyl(R^h)amino,
aryl)sulfonyl(R^h)aminocarbonyl,

5 alkylsulfonyl(R^h)amino,
arylcarbonyl(R^h)aminsulfonyl, and an
alkylsulfonyl(R^h)aminocarbonyl substituent;

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alcoholxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a

10 hydroxyalkyl group, each of which groups is optionally substituted by one or two groups
independently selected from R^j substituents as are the substituents of the substituted aminoalkyl and
substituted aminoalkanoyl groups;

R^i is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl,
substituted or unsubstituted aminoalkyl,
alcoholxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a

15 hydroxyalkyl group, each of which groups are optionally substituted by one or two R^j substituents;

R^j is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl,
substituted or unsubstituted aminoalkyl,
alcoholxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl,
alkyloxycarbonyl, arylalkyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arlyloxycarbonyl and an alkyloxy carbonyl group; and

10 R^k is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arlyloxycarbonyl, alkyloxy carbonyl, RCR^d amino carbonyl, RCR^d aminosulfonyl, RCR^d aminoalkanoyl and RCR^d aminoalkylsulfonyl.

102. The process according to claim 100 wherein said compound corresponds in structure to Formula C1

$$\text{C1}$$

20 wherein W, R^1, R^5, R^6, R^{13} and R^{14} are as defined before.

103. The process according to claim 100 wherein said compound corresponds in structure to Formula C2

25
wherein W, R^5, R^6 and R^{14} are as defined before, Ph is phenyl substituted at its own 4-
position with a substituent R^4, wherein R^4 is a
substituent that has a chain length of 3 to about 14
carbon atoms.

104. The process according to claim 103

wherein said R^4 substituent is selected from the
group consisting of a phenyl group, a phenoxy group,
a thiophenoxy group, an anilino group, a phenylazo
group, a phenylureido, a benzamido, a nicotinamido,
an isonicotinamido, a picolinamido group, a
heterocyclo, heterocyclohydrocarbyl,
arylheterocyclohydrocarbyl, arylhydrocarbyl,
heteroarylhydrocarbyl, heteroarylheterocyclo-
hydrocarbyl, arylhydrocarbyloxyhydrocarbyl,
arylhydrocarbyl, arylhydrocarbyloxyhydrocarbyl,
arlylhydrocarbylhydrocarbyl, arylcarbonylhydrocarbyl,
arlylazoaryl, arlyldiazinoaryl, hydrocarbylthio-
hydrocarbyl, hydrocarbylthioaryl, arlylthio-
hydrocarbyl, heteroarylthiohydrocarbyl, hydrocarbyl-
thioarylhydrocarbyl, arlylhydrocarbylthiohydrocarbyl,
arlylhydrocarbylthioaryl, arylhydrocarbylamino,
heteroarylhydrocarbylamino, and a heteroarylthio
group.
105. The process according to claim 104 wherein said R^4 substituent is itself substituted by one or more substituents selected from the group consisting of a halogen, hydrocarbyl, hydrocarbyloxy, nitro, cyano, perfluorohydrocarbyl, trifluoromethylhydrocarbyl, hydroxy, mercapto, hydroxycarbyl, aryloxy, arylthio, arylamino, arylhydrocarbyl, aryl, heteroarylthio, heteroarylamino, heteroarhydrocarbyl, hydrocarbyloxyhydrocarbyl, hydrocarbyl, heterocycloxy, hydroxycarbylhydrocarbyl, heterocyclothio, heterocycloamino, cyclohydrocarbyloxy, cyclohydrocarbylthio, cyclohydrocarbylamino, heteroarylhydrocarbyloxy, heteroarylhydrocarbylthio, heteroarylhydrocarbylamino, arylhydrocarbyloxy, aryhydrocarbylthio, arylhydrocarbylamino, heterocyclic, heteroaryl, hydroxycarbonyl-hydrocarbyloxy, alkoxy carbonylalkoxy, hydrocarbyloyl, arylcarbylonl, aryhydrocarbyloyl, hydrocarbyloxy, aryhydrocarbyloxy,
hydroxyhydrocarbyl, hydroxyhydrocarbyloxy, hydrocarbylthio, hydrocarbyloxyhydrocarbylthio, hydrocarbyloxyhydrocarbylonl, hydroxycarbonylhydrocarbyl, hydrocarbyloxy, hydrocarbyloxy-carbonylhydrocarbyl, hydrocarbylhydroxycarbonyl-hydrocarbylthio, hydrocarbyloxy-carbonylhydrocarbyloxy, hydrocarbyloxy-carbonylhydrocarbylthio, amino, hydrocarbylcarbylamino, aryhydrocarbylamino, cyclohydrocarbylcarbylamino, heterocyclohydrocarbylcarbylamino, arylhydrocarbylcarbylamino, heteroarylhydrocarbylamino, heteroarylc arbylcarbylamino, heterocyclohydrocarbyloxy, hydrocarbylsulfonlamino, arylsulfonlamino, arylhydrocarbylsulfonlamino,
heteroarylsulfonylamino, heteroarylhydrocarbaryl-
sulfonylamino, cyclohydrocarbaryl sulfonylamino,
heterocyclohydrocarbaryl sulfonylamino and N-
monosubstituted or N,N-disubstituted aminohydrocarbaryl
group, wherein the substituent(s) on the nitrogen are
selected from the group consisting of hydrocarbaryl,
aryl, arylhydrocarbaryl, cyclohydrocarbaryl,
arylhydrocarbaryl oxycarbonyl, hydrocarbaryl oxycarbonyl,
and hydrocarbaryl, or wherein the nitrogen and two
substituents attached thereto form a 5- to 8-membered
heterocyclic or heteroaryl ring group.

106. The process according to claim 100
wherein said compound corresponds in structure to
Formula D4

![Diagram of formula D4]

wherein R⁵ and R⁶ are as defined before and
R⁴ is a substituent that has a chain length of 3 to
about 14 carbon atoms.

107. The process according to claim 106
wherein said R⁴ substituent is selected from the
group consisting of a phenyl group, a phenoxy group,
a thiophenoxy group, an anilino group, a phenylazo
group, a phenylureido, a benzamido, a nicotinamido,
an isonicotinamido, a picolinamido group, a
heterocyclo, heterocyclohydrocarbaryl,
-357-

arylhetereocyclohydrocarbyl, arylhydrocarbyl, heteroarylhydrocarbyl, heteroarylhetereocyclohydrocarbyl, arylhydrocarbyloxyhydrocarbyl, arloxyhydrocarbyl, hydrocarbylhydrocarbyl, arylhydrocarbylhydrocarbyl, arylcarbonylhydrocarbyl, arylazoaryl, arylhydrazinoaryl, hydrocarbathyiohydrocarbyl, hydrocarbathioaryl, arylthiohydrocarbyl, heteroarylthiohydrocarbyl, hydrocarbathyioarylhydrocarbyl, arylhydrocarbathyiohydrocarbyl, arylhydrocarbathyioaryl, arylhydrocarbylamino, heteroarylhydrocarbylamino, and a heteroarylthio group.

108. The process according to claim 107 wherein said R^4 substituent is itself substituted by one or more substituents selected from the group consisting of a halogen, hydrocarbyl, hydrocarbyloxy, nitro, cyano, perfluorohydrocarbyl, trifluoromethylhydrocarbyl, hydroxy, mercapto, hydroxycarbonyl, aryloxy, arylthio, arylamino, arylhydrocarbyl, aryl, heteroarylxy, heteroarylthio, heteroarylamino, heteroarylhydrocarbyl, hydrocarbyloxycarbonylhydrocarbyl, heterocycloxy, hydroxycarbonylhydrocarbyl, heterocyclothio, heterocycloamino, cyclohydrocarbyloxy, cyclohydrocarbylthio, cyclohydrocarbylamino, heteroarylhydrocarbyloxy, heteroarylhydrocarbylthio, heteroarylhydrocarbylamino, arylhydrocarbyloxy, arylhydrocarbylthio, arylhydrocarbylamino, heterocyclic, heteroaryl, hydroxycarbonyl-hydrocarbyloxy, alkoxy carbonylalkoxy, hydrocarbyloyl, arylcarbonyl, arylhydrocarbyloyl, hydrocarbyloxy, arylhydroxyalloyx, hydroxyhydrocarbyl, hydroxyhydrocarbyloxy,
hydrocarbylthio, hydrocarbyloxyhydrocarbylthio,
hydrocarbyloxy carbonyl, hydroxycarbonyl-
hydrocarbyloxy, hydrocarbyloxy-carbonylhydrocarbyl,
hydrocarbylhydroxycarbonyl-hydrocarbylthio,
hydrocarbyloxy carbonylhydrocarbyloxy,
hydrocarbyloxy carbonylhydrocarbylthio, amino,
hydrocarbyl carbonylamino, aryl carbonylamino,
cyclohydrocarbyl carbonylamino, heterocyclo-
cyclohydrocarbyl carbonylamino, aryl hydrocarbyl-
carbonylamino, heteroaryl carbonylamino,
heteroaryl hydrocarbyl carbonylamino,
heterocyclohydrocarbyloxy, hydrocarbyl sulfonylamino,
aryl sulfonylamino, aryl hydrocarbyl sulfonylamino,
heteroaryl sulfonylamino, heteroaryl hydrocarbyl-
sulfonylamino, cyclohydrocarbyl sulfonylamino,
heterocyclohydrocarbyl sulfonylamino and N-
monosubstituted or N,N-disubstituted aminohydrocarbyl
group, wherein the substituent(s) on the nitrogen are
selected from the group consisting of hydrocarbyl,
aryl, aryl hydrocarbyl, cyclohydrocarbyl,
arylhydrocarbyloxy carbonyl, hydrocarbyloxy carbonyl,
and hydrocarboyl, or wherein the nitrogen and two
substituents attached thereto form a 5- to 8-membered
heterocyclic or heteroaryl ring group.

109. The process according to claim 100
wherein said \(R^1 \) substituent has a length greater than
that of an octyl group and less than that of a
stearyl group.

110. The process according to claim 100
wherein said compound or salt is administered a
plurality of times.
111. A process for treating a host mammal having a condition associated with pathological matrix metalloprotease activity that comprises administering a compound corresponding in structure to Formula VIB-2 or a pharmaceutically acceptable salt thereof in an MMP enzyme-inhibiting effective amount to a mammalian host having such a condition:

![Chemical Structure](image)

wherein

R^5 and R^6 are independently selected from the group consisting of a hydrido, alkyl, cycloalkyl, acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy, haloalkyl, haloalkyloxy, hydroxyalkyl, a R^{DRC}aminoalkyl substituent, thiol, alkylthio, arylthio, cycloalkylthio, cycloalkoxy, alkoxyalkoxy, perfluoroalkyl, haloalkyl, heterocycloalkoxy and a R^{DRC}aminoalkyloxy substituent;

or R^5 and R^6 together with the atoms to which they are bonded form a further aliphatic or aromatic carbocyclic or heterocyclic ring having 5- to 7-members; and

said R^7 and R^8 are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, $R^{Aoxyalkyl}$, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylmethyl, and a heterocyclo
-360-

substituent, each of which substituent groups is optionally substituted with an \(-A-R-E-Y\) substituent; in said \(-A-R-E-Y\) substituent, A is selected from the group consisting of

5

1. \(-O-\);
2. \(-S-\);
3. \(-NR^k-\);
4. \(-CO-N(R^k)\) or \(-N(R^k)-CO-\);
5. \(-CO-O-\) or \(-O-CO-\);
6. \(-O-CO-O-\);
7. \(-HC=CH-\);
8. \(-NH-CO-NH-\);
9. \(-C=O-\);
10. \(-N=N-\);
11. \(-NH-NH-\);
12. \(-CS-N(R^k)-\) or \(-N(R^k)-CS-\);
13. \(-CH_2-\);
14. \(-O-CH_2-\) or \(-CH_2-O-\);
15. \(-S-CH_2-\) or \(-CH_2-S-\);
16. \(-SO-\); and
17. \(-SO_2-\); or
18. A is absent and R is directly bonded to \(R^7\) or \(R^8\), or both \(R^7\) and \(R^8\);

the moiety R is selected from the group

25 consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl, heteroarylamyl, cycloalkyl or heterocycloalkyl
-361-

substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, C₁-C₂ dialkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the group E is selected from the group consisting of

(1) -COR⁹- or -RGCO-;
(2) -CON(R⁹)- or -(R⁹)NCO-;
(3) -CO-;
(4) -SO₂RG- or -RGSO₂-;
(5) -SO₂-;
(6) -N(R⁹)SO₂- or -SO₂-N(R⁹)-; or
(7) E is absent and R is bonded directly to Y; and

Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, arloxy, aralkoxy, heteroaryloxy, heteroaralkyl, R³oxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, and an amino
group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group; or

R⁷ and R⁸ taken together with the nitrogen atom to which they are bonded form a group -G-A-R-E-Y wherein

G is a N-heterocyclo group;

the substituent A is selected from the group consisting of

(1) -O-;
(2) -S-;
(3) -NR⁷⁻;
(4) -CO-N(R⁷) or -N(R⁷)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C≡C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R⁷)⁻ or -N(R⁷)-CS⁻;
(13) -CH₂⁻;
(14) -O-CH₂⁻ or -CH₂-O⁻;
(15) -S-CH₂⁻ or -CH₂-S⁻;
(16) -SO⁻; and
(17) -SO₂⁻; or
(18) A is absent and R is directly bonded to the N-heterocyclo group, G;

the moiety R is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl,
-363-
heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkythioalkyl, and a heterocycloalkythioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, amino, alkoxy carbonyl alkyl, alkoxy, C₁-C₂-alkylenedioxy, hydroxycarbonyl alkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkancylamino, and a alkoxy carbonyl group;

the moiety E is selected from the group consisting of

1. \(-\text{COR}^g\) or \(-\text{R}^g\text{CO}^-\);
2. \(-\text{CON}(\text{R}^k)\) - or \(-(\text{R}^k)\text{NCO}^-\);
3. \(-\text{CO}^-\);
4. \(-\text{SO}_2^-\text{R}^g\) - or \(-\text{R}^g\text{SO}_2^-\);
5. \(-\text{SO}_2^-\);
6. \(-\text{N}(\text{R}^k)\text{SO}_2^-\) or \(-\text{SO}_2^-\text{N}(\text{R}^k)\); or
7. E is absent and R is bonded directly to Y; and

the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, aryloxy, aralkoxy, heteroaryloxy, heteroaralkyl, \(\text{R}^a\text{xyalkyl}\), perfluoroalkoxy, perfluoroalkythio, trifluoromethylalkyl, alkenyl, heterocycloalkyl,
cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group;

R⁰ is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, R⁰R⁰'aminoalkanoyl, haloalkanoyl, R⁰R⁰'aminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

R⁰ and R⁰' are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl carbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, arloxyalkyl, heteroaryloxyalkyl, heteroarylalkoxyalkyl, heteroarylthioalkyl, aryl sulfonyl, aralkanoyl, alkylsulfonyl, heteroaryl sulfonyl, carboxyalkyl, alkoxy carbonylalkyl, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, heterocycloiminocarbonyl, arylthioalkyl, alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl, heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl, thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl,
alkoxycarbonyl, aryloxy carbonyl, aminoalkyl carbonyl, hydroxyalkyl, aminoalkyl, aminoalkyl sulfonyle, aminosulfonyle wherein the amino nitrogen is (i) unsubstituted or (ii) independently substituted with one or two \(R^d \) radicals, or the substituents on the amino group taken together with the amino nitrogen form a saturated or partially unsaturated heterocyclo group optionally substituted with one, two or three groups independently selected from \(R^d \) substituents or a heteroaryl group optionally substituted with one, two or three groups independently selected from \(R^f \) substituents;

\(R^d \) and \(R^e \) are independently selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, alkoxy carbonyl and an arylalkyloxy carbonyl group; and

\(R^f \) is selected from the group consisting of a nitro, hydroxy, alkyl, halogen, aryl, alkoxy, cyano, and a \(R^d R^e \) amino group;

\(R^g \) is selected from the group consisting of a hydrido, aryl, heteroaryl, heterocyclo, aroyl, alkanoyl, heteroaroyl, halogen cyano, aldehydo, hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkoxy, aryloxy, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyaryl, alkoxycarbonyl, \(R^{\text{HRI}} \)-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alkylxycarbonyl, alkylxycarbonyloxy, arloxy-carbonyl, arylalkyloxy carbonylamino, arylloxy carbonyloxy, carboxy, \(R^{\text{HRI}} \)-aminocarbonyloxy, \(R^{\text{HRI}} \)-aminocarbonyl, \(R^{\text{HRI}} \).
-366-
aminoalkanoyl, hydroxyaminocarbonyl, R^h R^i-
aminosulfonyl, R^h R^i-aminocarbonyl(R^h) amino,
trifluoromethylsulfonyle(R^h) amino, heteroarylsulfonyle-
(R^h) amino, arylsulfonyle(R^h) amino, arylsulfonyle(R^h)-
aminocarbonyl, alkylsulfonyle(R^h) amino, arylcarbonyl-
(R^h) aminosulfonyle, and an alkylsulfonyle(R^h)-
aminocarbonyl substituent;

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
aldehydn, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alkoxyoxycarbonyl, arylalkyloxyoxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups is
optionally substituted by one or two groups
independently selected from R^j substituents as are
the substituents of the substituted aminoalkyl and
substituted aminoalkanoyl groups;

R^i is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
aldehydn, alkenyl, alkoxyalkyl, alkoxyalkylalkyl,
substituted or unsubstituted aminoalkyl,
alkoxyoxycarbonyl, arylalkyloxyoxycarbonyl, carboxyalkyl,
haloalkyl, alkanoyl, aroyl, substituted or
unsubstituted aminoalkanoyl, halo alkanoyl and a
hydroxyalkyl group, each of which groups are
optionally substituted by one or two R^j substituents;

R^j is selected from the group consisting of
an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl,
aldehydn, alkenyl, alkoxyalkyl, alkoxyalkyl,
substituted or unsubstituted aminoalkyl,
alkyloxy carbonyl, arylalkyloxy carbonyl, carboxy alkyl, halo alkyl, alkanoyl, aroyl, substituted or unsubstituted amino alkanoyl, halo alkanoyl and a hydroxy alkyl group, wherein the substituents of the substituted amino alkyl and substituted amino alkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl and an alkyloxy carbonyl group; and

\[R^k \text{ is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl, alkyloxy carbonyl, } \]

\[R^d \text{ amino carbonyl, } R^d \text{ aminosulfonyl, } \]

\[R^d \text{ amino alkanoyl and } R^d \text{ amino alkyl sulfonyl.} \]

112. The process according to claim 111 wherein said compound corresponds in structure to Formula VIB-3

![Formula VIB-3](image)

113. The process according to claim 111 wherein said compound corresponds in structure to Formula VIII or VIII-B
114. The process according to claim 111 wherein said NR\(^7\)R\(^8\) substituent has a length greater than that of an octyl group and less than that of a stearyl group.

115. The process according to claim 114 wherein said NR\(^7\)R\(^8\) is the substituent -G-A-R-E-Y.

116. The process according to claim 111 wherein said compound or salt is administered a plurality of times.

117. A process for treating a host mammal having a condition associated with pathological matrix metalloprotease activity that comprises administering a compound corresponding in structure to Formula VIIB or a pharmaceutically acceptable salt thereof in an MMP enzyme-inhibiting effective amount to a mammalian host having such a condition:

\[
\text{HONH}^{\text{R}^5}^{\text{R}^6}\text{SO}_\text{G-A-R-E-Y}^{\text{VIIB}}
\]

wherein
R⁵ and R⁶ are independently selected from
the group consisting of a hydrido, alkyl, cycloalkyl,
acylalkyl, halo, nitro, hydroxyl, cyano, alkoxy,
haloalkyl, haloalkyloxy, hydroxyalkyl, a
R⁵R⁶Caminoalkyl substituent, thiol, alkylthio,
aryltio, cycloalkylthio, cycloalkkoxy, alkoxyalkoxy,
perfluoroalkyl, haloalkyl, heterocyclooxy and a
R⁵R⁶Caminoalkyloxy substituent;

or R⁵ and R⁶ together with the atoms to
which they are bonded form a further aliphatic or
aromatic carbocyclic or heterocyclic ring having 5-
to 7-members; and

in the substituent -G-A-R-E-Y, G is a N-
heterocyclo group;

the substituent A is selected from the group
consisting of

(1) -O-;
(2) -S-;
(3) -NR⁶-;
(4) -CO-N(R⁶) or -N(R⁶)-CO-;
(5) -CO-O- or -O-CO-;
(6) -O-CO-O-;
(7) -HC=CH-;
(8) -NH-CO-NH-;
(9) -C=C-;
(10) -N=N-;
(11) -NH-NH-;
(12) -CS-N(R⁶) or -N(R⁶)-CS-;
(13) -CH₂-;
(14) -O-CH₂ or -CH₂-O-;
(15) -S-CH₂ or -CH₂-S-;
(16) -SO-; and
-370-

(17) \(-\text{SO}_2\)-; or

(18) \(A\) is absent and \(R\) is directly bonded to the \(N\)-heterocyclo group, \(G\);

the moiety \(R\) is selected from the group consisting of alkyl, alkoxyalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aralkyl, heteroaralkyl, heterocycloalkyl, cycloalkylalkyl, cycloalkoxyalkyl, heterocycloalkoxyalkyl, aryloxyalkyl, heteroaryloxyalkyl, arylthioalkyl, heteroarylthioalkyl, cycloalkylthioalkyl, and a heterocycloalkylthioalkyl group wherein the aryl or heteroaryl or cycloalkyl or heterocycloalkyl substituent is (i) unsubstituted or (ii) substituted with one or two radicals selected from the group consisting of a halo, alkyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, amino, alkoxy carbonylalkyl, alkoxy, \(\text{C}_1-\text{C}_2\)-alkylenedioxy, hydroxycarbonylalkyl, hydroxycarbonylalkylamino, nitro, hydroxy, hydroxyalkyl, alkanoylamino, and a alkoxy carbonyl group;

the moiety \(E\) is selected from the group consisting of

(1) \(-\text{COR}^\text{G}\)- or \(-\text{R}^\text{G}\text{CO}-\);

(2) \(-\text{CON}(\text{R}^\text{K})\)- or \(-(\text{R}^\text{K})\text{NCO}-\);

(3) \(-\text{CO}-\);

(4) \(-\text{SO}_2\text{R}^\text{G}\)- or \(-\text{R}^\text{G}\text{SO}_2-\);

(5) \(-\text{SO}_2-\);

(6) \(-\text{N(}R^\text{K})\text{-SO}_2\)- or \(-\text{SO}_2\text{-N(}R^\text{K})-\); or

(7) \(E\) is absent and \(R\) is bonded directly to \(Y\); and
the moiety Y is absent or is selected from the group consisting of a hydrido, alkyl, alkoxy, haloalkyl, aryl, aralkyl, cycloalkyl, heteroaryl, hydroxy, nitrile, nitro, arlyloxy, aralkoxy, heteroaryloxy, heteroaralkyl, Rₐoxyalkyl, perfluoroalkoxy, perfluoroalkylthio, trifluoromethylalkyl, alkenyl, heterocycloalkyl, cycloalkyl, trifluoromethyl, alkoxy carbonyl, and a aminoalkyl group, wherein the aryl, heteroaryl, aralkyl or heterocycloalkyl group is (i) unsubstituted or (ii) substituted with one or two radicals independently selected from the group consisting of an alkanoyl, halo, nitro, nitrile, haloalkyl, alkyl, aralkyl, aryl, alkoxy, perfluoroalkyl, perfluoroalkoxy and an amino group wherein the amino nitrogen is (i) unsubstituted or (ii) substituted with one or two groups independently selected from hydrido, alkyl, and an aralkyl group;

wherein Rₐ is selected from the group consisting of a hydrido, alkyl, alkenyl, alkenyl, arylalkyl, aryl, alkanoyl, aroyl, arylalkycarbonyl, RₐRCaminoalkanoyl, haloalkanoyl, RₐRCaminoalkyl, alkoxyalkyl, haloalkyl and an arylalkyloxy group;

Rₐ and RC are independently selected from the group consisting of a hydrido, alkanoyl, arylalkyl, aroyl, bisalkoxyalkyl, alkyl, haloalkyl, perfluoroalkyl, trifluoromethylalkyl, perfluoroalkoxyalkyl, alkoxyalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylcarbonyl, aryl, heterocyclo, heteroaryl, cycloalkylalkyl, aryloxyalkyl, heteroarylalkylalkyl, heteroarylthioalkyl, arylsulfonyl, aralkanoyl, alkylsulfonyl,
heteroaryl sulfonyle, carboxyalkyl,
alkoxycarbonylalkyl, aminocarbonyl,
alkyliminocarbonyl, aryliminocarbonyl,
heterocycloiminocarbonyl, arylthioalkyl,
alkylthioalkyl, arylthioalkenyl, alkylthioalkenyl,
heteroarylalkyl, haloalkanoyl, hydroxyalkanoyl,
thiolalkanoyl, alkenyl, alkynyl, alkoxyalkyl,
alkoxycarbonyl, aryloxycarbonyl, aminoalkylcarbonyl,
hydroxyalkyl, aminooalkyl, aminooalkylsulfonyle,
aminosulfonyl wherein the amino nitrogen is (i)
unsubstituted or (ii) independently substituted with
one or two R^d radicals, or the substituents on the
amino group taken together with the amino nitrogen
form a saturated or partially unsaturated heterocyclo
group optionally substituted with one, two or three
groups independently selected from R^d substituents or
a heteroaryl group optionally substituted with one,
two or three groups independently selected from R^f
substituents;

R^d and R^e are independently selected from
the group consisting of a hydrido, alkyl, alkenyl,
alkenyl, arylalkyl, aryl, alkanoyl, aroyl,
arylalkycarbonyl, alkoxycarbonyl and an
arylalkyloxy carbonyl group; and

R^f is selected from the group consisting of
a nitro, hydroxy, alkyl, halogen, aryl, alkoxy,
cyano, and a R^dR^e amino group;

R^g is selected from the group consisting of
a hydrido, aryl, heteroaryl, heterocyclo, aroyl,
alkanoyl, heteroaroyl, halogen cyano, aldehydo,
hydroxy, amino, alkyl, alkenyl, alkynyl, cycloalkyl,
cycloalkenyl, alkoxy, aryloxy, heteroaryloxy,
alkenyloxy, alkynylloxy, alkoxyaryl, alkoxyheteroaryl, R^Hi-amino, alkoxyalkyl, alkylenedioxy, aryloxyalkyl, perfluoroalkyl, trifluoroalkyl, alkylthio, arylthio, alklyoxycarbonyl, alklyoxycarbonyloxy, aryloxycarbonyl, arylyloxycarbonyl, arylyloxycarbonylamino, arylyoxycarbonyloxy, carboxy, R^Hi-aminocarbonyloxy, R^Hi-aminocarbonyl, R^Hi-aminoalkanoyl, hydroxyaminocarbonyl, R^Hi-aminosulfonoyl, R^Hi-aminocarbonyl(R^h) amino,

R^h is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alklyoxycarbonyl, arylyloxycarbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups is optionally substituted by one or two groups independently selected from R^i substituents as are the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups;

R^i is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkylalkyl, substituted or unsubstituted aminoalkyl,
alkyloxy carbonyl, arylalkyloxy carbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, each of which groups are optionally substituted by one or two R^j substituents;

R^j is selected from the group consisting of an arylalkyl, aryl, heteroaryl, heterocyclo, alkyl, alkynyl, alkenyl, alkoxyalkyl, alkoxyalkyl, substituted or unsubstituted aminoalkyl, alkyloxy carbonyl, arylalkyloxy carbonyl, carboxyalkyl, haloalkyl, alkanoyl, aroyl, substituted or unsubstituted aminoalkanoyl, halo alkanoyl and a hydroxyalkyl group, wherein the substituents of the substituted aminoalkyl and substituted aminoalkanoyl groups are selected from the group consisting of an alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl and an alkyloxy carbonyl group; and

R^K is selected from hydrido, alkyl, alkenyl, alkenyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, aryloxy carbonyl, alkyloxy carbonyl, RCR^d amino carbonyl, RCR^d aminosulfonyl, RCR^d aminoalkanoyl and RCR^d aminoalkysulfonyl.

118. The process according to claim 117 wherein said compound or salt is administered a plurality of times.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D211/16 C07C317/44 C07C311/21 C07C311/16 C07D207/14
C07D211/46 C07D211/18 C07D401/12 C07D211/54 C07D295/22
C07D401/04 C07D405/12 C07D405/14 C07D309/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D C07C A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 98 38859 A (MCDONALD JOSEPH J ; MONSANTO CO (US); BARTA THOMAS E (US); BECKER D) 11 September 1998 (1998-09-11) comparative examples 3,4,7,8; page 111, table 38</td>
<td>1-5, 7-9, 15, 22, 23, 31, 32, 100</td>
</tr>
<tr>
<td>X</td>
<td>WO 98 06705 A (BROWN GEORGE ROBERT ; WATERSON DAVID (GB); ZENECA LTD (GB); NEWCOMB) 19 February 1998 (1998-02-19) page 30, compound no 34</td>
<td>1, 23</td>
</tr>
<tr>
<td>E</td>
<td>WO 00 37107 A (MASFERRER JAIME L ; GORDON GARY (US); SEARLE & CO (US); KOKI ALANE) 29 June 2000 (2000-06-29) examples</td>
<td>1, 15, 22, 23, 31, 32, 100, 111, 117</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of box C. ☐ Patent family members are listed in annex.

* Special categories of cited documents:
* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier document but published on or after the international filing date
* "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"*" document member of the same patent family

Date of the actual completion of the international search

30 August 2000

Date of mailing of the international search report

12/09/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5816 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

De Jong, B
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D401/14 A61K31/16 A61K31/445 A61P19/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search: 30 August 2000

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentboulevard 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax. 31 651 epo nl,
(31-70) 340-3016

Authorized officer: De Jong, B

Form PCT/ISA/010 (second sheet) (July 1992)
Continuation of Box I.2

Claims Nos.: 1-4,14,23-25,30,100,101,109,110, (all partially)

Present claims 1-4,23-25,30,100,101,109,110 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds according to claims 5-13,15-22,26-29,31-99,102-108,111-118

The applicant’s attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document</th>
<th>Publication date</th>
<th>Patent member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9838859 A</td>
<td>11-09-1998</td>
<td>AU 6447898 A</td>
<td>22-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6542498 A</td>
<td>22-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6686598 A</td>
<td>22-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1253559 T</td>
<td>17-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1253474 T</td>
<td>17-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1254337 T</td>
<td>24-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0983257 A</td>
<td>08-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0983258 A</td>
<td>08-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0984959 A</td>
<td>15-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0973392 A</td>
<td>26-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 994252 A</td>
<td>02-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 335732 A</td>
<td>08-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9839315 A</td>
<td>11-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9839326 A</td>
<td>11-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9839316 A</td>
<td>11-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 103190 A</td>
<td>30-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9711135 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1228087 A</td>
<td>08-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9900456 A</td>
<td>12-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0925286 A</td>
<td>30-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 990663 A</td>
<td>12-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 331599 A</td>
<td>02-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 18499 A</td>
<td>12-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6093718 A</td>
<td>25-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038716 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038665 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038717 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038786 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038730 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038718 A</td>
<td>06-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0038719 A</td>
<td>06-07-2000</td>
</tr>
</tbody>
</table>