Title: VIRTUAL GOLF SIMULATION DEVICE AND SENSING DEVICE AND METHOD USED IN SAME

Abstract: The purpose of the present invention is to provide a virtual golf simulation device and a sensing device and method used in same, wherein the virtual golf simulation device can obtain a reduction in expenses and both accuracy and reliability of the sensing mechanism by recognizing a position of a ball regardless of where the ball is placed on a hitting mat by a user, detecting the position of the ball quickly and accurately even when a slope develops on a swing plate and causes a tilt of a predetermined angle, and sensing a hit even without being provided with a separate trigger sensor for sensing an accurate time the user hits the ball and only with a comparatively inexpensive sensing device.

Inventor: Jae-Young Jeong, Hyun Dam
Inventor Address: 1505-9 Sangbaeng-dong 4-Gil, Seongbuk-gu, Seoul, Korea
Priority Data: KR 10-2011-0025122 2011.3.22
Priority Filing Date: KR 2012/002072 2012.3.21
Publication Date: 2012.9.27
Patent Classification: H05B9/00 (2006.01), G09B9/00 (2006.01)
Field of Invention: Golf simulation device and sensing device and method used in same.

Diagram:

1. Ball sensing means
2. Ball recognition means
3. Ball position detecting means
4. Ball swing plate
5. Swing plate base
6. Hitting mat
7. User hitting means
8. User position detecting means
9. User hit detection means
10. Sensing time detecting means
11. Ball hit detection means
12. User hit detecting means
13. Sensing device
14. Ball position detecting means
15. Sensing time detecting means
16. User hit detecting means
17. Sensing device
18. Ball position detecting means
19. Sensing time detecting means
20. User hit detecting means
21. Sensing device

Diagram Description:
- The virtual golf simulation device is equipped with a ball sensing means and a ball recognition means to detect the position of the ball quickly and accurately.
- A ball swing plate is used to provide a stable environment for the ball during the swing.
- Hitting mat is used to simulate the surface of the ground and detect the user's hitting motion.
- Sensing device is used to detect the user's hit timing accurately.

Incorporated Claims:

(21) International Application Number: PCT/KR2012/002072
(22) International Filing Date: 2012.3.21
(25) Applicant Name: Jae-Young Jeong, Hyun Dam
(71) Applicant Name: Jae-Young Jeong, Hyun Dam
(25) Applicant Name: Jae-Young Jeong, Hyun Dam

공개: — 국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개함 (규칙 48.2(g))
명세서

발명의 명칭: 가상 골프 시뮬레이션 장치와, 이에 이용되는 센싱장치 및 센싱방법

기술분야

[1] 본 발명은 가상 골프 시뮬레이션 장치 및 그 방법과, 이에 이용되는 센싱장치 및 센싱방법에 관한 것으로 더욱 상세하게는, 가상의 골프코스가 영상화되어 시뮬레이션 되고 사용자가 타격한 골프공의 궤적이 센싱장치에 의해 센싱되어 상기 가상의 골프코스에서 시뮬레이션 되는 가상 골프 시뮬레이션 장치 및 그 방법과, 이에 이용되는 센싱장치 및 센싱방법에 관한 것이다.

배경기술

[2] 최근 야구, 축구, 농구, 그리고 골프 등과 같은 인기 스포츠 경기를 실내나 특정 장소에서 시뮬레이션을 통해 인터액티브 스포츠 게임(Interactive Sports Game)의 형태로 즐길 수 있도록 하는 여러 가지 다양한 장치들에 대한 개발이 활발하게 이루어지고 있다.

[3] 특히 최근에는 이론과 스케린 골프 시스템이 등장하여 사용자가 골프 클럽을 들고 골프 스윙을 할 때 따라 타격 매트에 놓인 볼을 타격하면 센싱장치가 이를 센싱하여 이동하는 골프공의 궤적을 추적하고 이를 바탕으로 가상의 골프코스에서 볼의 궤적이 시뮬레이션 되도록 함으로써 사용자가 가상 현실상에서 골프를 즐길 수 있도록 하는 기술이 개발되고 있다.

[5] 예컨대 적외선 센서를 이용한 센싱장치, 레이저 센서를 이용한 센싱장치, 음향 센서를 이용한 센싱장치, 그리고 카메라 센서를 이용한 센싱장치 등 다양한 센싱 방식이 등장하고 있다.

발명의 상세한 설명

기술적 과제

과체 해결 수단

본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치에 이용되는 센싱장치는, 타격이 이루어지는 일정 활영 범위에 대한 이미지를 연속적으로 취득하는 적이도 하나의 센서부; 상기 센서부로부터 이미지를 입력하여 저장하는 그래비; 상기 그래비로부터 전송되는 이미지를 전달받아 처리함으로써 타격 준비 완료 여부 및 사용자에 의한 타격이 이루어졌는지 여부를 감지하는 쟁 디텍터; 및 상기 쟁 디텍터에 의해 타격이 감지되는 경우, 그에 대한 이미지를 처리함으로써 이동하는 복의 물리적 특성 정보를 추출하는 이미지 처리부를 포함한다.

한편, 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치는, 타격이 이루어지는 일정 활영 범위에 대한 이미지를 연속적으로 취득하는 카메라 유닛; 및 상기 카메라 유닛으로부터 이미지를 입력하여 저장하는 그래비와, 상기 그래비로부터 전송되는 이미지를 전달받아 처리함으로써 타격 준비 완료 여부 및 사용자에 의한 타격이 이루어졌는지 여부를 감지하는 쟁 디텍터와, 상기 쟁 디텍터에 의해 타격이 감지되는 경우, 그에 대한 이미지를 처리함으로써 이동하는 복의 물리적 특성 정보를 추출하는 이미지 처리부를 포함하는 센싱처리유닛을 포함하는 센싱장치와, 상기 센싱처리유닛에서 추출된 정보에 따라 복의 궤적에 대한 시뮬레이션 영상을 구현하는 영상구현유닛을 포함한다.

한편, 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치를 위한 센싱방법은, 타격이 이루어지는 일정 활영 범위에 대한 이미지를 연속적으로 취득하는 단계; 상기 연속적으로 취득하는 이미지를 전달받아 저장하는 단계; 상기 저장되는 이미지를 전달받아 이미지 처리를 함으로써 타격 준비 완료 여부를 감지하는 단계; 상기 타격 준비가 완료된 경우, 사용자에 의한 타격이 이루어졌는지 여부를 감지하는 단계; 및 상기 타격이 감지된 경우, 그에 대한 이미지를 처리함으로써 이동하는 복의 물리적 특성 정보를 추출하는 단계를 포함한다.

한편, 본 발명의 다른 일 실시예에 따른 가상 골프 시뮬레이션 장치를 위한 센싱방법은, 복에 대한 기준 이미지로 미리 설정되는 복 템플릿을 저장하는 단계; 타격이 이루어지는 일정 활영 범위에 대한 이미지를 연속적으로 취득하는 단계; 상기 취득된 이미지에서 복 후보를 추출하고, 상기 복 템플릿을 상기 복 후보와 비교함으로써 복을 찾아내어 인식하는 단계; 상기 인식된 복이 미리 설정된 조건을 만족시키는지 여부를 판단함으로써 타격 준비 완료 여부를 감지하는 단계; 상기 타격 준비가 완료된 경우, 상기 취득된 이미지에서 복이 위치하는 좌표를 중심으로 미리 설정된 크기의 영역을 중심 영역으로 설정하고 상기 중심 영역 내의 이미지와 상기 복 템플릿의 실질적으로 일치에 해당하는 부분으로서 설정되는 하프 템플릿을 비교하여 상기 중심 영역 내에 복이 존재하는지 여부를 판단함으로써 타격이 이루어졌는지 여부를 감지하는 단계; 및 상기 타격이 감지된 경우, 그에 대한 이미지를 처리함으로써 이동하는 복의
물리적 특성 정보를 추출하는 단계를 포함한다.

발명의 효과

도면의 간단한 설명

[12] 도 1은 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치가 적용된 스크린 골프 시스템의 일 예를 나타낸 도면이다.

[14] 도 3은 도 2에 도시된 센싱장치에 대한 좀 더 구체적인 구성 및 각 구성요소들의 기능에 관하여 개략적으로 나타낸 도면이다.

[15] 도 4의 (a)는 소스 이미지에서 타격영역이 설정된 상태를 나타낸 이미지이고, 도 4의 (b)는 타격영역 설정위치에 의한 타격영역 설정 원리를 설명하기 위한 도면이다.

[16] 도 5의 (a)는 도 4의 (a)에서 분리된 타격영역을 나타낸 것이고, 도 5의 (b)는 도 5의 (a)에 도시된 이미지에 대해 경치기 과정을 거친 이미지를 나타낸 것이며, 도 5의 (c) 및 (d)는 각각 볼 텀블릿 및 하프 텀블릿을 나타낸 도면이다.

[17] 도 6은 볼 감지 수단에 의한 볼 착기 과정을, 도 7은 볼 레디 수단에 의한 타격 준비 감지 과정을 각각 나타낸 플로우차트이다.

[18] 도 8의 (a)는 타격 감지를 위한 관심영역을 표시한 이미지이고, 도 8의 (b)는 도 8의 (a)에 도시된 상태에서 관심영역 내에 볼이 존재하지 않게 된 상태의 이미지를 나타낸 것이다.

[19] 도 9는 타격 감지 수단에 의한 타격 감지 과정에 관하여 나타낸 플로우차트이다.

발명의 실시를 위한 최선의 형태

[21] 먼저 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치 및 이에 이용되는 센서장치에 관하여 설명한다.

[22] 도 1은 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치가 적용된 스크린 골프 시스템의 일 예를 나타낸 도면이고, 도 2는 도 1에 도시된 스크린 골프 시스템에 적용된 가상 골프 시뮬레이션 장치의 구성을 나타내는
클록도이다.

[23] 도 1 및 도 2에 도시된 바와 같이 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치는 사용자가 볼(B)을 타격하는 것을 생성하기 위한 센싱장치(S)와, 가상의 골프코스에 관한 영상을 구현하며 상기 센싱장치(S)의 센싱 결과에 따라 가상의 골프코스에서 볼의 궤적에 대한 시뮬레이션 영상을 제공하도록 하여 가상 골프 시뮬레이션을 진행하는 시뮬레이버(1)를 포함하도록 구성된다.

[24] 도 1에 도시된 바와 같이 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치가 적용된 스크린 골프 시스템은, 소정 크기의 공간을 제공하는 골프부스(2)의 바닥에 사용자가 골프 스윙을 할 수 있는 타석(110)이 마련되고, 상기 타석(110)의 일척에는 타격베트(120)가 마련되어 사용자는 타석(110)에서 타격베트(120)에 놓인 볼(B)을 골프 스윙에 의해 타격할 수 있도록 하며, 전방에는 스크린(3)이 마련되어 시뮬레이버(1)로부터 영상 정보를 전달받은 영상출력을 위한 장치(도 2에 도시된 영상출력부(30)로서, 예컨대 빛 프로젝트 등)가 상기 스크린(3) 상에 가상 골프 시뮬레이션에 관한 영상을 투영시키도록 구성될 수 있다.

[25] 여기서 상기 타석(110) 및 타격베트(120)는 골프 부스(2)의 바닥면에 마련될 수도 있으나, 도 1에 도시된 바와 같이 스크린플레이트(100) 상에 마련되도록 하는 것도 가능하다.

[26] 상기 스크린플레이트(100)는 전후좌우 방향으로 소정 각도 기울여질 수 있도록 구비되며 시뮬레이버(1)와 연결되어 현재 구현되고 있는 가상의 골프코스의 지형에 대응하여 기울기를 형성할 수 있다.

[27] 상기 타격베트(120)는 인조잔디로 이루어질 수 있으며, 도 1에 도시된 바와 같이 실제 골프장의 페어웨이, 리프 및 병커에 각각 대응되도록 페어웨이존(121), 리프존(122) 및 병커존(123)이 각각 서로 구분되도록 구비될 수 있다. 이때 바람직하게는 상기 페어웨이존(121), 리프존(122) 및 병커존(123) 각각은 인조잔디의 길이를 다르게 하거나 각각의 존(121, 122, 123)이 서로 다른 제절로 이루어질 수 있도록 구성함으로써 실제와 가깝도록 할 수 있다. 도 1에서는 타격베트(120)가 페어웨이존(121), 리프존(122) 및 병커존(123)을 각각 구비하도록 구성되는 경우를 나타내고 있으나 이에 한정되지 않고 페어웨이존(121)만 구비되거나, 페어웨이존(121)과 함께 리프존(122) 및 병커존(123) 중 어느 하나가 구비되도록 구성할 수도 있다. 도면번호 124는 티(Tee)를 나타낸다.

[28] 한편, 골프 부스(2) 내에는 센싱장치(S)가 구비되어 사용자가 볼(B)을 타격하는 것을 센싱하는데, 도 1 및 도 2에 도시된 바와 같이 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치에 이용되는 센싱장치(S)는 카메라 유닛(50) 및 센서처리유닛(60)을 포함한다.

[29] 상기 카메라 유닛(50)은 하나의 이미지 센서를 위한 센서부에 의해 구성될 수도
있고 2 이상의 셜서부에 의해 구성될 수도 있는데, 이동하는 볼(B)의 이미지를
취득하여 3차원 공간에서의 볼의 좌표를 추출하기 위해서는, 도 1에 도시된 바와
같이 2 이상의 셜서부(51, 52)로 스테레오(Stereo) 방식의 카메라 유닛을
구성하도록 함이 바람직하다.

[30] 한편, 도 2에 도시된 바와 같이 셜싱장치(S)는 복수개의 셜서부(51, 52)로
구성되는 카메라 유닛(50)과, 상기 카메라 유닛(50)에서 취득한 이미지를
처리함으로써 이동하는 볼의 물리적 특성을 추출하는 셜싱처리유닛(60)을
포함하여 구성하는데, 여기서 이동하는 볼의 물리적 특성은 볼의 속도, 볼의
이동 방향(수평 방향의 이동 각도), 볼의 높이각(수직 방향의 이동 각도), 볼에
걸리는 스핀(Spin) 등을 포함할 수 있다.

[31] 상기 셜싱처리유닛(60)은 상기 카메라 유닛(50)을 통해 취득된 소스
이미지(Source Image)를 프레임 단위로 순차적으로 입수하여 수집하는
그래비(70)와, 상기 그래비(70)로부터 전송되는 이미지를 전달받아
처리함으로써 타격 준비 완료 여부 및 사용자에 의한 타격이 이루어졌는지
여부를 감지하는 셜 디텍터(80)와, 상기 셜 디텍터(80)에 의해 타격이 감지되는
경우 상기 셜 디텍터(80)로부터 타격에 관련된 이미지를 전달받아 소정의 이미지
처리를 함으로써 이동하는 볼의 물리적 특성 정보를 추출하는 이미지
처리부(90)를 포함하여 구성될 수 있다.

[32] 한편, 본 발명의 일 실시예에 따른 가상 골프 시뮬레이션 장치를 구성하는
시뮬레이션(1)는, 제어부(M), 데이터베이스(10), 영상처리부(20) 및
영상출력부(30) 등을 포함하여 구성됨이 바람직하다.

[33] 상기 데이터베이스(10)는 가상 골프 시뮬레이션에 필요한 모든 데이터가
저장된다. 예컨대 시스템 구동에 필요한 데이터와, 가상의 골프코스의 영상
구현에 관한 데이터, 볼의 궤적에 대한 시뮬레이션 영상 구현에 관한 데이터
등이 저장된다.

[34] 상기 영상처리부(20)는 가상의 골프코스에 관한 영상이나 가상의
골프코스에서 풀치하는 볼의 궤적에 대한 시뮬레이션 영상 등을 구현하기 위한
소정의 영상 처리가 이루어지는 부분이다.

[35] 상기 영상출력부(30)는 상기 영상처리부(20)로부터 전달받은 영상 정보를
스코린 상에 출력하여 사용자가 볼 수 있도록 하기 위한 것이다.

[36] 상기 제어부(M)는 셜싱장치(S)로부터 셜싱 결과에 따른 정보를 전달받아 상기
데이터베이스(10), 영상처리부(20) 및 영상출력부(30) 등의 모든 구성요소들의
동작을 제어할 수 있도록 구비한다. 즉 상기 제어부(M), 데이터베이스(10),
영상처리부(20) 등은 셜싱장치(S)의 셜싱 결과에 따라 놀의 궤적에 대한
시뮬레이션 영상을 구현하는 영상구현수단으로서 기능한다.

[37] 한편, 도 3을 참조하여 도 2에 도시된 셜싱장치(S)에 관한 좀 더 구체적인
구성과 각 구성요소의 기능에 관하여 설명한다.

[38] 도 3에 도시된 바와 같이 본 발명에 따른 셜싱장치에서의 정보 전달 흐름은
카메라 유닛(50) -> 그래비(70) -> 샷 디텍터(80) -> 이미지 처리부(90) -> 서브레이트(1)의 순서로 이루어진다.

[39] 카메라 유닛(50)은 타격과 타격패치가 머리 있는 부분을 포함하는 일정 범위를 촬영하면서 1초당 수백 프레임의 이미지를 취득한다.

[40] 이렇게 취득되는 이미지는 그래비(70)로 전송되고, 그래비(70)는 카메라 유닛(50)로부터 이미지를 전송받아 저장하면서 샷 디텍터(80)로 전달하여 이미지 처리가 이루어지도록 한다.

[41] 상기 샷 디텍터(80)는, 상기 그래비로부터 전달받은 이미지로부터 물을 감지하는, 즉 이미지상에서 물을 찾는 물 감지 수단(81)과, 상기 물 감지 수단(81)에 의해 감지된 물이 미리 설정된 조건을 만족시키는지 여부를 감지함으로써 타격 준비가 완료되었는지 여부를 결정하는 물 레디 수단(82)과, 물이 상기 타격 준비가 완료된 위치로부터 이동하는지 여부를 판단함으로써 사용자에 의해 타격이 이루어졌는지 여부를 결정하는 타격 감지 수단(83)과, 상기 타격 감지 수단(83)에 의해 타격이 감지되는 경우 사용자에 의해 물이 타격되는 것에 대한 복수 프레임의 이미지를 저장하고 상기 이미지 처리부로 전송하는 버퍼링 수단(84)을 포함하여 구성됨이 바람직하다.

[42] 여기서 상기 물 감지 수단(81)은, 상기 그래비(70)로부터 전달받은 이미지에서 사용자에 의해 타격이 이루어지는 소정 크기의 타격 영역을 설정하는 타격 영역 설정 수단(81a)과, 상기 설정된 타격 영역 내에서 물 후보를 추출하고 그로부터 물을 찾아내도록 하는 물 인식 수단(81b)을 포함하여 구성됨이 바람직하다.

[43] 여기서 상기 타격 영역은 스와블레이트 상의 타격패치에 해당하는 영역을 타격 영역으로 설정하는 것이 바람직한데, 이에 대해서는 도 4를 참조하여 설명하기로 한다.

[44] 그리고 상기 물 인식 수단(81b)은 미리 설정되어 저장된 물 패턴물 또는 하프 템플릿을 기준으로 하여 물을 찾는데, 이에 대해서는 도 5를 참조하여 설명하기로 한다.

[45] 하면, 상기 타격 검지 수단(83)은, 상기 물 레디 수단(82)에 의해 물이 레디 상태에 있는 위치 좌표를 중심으로 미리 설정된 크기의 영역을 관심 영역으로서 설정하는 관심 영역 설정 수단(83a)과, 상기 관심 영역 내에 상기 감지된 물이 존재하는지 여부를 판단함으로써 물에 대한 타격이 이루어졌는지 여부를 결정하는 관심 영역 체크 수단(83b)를 포함하여 구성됨이 바람직하다. 타격 감지에 관한 구체적인 사항은 후술하기로 한다.

[46] 상기 샷 디텍터(80)는 상기 그래비(70)로부터 전달받은 이미지를 처리하여 타격 준비가 완료되었는지 여부를 감지하고, 타격 준비가 완료된 경우 사용자가 골프클럽으로 타격패치에 놓인 물을 타격하는지 여부를 감지한다.

[47] 만약 타격이 이루어지는 경우, 샷 디텍터(80)는 타격 시점의 이미지, 그 이전 및 그 이후의 복수 프레임의 이미지를 버퍼링 수단(84)을 통해 모두 저장하는데, 이는 이미지 처리부(90)로 설치된 전송되어 이미지 처리가 이루어지도록 하기
위한 것이다.

[48] 상기 이미지 처리부(90)는 샷 디텍터(80)가 탐지를 감지한 경우에 진동되는 이미지를 처리함으로써 이동하는 물의 물리적 특성을 추출하여 시뮬레이터(1)로 전달한다.

[49] 한편, 도 4의 (a)의 구조로 보면 방명의 설비에 따른 센서장치의 샷 디텍터가 그레비로부터 전달받은 이미지에서 물을 찾는 과정에 관하여 설명한다.

[50] 도 4의 (a)는 그레비(70a)의 구조로부터 샷 디텍터(80, 도 3 참조)로 전달되는 여러 프레임의 소스 이미지 중 하나를 나타내고 있다.

[51] 샷 디텍터(80)의 물 감지 수단(81, 도 3 참조)은 탐지영역 설정 수단(81a, 도 3 참조)을 통해 소스 이미지에서 탐지영역을 설정하여 분리한 후 그로부터 물 인식 수단(81b, 도 3 참조)을 통해 물을 찾는다.

[52] 먼저 탐지영역 설정 수단(81a)을 통해 소스 이미지(200)에서 탐지영역(220)을 설정하는데, 도 4의 (a)의 구조로 보아 마바 같이 탐지장치(120)의 일부 또는 전부에 해당하는 영역을 탐지영역(220)으로 설정할 수 있다. 즉 터치매트(120) 상에 물이 녹으면 위치를 기준으로 소정 범위의 영역을 탐지영역(220)으로 설정할 수 있다.

[53] 도 4의 (a)의 구조로 보아 소스 이미지(200)에서는 탐지영역(220)을 탐지장치(120)의 페어웨이존(121)에 물이 늪어 있고 상기 탐지영역 설정 수단(81a)은 상기 페어웨이존(121)에 해당하는 영역을 탐지영역(220)으로 설정하고 있는 것을 나타내고 있다. 만약 물이 터치매트(122)에 늪어 있다면 상기 터치매트(122)에 해당하는 영역을 탐지영역으로서 설정할 수 있고, 물이 병커존(123)에 늪어 있다면 상기 병커존(123)에 해당하는 영역을 탐지영역으로서 설정할 수 있다.

[54] 만약 탐지장치(120)가 바닥에 고정된 상태가 아니라 스윙플레이트(100) 상에 마련되어 상기 스윙플레이트(100)가 가장의 골프코스의 지형 정보에 대응하여 소정 각도로 정사를 구현함으로써 위치가 변화되는 경우에도 상기 탐지영역 설정 수단(81a)은 이를 고려하여 소스 이미지(200)에서 탐지영역(220)을 상당한 정확도로 설정하는 것이 가능하다.

[55] 즉 탐지영역 설정 수단은, 도 4의 (b)의 구조로 보아 기준포인트(P0 ~ P8)를 미리 설정하여 상기 모든 기준포인트(P0 ~ P8) 각각의 좌표를 저장한다.

[56] 여기서 스윙플레이트(100)가 소정 각도로 기울여지면 상기 기준포인트(P0 ~ P8)의 좌표도 변화되는데, 스윙플레이트(100)가 기울이진 각도값에 대한 정보를 전달받아 그로부터 상기 기준포인트(P0 ~ P8)의 변화된 좌표를 산출한다.

[57] 즉 스윙플레이트(100)의 각도의 변화에 대한 소정 단위마다 상기 기준포인트(P0 ~ P8)의 변화되는 좌표값을 데이터타이페를 이용하여 참조함으로써 스윙플레이트의 기울기변화에 탐지된 상기 기준포인트(P0 ~ P8)의 좌표값을 알 수 있고 그로부터 탐지영역을 정확하게 설정할 수 있는 것이다.

[58] 한편, 도 4의 (a)의 구조로 보아 마바 같이 탐지영역(220)이 설정되면, 도 5의 (a)의
도시된 바와 같이 타격영역(220)을 분리하여 그로부터 볼을 찾는 작업을 수행한 다음, 브로시 또는 소스 이미지 전체에서 볼을 찾는 것보다 훨씬 빠르고 정확하게 볼을 찾을 수 있다.

[59] 도 5의 (a)에 도시된 타격영역(220) 이미지는 여러 가지 노이즈가 포함된 상태이므로 이를 제거하기 위해 가우시안 블러 등의 전처리 과정을 거쳐서 도 5의 (b)에 도시된 바와 같은 상태의 타격영역(220) 이미지를 획득한다.

[60] 그리고 도 5의 (b)에 도시된 이미지에서 볼 후보를 조사한다. 볼 후보는 볼의 기하학적 특성에 기초하여 찾을 수 있는데, 전처리된 이미지에서 사각형상의 객체나 볼이라고 하기 어려운 형상을 갖는 객체를 제외하고 최대한 볼의 형상에 가까운 객체를 찾아서 볼 후보로서 선정한다. 즉 도 5의 (b)에 도시된 바와 같이 볼의 형상에 가까운 객체를 볼 후보(230)로서 선정한다. 볼 후보(230)는 하나가 될 수도 있지만 노이즈가 없거나 포함되었던가에 따라 복수개가 될 수도 있다.

[61] 이와 같이 추출된 볼 후보(230)는 볼 탭플릿(241) 또는 하프 탭플릿(242)과 비교하여 유사도가 추출된다.

[62] 여기서 볼 탭플릿(241)은 도 5의 (c)에 도시된 바와 같이 볼에 대한 기준 이미지로서 미리 설정되어 저장된 것이다. 그리고 하프 탭플릿(242)은 도 5의 (d)에 도시된 바와 같이 볼의 일부분에 대한 이미지로서 기준 이미지로 미리 설정되어 저장된 것이다. 상기 하프 탭플릿(242)은 볼 탭플릿(241)의 대략 절반에 해당하는 부분으로서 설정됨이 바람직하다.

[63] 따라서 상기 볼 탭플릿(241) 또는 하프 탭플릿(242)을 상기 볼 후보(230)와 비교함으로써 그 형상이나 픽셀값, 픽셀 개수 등에 있어서 서로 유사한 정도, 즉 유사도를 수치로 계산할 수 있다.

[64] 유사도는 미리 설정된 기준값 이상이어야 볼 후보를 볼로서 인식할 수 있다.

[65] 그리고 타격준비가 완료되었는지 여부를 감지하기 위해 볼을 인식하는 과정에서는 상기 볼 탭플릿(241)과 볼 후보를 서로 비교함으로써 유사도가 추출되도록 함이 바람직하다.

[66] 물론 상기 하프 탭플릿(242)을 이용하여 볼 후보의 일부분과의 유사도를 추출하여 볼을 인식할 수도 있지만, 골프 클럽의 헤드로 볼의 일부를 가리거나 볼에 대한 이미지를 완전하게 취득하기 어려운 상황이 아니기 때문에 정확한 하프 탭플릿(242)을 이용하여 볼을 찾는 것보다 볼 탭플릿(241)을 이용하여 볼을 찾는 것이 더 바람직하다.

[67] 한편, 도 6 및 도 7을 참조하여 볼 감지 수단에 의한 볼을 찾는 과정 및 볼을 찾은 후 타격 준비 여부를 감지하는 과정에 관하여 설명한다.

[68] 도 6에 도시된 바와 같이 그레비로부터 이미지가 입수되면(S10), 스윙플레이트의 기울기가 기준 위치에서 변환되었는지 여부를 판단한다(S11: 이 경우 스윙플레이트가 어떤 각도값을 갖는지 판단하도록 함이 바람직하다).

[69] 기울기의 변화가 없다면 곰바로 이미지에서 타격영역을 설정하여 분리하면 되고(S13), 기울기의 변화가 있다면, 스윙플레이트의 변화 각도에 따라 변경된
기준포인트의 좌표값을 추출함으로써(S12) 설정된 타격영역에 대한 좌표를 산출하여 이미지에서 타격영역을 설정 및 분리할 수 있다(S13).

[70] 분리된 타격영역 이미지는 전처리 과정을 거쳐(S14) 별 주보가 추출된다(S15).

[71] 그리고 앞서 설명한 바와 같이 추출된 별 후보와 별 템플릿을 서로 비교하여 유사도를 추출하고(S16), 유사도가 기준값 이상으로 나오는 경우 그 별 후보를 별로서 인식하게 됨으로써(S17) 별 찾기가 완료될 수 있다.

[72] 한편, 도 7에 도시된 바와 같이 별 찾기가 완료되면(S20), 볼 레디 수단(82, 도 3 참조)은 이미지상에서 별이 어디에 위치하는지 알 수 있고, 미리 설정된 설정시간 동안 별이 정지상태에 있는지 여부를 판단할 수 있다(S21).

[73] 만약 상기 설정시간 내에 별이 움직이는 것이 감지되면, 도 6에 도시된 별을 찾는 과정이 다시 수행되고, 상기 설정시간 동안 별이 움직이지 않고 정지해 있는 것을 판단한 경우에는 볼 레디 상태가 된다(S22).

[74] 볼 레디 상태에서 볼 레디 수단으로 계속적으로 이미지를 검사하여 별에 변화가 있는지 여부를 판단한다. 즉 별이 움직이는 것을 없었으나 사용자가 골프 클럽으로 볼을 가리거나 사용자의 신체 일부가 별을 가리게 되는 별 가림이 발생할 수 있다. 볼 레디 수단은 별 가림이 발생하였는지 여부를 감지하여(S23), 별 가림이 발생하지 않는다면 레디 상태의 볼 위치 좌표를 저장하고(S25) 타격 준비를 완료한다.

[75] 만약 별 가림이 발생한 경우에는 현재 볼 위치가 마지막 볼 레디 위치와 동일한지 여부를 판단하여(즉 현재 볼의 좌표와 마지막 볼 레디 상태에서의 볼의 좌표가 동일한지 여부를 판단하여), 동일하다면 현재 볼 레디 상태의 볼 위치 좌표를 저장하고(S25) 타격 준비를 완료하며, 동일하지 않다면 도 6에 도시된 볼 찾기 과정부터 다시 진행하게 된다.

[76] 상기한 바와 같이 별 감지 수단에 의한 별의 감지 및 볼 레디 수단에 의한 타격 준비가 완료된 후에는, 도 8 및 도 9에 도시된 바와 같이 타격 감지 수단(83, 도 3 참조)에 의한 타격 감지가 진행된다.

[77] 먼저 도 9에 도시된 타격 감지 플로우를 설명하면서 도 8에 도시된 사항에 관하여 설명하기로 한다.

[78] 상기한 바와 같이 타격 준비가 완료되면(S30), 타격 감지 수단(83, 도 3 참조)의 관심영역 설정수단(83a)에 의해 저장된 볼의 위치 좌표를 중심으로 관심 영역이 설정된다(S31).

[79] 즉 도 8의 (a)에 도시된 바와 같이 타격영역(220)에 대한 이미지에서 볼을 중심으로 소정 크기의 관심영역(R)이 설정되는데, 상기 관심영역(R)은 볼 하나 정도가 여유있게 포함될 수 있는 정도의 작은 크기로 설정되어 바람직하며, 사용자가 타격을 했는지 여부는 상기한 관심영역(R) 내에 볼이 존재하지 않는지 여부만을 조사하면 쉽게 감지할 수 있다.

[80] 따라서 도 8의 (a)에 도시된 바와 같은 상태에서 도 8의 (b)에 도시된 바와 같은 상태로 관심영역(R) 내에 볼이 존재하지 않게 된 것을 감지함으로써 타격을
감지할 수 있다.

[81] 즉 관심영역 체크수단(83b, 도 3 참조)은 관심영역(R) 내의 이미지와 하프 템플릿(242, 도 5의 (d) 참조)을 비교하여 유사도를 추출함으로써 관심영역(R) 내에 불이 존재하는지 존재하지 않는지 알 수 있다(S32).

[82] 여기서 상기 관심영역(R) 내의 이미지를 볼 템플릿(241)과 비교할 수도 있고 하프 템플릿(242)과 비교할 수도 있는데, 볼 템플릿(241) 보다는 하프 템플릿(242)을 통해 유사도를 계산하는 것이 더 정확할 수 있다. 왜냐하면 사용자가 볼을 탐색하는 경우 골프 칼럼의 헤드가 볼과 접촉되는 상태이므로, 이에 대한 이미지에서는 볼 부분과 클립 헤드 부분이 약간 겹치도록 나타나기 때문에 볼 템플릿(241)을 그대로 적용하면 유사도에 대한 정확한 값이 계산되지 않을 수 있어, 이러한 경우에는 하프 템플릿(242)을 통해 유사도를 계산함으로써 정확한 값을 산출할 수 있다.

[83] 도 8의 (b)에 도시된 이미지에서 관심영역(R) 내에 존재하는 객체는 하프 템플릿과 완전히 다르기 때문에 유사도가 매우 낮게 나타날 것이다. 즉 상기 S32 과정에서 추출된 유사도가 기준값 미만인 경우에는 이를 부이라고 할 수 없으므로 관심영역 내에는 불이 존재하지 않는 것으로 판단할 수 있고 이는 곤 탐색이 이루어졌음을 의미한다(S34).

[84] 상기한 바와 같이 탐색이 감지되면, 탐색 감지 수단은 감지된 시점 이전에 입력된 복수 프레이밍의 이미지를 조사하여 볼이 움직이기 시작한 정확한 시점을 파악하고(S35), 볼이 움직이기 시작한 시점의 이미지 프레이임을 트리거 프레이임(Trigger Frame)으로 지정한다(S36).

[85] 그리고 상기 트리거 프레이임을 기준으로 이전이 복수 프레이임의 이미지를 저장하였다가(S37), 이미지 처리부(90, 도 3 참조)로 전송하여 이미지 처리가 이루어지도록 함으로써 이동하는 볼의 물리적 특성(여기서 트리거 프레이임을 기준으로 그 이전의 이미지들을 분석하는 것은 주로 골프 클럽 헤드의 운동 패턴을 분석하여 볼의 스피드를 유추하기 위한 것이다)을 추출할 수 있도록 한다.

[86] 그리고 셋 디텍터(80, 도 3 참조)의 비파링 수단(84, 도 3 참조)은 트리거 프레이임의 이미지 및 그 이후의 복수 프레이임의 이미지를 순차적으로 입력하여 저장하면서 실시간으로 이미지 처리부(90, 도 3 참조)로 전송하여 이미지 처리가 이루어지도록 함으로써 이동하는 볼의 물리적 특성(여기서 트리거 프레이임 및 그 이후의 이미지를 분석하는 것은 주로 볼의 속도, 방향, 높이각 등을 산출하기 위한 것이다)을 추출할 수 있도록 한다.

발명의 실시를 위한 형태

[87] 발명의 실시를 위한 최선의 형태 항목에서 구체적으로 기재하고 있다.

산업상 이용가능성

[88] 본 발명에 따른 가상 골프 시뮬레이션 장치와, 이에 이용되는 센싱장치 및 센싱방법은 가상 현실 기반의 골프 시뮬레이션이 이루어지도록 함으로써
사용자가 가상의 골프 경기를 즐길 수 있도록 할 수 있는 골프 게임이나 소위 스크린 골프 산업 분야 등에 이용 가능하다.
청구범위

[청구항 1]
가상 골프 심볼레이션 장치에 이용되는 센싱장치에 있어서,
타격이 이루어지는 일정 환경 범위에 대한 이미지를 연속적으로
취득하는 적어도 하나의 센서부;
상기 센서부로부터 이미지를 입수하여 저장하는 그래버;
상기 그래버로부터 전송되는 이미지를 전달받아 처리함으로써
타격 준비 완료 여부 및 사용자에 의한 타격이 이루어졌는지
여부를 감지하는 삼디텍터; 및
상기 삼디텍터에 의해 타격이 감지되는 경우, 그에 대한 이미지를
처리함으로써 이동하는 볼의 물리적 특성 정보를 추출하는 이미지
처리부;
를 포함하는 센싱장치.

[청구항 2]
제1항에 있어서, 상기 삼디텍터는,
상기 그레버로부터 전달받은 이미지로부터 볼을 감지하는 볼 감지
수단과,
상기 볼 감지 수단에 의해 감지된 볼이 미리 설정된 조건을
만족시키는지 여부를 감지함으로써 타격 준비가 완료되었는지
여부를 결정하는 볼 레디 수단을 포함하는 것을 특별으로 하는
센싱장치.

[청구항 3]
제1항에 있어서, 상기 삼디텍터는,
상기 그레버로부터 전달받은 이미지로부터 볼을 감지하는 볼 감지
수단과,
상기 볼 감지 수단에 의해 감지된 볼이 이동정하는지 여부를
판단함으로써 사용자에 의해 타격이 이루어졌는지 여부를
결정하는 타격 감지 수단을 더 포함하는 것을 특별으로 하는
센싱장치.

[청구항 4]
제1항에 있어서, 상기 삼디텍터는,
사용자에 의해 타격이 감지되는 경우, 사용자에 의해 볼이
타격되는 것에 대한 복수 프레임의 이미지를 저장하고 상기
이미지 처리부로 전송하는 비퍼링 수단을 포함하는 것을 특별으로
하는 센싱장치.

[청구항 5]
제2항에 있어서, 상기 볼 감지 수단은,
상기 그레버로부터 전달받은 이미지에서 사용자에 의해 타격이
이루어지는 소정 크기의 타격 영역을 설정하는 타격 영역 설정
수단과,
상기 설정된 타격 영역 내에서 볼 후보를 추출하고 그로부터 볼을
찾아내도록 하는 볼 인식 수단을 포함하는 것을 특별으로 하는
센싱장치.
[청구항 6] 제5항에 있어서, 상기 볼 인식 수단은, 볼에 대한 기준 이미지로 미리 설정되어 저장되는 볼 탭플릿과 상기 볼 후보를 비교하여 유사도를 산출함으로써 미리 설정된 기준값 이상인 유사도를 갖는 볼 후보를 블록으로 인식하도록 구성되는 것을 특징으로 하는 센싱장치.

[청구항 7] 제5항에 있어서, 상기 볼 인식 수단은, 볼의 일부분에 대한 이미지로서 기준 이미지로 미리 설정되어 저장되는 하프 탭플릿과 상기 볼 후보의 일부분을 비교하여 유사도를 산출함으로써 미리 설정된 기준값 이상인 유사도를 갖는 볼 후보를 블록으로 인식하도록 구성되는 것을 특징으로 하는 센싱장치.

[청구항 8] 제3항에 있어서, 상기 탐색 장치 수단은, 상기 볼 감지 수단에 의해 감지된 볼의 좌표를 중심으로 미리 설정된 크기의 영역을 관심 영역으로서 설정하는 관심 영역 설정 수단과, 상기 관심 영역 내에 상기 감지된 볼이 존재하는지 여부를 판단함으로써 볼에 대한 탐색이 이루어졌는지 여부를 결정하는 관심 영역 체크 수단을 포함하는 것을 특징으로 하는 센싱장치.

[청구항 9] 제8항에 있어서, 상기 관심 영역 체크 수단은, 볼의 일부분에 대한 이미지로서 기준 이미지로 미리 설정되어 저장되는 하프 탭플릿과 상기 관심 영역 내에 존재하는 이미지를 비교하여 유사도를 산출하여 미리 설정된 기준값 보다 낮은 유사도가 산출되는 경우를 탐색이 이루어진 경우로서 판단하도록 구성되는 것을 특징으로 하는 센싱장치.

[청구항 10] 탐색이 이루어지는 일정 환경 범위에 대한 이미지를 연속적으로 취득하는 카메라 유닛; 및 상기 카메라 유닛으로부터 이미지를 입수하여 저장하는 그래비와, 상기 그래비로부터 전송되는 이미지를 전달받아 처리함으로써 탐색 준비 완료 여부 및 사용자에 의한 탐색이 이루어졌는지 여부를 감지하는 시스템, 상기 시스템에서의 탐색이 감지되는 경우, 그에 대한 이미지를 처리함으로써 이동하는 볼의 물리적 특성 정보를 추출하는 이미지 처리부를 포함하는 센싱처리유닛을 포함하는 센싱장치와, 상기 센싱처리유닛에서 추출된 정보에 따라 볼의 궤적에 대한 시뮬레이션 영상을 구현하는 영상구현유닛;을 포함하는 가상 골프 시뮬레이션 장치.

[청구항 11] 가상 골프 시뮬레이션을 위한 센싱방법에 있어서,
타격이 이루어지는 일정 촬영 범위에 대한 이미지를 연속적으로 취득하는 단계;
상기 연속적으로 취득하는 이미지를 전달받아 저장하는 단계;
상기 저장되는 이미지를 전달받아 이미지 처리를 함으로써 타격 준비 완료 여부를 감지하는 단계;
상기 타격 준비가 완료된 경우, 사용자에 의한 타격이 이루어졌는지 여부를 감지하는 단계; 및
상기 타격이 감지된 경우, 그에 대한 이미지를 처리함으로써 이동하는 별의 물리적 특성 정보를 추출하는 단계;
를 포함하는 센싱방법.

[청구항 12]
제11항에 있어서, 상기 타격 준비 완료 여부를 감지하는 단계는, 상기 전달받은 이미지에서 사용자에 의한 타격이 이루어지는 소정 크기의 타격 영역을 설정하는 단계와, 상기 설정된 타격 영역 내에서 별을 찾아내어 별로서 인식하는 단계와,
상기 별로서 인식된 부분이 미리 설정된 조건을 만족시키는지 여부를 감지함으로써 타격 준비가 완료되었는지 여부를 결정하는 단계를 포함하는 것을 특징으로 하는 센싱방법.

[청구항 13]
제12항에 있어서, 상기 별로서 인식하는 단계는,
상기 설정된 타격 영역 내에서 별의 기하학적 특성에 기초하여 별 후보를 추출하는 단계와,
별에 대한 이미지로서 기준 이미지로 미리 설정되어 저장되는 별 템플릿과 상기 별 후보를 비교하여 유사도를 산출하는 단계와, 미리 설정된 기준값 이상인 유사도를 갖는 별 후보를 별로서 인식하는 단계를 포함하는 것을 특징으로 하는 센싱방법.

[청구항 14]
제11항에 있어서, 상기 타격이 이루어졌는지 여부를 감지하는 단계는,
상기 전달받은 이미지에서 별이 위치하는 좌표로 중심으로 미리 설정된 크기의 영역을 관리 영역으로서 설정하는 단계와, 상기 관리 영역 내에 별이 존재하는지 여부를 판단함으로써 별에 대한 타격가 이루어졌는지 여부를 결정하는 단계를 포함하는 것을 특징으로 하는 센싱방법.

[청구항 15]
제14항에 있어서, 상기 관리 영역 내에 별이 존재하는지 여부를 판단하는 단계는,
별의 일부분에 대한 이미지로서 기준 이미지로 미리 설정되어 저장되는 하프 템플릿과 상기 관리 영역 내에 존재하는 이미지를 비교하여 유사도를 산출하는 단계와, 상기 산출된 유사도가 미리 설정된 기준값보다 낮은 값을 갖는지
여부를 결정하여 기준값 보다 낮은 유사도인 경우 타격이 이루어진 것으로 판단하는 단계를 포함하는 것을 특징으로 하는 센싱방법.

[청구항 16] 제14항에 있어서, 상기 이동하는 불의 물리적 특성 정보를 추출하는 단계는,
상기 관심 영역 내에 불이 존재하지 않는 경우, 이전의 복수 프레임의 이미지를 조사함으로써 불이 움직이기 시작한 시점을 판단하는 단계와,
불이 움직이기 시작한 시점의 이미지 프레임을 트리거 프레임으로 지정하는 단계와,
상기 트리거 프레임 및 그 이전의 복수 프레임의 이미지와 그 이후의 복수 프레임의 이미지를 저장하고 이미지 처리가 이루어지도록 하는 단계를 포함하는 것을 특징으로 하는 센싱방법.

[청구항 17] 가상 골프 시뮬레이션을 위한 센싱방법에 있어서,
불에 대한 기준 이미지로 미리 설정되는 불 템플릿을 저장하는 단계;
타격이 이루어지는 일정 촬영 범위에 대한 이미지를 연속적으로 취득하는 단계;
상기 취득된 이미지에서 불 후보를 추출하고, 상기 불 템플릿을 상기 불 후보와 비교함으로써 불을 찾아내어 인식하는 단계;
상기 인식된 불이 미리 설정된 조건을 만족시키는지 여부를 판단함으로써 타격 준비 완료 여부를 감지하는 단계;
상기 타격 준비가 완료된 경우, 상기 취득된 이미지에서 불이 위치하는 좌표를 중심으로 미리 설정된 크기의 영역을 관심 영역으로 설정하고 상기 관심 영역 내의 이미지와 상기 불 템플릿의 일치도를 체계적으로 점차해당하는 부분으로서 설정되는 하프 템플릿을 비교하여 상기 관심 영역 내에 불이 존재하는지 여부를 판단함으로써 타격이 이루어졌는지 여부를 감지하는 단계; 및 상기 타격이 감지된 경우, 그에 대한 이미지를 처리함으로써 이동하는 불의 물리적 특성 정보를 추출하는 단계;
을 포함하는 센싱방법.
[Fig. 6]

1. [블 찾기 시작]

2. S10: 이미지 엽수

3. S11: 스윙플레이트 기울기가 변화?
 - NO
 - YES

4. S12: 스윙플레이트 변화 갯도에 따라 변경된 기울포인트의 과표값 추출

5. S13: 이미지에서 타격 영역 설정 및 분리

6. S14: 타격 영역 이미지에 대한 전처리

7. S15: 볼 후보 추출

8. S16: 볼 탭플랫과 볼 후보를 비교하여 유사도 추출

9. S17: 기준값 이상인 유사도를 갖는 볼 후보를 분류하기 전처리

10. [블 찾기 완료]
[Fig. 7]

타겟 준비 긴급 시동

S20: 목 꺼기

S21: 스윙플레이트 기울기 변화?
 NO
 S22: 불 레디
 NO
 불 가열?
 YES
 S24: 불 위치가 마지막 불 레디 위치와 동일한가?
 NO
 S25: 레디 상태의 불 위치 좌표 저장

[Fig. 8]

(a)

R

(b)

R

z-220
[Fig. 9]

타격 감지 시작

S30 → 타격 준비 완료

S31 → 본의 위치 좌표를 중심으로 관심 영역 설정

S32 → 관심영역 내의 이미지의 하프 템플릿을 비교하여 유사도 추출

S33 → 유사도가 기준값 미만? NO

S34 → 타격 감지 YES

S35 → 이전의 복수 프레임의 이미지 조사하여 불이 움직이기 시작한 정확한 시점을 탐색

S36 → 불이 움직이기 시작한 시점의 이전 이미지를 프레임으로 저장

S37 → 드리기 프레임을 기준으로 이전의 복수 프레임의 이미지를 저장

타격 감지 완료