
DE60132132T220090102
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 601 32 132 T2 2009.01.02

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 162 542 B1
(21) Deutsches Aktenzeichen: 601 32 132.4
(96) Europäisches Aktenzeichen: 01 304 340.1
(96) Europäischer Anmeldetag: 16.05.2001
(97) Erstveröffentlichung durch das EPA: 12.12.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 02.01.2008
(47) Veröffentlichungstag im Patentblatt: 02.01.2009

(51) Int Cl.8: G06F 12/08 (2006.01)

(54) Bezeichnung: Verzeichnis-basiertes Vorhersageverfahren und -einrichtung für Multiprozessorsysteme mit ge-
meinsamem Speicher

(30) Unionspriorität:
591918 09.06.2000 US

(73) Patentinhaber:
Agere Systems Guardian Corp., Orlando, Fla., US

(74) Vertreter:
Klunker, Schmitt-Nilson, Hirsch, 80797 München

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Kaxiras, Stefanos, Jersey City, New Jersey 07310,
US; Young, Clifford Reginald, New York, NY 10023,
US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/15

DE 601 32 132 T2 2009.01.02
Beschreibung

GEBIET DER ERFINDUNG

[0001] Die vorliegende Erfindung bezieht sich allge-
mein auf Multiprozessorcomputer und andere Typen
von Verarbeitungssystemen, die mehrere Prozesso-
ren aufweisen, und insbesondere auf Speicherprog-
nosetechniken, die für die Verwendung in solchen
Systemen geeignet sind.

HINTERGRUND DER ERFINDUNG

[0002] In einem Multiprozessorsystem mit gemein-
sam genutztem Speicher erscheint es einem Benut-
zer, dass alle Prozessoren den Status in einem ein-
zelnen gemeinsam genutzten Speicher einer Spei-
chereinrichtung lesen und modifizieren. Eine wesent-
liche Schwierigkeit beim Implementieren eines sol-
chen Systems und insbesondere einer verteilten Ver-
sion eines solchen Systems ist die Verbreitung von
Werten von einem Prozessor zu einem anderen, da
die eigentlichen Werte in der Nähe eines Prozessors
geschaffen werden, aber von vielen anderen Prozes-
soren in dem System verwendet werden können.
Wenn die Implementierung die Muster gemeinsamer
Nutzung eines gegebenen Programms genau prog-
nostizieren könnte, könnten die Prozessorknoten ei-
nes verteilten Multiprozessorsystems mehr ihrer Zeit
zum Rechnen und weniger ihrer Zeit zum Warten auf
das Abrufen von Werten von entfernten Standorten
verbringen. Trotz der Entwicklung von Prozessor-
merkmalen wie z. B. nicht-blockierender Caches und
der Ausführung von Out-of-Order-Anweisungen
bleibt die relativ lange Zugriffslatenz in einem verteil-
ten System mit gemeinsam genutztem Speicher eine
ernsthafte Beeinträchtigung der Leistungsfähigkeit.

[0003] Es wurden Prognosetechniken verwendet,
um durch den Versuch, Daten so früh wie möglich
von ihrem Schaffungspunkt zu ihren erwarteten Ver-
wendungspunkten zu bewegen, Zugriffslatenz in ver-
teilten Systemen mit gemeinsam genutztem Spei-
cher zu reduzieren. Diese Prognosetechniken ergän-
zen typischerweise das Standardkohärenzprotokoll
bei gemeinsam genutztem Speicher, das in erster Li-
nie mit korrektem Betrieb und in zweiter Linie mit
Leistungsfähigkeit befasst ist. In einem verteilten
System mit gemeinsam genutztem Speicher hält das
typischerweise auf einem Verzeichnis basierende
Kohärenzprotokoll Prozessor-Caches kohärent und
überträgt Daten zwischen den Prozessorknoten. Im
Wesentlichen führt das Kohärenzprotokoll die ge-
samte Kommunikation im System aus. Kohärenzpro-
tokolle können gemeinsam genutzte Kopien eines
Datenblocks bei jedem Schreiben des Datenblocks
entweder für ungültig erklären oder aktualisieren. Die
Aktualisierung beinhaltet das Weiterleiten von Daten
von Erzeugerknoten an Verbraucherknoten, aber
schafft keinen Rückkopplungsmechanismus, um den

Nutzen des Weiterleitens von Daten zu bestimmen.
Die Ungültigkeitserklärung schafft dadurch einen na-
türlichen Rückkopplungsmechanismus, dass für un-
gültig erklärte Leser die Daten verwendet haben
müssen, aber die Ungültigkeitserklärung schafft kein
Mittel, um Daten an ihren Zielort weiterzuleiten.

[0004] Eine in S. S. Mukherjee und M. D. Hill, „Using
Prediction to Accelerate Coherence Protocols", Pro-
ceedings of the 25th Annual International Symposi-
um an Computer Architecture (ISCA) Juni-Juli 1998,
beschriebene herkömmliche Herangehensweise an
die Prognose verwendet adressenbasierte 2-Ebe-
nen-Prädiktoren an den Verzeichnissen und Caches
der Prozessorknoten eines Multiprozessorsystems,
um Kohärenznachrichten zu verfolgen und zu prog-
nostizieren. A. Lai und B. Falsafi, "Memory Sharing
Predictor: The Key to a Speculative Coherent DSM",
Proceedings of the 26th Annual ISCA, Mai 1999, be-
schreiben, wie diese 2-Ebenen-Prädiktoren so modi-
fiziert werden können, dass sie durch das Zusam-
menführen von Nachrichten von verschiedenen Kno-
ten in Bitmaps weniger Platz verwenden, und zeigen,
wie die modifizierten Prädiktoren verwendet werden
können, um das Lesen von Daten zu beschleunigen.
Eine andere Reihe von bekannten Prognosetechni-
ken, beschrieben in S. Kaxiras und J. R. Goodman,
"Improving CC-NUMA Performance Using Instruc-
tion-Based Prediction", Proceedings of the 5th Annu-
al IEEE Symposium an High-Performance Computer
Architecture (HPCA), Januar 1999, schafft eine an-
weisungsbasierte Prognose für migratorische ge-
meinsame Nutzung, breite gemeinsame Nutzung
und gemeinsame Erzeuger-Verbraucher-Nutzung.
Da es weitaus weniger statische Anweisungen als
Datenblocks gibt, erfordern anweisungsbasierte Prä-
diktoren weniger Platz zum Erfassen von Mustern ge-
meinsamer Nutzung.

[0005] Trotz der durch die oben identifizierten Prog-
nosetechniken geschaffenen Fortschritte bleibt ein
Bedarf an zusätzlichen Verbesserungen bestehen,
um Zugriffslatenz weiter zu reduzieren und die Imple-
mentierung von Multiprozessorsystemen mit gemein-
sam genutztem Speicher dadurch zu erleichtern.

ZUSAMMENFASSUNG DER ERFINDUNG

[0006] Die Erfindung schafft verbesserte Techniken
zum Bestimmen eines Satzes von prognostizierten
Lesern eines Datenblocks, der Gegenstand einer
Schreibanforderung ist, in einem Multiprozessorsys-
tem mit gemeinsam genutztem Speicher. Gemäß ei-
nem Aspekt der Erfindung wird ein momentaner Satz
von Lesern des Datenblocks bestimmt und wird der
Satz von prognostizierten Lesern dann auf der Basis
des momentanen Satzes von Lesern und mindestens
eines zusätzlichen Satzes von Lesern erzeugt, der
für wenigstens einen Teil einer globalen Vorgeschich-
te eines mit dem Datenblock assoziierten Verzeich-
2/15

DE 601 32 132 T2 2009.01.02
nisses repräsentativ ist. In einer möglichen Imple-
mentierung wird der Satz von prognostizierten Le-
sern durch das Anwenden einer Funktion auf den
momentanen Satz von Lesern und auf einen oder
mehrere zusätzliche Sätze von Lesern erzeugt. Die
Funktion kann zum Beispiel eine Vereinigungsfunkti-
on, eine Schnittmengenfunktion oder eine musterba-
sierte Funktion sein und das Verzeichnis und der Da-
tenblock können Elemente eines mit einem bestimm-
ten Prozessorknoten des Multiprozessorsystems as-
soziierten Speichers sein.

[0007] Die globale Vorgeschichte des Verzeichnis-
ses weist mehrere Sätze von vorhergehenden Le-
sern auf, die von dem Verzeichnis verarbeitet wur-
den, wobei die Gesamtanzahl von Sätzen von prog-
nostizierten Lesern einer designierten Vorge-
schichtstiefe entspricht, die mit der Erzeugung des
Satzes von prognostizierten Lesern assoziiert ist. Die
globale Vorgeschichte kann zum Beispiel in einem
Schieberegister mit einer Anzahl von Speicherorten
geführt werden, die der bestimmten Vorge-
schichtstiefe entspricht. Die Vorgeschichtstiefe wird
vorzugsweise als ein Wert ausgewählt, der größer ist
als zwei, wie z. B. vier.

[0008] Im Betrieb sendet das Verzeichnis oder ein
anderes Prozessorknotenelement, das mit dem Da-
tenblock assoziiert ist, der Gegenstand der
Schreibanforderung ist, eine Ungültigkeitserklä-
rungsanforderung an jeden der Leser in dem momen-
tanen Satz von Lesern und sendet auf den Empfang
einer Ungültigkeitserklärungsbestätigung von jedem
der Leser in dem momentanen Satz von Lesern hin
eine gültige Kopie des Datenblocks an einen Schrei-
ber, der die Schreibanforderung erzeugt hat. Jeder
Leser in dem System kann ein Bit, auf das zugegrif-
fen wurde, für jeden einer Anzahl von Datenblöcken
aufrecht erhalten, wobei das Bit, auf das zugegriffen
wurde, eines bestimmten Lesers für einen gegebe-
nen Datenblock anzeigt, ob der bestimmte Leser den
gegebenen Datenblock tatsächlich gelesen hat. Die
Information des Bits, auf das zugegriffen wurde, kann
von dem bestimmten Leser in Verbindung mit einer
Ungültigkeitserklärungsbestätigung an das Verzeich-
nis gesendet werden. Nachdem das angeforderte
Schreiben auf den Datenblock vervollständigt ist,
wird der resultierende Datenblock an jeden der Leser
in dem Satz von prognostizierten Lesern gesendet.

[0009] Gemäß einem anderen Aspekt der Erfindung
kann die oben genannte Funktion dynamisch ausge-
wählt werden. Zum Beispiel kann die Funktion auf ei-
ner Pro-Programm-Basis ausgewählt werden, so
dass jedes einer Anzahl von Programmen, die in dem
Multiprozessorsystem laufen, unabhängig die Funkti-
on bestimmt, die anzuwenden ist, um den Satz von
prognostizierten Lesern zu bestimmen. Als ein ande-
res Beispiel kann die Funktion unter Programmsteu-
erung zur Laufzeit von einem gegebenen Programm

ausgewählt werden, das auf dem Multiprozessorsys-
tem läuft. Als ein weiteres Beispiel kann die Funktion
auf einer Pro-Seite-Basis ausgewählt werden, so
dass die angewendete Funktion für jede einer Anzahl
von Speicherseiten, von denen jede mehrere Daten-
blöcke enthalten kann, unabhängig bestimmt werden
kann. Als noch ein anderes Beispiel kann die Funkti-
on wenigstens teilweise auf der Basis von Informati-
on bezüglich der Netzwerknutzung ausgewählt wer-
den. Verschiedene Kombinationen dieser und ande-
rer Typen von Information können auch bei der dyna-
mischen Auswahl der oben genannten Funktion ver-
wendet werden.

[0010] Der Prognoseprozess gemäß der vorliegen-
den Erfindung kann in Verbindung mit der oben be-
schriebenen Verzeichnisinformation zusätzliche In-
formation, wie z. B. einen designierten Teilsatz der
Cache-Adressinformation, Prozessorknotenidentifi-
kationsinformation oder Programmzählerinformation,
verwenden.

[0011] Vorteilhafterweise schaffen die Prognose-
techniken der vorliegenden Erfindung im Vergleich zu
herkömmlichen Techniken eine verbesserte Progno-
segenauigkeit bezüglich sowohl weniger falscher Po-
sitive als auch weniger falscher Negative.

[0012] Diese und andere Merkmale und Vorteile der
vorliegenden Erfindung werden aus den begleiten-
den Zeichnungen und der folgenden detaillierten Be-
schreibung offensichtlicher.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0013] Fig. 1 und Fig. 2 stellen die Arbeitsweise ei-
nes verteilten Multiprozessorsystems mit gemeinsam
genutztem Speicher dar, in dem ein verzeichnisba-
sierter Prädiktor gemäß der vorliegenden Erfindung
implementiert werden kann.

[0014] Fig. 3 zeigt ein Beispiel für eine Abfolge von
Ereignissen und eine Aggregierung von Lesern.

[0015] Fig. 4 zeigt ein Beispiel für eine verzeichnis-
basierte Prognose gemäß der Erfindung.

[0016] Fig. 5 ist ein Ablaufdiagramm eines ver-
zeichnisbasierten Prognoseprozesses gemäß der
Erfindung.

[0017] Fig. 6 zeigt einen Satz von Tabellen, die Bei-
spiele für Prädiktoren gemäß der Erfindung auflisten.

DETAILLIERTE BESCHREIBUNG DER ERFIN-
DUNG

[0018] Die Erfindung wird hierin in Verbindung mit
beispielhaften verteilten Multiprozessorsystemen mit
gemeinsam genutztem Speicher erläutert. Es sollte
3/15

DE 601 32 132 T2 2009.01.02
jedoch zu verstehen sein, dass die Erfindung allge-
meiner auf jegliches Multiprozessorsystem mit ge-
meinsam genutztem Speicher anwendbar ist, in dem
es wünschenswert ist, durch die Verwendung von
verzeichnisbasierter Prognose eine verbesserte
Leistungsfähigkeit zu liefern. Der Begriff "Multipro-
zessorsystem", wie hierin verwendet, soll jegliche
Vorrichtung beinhalten, in der abgerufene Anweisun-
gen unter Verwendung von einem oder mehreren
Prozessoren ausgeführt werden. Beispielhafte Pro-
zessoren gemäß der Erfindung können zum Beispiel
Mikroprozessoren, zentrale Verarbeitungseinheiten
(CPUs), Prozessoren mit sehr langem Befehlswort
(VLIW), Single-Issue-Prozessoren, Multi-Issue-Pro-
zessoren, Digitalsignalprozessoren, anwendungs-
spezifische integrierte Schaltungen (ASICs), Perso-
nalcomputer, Mainframecomputer, Netzwerkcompu-
ter, Arbeitsplatzrechner und Server und andere Ty-
pen von Datenverarbeitungsvorrichtungen sowie
auch Teile und Kombinationen dieser und anderer
Vorrichtungen umfassen.

[0019] Fig. 1 und Fig. 2 stellen die Handhabung
beispielhafter Lese- bzw. Schreibanforderungen in
einem verteilten Multiprozessorsystem mit gemein-
sam genutztem Speicher 100 dar. Das System 100
ist ein Beispiel für einen Typ von System, in dem die
verzeichnisbasierte Prognose der vorliegenden Erfin-
dung implementiert werden kann. Das System 100
weist Knoten A, B und C auf, die über entsprechende
Netzwerkschnittstellen (NIs) 104A, 104B bzw. 104C
mit einem Verbindungsnetzwerk 102 verbunden sind.
Die Knoten A, B und C weisen entsprechende, wie
gezeigt angeordnete Prozessoren 106A, 106B und
106C, Speicher 108A, 108B und 108C und Busse
110A, 110B und 110C auf. Innerhalb eines gegebe-
nen Knotens i des Systems 100, wobei i = A, B, C,
sind der Prozessor 106i, der Speicher 108i und die
Netzwerkschnittstelle 104i jeweils mit dem entspre-
chenden Bus 110i gekoppelt und kommunizieren
über ihn.

[0020] Mit jedem der Prozessoren 106i in dem Sys-
tem 100 ist ein Satz von Caches L1 und L2 assoziiert
und mit jedem der Speicher 108i sind ein Verzeichnis
und ein Cache L3 assoziiert. Jeder der Speicher 108i
wird von seinem jeweiligen einzigen Verzeichnis ver-
waltet. Die Speicher 108i oder Teile davon werden
hierin als Datenblöcke oder einfach als Blöcke be-
zeichnet. Obwohl es mehrere Verzeichnisse in dem
System 100 gibt, wird in dieser erläuternden Ausfüh-
rungsform jeder Block von nur einem von ihnen ver-
waltet. Wenn ein vermeintlicher Leser oder ein ver-
meintlicher Schreiber keine aktuelle Kopie eines
Blocks hat, fordert er das entsprechende Verzeichnis
auf, die neueste Version des Blocks zu finden. Das
Verzeichnis kann eine oder mehrere momentane Ko-
pien des Blocks für ungültig erklären müssen, um ei-
ner Anforderung nachzukommen.

[0021] Auch in Fig. 1 dargestellt ist ein Beispiel für
eine Leseoperation, in der der Prozessor 106A des
Knotens A Daten aus dem Speicher 108B des Kno-
tens B liest. Als ein Teil dieser Operation geht die Le-
seanforderung (1) von Knoten A zu Knoten B und
kehrt eine Antwort (2) von Knoten B zu Knoten A zu-
rück. Knoten A speichert die Daten in seiner lokalen
Cache-Hierarchie, d. h. den Caches L1, L2 und L3,
zwischen. Das Verzeichnis in Knoten B speichert ei-
nen Hinweis darauf, dass Knoten A eine Kopie der
Daten hat. Andere Knoten lesen auf die gleiche Wei-
se Daten aus Knoten B.

[0022] Man beachte, dass die Begriffe "Leser" und
"Schreiber", wie hierin verwendet, ohne Einschrän-
kung sowohl einen gegebenen Prozessorknoten
oder dessen assoziierten Prozessor als auch Ele-
mente oder Teile eines Prozessorknotens oder des-
sen assoziierten Prozessors beinhalten sollen.

[0023] Fig. 2 zeigt eine Schreiboperation, in der der
Prozessor 106C des Knotens C die gleichen Daten
schreibt, die sich in Speicher 108B des Knotens B
befinden. Als ein Teil dieser Operation geht die
Schreibanforderung (1) von Knoten C zu Knoten B.
Da das Verzeichnis in Knoten B weiß, dass Knoten A
eine Kopie der Daten hat, sendet es eine Ungültig-
keitserklärungsanforderung (2) an Knoten A. Knoten
A sendet eine Bestätigung (3) der Ungültigkeitserklä-
rung seiner Kopie der Daten. Knoten B sendet dann
die Daten (4) zum Schreiben an Knoten C, da es kei-
ne weiteren Kopien im System gibt.

[0024] Ein gegebener Speicherblock in dem System
100 kann folglich betrachtet werden als zwischen
Phasen wechselnd, in denen er von einem einzelnen
Prozessor geschrieben wird und in denen er von ei-
nem oder mehreren Prozessoren gelesen wird. Das
mit dem gegebenen Block assoziierte Verzeichnis
verwaltet diese abwechselnden Phasen, wobei eine
konsistente Version des Blocks zu jeder Zeit aufrecht
erhalten wird.

[0025] Man beachte, dass die in Fig. 1 und Fig. 2
gezeigten speziellen Anordnungen von Caches und
Cache-Ebenen nur Beispiele sind und nicht als den
Umfang der vorliegenden Erfindung auf irgendeine
Weise einschränkend ausgelegt werden sollten. Die
Erfindung kann unter Verwendung einer breiten Viel-
falt verschiedener Cache-Architekturen oder Multi-
prozessorsystemkonfigurationen implementiert wer-
den.

[0026] Fig. 3 stellt ein Beispiel für diese abwech-
selnden Phasen für einen einzelnen Block in einem
System mit fünf Knoten, bezeichnet mit 1, 2, 3, 4 und
5, dar. Die linke Seite der Figur zeigt die rohe Abfolge
von Lese- und Schreibereignissen, die sich auf den
einzelnen Block beziehen, und die rechte Seite der
Figur zeigt eine Zusammenfassung der oben ge-
4/15

DE 601 32 132 T2 2009.01.02
nannten Phasen. Wie aus diesem Beispiel offensicht-
lich wird, ist es allgemein für mehrere Leser sicher,
die vor kürzester Zeit erzeugte Version eines Blocks
zu prüfen.

[0027] Die vorliegende Erfindung schafft in einer er-
läuternden Ausführungsform einen verzeichnisba-
sierten Prognosemechanismus, der den nächsten
Satz von Lesern eines Blocks prognostiziert, wenn
eine Schreibanforderung von dem Schreiber zu dem
mit dem Block assoziierten Verzeichnis geht. Der Me-
chanismus prognostiziert einen wahrscheinlichen
Satz von Lesern des von dem Schreiber produzierten
Werts und nachdem der Schreiber mit dem Schrei-
ben fertig ist, wird diese Prognose verwendet, um die
Daten an alle prognostizierten Leser weiterzuleiten.
Im Gegensatz zu herkömmlichen Prädiktoren, die
zwischen Blöcken oder zwischen Anweisungen un-
terscheiden, um separate Vorgeschichten für Blöcke
in dem System zu führen, führt der Prognosemecha-
nismus der vorliegenden Erfindung mehrere Sätze
von Lesern für mehrere Blöcke, die von dem Ver-
zeichnis bedient werden, zusammen. Diese Informa-
tion wird hierin als die globale Vorgeschichte des Ver-
zeichnisses bezeichnet.

[0028] In der beispielhaften Implementierung der
unten in Verbindung mit Fig. 4 beschriebenen erläu-
ternden Ausführungsform wird eine Vorgeschichtstie-
fe von vier verwendet, d. h. der prognostizierte Satz
von Lesern, der für eine momentane Schreiboperati-
on auf einen gegebenen Block erzeugt wurde, wird
als eine Funktion des momentanen Satzes von Le-
sern dieses Blocks und der in einem Prädiktoren-
schieberegister gespeicherten drei anderen aktuells-
ten Sätzen von Lesern bestimmt.

[0029] Fig. 4 zeigt ein Beispiel für die Arbeitsweise
eines verzeichnisbasierten Prädiktors in der erläu-
ternden Ausführungsform der Erfindung. In diesem
Beispiel wird eine Schreibanforderung für einen Da-
tenblock X empfangen, der mit einem Speicher und
einem Verzeichnis 120 assoziiert ist. Die momenta-
nen Leser des Datenblocks X sind ein Satz von Kno-
ten {a, b, c} eines Multiprozessorsystems, das mit a,
b, c, d, e, f, g, h, i, j, k, l, m usw. bezeichnete Knoten
aufweist. Jeder der Knoten kann einen Knoten eines
Multiprozessorsystems, wie z. B. des in Verbindung
mit Fig. 1 und Fig. 2 erläuterten, darstellen. Der Prä-
diktor in diesem Beispiel verwendet auf eine unten
beschriebene Weise ein Schieberegister 122.

[0030] Fig. 5 zeigt ein Ablaufdiagramm der allge-
meinen Verarbeitungsoperationen des verzeichnis-
basierten Prädiktors aus dem Beispiel in Fig. 4. Die
allgemeinen Operationen werden zuerst mit Bezug
auf Fig. 5 beschrieben und dann wird die Anwendung
der allgemeinen Operationen auf das Beispiel aus
Fig. 4 im Detail beschrieben.

[0031] In Schritt 200 in Fig. 5 sendet ein Schreiber
eine Schreibanforderungsnachricht an das Verzeich-
nis des zu schreibenden Blocks. Das Verzeichnis er-
klärt in Schritt 202 die momentanen Leser für ungül-
tig. Schritte 204 und 206 werden dann von jedem der
Leser ausgeführt. In Schritt 204 empfängt ein gege-
bener Knoten, der einem potentiellen Leser ent-
spricht, die Ungültigkeitserklärung von dem Verzeich-
nis. In Schritt 206 schickt der Knoten ein "Bit, auf das
zugegriffen wurde" mit einer Bestätigung der Ungül-
tigkeitserklärung zurück.

[0032] Wie in Schritt 208 aufgezeigt, wartet das Ver-
zeichnis auf Ungültigkeitserklärungsbestätigungen
von den Lesern. Ein Satz von echten Lesern wird als
der Satz von für ungültig erklärten Knoten bestimmt,
für die das zurückgeschickte Bit, auf das zugegriffen
wurde, festgelegt ist. Das Verzeichnis liefert dem Prä-
diktor in Schritt 210 Information, die den Satz von
echten Lesern identifiziert.

[0033] Der Prädiktor fügt dann seinem Schiebere-
gister (Schritt 212) den Satz von echten Lesern hin-
zu, verwirft den ältesten Satz von vorhergehenden
Lesern in dem Schieberegister (Schritt 214), prog-
nostiziert unter Verwendung einer Schnittmengen-
oder Vereinigungsoperation (Schritt 216) eine Funkti-
on der Sätze und sendet die Prognose dann an den
Schreiber (Schritt 218).

[0034] Das Verzeichnis sendet dem Schreiber in
Schritt 220 eine gültige Kopie des Blocks. Diese Ko-
pie kann dem Schreiber zusammen mit der Prognose
aus Schritt 218 gesendet werden. In Schritt 222 ver-
geht Zeit, bis der Schreiber die Schreiboperation ab-
schließt. Nachdem die Schreiboperation vervollstän-
digt ist, verwendet der Schreiber die Information in
der Prognose, um den neuen Block an jeden prog-
nostizierten Leser weiterzuleiten, wie in Schritt 224
gezeigt.

[0035] Geeignete Techniken zum Bestimmen einer
geeigneten Zeit zum Weiterleiten eines neuen Blocks
an jeden prognostizierten Leser sind z. B. in S. Kaxi-
ras, "Identification and Optimization of Sharing Pat-
terns für Scalable Shared-Memory Multiprocessors",
PhD. Thesis, Computer Sciences, University of Wis-
consin-Madison, 1998, und in der oben angeführten
Referenz A. Lai und B. Falsafi, "Memory Sharing Pre-
dictor: The Key to a Speculative Coherent DSM", Pro-
ceedings of the 26th Annual ISCA, Mai 1999, be-
schrieben, die hierin beide durch Bezugnahme auf-
genommen sind.

[0036] Die Wahl der Vereinigungs- oder Schnitt-
mengenfunktion in Schritt 216 aus Fig. 5 hängt allge-
mein von dem erwünschtem Aggressivitätsgrad bei
der Datenweiterleitung ab. Zum Beispiel kann in Sys-
temen mit hoher Bandbreite die mit der Vereinigungs-
funktion assoziierte aggressivere Datenweiterleitung
5/15

DE 601 32 132 T2 2009.01.02
geeigneter sein, während für Systeme mit niedriger
Bandbreite die Schnittmengenfunktion geeigneter
sein kann. Man beachte, dass diese Funktionen nur
beispielhaft gegeben werden und die Erfindung unter
Verwendung von anderen Typen von Funktionen im-
plementiert werden kann. Als ein anderes Beispiel
können musterbasierte Funktionen in Verbindung mit
der vorliegenden Erfindung verwendet werden. Sol-
che Funktionen sind detaillierter z. B. in T. Yeh und Y.
Patt, "Two-Level Adaptive Branch Prediction", Pro-
ceedings of the 24th Annual ACM/IEEE International
Symposium and Workshop an Microarchitecture, Los
Alamitos, CA, November 1991, beschrieben, das
hierin durch Bezugsnahme aufgenommen ist.

[0037] Die Wahl zwischen Vereinigungs-, Schnitt-
mengen- oder anderen Funktionen in Schritt 216
kann auf einer dynamischen Basis getroffen werden.
Zum Beispiel kann die Wahl auf einer Pro-Pro-
gramm-Basis getroffen werden, so dass jedes Pro-
gramm seinen eigenen Betriebsmodus einstellen
kann. Als ein anderes Beispiel kann die Auswahl der
Funktion unter Programmsteuerung implementiert
werden, so dass Programme den Betriebsmodus zur
Laufzeit entsprechend ihrem Bedarf ändern können.
Die Wahl könnte alternativ auf einer Pro-Seite-Basis
getroffen werden, wobei jede Speicherseite, die meh-
rere Datenblöcke aufweisen kann, ihren eigenen Mo-
dus hat. In diesem Fall kann ein Betriebssystem den
Prädiktor über den Betriebsmodus verschiedener
Seiten benachrichtigen. Als noch ein anderes Bei-
spiel könnte die Wahl der Funktion entsprechend der
Netzwerknutzung getroffen werden, wobei z. B. eine
niedrige Netzwerknutzung die Vereinigungsfunktion
erfordert und eine hohe Netzwerknutzung die
Schnittmengenfunktion erfordert. In diesem Fall kann
eine Netzwerküberwachungsvorrichtung verwendet
werden, um dem Prognosemechanismus eine Rück-
kopplung zu liefern.

[0038] Wieder mit Bezug auf das Beispiel aus Fig. 4
sind, wenn die Schreibanforderung für den Daten-
block X empfangen wird, die momentanen Leser die
Prozessoren in dem Satz {a, b, c}. Das Prädiktoren-
schieberegister 122 wird wie gezeigt um eins ver-
schoben und der Satz {a, b, c} wird in dem obersten
mit Slot 0 bezeichneten Slot installiert. In Folge der
Änderung enthalten die Slots 1, 2 und 3 die Sätze {a,
c, e, f, g}, {a, c, d} bzw. {a, h, i, c} und wird der Satz
{k, l, m} aus dem Schieberegister fallen gelassen. Der
momentane Inhalt des Schieberegisters 122 zu ei-
nem gegebenen Zeitpunkt stellt die globale Vorge-
schichte des entsprechenden Verzeichnisses dar.
Das Verzeichnis erklärt die momentanen Leser durch
das Schicken von Ungültigkeitserklärungsanforde-
rungen an die Knoten a, b und c für ungültig, wartet
auf Bestätigung der Ungültigkeitserklärung und sen-
det später eine gültige Kopie des Datenblocks X an
den anfordernden Schreiber.

[0039] Der Prädiktor bestimmt die Vereinigung oder
die Schnittmengenbildung der Sätze in dem Schiebe-
register 122 gemäß Schritt 216 aus Fig. 5, wobei die
Wahl von Vereinigung oder Schnittmengenbildung
auf der Basis eines oder mehrerer der oben beschrie-
benen Faktoren getroffen wird. Die Vereinigung der
Sätze in dem Schieberegister ist der Satz {a, b, c, d,
e, f, g, h, i}, während die Schnittmenge der Sätze in
dem Schieberegister der Satz {a, c} ist. In beiden Fäl-
len ist das Ergebnis ein Satz von prognostizierten Le-
sern, der dem Schreiber von dem Prädiktor zuge-
schickt wird. Nachdem die Schreiboperation auf dem
Datenblock X vervollständigt ist, leitet der Schreiber
den neuen Block an jeden der prognostizierten Leser
weiter. Das Auslösen der Datenweiterleitung kann
auf einem Zeitgeber oder auf dem nächsten Schrei-
ben in das Verzeichnis, ungeachtet dessen, welcher
Datenblock geschrieben wird, oder auf dem nächsten
Lesen des Datenblocks X oder auf anderen geeigne-
ten Techniken basieren. Die Datenweiterleitung kann
dadurch durchgeführt werden, dass das Verzeichnis
eine Kopie der Daten von dem Schreiber abruft und
sie an die prognostizierten Leserknoten sendet.

[0040] Man beachte, dass, obwohl der Prädiktor in
dem Beispiel aus Fig. 4 eine Vorgeschichtstiefe von
vier verwendet, d. h. das Schieberegister 122 die vier
aktuellsten Sätze von Lesern für einen gegebenen
Datenblock speichert, die vorliegende Erfindung un-
ter Verwendung von anderen Vorgeschichtstiefen,
einschließlich Vorgeschichtstiefen, die mehr oder we-
niger als vier sind, implementiert werden kann. Her-
kömmliche Prädiktoren nutzen allgemein eine Vorge-
schichtstiefe von nicht mehr als zwei.

[0041] Um für den oben beschriebenen Prognose-
mechanismus eine genaue Rückkopplung zu schaf-
fen, muss jeder Leser allgemein in der Lage sein,
zwischen einem prognostizierten Lesen und einem
tatsächlichen Lesen zu unterscheiden. Wenn ein
Schreiber exklusiven Zugriff auf einen Cache-Block
gewinnt, prognostiziert ein Multiprozessorsystem ge-
mäß der Erfindung den zukünftigen Satz von Lesern
des Blocks und stellt dann sicher, dass Kopien des
Blocks an diese prognostizierten Leser weitergeleitet
werden, nachdem das Schreiben vervollständigt ist.
Um die Rückkopplungsschleife zu schließen, muss
das System herausfinden, wie viele dieser prognosti-
zierten Leser den Block tatsächlich verwendet ha-
ben. Um zu sagen, ob dies der Fall ist, kann jeder Le-
ser in dem System das oben genannte "Bit, auf das
zugegriffen wurde," für jede lokale Cache-Linie auf-
recht erhalten. Dieses Bit, auf das zugegriffen wurde,
ist dem so genannten "schmutzigen Bit" ähnlich, das
zur Seitenverwaltung in einem virtuellen Speicher-
systems aufrecht erhalten wird, abgesehen davon,
dass das Bit, auf das zugegriffen wurde, eingestellt
wird, wenn ein Cache-Block gelesen wird, anstatt
wenn er geschrieben wird. Auch sollte das Bit, auf
das zugegriffen wurde, auf Cache-Block-Granularität
6/15

DE 601 32 132 T2 2009.01.02
aufrecht erhalten werden, während schmutzige Bits
typischerweise auf Seitengranularität aufrecht erhal-
ten werden. Bei der nächsten Ungültigkeitserklärung
nimmt jeder Leser die Information des Bits, auf das
zugegriffen wurde, auf die Ungültigkeitserklärungs-
bestätigung „Huckepack". Das System kann dann die
Bits, auf die zugegriffen wurde, verwenden, um sei-
nen Status für die nächste Prognose zu aktualisieren.

[0042] Man beachte, dass Verarbeitungsoperatio-
nen, die hierin als von einem Verzeichnis ausgeführt
oder anderweitig implementiert beschrieben werden,
von einem assoziierten Element eines Prozessorkno-
tens, wie z. B. von einem Prozessor unter Programm-
steuerung, ausgeführt oder anderweitig implemen-
tiert werden können.

[0043] In alternativen Ausführungsformen der Erfin-
dung kann die Verzeichnisinformation durch andere
Information ergänzt werden, um weitere Verbesse-
rungen der Leistungsfähigkeit zu schaffen. Zum Bei-
spiel kann die Verzeichnisinformation durch einen
designierten Teilsatz von Cache-Block-Adressinfor-
mation ergänzt werden. Vorteilhafterweise verwendet
eine solche Anordnung weniger Information als her-
kömmliche adressenbasierte Prognosetechniken,
während sie auch eine höhere Prognosegenauigkeit
erreicht. In anderen Ausführungsformen der Erfin-
dung kann die Verzeichnisinformation mit dem oder
ohne den Teilsatz der Cache-Adressinformation mit
anderen Typen von Information, wie z. B. Prozessor-
knoten- und Programmzählerinformation, kombiniert
werden. Zum Beispiel kann die Erfindung in dem Pro-
zess des Bestimmens eines Satzes von prognosti-
zierten Lesern für eine gegebene Schreibanforde-
rung verschiedene Kombinationen von Verzeichnis-,
Adress-, Prozessorknoten- und Programmzählerin-
formation nutzen.

[0044] Wie der Begriff hierin verwendet wird, soll die
"globale Vorgeschichte" eines Verzeichnisses nicht
nur eine auf Verzeichnisinformation allein basierende
Vorgeschichte, sondern auch eine Vorgeschichte
aufweisen, die sowohl Verzeichnisinformation als
auch eine Menge an zusätzlicher Information, wie z.
B. Adress-, Prozessorknoten- oder Programmzähler-
information aufweist, was weniger ist als das volle
verfügbare Ausmaß an solcher zusätzlicher Informa-
tion. Zum Beispiel kann eine globale Vorgeschichte
Verzeichnisinformation aufweisen, die durch eine
kleine Anzahl von Adressbits, d. h. eine Menge an
Adressbits, die kleiner ist als ein voller Satz von ver-
fügbaren Adressbits, ergänzt ist.

[0045] Fig. 6 zeigt einen Satz von sechs Tabellen,
die Beispiele für Prädiktoren gemäß der Erfindung
und entsprechende Leistungsfähigkeitssimulations-
ergebnisse auflisten. Die gezeigten Prädiktoren ba-
sieren auf verschiedenen Kombinationen aus einer
oder mehrerer Informationen von Verzeichnis (dir),

Adresse (add), Prozessorknoten (pid) und Pro-
grammzähler (pc). Die Prädiktorennamen haben die
Form von prediction-function(index)depth, wobei pre-
diction-function die Funktion anzeigt, die für die Aktu-
alisierung des Prädiktors verwendet wird, Index die
spezielle von dem Prädiktor verwendete Kombination
von Verzeichnis-, Adress-, Prozessorknoten- und
Programmzählerinformation anzeigt und depth die
Vorgeschichtstiefe ist. Im Fall von Adress(add)- oder
Programmzähler(pc)-Information weist der jeweilige
Identifikator eine tiefgestellte Zahl auf, die die ent-
sprechende Anzahl von Informationsbits anzeigt.

[0046] Die in Fig. 6 gezeigten Prädiktoren werden
auch als entweder direkt oder weitergeleitet klassifi-
ziert, um den speziellen verwendeten Aktualisie-
rungsmechanismus anzuzeigen. Bei einem Mecha-
nismus direkter Aktualisierung wird der Satz von für
ungültig erklärten echten Lesern jedes Mal, wenn ein
Datenblock geschrieben wird, als Vorgeschichte ver-
wendet, um die neue Prognose zu erzeugen. Bei ei-
nem Mechanismus weitergeleiteter Aktualisierung
leitet ein Schreiber, wenn er einen Satz von mit einem
anderen Knoten assoziierten Lesern für ungültig er-
klärt, diese Vorgeschichte an den entsprechenden
Prädiktoreneintrag weiter, so dass sie von dem kor-
rekten Schreiber verwendet werden kann. Eine wei-
tergeleitete Aktualisierung erfordert folglich Informati-
on vom letzten Schreiber für jeden Datenblock, so
dass für ungültig erklärte Leser mit einem bestimm-
ten Schreiber assoziiert werden können. Tabellen 1,
2 und 3 aus Fig. 6 listen Prädiktoren auf, die einen
Mechanismus direkter Aktualisierung nutzen, wäh-
rend Tabellen 4, 5 und 6 Prädiktoren auflisten, die ei-
nen Mechanismus weitergeleiteter Aktualisierung
verwenden.

[0047] Beispielsweise stellt der Prädiktor union(pid
+ di r +add4)

4 in Tabelle 6 ein Prognoseschema unter
Verwendung von direkter Aktualisierung dar, wobei
sein Prognosestatus unter Verwendung der Prozes-
sornummer, des Verzeichnisknotens und vier Daten-
blockadressen-Bits indiziert wird und die letzten zwei
Bitmaps gemeinsamer Nutzung vereinigt, um die
nächste für jeden Index zu prognostizieren. Als ein
anderes Beispiel kann ein von Verzeichnisknoten
und acht Adresseninformations-Bits indizierter Prä-
diktor der letzten Bitmap als union(dir + add8)

1 oder
inter(dir + add8)

1 bezeichnet werden, abhängig von
der speziellen verwendeten Funktion. Man beachte,
dass ein auf Vereinigung basierender oder auf
Schnittmengenbildung basierender Prädiktor mit ei-
ner Vorgeschichtstiefe von eins der gleiche ist wie ein
Prädiktor der letzten Bitmap.

[0048] Zusätzliche Details bezüglich dieser und an-
derer Aspekte von Prädiktoren sind in S. Kaxiras und
C. Young, "Coherence Communication Prediction in
Shared Memory Multiprocessors", Proceedings of
the 6th Annual IEEE Symposium an High-Perfor-
7/15

DE 601 32 132 T2 2009.01.02
mance Computer Architecture (HPCA), Januar 2000,
beschrieben, das hierin durch Bezugnahme aufge-
nommen ist.

[0049] Für jeden der in Fig. 6 gezeigten beispielhaf-
ten Prädiktoren ist eine Anzahl von Leistungspara-
metern aufgelistet. Diese umfassen Prädiktorgröße,
Sensivität, Spezifität, Prognosewert eines positiven
Tests (PVP) und Prognosewert eines negativen Tests
(PVN).

[0050] Die Prädiktorgröße wird als logt der Anzahl
von Bits gemessen, die von dem Prädiktor genutzt
werden.

[0051] Sensitivität ist das Verhältnis korrekter Prog-
nosen zu der Summe aus korrekten Prognosen und
weggelassenen Prognosen und zeigt an, wie gut der
Prädiktor die gemeinsame Nutzung prognostiziert,
wenn die gemeinsame Nutzung tatsächlich stattfin-
det. Ein sensitiver Prädiktor ist gut im Finden und
Nutzen von Möglichkeiten gemeinsamer Nutzung,
während ein insensitiver Prädiktor viele Gelegenhei-
ten verpasst.

[0052] Spezifität ist das Verhältnis vermiedener Pro-
gnosen zu der Summe aus vermiedenen Prognosen
und zusätzlichen Prognosen und zeigt die Wahr-
scheinlichkeit an, dass keine Ressourcen an nicht
gemeinsam genutzte Daten verschwendet werden.

[0053] PVP ist das Verhältnis korrekter Prognosen
zu der Summe aus korrekten und zusätzlichen Prog-
nosen und schafft einen Hinweis auf den Prozentsatz
von nützlichem Datenweiterleitungsverkehr unter al-
lem Datenweiterleitungsverkehr.

[0054] PVN ist das Verhältnis vermiedener Progno-
sen zu der Summe aus vermiedenen Prognosen und
weggelassenen Prognosen und schafft einen Hin-
weis, mit welcher Wahrscheinlichkeit bezüglich eines
nicht gemeinsam genutzten Blocks korrekt prognos-
tiziert wird, dass er nicht gemeinsam genutzt wird.

[0055] Tabellen 1 und 4 zeigen die zehn Prädiktoren
mit den höchsten PVPs unter direkter Aktualisierung
bzw. weitergeleiteter Aktualisierung eines Satzes von
möglichen Prädiktoren, für die Leistungsfähigkeit si-
muliert wurde. Alle Prädiktoren in dieser Gruppe sind
Schnittmengenprädiktoren mit tiefer Vorgeschichte,
die den PVP durch Spekulieren auf nur sehr stabile
Beziehungen gemeinsamer Nutzung maximieren.
Zwei der Top-Ten-Schemen sind den zwei Tabellen
gemeinsam. Es ist zu sehen, dass direkte Aktualisie-
rung und weitergeleitete Aktualisierung sehr weinig
Einfluss auf den PVP haben. Jedoch sind die weiter-
geleiteten Schemen im Durchschnitt sensitiver. Kei-
nes der Schemen mit hohem PVP ist im Vergleich zu
einem Schema mit letzter Bitmap oder einem Vereini-
gungsprädiktorschema sensitiv. Dies bedeutet, dass

sie sehr produktiven Verkehr erzeugen, aber viele
Gelegenheiten zur gemeinsamen Nutzung verpas-
sen.

[0056] Tabelle 2 zeigt die zehn sensitivsten Sche-
men in dem Satz möglicher Prädiktoren unter Ver-
wendung von direkter Aktualisierung. Alle sind Verei-
nigungsschemen mit der in diesem Beispiel verwen-
deten maximalen Vorgeschichtstiefe, d. h. einer Vor-
geschichtstiefe von 4. Alle Schemen sind in ihrer
Sensivität grob vergleichbar, aber haben verschiede-
ne PVP-Werte. Es ist interessant, festzustellen, dass
das weitaus kostengünstigste Schema (union(dir +
add2)

4) bezüglich der Sensivität das fünftbeste insge-
samt ist.

[0057] Tabelle 3 zeigt die zehn sensitivsten Sche-
men in dem Satz möglicher Prädiktoren unter Ver-
wendung von weitergeleiteter Aktualisierung. Es gibt
einen sehr kleinen Unterschied zwischen den Sche-
men mit direkter und mit weitergeleiteter Aktualisie-
rung. Sechs der obersten zehn Schemen sind den
zwei Listen gemeinsam und die Statistiken unter-
scheiden sich von Spalte zu Spalte wenig.

[0058] Tabellen 5 und 6 zeigen die Top-Ten-Prädik-
toren in dem Satz möglicher Prädik toren mit weiter-
geleiteter Aktualisierung bezüglich Spezifität bzw.
Sensivität.

[0059] Es sollte nochmals betont werden, dass die
in Fig. 6 gezeigten Prädiktoren nur Beispiele sind
und die Erfindung unter Verwendung anderer Typen
von Prädiktoren implementiert werden kann. Zum
Beispiel können, obwohl die maximale Vorge-
schichtstiefe in dem Beispiel aus Fig. 6 vier ist, ande-
re Prädiktoren größere Vorgeschichtstiefen verwen-
den.

[0060] Die vorliegende Erfindung kann so konfigu-
riert werden, dass sie die Anforderungen an eine
Vielfalt verschiedener Verarbeitungsanwendungen
und -umgebungen unter Verwendung jeglicher er-
wünschter Typen und Anordnungen von Prozessoren
erfüllt. Die oben beschriebenen Ausführungsformen
der Erfindung sollen deshalb nur erläuternd sein. Für
den Fachmann werden zahlreiche alternative Aus-
führungsformen innerhalb des Umfangs der folgen-
den Ansprüche offensichtlich sein.

Patentansprüche

1. Verfahren zur Bestimmung eines Satzes von
prognostizierten Lesern eines Datenblocks in einem
Multiprozessorsystem, wobei das Verfahren die
Schritte aufweist:
Bestimmung (208) eines momentanen Satzes von
Lesern eines Datenblocks, welcher Gegenstand ei-
ner Schreibanforderung ist; und
Generieren (216) des Satzes von prognostizierten
8/15

DE 601 32 132 T2 2009.01.02
Lesern basierend auf dem momentanen Satz von Le-
sern und wenigstens einem zusätzlichen Satz von
Lesern, der repräsentativ ist für wenigstens einen Teil
einer globalen Vorgeschichte eines Verzeichnisses,
das mit dem Datenblock assoziiert ist.

2. Verfahren nach Anspruch 1, wobei der Gene-
rierungsschritt weiterhin den Schritt des Anwendens
einer Funktion auf den momentanen Satz von Lesern
und wenigstens einen zusätzlichen Satz von Lesern
aufweist.

3. Verfahren nach Anspruch 1 oder Anspruch 2,
wobei die globale Vorgeschichte des Verzeichnisses
eine Mehrzahl von Sätzen von durch das Verzeichnis
verarbeiteten vorhergehenden Lesern aufweist, wo-
bei die gesamte Anzahl der Mehrzahl von Sätzen von
vorhergehenden Lesern einer designierten Vorge-
schichtentiefe entspricht, die mit der Generierung
des Satzes von prognostizierten Lesern assoziiert ist.

4. Verfahren nach einem der Ansprüche 1 bis 3,
wobei jeder Leser in dem System ein Bit, auf das zu-
gegriffen wurde, für jeden einer Mehrzahl von Daten-
blöcken hält, wobei das Bit, auf das zugegriffen wur-
de, eines bestimmten Lesers für einen gegebenen
Datenblock anzeigt, ob der bestimmte Leser den ge-
gebenen Datenblock tatsächlich gelesen hat.

5. Verfahren nach einem der Ansprüche 1 bis 4,
wobei nachdem das angeforderte Schreiben auf den
Datenblock vervollständigt ist, der resultierende Da-
tenblock zu jedem der Leser in dem Satz von prog-
nostizierten Lesern gesendet wird.

6. Verfahren nach einem der Ansprüche 1 bis 5,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit we-
nigstens einem Teilsatz von Cache-Adressinformati-
on beinhaltet, die mit einem oder mehreren der Leser
assoziiert ist, um den Satz von prognostizierten Le-
sern zu bestimmen.

7. Verfahren nach einem der Ansprüche 1 bis 6,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit Pro-
zessorknoteninformation beinhaltet, die assoziiert ist
mit einem oder mehreren der Leser, um den Satz von
prognostizierten Lesern zu bestimmen.

8. Verfahren nach einem der Ansprüche 1 bis 7,
wobei der Generierungsschritt weiterhin ein Benut-
zen von Information betreffend die globale Vorge-
schichte des Verzeichnisses in Verbindung mit Pro-
grammzählerinformation beinhaltet, die assoziiert ist
mit einem oder mehreren der Leser, um den Satz von
prognostizierten Lesern zu bestimmen.

9. Vorrichtung zur Bestimmung eines Satzes von
prognostizierten Lesern eines Datenblocks in einem
Multiprozessorsystem, wobei die Vorrichtung auf-
weist:
einen Prozessorknoten, der betreibbar ist, einen mo-
mentanen Satz von Lesern eines Datenblocks zu be-
stimmen, welcher Gegenstand einer Schreibanforde-
rung ist, und einen Prognostizierungsmechanismus
zu implementieren, welcher den Satz von prognosti-
zierten Lesern basierend auf dem momentanen Satz
von Lesern und wenigstens einem zusätzlichen Satz
von Lesern generiert, der repräsentativ ist für wenigs-
tens einen Teil einer globalen Vorgeschichte eines
Verzeichnisses, das mit dem Datenblock assoziiert
ist.

10. Multiprozessorsystem, aufweisend:
eine Mehrzahl von Prozessorknoten, wobei wenigs-
tens ein gegebener der Prozessorknoten betreibbar
ist, einen momentanen Satz von Lesern eines Daten-
blocks zu bestimmen, welcher Gegenstand einer
Schreibanforderung ist, wobei der gegebene Prozes-
sorknoten einen Prognostizierungsmechanismus im-
plementiert, welcher einen Satz von prognostizierten
Lesern des Datenblocks basierend auf dem momen-
tanen Satz von Lesern und wenigstens einem zusätz-
lichen Satz von Lesern generiert, der repräsentativ ist
für wenigstens einen Teil einer globalen Vorgeschich-
te eines Verzeichnisses, das mit dem Datenblock as-
soziiert ist.

Es folgen 6 Blatt Zeichnungen
9/15

DE 601 32 132 T2 2009.01.02
Anhängende Zeichnungen
10/15

DE 601 32 132 T2 2009.01.02
11/15

DE 601 32 132 T2 2009.01.02
12/15

DE 601 32 132 T2 2009.01.02
13/15

DE 601 32 132 T2 2009.01.02
14/15

DE 601 32 132 T2 2009.01.02
15/15

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

