(19) (19 DE 601 32 132 T2 2009.01.02

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 1 162 542 B1 1) ntcte: GO6F 12/08 (2006.01)

(21) Deutsches Aktenzeichen: 601 32 132.4
(96) Europaisches Aktenzeichen: 01 304 340.1
(96) Europaischer Anmeldetag: 16.05.2001
(97) Erstveroffentlichung durch das EPA: 12.12.2001
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 02.01.2008
(47) Veroffentlichungstag im Patentblatt: 02.01.2009

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
591918 09.06.2000 us DE, FR, GB
(73) Patentinhaber: (72) Erfinder:
Agere Systems Guardian Corp., Orlando, Fla., US Kaxiras, Stefanos, Jersey City, New Jersey 07310,
US; Young, Clifford Reginald, New York, NY 10023,
(74) Vertreter: us
Klunker, Schmitt-Nilson, Hirsch, 80797 Miinchen

(54) Bezeichnung: Verzeichnis-basiertes Vorhersageverfahren und -einrichtung fiir Multiprozessorsysteme mit ge-
meinsamem Speicher

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentiibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 60132132 T2 2009.01.02

Beschreibung
GEBIET DER ERFINDUNG

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf Multiprozessorcomputer und andere Typen
von Verarbeitungssystemen, die mehrere Prozesso-
ren aufweisen, und insbesondere auf Speicherprog-
nosetechniken, die fur die Verwendung in solchen
Systemen geeignet sind.

HINTERGRUND DER ERFINDUNG

[0002] In einem Multiprozessorsystem mit gemein-
sam genutztem Speicher erscheint es einem Benut-
zer, dass alle Prozessoren den Status in einem ein-
zelnen gemeinsam genutzten Speicher einer Spei-
chereinrichtung lesen und modifizieren. Eine wesent-
liche Schwierigkeit beim Implementieren eines sol-
chen Systems und insbesondere einer verteilten Ver-
sion eines solchen Systems ist die Verbreitung von
Werten von einem Prozessor zu einem anderen, da
die eigentlichen Werte in der Nahe eines Prozessors
geschaffen werden, aber von vielen anderen Prozes-
soren in dem System verwendet werden kdnnen.
Wenn die Implementierung die Muster gemeinsamer
Nutzung eines gegebenen Programms genau prog-
nostizieren konnte, kdnnten die Prozessorknoten ei-
nes verteilten Multiprozessorsystems mehr ihrer Zeit
zum Rechnen und weniger ihrer Zeit zum Warten auf
das Abrufen von Werten von entfernten Standorten
verbringen. Trotz der Entwicklung von Prozessor-
merkmalen wie z. B. nicht-blockierender Caches und
der Ausfihrung von Out-of-Order-Anweisungen
bleibt die relativ lange Zugriffslatenz in einem verteil-
ten System mit gemeinsam genutztem Speicher eine
ernsthafte Beeintrachtigung der Leistungsfahigkeit.

[0003] Es wurden Prognosetechniken verwendet,
um durch den Versuch, Daten so friih wie mdglich
von ihrem Schaffungspunkt zu ihren erwarteten Ver-
wendungspunkten zu bewegen, Zugriffslatenz in ver-
teilten Systemen mit gemeinsam genutztem Spei-
cher zu reduzieren. Diese Prognosetechniken ergan-
zen typischerweise das Standardkoharenzprotokoll
bei gemeinsam genutztem Speicher, das in erster Li-
nie mit korrektem Betrieb und in zweiter Linie mit
Leistungsfahigkeit befasst ist. In einem verteilten
System mit gemeinsam genutztem Speicher halt das
typischerweise auf einem Verzeichnis basierende
Koharenzprotokoll Prozessor-Caches koharent und
Ubertragt Daten zwischen den Prozessorknoten. Im
Wesentlichen fiihrt das Koharenzprotokoll die ge-
samte Kommunikation im System aus. Koharenzpro-
tokolle kdnnen gemeinsam genutzte Kopien eines
Datenblocks bei jedem Schreiben des Datenblocks
entweder fiir ungultig erklaren oder aktualisieren. Die
Aktualisierung beinhaltet das Weiterleiten von Daten
von Erzeugerknoten an Verbraucherknoten, aber
schafft keinen Riickkopplungsmechanismus, um den

Nutzen des Weiterleitens von Daten zu bestimmen.
Die Ungultigkeitserklarung schafft dadurch einen na-
tirlichen Rickkopplungsmechanismus, dass fiir un-
gultig erklarte Leser die Daten verwendet haben
mussen, aber die Ungiiltigkeitserklarung schafft kein
Mittel, um Daten an ihren Zielort weiterzuleiten.

[0004] Einein S.S. Mukherjee und M. D. Hill, ,Using
Prediction to Accelerate Coherence Protocols", Pro-
ceedings of the 25th Annual International Symposi-
um an Computer Architecture (ISCA) Juni-Juli 1998,
beschriebene herkdmmliche Herangehensweise an
die Prognose verwendet adressenbasierte 2-Ebe-
nen-Pradiktoren an den Verzeichnissen und Caches
der Prozessorknoten eines Multiprozessorsystems,
um Koharenznachrichten zu verfolgen und zu prog-
nostizieren. A. Lai und B. Falsafi, "Memory Sharing
Predictor: The Key to a Speculative Coherent DSM",
Proceedings of the 26th Annual ISCA, Mai 1999, be-
schreiben, wie diese 2-Ebenen-Pradiktoren so modi-
fiziert werden konnen, dass sie durch das Zusam-
menfuhren von Nachrichten von verschiedenen Kno-
ten in Bitmaps weniger Platz verwenden, und zeigen,
wie die modifizierten Pradiktoren verwendet werden
kénnen, um das Lesen von Daten zu beschleunigen.
Eine andere Reihe von bekannten Prognosetechni-
ken, beschrieben in S. Kaxiras und J. R. Goodman,
"Improving CC-NUMA Performance Using Instruc-
tion-Based Prediction", Proceedings of the 5th Annu-
al IEEE Symposium an High-Performance Computer
Architecture (HPCA), Januar 1999, schafft eine an-
weisungsbasierte Prognose flr migratorische ge-
meinsame Nutzung, breite gemeinsame Nutzung
und gemeinsame Erzeuger-Verbraucher-Nutzung.
Da es weitaus weniger statische Anweisungen als
Datenblocks gibt, erfordern anweisungsbasierte Pra-
diktoren weniger Platz zum Erfassen von Mustern ge-
meinsamer Nutzung.

[0005] Trotz der durch die oben identifizierten Prog-
nosetechniken geschaffenen Fortschritte bleibt ein
Bedarf an zusatzlichen Verbesserungen bestehen,
um Zugriffslatenz weiter zu reduzieren und die Imple-
mentierung von Multiprozessorsystemen mit gemein-
sam genutztem Speicher dadurch zu erleichtern.

ZUSAMMENFASSUNG DER ERFINDUNG

[0006] Die Erfindung schafft verbesserte Techniken
zum Bestimmen eines Satzes von prognostizierten
Lesern eines Datenblocks, der Gegenstand einer
Schreibanforderung ist, in einem Multiprozessorsys-
tem mit gemeinsam genutztem Speicher. GemaR ei-
nem Aspekt der Erfindung wird ein momentaner Satz
von Lesern des Datenblocks bestimmt und wird der
Satz von prognostizierten Lesern dann auf der Basis
des momentanen Satzes von Lesern und mindestens
eines zusatzlichen Satzes von Lesern erzeugt, der
fur wenigstens einen Teil einer globalen Vorgeschich-
te eines mit dem Datenblock assoziierten Verzeich-

2/15

DE 60132132 T2 2009.01.02

nisses reprasentativ ist. In einer méglichen Imple-
mentierung wird der Satz von prognostizierten Le-
sern durch das Anwenden einer Funktion auf den
momentanen Satz von Lesern und auf einen oder
mehrere zusatzliche Satze von Lesern erzeugt. Die
Funktion kann zum Beispiel eine Vereinigungsfunkti-
on, eine Schnittmengenfunktion oder eine musterba-
sierte Funktion sein und das Verzeichnis und der Da-
tenblock kdnnen Elemente eines mit einem bestimm-
ten Prozessorknoten des Multiprozessorsystems as-
soziierten Speichers sein.

[0007] Die globale Vorgeschichte des Verzeichnis-
ses weist mehrere Satze von vorhergehenden Le-
sern auf, die von dem Verzeichnis verarbeitet wur-
den, wobei die Gesamtanzahl von Satzen von prog-
nostizierten Lesern einer designierten Vorge-
schichtstiefe entspricht, die mit der Erzeugung des
Satzes von prognostizierten Lesern assoziiert ist. Die
globale Vorgeschichte kann zum Beispiel in einem
Schieberegister mit einer Anzahl von Speicherorten
gefihrt werden, die der bestimmten Vorge-
schichtstiefe entspricht. Die Vorgeschichtstiefe wird
vorzugsweise als ein Wert ausgewahlt, der groRer ist
als zwei, wie z. B. vier.

[0008] Im Betrieb sendet das Verzeichnis oder ein
anderes Prozessorknotenelement, das mit dem Da-
tenblock assoziiert ist, der Gegenstand der
Schreibanforderung ist, eine Ungiltigkeitserkla-
rungsanforderung an jeden der Leser in dem momen-
tanen Satz von Lesern und sendet auf den Empfang
einer Ungultigkeitserklarungsbestatigung von jedem
der Leser in dem momentanen Satz von Lesern hin
eine gultige Kopie des Datenblocks an einen Schrei-
ber, der die Schreibanforderung erzeugt hat. Jeder
Leser in dem System kann ein Bit, auf das zugegrif-
fen wurde, flr jeden einer Anzahl von Datenblécken
aufrecht erhalten, wobei das Bit, auf das zugegriffen
wurde, eines bestimmten Lesers fir einen gegebe-
nen Datenblock anzeigt, ob der bestimmte Leser den
gegebenen Datenblock tatsachlich gelesen hat. Die
Information des Bits, auf das zugegriffen wurde, kann
von dem bestimmten Leser in Verbindung mit einer
Ungultigkeitserklarungsbestatigung an das Verzeich-
nis gesendet werden. Nachdem das angeforderte
Schreiben auf den Datenblock vervollstandigt ist,
wird der resultierende Datenblock an jeden der Leser
in dem Satz von prognostizierten Lesern gesendet.

[0009] Gemal einem anderen Aspekt der Erfindung
kann die oben genannte Funktion dynamisch ausge-
wahlt werden. Zum Beispiel kann die Funktion auf ei-
ner Pro-Programm-Basis ausgewahlt werden, so
dass jedes einer Anzahl von Programmen, die in dem
Multiprozessorsystem laufen, unabhangig die Funkti-
on bestimmt, die anzuwenden ist, um den Satz von
prognostizierten Lesern zu bestimmen. Als ein ande-
res Beispiel kann die Funktion unter Programmsteu-
erung zur Laufzeit von einem gegebenen Programm

ausgewahlt werden, das auf dem Multiprozessorsys-
tem lauft. Als ein weiteres Beispiel kann die Funktion
auf einer Pro-Seite-Basis ausgewahlt werden, so
dass die angewendete Funktion fir jede einer Anzahl
von Speicherseiten, von denen jede mehrere Daten-
bldcke enthalten kann, unabhangig bestimmt werden
kann. Als noch ein anderes Beispiel kann die Funkti-
on wenigstens teilweise auf der Basis von Informati-
on bezlglich der Netzwerknutzung ausgewahlit wer-
den. Verschiedene Kombinationen dieser und ande-
rer Typen von Information kbnnen auch bei der dyna-
mischen Auswahl der oben genannten Funktion ver-
wendet werden.

[0010] Der Prognoseprozess gemal der vorliegen-
den Erfindung kann in Verbindung mit der oben be-
schriebenen Verzeichnisinformation zusatzliche In-
formation, wie z. B. einen designierten Teilsatz der
Cache-Adressinformation, Prozessorknotenidentifi-
kationsinformation oder Programmzahlerinformation,
verwenden.

[0011] Vorteilhafterweise schaffen die Prognose-
techniken der vorliegenden Erfindung im Vergleich zu
herkdmmlichen Techniken eine verbesserte Progno-
segenauigkeit beziiglich sowohl weniger falscher Po-
sitive als auch weniger falscher Negative.

[0012] Diese und andere Merkmale und Vorteile der
vorliegenden Erfindung werden aus den begleiten-
den Zeichnungen und der folgenden detaillierten Be-
schreibung offensichtlicher.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0013] Eig. 1 und Eig. 2 stellen die Arbeitsweise ei-
nes verteilten Multiprozessorsystems mit gemeinsam
genutztem Speicher dar, in dem ein verzeichnisba-
sierter Pradiktor gemaR der vorliegenden Erfindung
implementiert werden kann.

[0014] Fig. 3 zeigt ein Beispiel fur eine Abfolge von
Ereignissen und eine Aggregierung von Lesern.

[0015] Fig. 4 zeigt ein Beispiel fur eine verzeichnis-
basierte Prognose gemal der Erfindung.

[0016] Fig.5 ist ein Ablaufdiagramm eines ver-
zeichnisbasierten Prognoseprozesses gemal der
Erfindung.

[0017] Fig. 6 zeigt einen Satz von Tabellen, die Bei-
spiele fur Pradiktoren gemaf der Erfindung auflisten.

DETAILLIERTE BESCHREIBUNG DER ERFIN-
DUNG

[0018] Die Erfindung wird hierin in Verbindung mit
beispielhaften verteilten Multiprozessorsystemen mit
gemeinsam genutztem Speicher erlautert. Es sollte

3/15

DE 60132132 T2 2009.01.02

jedoch zu verstehen sein, dass die Erfindung allge-
meiner auf jegliches Multiprozessorsystem mit ge-
meinsam genutztem Speicher anwendbar ist, in dem
es wulnschenswert ist, durch die Verwendung von
verzeichnisbasierter Prognose eine verbesserte
Leistungsfahigkeit zu liefern. Der Begriff "Multipro-
zessorsystem", wie hierin verwendet, soll jegliche
Vorrichtung beinhalten, in der abgerufene Anweisun-
gen unter Verwendung von einem oder mehreren
Prozessoren ausgefiihrt werden. Beispielhafte Pro-
zessoren gemal der Erfindung kénnen zum Beispiel
Mikroprozessoren, zentrale Verarbeitungseinheiten
(CPUs), Prozessoren mit sehr langem Befehlswort
(VLIW), Single-Issue-Prozessoren, Multi-lssue-Pro-
zessoren, Digitalsignalprozessoren, anwendungs-
spezifische integrierte Schaltungen (ASICs), Perso-
nalcomputer, Mainframecomputer, Netzwerkcompu-
ter, Arbeitsplatzrechner und Server und andere Ty-
pen von Datenverarbeitungsvorrichtungen sowie
auch Teile und Kombinationen dieser und anderer
Vorrichtungen umfassen.

[0019] Fig.1 und Fig. 2 stellen die Handhabung
beispielhafter Lese- bzw. Schreibanforderungen in
einem verteilten Multiprozessorsystem mit gemein-
sam genutztem Speicher 100 dar. Das System 100
ist ein Beispiel fur einen Typ von System, in dem die
verzeichnisbasierte Prognose der vorliegenden Erfin-
dung implementiert werden kann. Das System 100
weist Knoten A, B und C auf, die tber entsprechende
Netzwerkschnittstellen (NIs) 104A, 104B bzw. 104C
mit einem Verbindungsnetzwerk 102 verbunden sind.
Die Knoten A, B und C weisen entsprechende, wie
gezeigt angeordnete Prozessoren 106A, 106B und
106C, Speicher 108A, 108B und 108C und Busse
110A, 110B und 110C auf. Innerhalb eines gegebe-
nen Knotens i des Systems 100, wobei i = A, B, C,
sind der Prozessor 106i, der Speicher 108i und die
Netzwerkschnittstelle 104i jeweils mit dem entspre-
chenden Bus 110i gekoppelt und kommunizieren
Uber ihn.

[0020] Mit jedem der Prozessoren 106i in dem Sys-
tem 100 ist ein Satz von Caches L1 und L2 assoziiert
und mit jedem der Speicher 108i sind ein Verzeichnis
und ein Cache L3 assoziiert. Jeder der Speicher 108i
wird von seinem jeweiligen einzigen Verzeichnis ver-
waltet. Die Speicher 108i oder Teile davon werden
hierin als Datenblécke oder einfach als Blécke be-
zeichnet. Obwohl es mehrere Verzeichnisse in dem
System 100 gibt, wird in dieser erlauternden Ausflh-
rungsform jeder Block von nur einem von ihnen ver-
waltet. Wenn ein vermeintlicher Leser oder ein ver-
meintlicher Schreiber keine aktuelle Kopie eines
Blocks hat, fordert er das entsprechende Verzeichnis
auf, die neueste Version des Blocks zu finden. Das
Verzeichnis kann eine oder mehrere momentane Ko-
pien des Blocks fiir unguiltig erklaren miissen, um ei-
ner Anforderung nachzukommen.

[0021] Auch in Fig. 1 dargestellt ist ein Beispiel fur
eine Leseoperation, in der der Prozessor 106A des
Knotens A Daten aus dem Speicher 108B des Kno-
tens B liest. Als ein Teil dieser Operation geht die Le-
seanforderung (1) von Knoten A zu Knoten B und
kehrt eine Antwort (2) von Knoten B zu Knoten A zu-
rick. Knoten A speichert die Daten in seiner lokalen
Cache-Hierarchie, d. h. den Caches L1, L2 und L3,
zwischen. Das Verzeichnis in Knoten B speichert ei-
nen Hinweis darauf, dass Knoten A eine Kopie der
Daten hat. Andere Knoten lesen auf die gleiche Wei-
se Daten aus Knoten B.

[0022] Man beachte, dass die Begriffe "Leser" und
"Schreiber", wie hierin verwendet, ohne Einschran-
kung sowohl einen gegebenen Prozessorknoten
oder dessen assoziierten Prozessor als auch Ele-
mente oder Teile eines Prozessorknotens oder des-
sen assoziierten Prozessors beinhalten sollen.

[0023] Fig. 2 zeigt eine Schreiboperation, in der der
Prozessor 106C des Knotens C die gleichen Daten
schreibt, die sich in Speicher 108B des Knotens B
befinden. Als ein Teil dieser Operation geht die
Schreibanforderung (1) von Knoten C zu Knoten B.
Da das Verzeichnis in Knoten B weil}, dass Knoten A
eine Kopie der Daten hat, sendet es eine Ungiiltig-
keitserklarungsanforderung (2) an Knoten A. Knoten
A sendet eine Bestatigung (3) der Ungultigkeitserkla-
rung seiner Kopie der Daten. Knoten B sendet dann
die Daten (4) zum Schreiben an Knoten C, da es kei-
ne weiteren Kopien im System gibt.

[0024] Ein gegebener Speicherblock in dem System
100 kann folglich betrachtet werden als zwischen
Phasen wechselnd, in denen er von einem einzelnen
Prozessor geschrieben wird und in denen er von ei-
nem oder mehreren Prozessoren gelesen wird. Das
mit dem gegebenen Block assoziierte Verzeichnis
verwaltet diese abwechselnden Phasen, wobei eine
konsistente Version des Blocks zu jeder Zeit aufrecht
erhalten wird.

[0025] Man beachte, dass die in Fig. 1 und Fig. 2
gezeigten speziellen Anordnungen von Caches und
Cache-Ebenen nur Beispiele sind und nicht als den
Umfang der vorliegenden Erfindung auf irgendeine
Weise einschrankend ausgelegt werden sollten. Die
Erfindung kann unter Verwendung einer breiten Viel-
falt verschiedener Cache-Architekturen oder Multi-
prozessorsystemkonfigurationen implementiert wer-
den.

[0026] Fig. 3 stellt ein Beispiel fir diese abwech-
selnden Phasen fir einen einzelnen Block in einem
System mit fiinf Knoten, bezeichnet mit 1, 2, 3, 4 und
5, dar. Die linke Seite der Figur zeigt die rohe Abfolge
von Lese- und Schreibereignissen, die sich auf den
einzelnen Block beziehen, und die rechte Seite der
Figur zeigt eine Zusammenfassung der oben ge-

4/15

DE 60132132 T2 2009.01.02

nannten Phasen. Wie aus diesem Beispiel offensicht-
lich wird, ist es allgemein fir mehrere Leser sicher,
die vor kirzester Zeit erzeugte Version eines Blocks
zu prufen.

[0027] Die vorliegende Erfindung schafft in einer er-
lduternden Ausflhrungsform einen verzeichnisba-
sierten Prognosemechanismus, der den nachsten
Satz von Lesern eines Blocks prognostiziert, wenn
eine Schreibanforderung von dem Schreiber zu dem
mit dem Block assoziierten Verzeichnis geht. Der Me-
chanismus prognostiziert einen wahrscheinlichen
Satz von Lesern des von dem Schreiber produzierten
Werts und nachdem der Schreiber mit dem Schrei-
ben fertig ist, wird diese Prognose verwendet, um die
Daten an alle prognostizierten Leser weiterzuleiten.
Im Gegensatz zu herkdmmlichen Pradiktoren, die
zwischen Blocken oder zwischen Anweisungen un-
terscheiden, um separate Vorgeschichten fiir Blocke
in dem System zu fuhren, fihrt der Prognosemecha-
nismus der vorliegenden Erfindung mehrere Satze
von Lesern fir mehrere Blocke, die von dem Ver-
zeichnis bedient werden, zusammen. Diese Informa-
tion wird hierin als die globale Vorgeschichte des Ver-
zeichnisses bezeichnet.

[0028] In der beispielhaften Implementierung der
unten in Verbindung mit Fig. 4 beschriebenen erlau-
ternden Ausfuhrungsform wird eine Vorgeschichtstie-
fe von vier verwendet, d. h. der prognostizierte Satz
von Lesern, der fiir eine momentane Schreiboperati-
on auf einen gegebenen Block erzeugt wurde, wird
als eine Funktion des momentanen Satzes von Le-
sern dieses Blocks und der in einem Pradiktoren-
schieberegister gespeicherten drei anderen aktuells-
ten Satzen von Lesern bestimmt.

[0029] Fig. 4 zeigt ein Beispiel flr die Arbeitsweise
eines verzeichnisbasierten Pradiktors in der erlau-
ternden Ausfuhrungsform der Erfindung. In diesem
Beispiel wird eine Schreibanforderung fur einen Da-
tenblock X empfangen, der mit einem Speicher und
einem Verzeichnis 120 assoziiert ist. Die momenta-
nen Leser des Datenblocks X sind ein Satz von Kno-
ten {a, b, c} eines Multiprozessorsystems, das mit a,
b,c,d, e f g, h,ij k, |, musw. bezeichnete Knoten
aufweist. Jeder der Knoten kann einen Knoten eines
Multiprozessorsystems, wie z. B. des in Verbindung
mit Fig. 1 und Fig. 2 erlauterten, darstellen. Der Pra-
diktor in diesem Beispiel verwendet auf eine unten
beschriebene Weise ein Schieberegister 122.

[0030] Fig.5 zeigt ein Ablaufdiagramm der allge-
meinen Verarbeitungsoperationen des verzeichnis-
basierten Pradiktors aus dem Beispiel in Fig. 4. Die
allgemeinen Operationen werden zuerst mit Bezug
auf Eig. 5 beschrieben und dann wird die Anwendung
der allgemeinen Operationen auf das Beispiel aus
Fig. 4 im Detail beschrieben.

[0031] In Schritt 200 in Fig. 5 sendet ein Schreiber
eine Schreibanforderungsnachricht an das Verzeich-
nis des zu schreibenden Blocks. Das Verzeichnis er-
klart in Schritt 202 die momentanen Leser fur unguil-
tig. Schritte 204 und 206 werden dann von jedem der
Leser ausgefuhrt. In Schritt 204 empfangt ein gege-
bener Knoten, der einem potentiellen Leser ent-
spricht, die Ungultigkeitserklarung von dem Verzeich-
nis. In Schritt 206 schickt der Knoten ein "Bit, auf das
zugegriffen wurde" mit einer Bestatigung der Ungil-
tigkeitserklarung zurtick.

[0032] Wie in Schritt 208 aufgezeigt, wartet das Ver-
zeichnis auf Ungultigkeitserklarungsbestatigungen
von den Lesern. Ein Satz von echten Lesern wird als
der Satz von fur ungultig erklarten Knoten bestimmt,
fur die das zuriickgeschickte Bit, auf das zugegriffen
wurde, festgelegt ist. Das Verzeichnis liefert dem Pra-
diktor in Schritt 210 Information, die den Satz von
echten Lesern identifiziert.

[0033] Der Pradiktor fiigt dann seinem Schiebere-
gister (Schritt 212) den Satz von echten Lesern hin-
zu, verwirft den altesten Satz von vorhergehenden
Lesern in dem Schieberegister (Schritt 214), prog-
nostiziert unter Verwendung einer Schnittmengen-
oder Vereinigungsoperation (Schritt 216) eine Funkti-
on der Satze und sendet die Prognose dann an den
Schreiber (Schritt 218).

[0034] Das Verzeichnis sendet dem Schreiber in
Schritt 220 eine giiltige Kopie des Blocks. Diese Ko-
pie kann dem Schreiber zusammen mit der Prognose
aus Schritt 218 gesendet werden. In Schritt 222 ver-
geht Zeit, bis der Schreiber die Schreiboperation ab-
schliet. Nachdem die Schreiboperation vervollstan-
digt ist, verwendet der Schreiber die Information in
der Prognose, um den neuen Block an jeden prog-
nostizierten Leser weiterzuleiten, wie in Schritt 224
gezeigt.

[0035] Geeignete Techniken zum Bestimmen einer
geeigneten Zeit zum Weiterleiten eines neuen Blocks
an jeden prognostizierten Leser sind z. B. in S. Kaxi-
ras, "ldentification and Optimization of Sharing Pat-
terns fiir Scalable Shared-Memory Multiprocessors",
PhD. Thesis, Computer Sciences, University of Wis-
consin-Madison, 1998, und in der oben angeflihrten
Referenz A. Lai und B. Falsafi, "Memory Sharing Pre-
dictor: The Key to a Speculative Coherent DSM", Pro-
ceedings of the 26th Annual ISCA, Mai 1999, be-
schrieben, die hierin beide durch Bezugnahme auf-
genommen sind.

[0036] Die Wahl der Vereinigungs- oder Schnitt-
mengenfunktion in Schritt 216 aus Eig. 5 hangt allge-
mein von dem erwiinschtem Aggressivitatsgrad bei
der Datenweiterleitung ab. Zum Beispiel kann in Sys-
temen mit hoher Bandbreite die mit der Vereinigungs-
funktion assoziierte aggressivere Datenweiterleitung

5/15

DE 60132132 T2 2009.01.02

geeigneter sein, wahrend fir Systeme mit niedriger
Bandbreite die Schnittmengenfunktion geeigneter
sein kann. Man beachte, dass diese Funktionen nur
beispielhaft gegeben werden und die Erfindung unter
Verwendung von anderen Typen von Funktionen im-
plementiert werden kann. Als ein anderes Beispiel
kénnen musterbasierte Funktionen in Verbindung mit
der vorliegenden Erfindung verwendet werden. Sol-
che Funktionen sind detaillierter z. B. in T. Yeh und Y.
Patt, "Two-Level Adaptive Branch Prediction", Pro-
ceedings of the 24th Annual ACM/IEEE International
Symposium and Workshop an Microarchitecture, Los
Alamitos, CA, November 1991, beschrieben, das
hierin durch Bezugsnahme aufgenommen ist.

[0037] Die Wahl zwischen Vereinigungs-, Schnitt-
mengen- oder anderen Funktionen in Schritt 216
kann auf einer dynamischen Basis getroffen werden.
Zum Beispiel kann die Wahl auf einer Pro-Pro-
gramm-Basis getroffen werden, so dass jedes Pro-
gramm seinen eigenen Betriebsmodus einstellen
kann. Als ein anderes Beispiel kann die Auswahl der
Funktion unter Programmsteuerung implementiert
werden, so dass Programme den Betriebsmodus zur
Laufzeit entsprechend ihrem Bedarf andern kénnen.
Die Wahl koénnte alternativ auf einer Pro-Seite-Basis
getroffen werden, wobei jede Speicherseite, die meh-
rere Datenblocke aufweisen kann, ihren eigenen Mo-
dus hat. In diesem Fall kann ein Betriebssystem den
Pradiktor Uber den Betriebsmodus verschiedener
Seiten benachrichtigen. Als noch ein anderes Bei-
spiel kdnnte die Wahl der Funktion entsprechend der
Netzwerknutzung getroffen werden, wobei z. B. eine
niedrige Netzwerknutzung die Vereinigungsfunktion
erfordert und eine hohe Netzwerknutzung die
Schnittmengenfunktion erfordert. In diesem Fall kann
eine Netzwerkiberwachungsvorrichtung verwendet
werden, um dem Prognosemechanismus eine Ruck-
kopplung zu liefern.

[0038] Wieder mit Bezug auf das Beispiel aus Fig. 4
sind, wenn die Schreibanforderung fiir den Daten-
block X empfangen wird, die momentanen Leser die
Prozessoren in dem Satz {a, b, c}. Das Pradiktoren-
schieberegister 122 wird wie gezeigt um eins ver-
schoben und der Satz {a, b, c} wird in dem obersten
mit Slot 0 bezeichneten Slot installiert. In Folge der
Anderung enthalten die Slots 1, 2 und 3 die Satze {a,
c, e, f, g}, {a, c, d} bzw. {a, h, i, ¢} und wird der Satz
{k, I, m} aus dem Schieberegister fallen gelassen. Der
momentane Inhalt des Schieberegisters 122 zu ei-
nem gegebenen Zeitpunkt stellt die globale Vorge-
schichte des entsprechenden Verzeichnisses dar.
Das Verzeichnis erklart die momentanen Leser durch
das Schicken von Unglltigkeitserklarungsanforde-
rungen an die Knoten a, b und c fiir unglltig, wartet
auf Bestatigung der Ungultigkeitserklarung und sen-
det spater eine gultige Kopie des Datenblocks X an
den anfordernden Schreiber.

[0039] Der Pradiktor bestimmt die Vereinigung oder
die Schnittmengenbildung der Satze in dem Schiebe-
register 122 gemaf Schritt 216 aus Fig. 5, wobei die
Wahl von Vereinigung oder Schnittmengenbildung
auf der Basis eines oder mehrerer der oben beschrie-
benen Faktoren getroffen wird. Die Vereinigung der
Satze in dem Schieberegister ist der Satz {a, b, ¢, d,
e, f, g, h, i}, wahrend die Schnittmenge der Satze in
dem Schieberegister der Satz {a, c} ist. In beiden Fal-
len ist das Ergebnis ein Satz von prognostizierten Le-
sern, der dem Schreiber von dem Pradiktor zuge-
schickt wird. Nachdem die Schreiboperation auf dem
Datenblock X vervollstandigt ist, leitet der Schreiber
den neuen Block an jeden der prognostizierten Leser
weiter. Das Ausldsen der Datenweiterleitung kann
auf einem Zeitgeber oder auf dem nachsten Schrei-
ben in das Verzeichnis, ungeachtet dessen, welcher
Datenblock geschrieben wird, oder auf dem nachsten
Lesen des Datenblocks X oder auf anderen geeigne-
ten Techniken basieren. Die Datenweiterleitung kann
dadurch durchgefiihrt werden, dass das Verzeichnis
eine Kopie der Daten von dem Schreiber abruft und
sie an die prognostizierten Leserknoten sendet.

[0040] Man beachte, dass, obwohl der Pradiktor in
dem Beispiel aus Eig. 4 eine Vorgeschichtstiefe von
vier verwendet, d. h. das Schieberegister 122 die vier
aktuellsten Satze von Lesern fir einen gegebenen
Datenblock speichert, die vorliegende Erfindung un-
ter Verwendung von anderen Vorgeschichtstiefen,
einschlieBlich Vorgeschichtstiefen, die mehr oder we-
niger als vier sind, implementiert werden kann. Her-
kdmmliche Pradiktoren nutzen allgemein eine Vorge-
schichtstiefe von nicht mehr als zwei.

[0041] Um fir den oben beschriebenen Prognose-
mechanismus eine genaue Rickkopplung zu schaf-
fen, muss jeder Leser allgemein in der Lage sein,
zwischen einem prognostizierten Lesen und einem
tatsachlichen Lesen zu unterscheiden. Wenn ein
Schreiber exklusiven Zugriff auf einen Cache-Block
gewinnt, prognostiziert ein Multiprozessorsystem ge-
mal der Erfindung den zukiinftigen Satz von Lesern
des Blocks und stellt dann sicher, dass Kopien des
Blocks an diese prognostizierten Leser weitergeleitet
werden, nachdem das Schreiben vervollstandigt ist.
Um die Ruckkopplungsschleife zu schliefen, muss
das System herausfinden, wie viele dieser prognosti-
zierten Leser den Block tatsachlich verwendet ha-
ben. Um zu sagen, ob dies der Fall ist, kann jeder Le-
ser in dem System das oben genannte "Bit, auf das
zugegriffen wurde," fir jede lokale Cache-Linie auf-
recht erhalten. Dieses Bit, auf das zugegriffen wurde,
ist dem so genannten "schmutzigen Bit" ahnlich, das
zur Seitenverwaltung in einem virtuellen Speicher-
systems aufrecht erhalten wird, abgesehen davon,
dass das Bit, auf das zugegriffen wurde, eingestellt
wird, wenn ein Cache-Block gelesen wird, anstatt
wenn er geschrieben wird. Auch sollte das Bit, auf
das zugegriffen wurde, auf Cache-Block-Granularitat

6/15

DE 60132132 T2 2009.01.02

aufrecht erhalten werden, wahrend schmutzige Bits
typischerweise auf Seitengranularitat aufrecht erhal-
ten werden. Bei der nachsten Ungiiltigkeitserklarung
nimmt jeder Leser die Information des Bits, auf das
zugegriffen wurde, auf die Ungultigkeitserklarungs-
bestatigung ,Huckepack". Das System kann dann die
Bits, auf die zugegriffen wurde, verwenden, um sei-
nen Status fir die nachste Prognose zu aktualisieren.

[0042] Man beachte, dass Verarbeitungsoperatio-
nen, die hierin als von einem Verzeichnis ausgefihrt
oder anderweitig implementiert beschrieben werden,
von einem assoziierten Element eines Prozessorkno-
tens, wie z. B. von einem Prozessor unter Programm-
steuerung, ausgefuhrt oder anderweitig implemen-
tiert werden konnen.

[0043] In alternativen Ausfiihrungsformen der Erfin-
dung kann die Verzeichnisinformation durch andere
Information erganzt werden, um weitere Verbesse-
rungen der Leistungsfahigkeit zu schaffen. Zum Bei-
spiel kann die Verzeichnisinformation durch einen
designierten Teilsatz von Cache-Block-Adressinfor-
mation erganzt werden. Vorteilhafterweise verwendet
eine solche Anordnung weniger Information als her-
kémmliche adressenbasierte Prognosetechniken,
wahrend sie auch eine héhere Prognosegenauigkeit
erreicht. In anderen Ausfliihrungsformen der Erfin-
dung kann die Verzeichnisinformation mit dem oder
ohne den Teilsatz der Cache-Adressinformation mit
anderen Typen von Information, wie z. B. Prozessor-
knoten- und Programmzahlerinformation, kombiniert
werden. Zum Beispiel kann die Erfindung in dem Pro-
zess des Bestimmens eines Satzes von prognosti-
zierten Lesern fir eine gegebene Schreibanforde-
rung verschiedene Kombinationen von Verzeichnis-,
Adress-, Prozessorknoten- und Programmzahlerin-
formation nutzen.

[0044] Wie der Begriff hierin verwendet wird, soll die
"globale Vorgeschichte" eines Verzeichnisses nicht
nur eine auf Verzeichnisinformation allein basierende
Vorgeschichte, sondern auch eine Vorgeschichte
aufweisen, die sowohl Verzeichnisinformation als
auch eine Menge an zusatzlicher Information, wie z.
B. Adress-, Prozessorknoten- oder Programmzahler-
information aufweist, was weniger ist als das volle
verfigbare Ausmal an solcher zusatzlicher Informa-
tion. Zum Beispiel kann eine globale Vorgeschichte
Verzeichnisinformation aufweisen, die durch eine
kleine Anzahl von Adressbits, d. h. eine Menge an
Adressbits, die kleiner ist als ein voller Satz von ver-
fligbaren Adressbits, erganzt ist.

[0045] Fig. 6 zeigt einen Satz von sechs Tabellen,
die Beispiele fur Pradiktoren gemafd der Erfindung
und entsprechende Leistungsfahigkeitssimulations-
ergebnisse auflisten. Die gezeigten Pradiktoren ba-
sieren auf verschiedenen Kombinationen aus einer
oder mehrerer Informationen von Verzeichnis (dir),

Adresse (add), Prozessorknoten (pid) und Pro-
grammzahler (pc). Die Pradiktorennamen haben die
Form von prediction-function(index)®™", wobei pre-
diction-function die Funktion anzeigt, die fir die Aktu-
alisierung des Pradiktors verwendet wird, Index die
spezielle von dem Pradiktor verwendete Kombination
von Verzeichnis-, Adress-, Prozessorknoten- und
Programmzahlerinformation anzeigt und depth die
Vorgeschichtstiefe ist. Im Fall von Adress(add)- oder
Programmzahler(pc)-Information weist der jeweilige
Identifikator eine tiefgestellte Zahl auf, die die ent-
sprechende Anzahl von Informationsbits anzeigt.

[0046] Die in Fig. 6 gezeigten Pradiktoren werden
auch als entweder direkt oder weitergeleitet klassifi-
ziert, um den speziellen verwendeten Aktualisie-
rungsmechanismus anzuzeigen. Bei einem Mecha-
nismus direkter Aktualisierung wird der Satz von fur
unguiltig erklarten echten Lesern jedes Mal, wenn ein
Datenblock geschrieben wird, als Vorgeschichte ver-
wendet, um die neue Prognose zu erzeugen. Bei ei-
nem Mechanismus weitergeleiteter Aktualisierung
leitet ein Schreiber, wenn er einen Satz von mit einem
anderen Knoten assoziierten Lesern fur unglltig er-
klart, diese Vorgeschichte an den entsprechenden
Pradiktoreneintrag weiter, so dass sie von dem kor-
rekten Schreiber verwendet werden kann. Eine wei-
tergeleitete Aktualisierung erfordert folglich Informati-
on vom letzten Schreiber fir jeden Datenblock, so
dass fur ungiiltig erklarte Leser mit einem bestimm-
ten Schreiber assoziiert werden kdnnen. Tabellen 1,
2 und 3 aus Fig. 6 listen Pradiktoren auf, die einen
Mechanismus direkter Aktualisierung nutzen, wah-
rend Tabellen 4, 5 und 6 Pradiktoren auflisten, die ei-
nen Mechanismus weitergeleiteter Aktualisierung
verwenden.

[0047] Beispielsweise stellt der Pradiktor union(pid
+dir +add,)* in Tabelle 6 ein Prognoseschema unter
Verwendung von direkter Aktualisierung dar, wobei
sein Prognosestatus unter Verwendung der Prozes-
sornummer, des Verzeichnisknotens und vier Daten-
blockadressen-Bits indiziert wird und die letzten zwei
Bitmaps gemeinsamer Nutzung vereinigt, um die
nachste fur jeden Index zu prognostizieren. Als ein
anderes Beispiel kann ein von Verzeichnisknoten
und acht Adresseninformations-Bits indizierter Pra-
diktor der letzten Bitmap als union(dir + add,)" oder
inter(dir + add,)" bezeichnet werden, abh&ngig von
der speziellen verwendeten Funktion. Man beachte,
dass ein auf Vereinigung basierender oder auf
Schnittmengenbildung basierender Pradiktor mit ei-
ner Vorgeschichtstiefe von eins der gleiche ist wie ein
Pradiktor der letzten Bitmap.

[0048] Zusatzliche Details bezlglich dieser und an-
derer Aspekte von Pradiktoren sind in S. Kaxiras und
C. Young, "Coherence Communication Prediction in
Shared Memory Multiprocessors", Proceedings of
the 6th Annual IEEE Symposium an High-Perfor-

7/15

DE 60132132 T2 2009.01.02

mance Computer Architecture (HPCA), Januar 2000,
beschrieben, das hierin durch Bezugnahme aufge-
nommen ist.

[0049] Furjeden derin Fig. 6 gezeigten beispielhaf-
ten Pradiktoren ist eine Anzahl von Leistungspara-
metern aufgelistet. Diese umfassen Pradiktorgrofide,
Sensivitat, Spezifitat, Prognosewert eines positiven
Tests (PVP) und Prognosewert eines negativen Tests
(PVN).

[0050] Die Pradiktorgréfe wird als log, der Anzahl
von Bits gemessen, die von dem Pradiktor genutzt
werden.

[0051] Sensitivitat ist das Verhaltnis korrekter Prog-
nosen zu der Summe aus korrekten Prognosen und
weggelassenen Prognosen und zeigt an, wie gut der
Pradiktor die gemeinsame Nutzung prognostiziert,
wenn die gemeinsame Nutzung tatsachlich stattfin-
det. Ein sensitiver Pradiktor ist gut im Finden und
Nutzen von Mdglichkeiten gemeinsamer Nutzung,
wahrend ein insensitiver Pradiktor viele Gelegenhei-
ten verpasst.

[0052] Spezifitatist das Verhaltnis vermiedener Pro-
gnosen zu der Summe aus vermiedenen Prognosen
und zusatzlichen Prognosen und zeigt die Wahr-
scheinlichkeit an, dass keine Ressourcen an nicht
gemeinsam genutzte Daten verschwendet werden.

[0053] PVP ist das Verhaltnis korrekter Prognosen
zu der Summe aus korrekten und zusatzlichen Prog-
nosen und schafft einen Hinweis auf den Prozentsatz
von nutzlichem Datenweiterleitungsverkehr unter al-
lem Datenweiterleitungsverkehr.

[0054] PVN ist das Verhaltnis vermiedener Progno-
sen zu der Summe aus vermiedenen Prognosen und
weggelassenen Prognosen und schafft einen Hin-
weis, mit welcher Wahrscheinlichkeit bezlglich eines
nicht gemeinsam genutzten Blocks korrekt prognos-
tiziert wird, dass er nicht gemeinsam genutzt wird.

[0055] Tabellen 1 und 4 zeigen die zehn Pradiktoren
mit den hochsten PVPs unter direkter Aktualisierung
bzw. weitergeleiteter Aktualisierung eines Satzes von
moglichen Pradiktoren, fir die Leistungsfahigkeit si-
muliert wurde. Alle Pradiktoren in dieser Gruppe sind
Schnittmengenpradiktoren mit tiefer Vorgeschichte,
die den PVP durch Spekulieren auf nur sehr stabile
Beziehungen gemeinsamer Nutzung maximieren.
Zwei der Top-Ten-Schemen sind den zwei Tabellen
gemeinsam. Es ist zu sehen, dass direkte Aktualisie-
rung und weitergeleitete Aktualisierung sehr weinig
Einfluss auf den PVP haben. Jedoch sind die weiter-
geleiteten Schemen im Durchschnitt sensitiver. Kei-
nes der Schemen mit hohem PVP ist im Vergleich zu
einem Schema mit letzter Bitmap oder einem Vereini-
gungspradiktorschema sensitiv. Dies bedeutet, dass

sie sehr produktiven Verkehr erzeugen, aber viele
Gelegenheiten zur gemeinsamen Nutzung verpas-
sen.

[0056] Tabelle 2 zeigt die zehn sensitivsten Sche-
men in dem Satz mdoglicher Pradiktoren unter Ver-
wendung von direkter Aktualisierung. Alle sind Verei-
nigungsschemen mit der in diesem Beispiel verwen-
deten maximalen Vorgeschichtstiefe, d. h. einer Vor-
geschichtstiefe von 4. Alle Schemen sind in ihrer
Sensivitat grob vergleichbar, aber haben verschiede-
ne PVP-Werte. Es ist interessant, festzustellen, dass
das weitaus kostengiinstigste Schema (union(dir +
add,)") bezuglich der Sensivitat das fiinftbeste insge-
samt ist.

[0057] Tabelle 3 zeigt die zehn sensitivsten Sche-
men in dem Satz mdglicher Pradiktoren unter Ver-
wendung von weitergeleiteter Aktualisierung. Es gibt
einen sehr kleinen Unterschied zwischen den Sche-
men mit direkter und mit weitergeleiteter Aktualisie-
rung. Sechs der obersten zehn Schemen sind den
zwei Listen gemeinsam und die Statistiken unter-
scheiden sich von Spalte zu Spalte wenig.

[0058] Tabellen 5 und 6 zeigen die Top-Ten-Pradik-
toren in dem Satz mdglicher Pradik toren mit weiter-
geleiteter Aktualisierung bezuglich Spezifitat bzw.
Sensivitat.

[0059] Es sollte nochmals betont werden, dass die
in Fig. 6 gezeigten Pradiktoren nur Beispiele sind
und die Erfindung unter Verwendung anderer Typen
von Pradiktoren implementiert werden kann. Zum
Beispiel kénnen, obwohl die maximale Vorge-
schichtstiefe in dem Beispiel aus Fig. 6 vier ist, ande-
re Pradiktoren groRere Vorgeschichtstiefen verwen-
den.

[0060] Die vorliegende Erfindung kann so konfigu-
riert werden, dass sie die Anforderungen an eine
Vielfalt verschiedener Verarbeitungsanwendungen
und -umgebungen unter Verwendung jeglicher er-
wiuinschter Typen und Anordnungen von Prozessoren
erfullt. Die oben beschriebenen Ausfiihrungsformen
der Erfindung sollen deshalb nur erlauternd sein. Fir
den Fachmann werden zahlreiche alternative Aus-
fuhrungsformen innerhalb des Umfangs der folgen-
den Anspriiche offensichtlich sein.

Patentanspriiche

1. Verfahren zur Bestimmung eines Satzes von
prognostizierten Lesern eines Datenblocks in einem
Multiprozessorsystem, wobei das Verfahren die
Schritte aufweist:

Bestimmung (208) eines momentanen Satzes von
Lesern eines Datenblocks, welcher Gegenstand ei-
ner Schreibanforderung ist; und

Generieren (216) des Satzes von prognostizierten

8/15

DE 60132132 T2 2009.01.02

Lesern basierend auf dem momentanen Satz von Le-
sern und wenigstens einem zusatzlichen Satz von
Lesern, der reprasentativ ist fur wenigstens einen Teil
einer globalen Vorgeschichte eines Verzeichnisses,
das mit dem Datenblock assoziiert ist.

2. Verfahren nach Anspruch 1, wobei der Gene-
rierungsschritt weiterhin den Schritt des Anwendens
einer Funktion auf den momentanen Satz von Lesern
und wenigstens einen zusatzlichen Satz von Lesern
aufweist.

3. Verfahren nach Anspruch 1 oder Anspruch 2,
wobei die globale Vorgeschichte des Verzeichnisses
eine Mehrzahl von Satzen von durch das Verzeichnis
verarbeiteten vorhergehenden Lesern aufweist, wo-
bei die gesamte Anzahl der Mehrzahl von Satzen von
vorhergehenden Lesern einer designierten Vorge-
schichtentiefe entspricht, die mit der Generierung
des Satzes von prognostizierten Lesern assoziiert ist.

4. Verfahren nach einem der Anspriiche 1 bis 3,
wobei jeder Leser in dem System ein Bit, auf das zu-
gegriffen wurde, fir jeden einer Mehrzahl von Daten-
blécken halt, wobei das Bit, auf das zugegriffen wur-
de, eines bestimmten Lesers fiir einen gegebenen
Datenblock anzeigt, ob der bestimmte Leser den ge-
gebenen Datenblock tatsachlich gelesen hat.

5. Verfahren nach einem der Anspriiche 1 bis 4,
wobei nachdem das angeforderte Schreiben auf den
Datenblock vervollstandigt ist, der resultierende Da-
tenblock zu jedem der Leser in dem Satz von prog-
nostizierten Lesern gesendet wird.

6. Verfahren nach einem der Anspriiche 1 bis 5,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit we-
nigstens einem Teilsatz von Cache-Adressinformati-
on beinhaltet, die mit einem oder mehreren der Leser
assoziiert ist, um den Satz von prognostizierten Le-
sern zu bestimmen.

7. Verfahren nach einem der Anspriiche 1 bis 6,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit Pro-
zessorknoteninformation beinhaltet, die assoziiert ist
mit einem oder mehreren der Leser, um den Satz von
prognostizierten Lesern zu bestimmen.

8. Verfahren nach einem der Anspriiche 1 bis 7,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit Pro-
grammzahlerinformation beinhaltet, die assoziiert ist
mit einem oder mehreren der Leser, um den Satz von
prognostizierten Lesern zu bestimmen.

9. Vorrichtung zur Bestimmung eines Satzes von
prognostizierten Lesern eines Datenblocks in einem
Multiprozessorsystem, wobei die Vorrichtung auf-
weist:
einen Prozessorknoten, der betreibbar ist, einen mo-
mentanen Satz von Lesern eines Datenblocks zu be-
stimmen, welcher Gegenstand einer Schreibanforde-
rung ist, und einen Prognostizierungsmechanismus
zu implementieren, welcher den Satz von prognosti-
zierten Lesern basierend auf dem momentanen Satz
von Lesern und wenigstens einem zusatzlichen Satz
von Lesern generiert, der reprasentativ ist fir wenigs-
tens einen Teil einer globalen Vorgeschichte eines
Verzeichnisses, das mit dem Datenblock assoziiert
ist.

10. Multiprozessorsystem, aufweisend:

eine Mehrzahl von Prozessorknoten, wobei wenigs-
tens ein gegebener der Prozessorknoten betreibbar
ist, einen momentanen Satz von Lesern eines Daten-
blocks zu bestimmen, welcher Gegenstand einer
Schreibanforderung ist, wobei der gegebene Prozes-
sorknoten einen Prognostizierungsmechanismus im-
plementiert, welcher einen Satz von prognostizierten
Lesern des Datenblocks basierend auf dem momen-
tanen Satz von Lesern und wenigstens einem zusatz-
lichen Satz von Lesern generiert, der reprasentativ ist
fur wenigstens einen Teil einer globalen Vorgeschich-
te eines Verzeichnisses, das mit dem Datenblock as-
soziiert ist.

Es folgen 6 Blatt Zeichnungen

9/15

DE 60132132 T2 2009.01.02

Anhangende Zeichnungen

100
FIG. 1 J
KNOTEN A KNOTEN B KNOTEN C
1064 108A 1068 1088 108C 108C
2 §
] = | 1
’7 PROZ. | |SPEICHER ’ PROZ. | [sPeicHER PROZ._} | speicHer
t [CACHL | HVERZEICHNIS CACHE | {(VERZEICHNIS] CACHE | | (VERZEICHN)
U,) uuou) LI) UNDLY) (U,)| oW
_LH H [] 1
104A 1 D
—LJ\\ 1108 0%// tiog ||'% 1oc

102

VERBINDUNGSNETZWERK

100
FIG. 2 J
KNOTEN A KNOTEN B KNOTEN C
1064 108A 1068 1088 106C 108C
5_} ¢ : ¢ $
, PROZ. | IspeicHER ’ PROZ. | IspeicHER PROZ. (SPEEICHER
CACHE {VERZEICHNIS CACHE (VERZEICHNIS CACHE VERZEICHNIS
L1 2) UNDL3) Ll 12) UND L3) U, 1) UND L3)
| IH H [1% l[ﬂ
1o IIOA 1048 | CB IIOC
' 104C
hk)

VERBINDUNGSNETZWERK

10/15

DE 601 32 132 T2

FIG.

2009.01.02

3

ZET KNOTEN 3 SCHREIBT DEN BLOCK

KNOTEN 3 SCHREIBT DEN BLOCK

KNOTEN 4 LIEST DEN BLOCK KNOTEN (1.4} LESEN DEN BLOCK

KNOTEN 1 LIEST DEN BLOCK

KNOTEN 5 SCHREIBT DEN BLOCK KNOTEN 5 SCHREIBT DEN BLOCK

KNOTEN 2 LIEST DEN BLOCK KNOTEN 2 LIEST DEN BLOCK
FIG. 4

——

SCHREIBANFORDERUNG FUR DATENBLOCK X
MOMENTANE LESER SIND PROZESSOREN IN DEM SATZ {ab.c)

120
SPEICHER
UND)
VERZEICHMIS| VERSCHIEBEN VON PRADIKTOR
UM EINS UND INSTALLIEREN fobc] 0
DES SATZES {ab.c} IN o
CBERSTEM SLGT ’q cef 9;]
(Adhdis]
122
a C
b focd | 7
UNGULTIGKEIT SERKLARUNGS- Johiel {3 J
ANFORDERUNGEN WERDEN 2U

KNOTEN a b, UND ¢ GESENDET

k|, m} WIRD FALLENGELASSEN

11/15

DE 60132132 T2 2009.01.02

FIG. 5

200 _
SCHREIBER SENDET SCHREIBANFORDERUNGS-
NACHRICHY ZU DEM VERZEICHNIS
202)
\1‘ VERZEICHNIS ERKLART LESER FUR UNGULTIG }-—
- - " FUR ALLE LESER
204 (
™ KNOTEN (POTENTIELLER LESER)
EMPFANGT UNGULTIGKEITSERKLARUNG
206 !
“~KNOTEN SCHICKT .6, AUF DAS ZUGEGRIFFEN
WURDE" MIT UNGULTIGKEITS-
ERKLARUNGSBESTATIGUNG ZURUCK
- VERZEICHNIS WARTET AUF BESTATIGUNG VON
208 UNGULTIGKEITSERKLARUNGEN
'DER SATZ VON ECHTEN LESERN IST DER SATZ VON FUR
UNGULTIG ERKLARTEN KNOTEN MIT DEM SATZ DES BITS, AUF DAS
ZUGEGRIFFEN WURDE®
210)
1 VERZEICHNIS LIEFERT DEM PRADIKTOR ECHTE LESER j———
12
N PRADIKTOR FUGT SEINEM SCHIEBEREGISTER
DEN SATZ VON ECHTEN LESERN HINZU
214 !
\\ . _
PRADIKTOR VERWIRFT DEN ALTESTEN
SATZ VON VORHERGEHENDEN LESERN
IN DEM SCHIEBEREGISTER
216 ¥
~ PRADIKTOR PROGNOSTIZIERT EINE FUNKTION
DER SATZE (SCHNITTM. ODER VEREINIGUNG)
218 4
PRADIKTOR SENDET DIE PROGNOSE
2U DEM SCHREIBER
220
~ N
VERZEICHNIS SENDET GULTIGE KOPIE U DEM SCHREIBER (KANN IN

VERBINDUNG MIT DER PROGNOSE DES VORHERIGEN SCHRITTS SEIN)
222 $

ZEIT VERGEHT, BIS DER SCHRE!BER DAS SCHREIBEN ABSCHUESST)

224
\“1 SCHREIBER LEITET DEN BLOCK AN PROGNOSTIZIERTE LESER WEITER J

12/15

)

DE 60132132 T2 2009.01.02

FIG. 6
TABLLE 1° TOP 10 PVP DIREKTE AKTUALISIERUNG
. SCHEMA GROSSE SENS. SPEZ. PVP PVN
 inter{pid+add)4 4030 100 092 093
inter{pid+cddg) 4 18 03t 100 092 093

inter{pid+addg) 3 1§ 035 100 091 093
inter(pid+pc, +add,)4 | 18 035 100 090 093
inter(pid+add,)3 4 034 100 089 093
inter(pid+dirtadd,)4 | 18 032 100 088 093
inler(pid+pey+oddy)d [18 037 100 0.88 093

inter{pid)* 10 029 100 088 092
inter{pid+pcy) 4 14 037 099 087 093
inter(pid+peg) ¢ 8 039 0939 08 093

TABLLE 2: TOP 10 SPEZ. DIREKTE AKTUALISIERUNG

_“S_C.HEMA ER(")SSE SENS. SPEZ. PVP PVN
inter{pc ¢ +addg)4 18012 100 072 09
inter{add,)¢ 0007 100 078 0.9
inter(pld+addg) 103t 100 092 093
inter()4 8 003 100 073 090
inter{addg)4 4011 10 070 09

inter(pc, +add,)4 14 008 100 074 099
inter(pcg radd, J4 18 009 100 074 09
inter{pc,)* 10004 100 071 090
inter{peg)* M004 100 071 €S0
inter(pey+dirtadd)4 | 18 020 100 073 092

13/15

DE 60132132 T2 2009.01.02

FIG. 6 (FORTSETZUNG)

TABLLE 3: TOP 10 SENS DIREKTE AKT UAUSIERUNG

SCHEMA GROSSE SENS. SPEZ. PVP PWN
umon(dlr+odd4)4 14 067 08 040 095
union(dir)4 10 067 085 039 095
union(pe ytir) 4 4 067 085 0.40 095
umon(pc4+dlr+add4)4 18 067 085 040 095
‘urion(dir+addg) 4 1€ 067 087 042 055
union(peg +dir)4 18 066 086 042 095
union(pid+0dd,) 4 14 066 087 041 0.95
union(pid-+addg) 4 18 0.66 087 042 095
union(add y)4 18 066 08 040 095
union(add,) 10 066 08 029 095

TABLLE 4: TOP 10 PVP WEITERGELEITETE AKTUALISIERUNG

mter(pld+pc stadd,)
Inter(pud+odd4)4
int.er(pid’rodda)4
inter{pid+dir+add,)¢
inter{pid+add 8)3
inter(pid+add)3
inter(pid+ pe 4+add)3
inter{pid+dir)4
inter{pid +dir+add,)3
inter(pid)4

GROSSE SENS. SPEZ.

034 1.0
0.33 1.00
0.33 1.00
0.34 1.00
0.57 1.00
14 036 1.00
0.37 .00
14 038 099
0,37 1.00
0.33 1.00

PVP
0.92
0.91
0.91
0.9
0.90
0.88
0.88
0.88
0.88
0.87

PVYN

0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93

14/15

DE 60132132 T2 2009.01.02

FIG. 6 (FORTSETZUNG)

TABLLE 5. TOF 10 SPEZ. WEITERGELEITETE AKTUALISIERUNG
SCHEMA GROSSE SENS SPEZ PP PUN
inter(pc4+add3)4 18 011 1.00 069 091
inter(add ;)4 10 007 1.00 078 0.91
inter()4 6 003 100 073 030
inter(oddg)* 4011 100 070 0.1

inter(pid+addg)* 18033 1.00 091 083
inter(pcgt+add)* 18 009 1.00 074 091
inter{pc 4+add)4 14007 1.00 069 091
inter(pid+pc4+odd4) 8 034 100 092 093
lnter\py4+dlr+add4) 18 018 1.00 073 091
inter{pe,)4 20 003 1.00 0.1 090

TABLLE 6: TOP 10 SENS. WEITERGELEITETE AKTUALISIERUNG
SCHEMA GROSSE SENS. SPEZ. PVP PN
union(dir+cdd4) 14 067 08 040 095
union(dir)4 10 067 085 039 095
union(dir+oddg)* 18 067 087 042 095
umon(pc+d|r+cdd4)4 18 066 0.8 045 095
union(add,) 18 066 086 040 095
unlon(pxd+d:r) 14 066 089 045 095
umon(add,‘) 10 066 080 029 095
union{)4 6 065 077 025 0.95
union(addg)* 14 065 084 035 095
union(pid +addg) 4 18 065 088 044 095

15/15

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

