Title: BATTERY ASSEMBLY HAVING A HEAT-DISSIPATING AND HEAT-EMITTING FUNCTION

Abstract: According to one embodiment of the present invention, a battery assembly comprises: a battery module comprising a plurality of unit batteries; an exterior case for housing the battery module in an internal space; and a heat-dissipating film which is inserted between the plurality of unit batteries and fitted tightly against each of the plurality of unit batteries, and is attached to the inside surface of the exterior case; and the heat-dissipating film comprises: first and second heat-dissipating layers which are formed of a thermally conductive material and discharge the heat of the unit batteries; and an adhesive layer which is formed between the first and second heat-dissipating layers and adheres the first and second heat-dissipating layers.

요약: 본 발명의 일 실시에 따른 전지 조립체는 복수의 단위 전지를 포함하는 전지 모듈: 상기 전지 모듈을 내부 공간에 수납하는 외장 케이스; 및 상기 복수의 단위 전지 사이에 삽입되어 상기 복수의 단위 전지 각각과 밀착되고, 상기 외장 케이스의 내측면에 부착되는 방열 펄프로 포함하고, 상기 방열 펄프는 열전도성 재질로 형성되어 상기 단위 전지의 열을 방출하는 제 1 및 제 2 방열층; 및 상기 제 1 및 제 2 방열층 사이에 형성되어 상기 제 1 및 제 2 방열층을 접착시키는 접착층을 포함한다.

공개: — 국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개한 (규칙 48.2(g))
명세서

발명의 명칭: 방열과 발열 기능을 가지는 전지 조립체

기술분야

본 발명의 실시예들은 방열과 발열 기능을 가지는 전지 조립체에 관한 것이다.

배경기술

기존 하이브리드 자동차의 경우 열선 히터(Heater)나 세라믹 계열의 PTC(Positive Temperature Coefficient) 히터를 별도로 장착하여 필요에 따라 히터에 의해 가열된 공기를 팬을 통해 공급시켜 줄으로 공기(Air)를 가열시켜 배터리 효율을 높여주는 원리로 되어 있다.

기존 히터의 경우는 초기 도립전류가 높아 히터가 필요로 하는 전류의 2배 이상이 소모되고, 또한 공기를 가열시켜 공급하기 때문에 초기 과도한 전류의 소모와 발열에 필요한 전력 소모로 인해 배터리의 충전량이 크게 감소되는 단점이 있다. 또한, 순수한 전기 자동차의 경우 배터리의 충전량이 자동차 효율에 직접적인 영향을 주므로 기존 히터는 전기 자동차에 적용하기 불리하다.

이에, 본 발명의 일 실시예에서는 탄소나노튜브(CNT)를 면상으로 코팅(Coating)시킨 면상 발열체를 이용하여 히터를 구현함으로써, 직접적인 전도열에 의해 끌일하고 보다 빠르게 발열시켜 배터리의 초기 효율을 높여줄 수 있는 전지 조립체를 제안하고자 한다.

발명의 상세한 설명

기술적 과제

본 발명의 일 실시예에는 전지 모듈 및/또는 외장 케이스에 탄소나노튜브 발열체(금속 도핑 탄소나노튜브)를 포함하는 방열 및 발열 핵심을 코팅(Coating)하고, 상기 코팅된 탄소나노튜브 발열체의 전기적 특성과 열전도 특성을 극대화시킴으로써, 방열 기능과 발열 기능을 동시에 부여할 수 있는, 방열과 발열 기능을 가지는 전지 조립체를 제공한다.

본 발명의 일 실시예에는 거울면 자동차 운행 초기에 외부의 온도에 의해 달여진 배터리 효율을 올려줄 수 있을 뿐만 아니라, 운행하는 중에 발생되는 배터리의 열을 보다 빠르게 식혀줄 수 있는, 방열과 발열 기능을 가지는 전지 조립체를 제공한다.

본 발명의 일 실시예에는 온도 센서 및 컨트롤러를 통해 전지 모듈 및/또는 외장 케이스의 발열 온도를 조절함으로써, 전지 온도를 최상의 조건(0 ~ 30도)으로 유지시켜 줄 수 있으며, 이를 통해 전지 발열에 의한 화재를 방지할 수 있는, 방열과 발열 기능을 가지는 전지 조립체를 제공한다.

본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당연히에게 명확하게 이해될 수 있을 것이다.
파세 해결 수단

본 발명의 일 실시예에 따른 방열필름은 열전도성 재질로 형성되어 상기 단위 전지의 열을 방출하는 제1 및 제2 방열층; 및 상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함한다.

본 발명의 일 실시예에 따른 방열필름은 상기 제1 방열층과 상기 접착층 사이에 형성되는 방열 필름을 더 포함할 수 있다.

상기 방열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기계층; 및 상기 기계층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기계층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접연시키는 절연층을 포함할 수 있다.

상기 접연층은 아크릴계, 핫멜트(Hot Melt)제, 실리콘계 또는 고무계 중 어느 하나의 접착제로 형성된 얇은 접착 필름일 수 있다.

상기 기계층의 전극막은 상기 단위 전지 각각의 에노드 전극 및 캐노드 전극에 전기적으로 연결되어, 상기 탄소나노튜브 발열체에 발열 기능을 부여할 수 있다.

상기 기계층은 이축연성폴리에스테르(BOPET), 폴리에틸렌테프탈레이트(PET), 연산폴리스테르(OPS), 연산폴리프로필렌(OPP), PEN(폴리에틸렌나프탈레이트), PES(폴리에테르에스콘), PPS(폴리페닐성파이드), PI(폴리아이미드), PEI (폴리에테르이미드) 중에서 선택되는 적어도 하나의 재질로 형성될 수 있다.

상기 접착층은 아크릴계, 핫멜트(Hot Melt)제, 실리콘계 또는 고무계 중 어느 하나로 형성된 얇은 테이프일 수 있다.

본 발명의 일 실시예에 따른 전지 조립체는 복수의 단위 전지를 포함하는 전지 모듈; 상기 전지 모듈은 내부 공간에서 수납하는 외장 케이스; 및 상기 복수의 단위 전지 사이에 삽입되어 상기 복수의 단위 전지 각각과 밀착되고, 상기 외장 케이스의 내측면에 부착되는 방열 필름을 포함하고, 상기 방열 필름은 열전도성 재질로 형성되어 상기 단위 전지의 열을 방출하는 제1 및 제2 방열층; 및 상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함한다.

본 발명의 일 실시예에 따른 전지 조립체는 상기 제1 방열층과 상기 접착층 사이에 형성되는 방열 필름을 더 포함할 수 있다.

상기 방열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기계층; 및 상기 기계층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기계층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접연시키는 절연층을 포함할 수 있다.

본 발명의 일 실시예에 따른 전지 조립체는 상기 복수의 단위 전지 중 적어도
하나에 설치되는 온도 센서; 및 상기 온도 센서의 온도 검출 결과에 기초하여 상기 기계축의 전극막으로의 전원 공급량을 제어하는 컨트롤러를 더 포함할 수 있다.

[21] 본 발명의 일 실시예에 따른 외장 케이스는 그 내측면에 상기 단위 전지로부터 발생되는 열을 방출하는 방열 필름이 부착되고, 상기 방열 필름은 열전도성 제질로 형성되어 상기 단위 전지로부터 발생되는 열을 방출하는 제1 및 제2 방열층; 및 상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함한다.

[22] 본 발명의 일 실시예에 따른 외장 케이스는 상기 제1 방열층과 상기 접착층 사이에 형성되는 방열 필름을 더 포함할 수 있다.

[23] 상기 방열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기계축; 및 상기 기계축의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기계축을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 절연시키는 절연층을 포함할 수 있다.

[24] 본 발명의 일 실시예에 따른 외장 케이스는 상기 외장 케이스의 내측면 중 적어도 한 곳에 설치되는 온도 센서; 및 상기 온도 센서의 온도 검출 결과에 기초하여 상기 기계축의 전극막으로의 전원 공급량을 제어하는 컨트롤러를 더 포함할 수 있다.


[26] 본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 적용되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 동상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.

발명의 효과

[27] 본 발명의 일 실시예에 따르면, 전지 모듈 및/또는 외장 케이스에 탄소나노튜브 발열체를 포함하는 방열 및 발열 필름을 코팅하여 그 전기적 특성과 열전도 특성을 극대화시키므로써, 방열 기능과 발열 기능을 동시에 부여할 수 있다.

[28] 본 발명의 일 실시예에 따르면, 겨울철 자동차 운행 초기에 외부의 온도에 의해 떨어진 배터리 효율을 올려줄 수 있을 뿐만 아니라, 운행하는 중에 발생되는 배터리의 열을 보다 빨리 식히줄 수 있다.

[29] 본 발명의 일 실시예에 따르면, 온도 센서 및 컨트롤러를 통해 전지 모듈 및/또는 외장 케이스의 발열 온도를 조절함으로써, 전지 온도를 최상의 조건(0 ~
도면의 간단한 설명

30도)으로 유지시켜 줄 수 있으며, 이를 통해 전지 발열에 의한 화재를 방지할 수 있다.

도면의 간단한 설명


[31] 도 2는 본 발명의 일 실험이에 따른 전지 조립체의 분리 사시도이다.

[32] 도 3은 본 발명의 일 실험이에 따른 전지 조립체의 결합 사시도이다.

[33] 도 4는 도 2의 전지 모듈 및 외장 케이스에 형성되는 방열 및 발열 퍼플의 작용

구조를 도시한 도면이다.

[34] 도 5는 온도 센서 및 컨트롤러를 통해 외장 케이스의 발열 온도를 단독 제어하는 일례를 도시한 도면이다.

[35] 도 6은 온도 센서 및 컨트롤러를 통해 전지 모듈 및 외장 케이스를 드릴 제어하는 일례를 도시한 도면이다.

발명의 실시를 위한 형태

[36] 도 1은 전기자동차에 탑재된 배터리 모듈의 온도별 방전 효율에 관한 실험 결과를 나타낸 도면이다.

[37] 도 1을 참고하면, 방전(Discharge)시 영하 20도 이하와 영상 40도 이상에서 배터리 효율이 점점 떨어지는 것을 알 수 있다.

[38] 또한, 방전 효율은 도 1의 표에 나와 있는 바와 같이, 1200Wh 제품의 경우 영하

10도일 때 배터리 방전효율은 88%, 영하 20도 일 때, 배터리 방전효율은 66%임을 알 수 있다. 따라서, 배터리가 최적의 조건을 유지하기 위해서는 0도 ~ 30도 사이의 온도 조건하에 위치하는 것이 바람직하다.

[39] 이에, 본 발명의 일 실험이에서는 겨울철 자동차 운행 초기에 외부의 온도에 의해 떨어진 배터리 효율을 올려줄 수 있을 뿐만 아니라, 운행하는 중에 발생되는 배터리의 열을 보다 빠르게 식혀줄 수 있는 전지 모듈, 외장 케이스 및 상기 전지 모듈 및 외장 케이스를 포함하는 전지 조립체를 제공하고자 한다.

[40] 이를 위해, 본 발명의 일 실험이에서는 전지 모듈 및 외장 케이스에

탄소나노튜브(CNT)를 이용한 패턴으로 코팅(Coating)하고, 상기 코팅된

탄소나노튜브의 전기적 특성과 열전도 특성을 극대화시킴으로써, 방열 기능과

발열 기능을 동시에 부여할 수 있다.

[41] 본 발명의 일 실험이에서, 방열 기능과 발열 기능을 하는 주 소재로

탄소나노튜브를 사용하였지만, 순수한 탄소나노튜브만을 이용하여 방열과 발열

특성을 주는 것은 어렵다.

[42] 따라서, 본 발명의 일 실험이에서는 탄소나노튜브에 금속을

도핑(Doping)하여(Metal Doped CNT) 방열과 발열 특성을 극대화할 수 있다.

상기 금속이 도핑된 탄소나노튜브를 전지 모듈이나 외장 케이스에 코팅하는

방법에는 패드 프린팅(Pad Printing), 스프레이 코팅(Spray Coating), 전사 필름을
이용한 프린팅 등이 있다. 본 발명의 일시에서는 이러한 코팅 방법을 이용하여 3차원 굽근 형상에 균일한 전도층(Metal Doped CNT)을 형성할 수 있다.

이렇게 형성된 전도층은 평상시에는 전지 모듈의 열을 방출하는 방열 기능을 제공하고, 필요에 따라 전기에너지를 공급 받아 열을 발산(방열)할 수 있다.

본 발명의 일시에는 전지 모듈이나 외장 케이스 외에 평평한 전지 간에 방열과 방열 기능을 동시에 부여하는 CNT 코팅 필름을 배치하고, 상기 CNT 코팅 필름을 전지 모듈이나 외장 케이스와 연결하여 전지의 효율을 극대화할 수 있도록 한다.

본 발명의 일시에는 과도한 방열을 주게 될 경우 전자가 폭발할 수 있기 때문에, 컨트롤러(Controllers)를 통해 전지의 효율을 유지시켜주도록써 전지 방열에 의한 화재를 방지할 수 있으며, 이를 통해 사용자는 화재 안전성을 확보할 수 있다.

본 발명의 일시에는 따르면, 초기 허터를 작동시킬 때 도립전류가 발생하지 않아 과도한 전류가 발생되지 않도록 함으로써 전지 간에 생기는 발열과 전지 모듈 및 외장 케이스에 형성되는 방열 및 방열 필름의 적층 구조를 도시한 도만이다.

이와 같은 본 발명의 일시에는 메터리 외장 케이스로 주로 사용되는 스테인리스 스틸(SUS: Stainless Used Steel)이나 알루미늄(Al)뿐만 아니라, 폴리에틸렌필름(PES), 에포xy(Epoxy), 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리아이미드(PA) 등을 유리 섬유(Glass Fiber)나 펌케이 희소섬유(Pitch based Carbon Fiber), 폴리아크릴릴네트필름 희소섬유(PAN based Carbon Fiber), 펌케이 희소섬유(Pitch based Carbon Chopped Fiber), 펌케이 밀드필름(Pitch based Milled Fiber)에 함침 또는 프리프레그(Prepreg)시켜 제작한 고강도 플라스틱 케이스에도 코팅 적용하여 방열과 방열 특성을 줄 수 있다.

이하에서는 전기로 도만을 참조하여 본 발명의 일시예를 상세히 설명하기로 한다.

도 2는 본 발명의 일시예에 따른 전지 조립체의 분리 사시도이고, 도 3은 본 발명의 일시예에 따른 전지 조립체의 결합 사시도이다. 그리고, 도 4는 도 2의 전지 모듈 및 외장 케이스에 형성되는 방열 및 방열 필름의 적층 구조를 도시한 도만이다.

먼저, 도 2 및 도 3을 참조하면, 본 발명의 일시예에 따른 전지 조립체(200)는 전지 모듈, 외장 케이스(220), 그리고 방열 및 방열 필름(230)을 포함할 수 있다.

상기 전지 모듈은 복수의 단위 전지(210)로 구성된다. 상기 복수의 단위 전지(210) 각각은 양전극인 애노드 전극(212)과 음전극인 캐소드 전극(214)을 포함한다. 상기 복수의 단위 전지(210) 사이에는 상기 방열 및 방열 필름(230)이 삽입되어 밀착된 형태로 형성될 수 있다. 상기 방열 및 방열 필름(230)에 대한 자세한 설명은 도 4를 참조하여 후술하기로 한다.

상기 외장 케이스(220)는 상기 복수의 단위 전지(210)를 내부 공간에 수납한다. 즉, 상기 외장 케이스(220)는 상기 복수의 단위 전지(210)의 덮개 역할을 한다.
이러한 외장 케이스(220)의 내측면에도 상기 방열 및 발열 필름(230)이 부착될 수 있다.

본 실시예에서는 상기 방열 및 발열 필름(230)이 상기 복수의 단위 전지(210) 사이에 형성됨과 동시에, 상기 외장 케이스(220)의 내측면에도 형성되는 것을 예로 들어 설명하고 있다. 하지만, 이에 한정되지 않고 상기 방열 및 발열 필름(230)은 상기 복수의 단위 전지(210) 사이에만 다수 개가 형성될 수도 있고, 또 달리 상기 외장 케이스(220)의 내측면에만 형성될 수도 있다.

상기 방열 및 발열 필름(230)은 상기 복수의 단위 전지(210)로부터 발생되는 열을 외부로 방출하는 방열 필름과, 전원을 공급 받아 열을 발생하는 발열 필름을 포함한다.

이하에서는 도 4를 참조하여 상기 방열 및 발열 필름(230)에 대해 보다 구체적으로 설명하기로 한다. 참고로, 도 4는 도 1의 방열 및 발열 필름(230)의 적층 구조를 설명하기 위해 도시한 도면이다.

도 4에 도시된 바와 같이, 상기 방열 및 발열 필름(230)은 천1 방열층(410), 절연층(420), 전극막(430), 탄소나노튜브 발열체(440), 기체층(450), 접착층(460), 및 천2 방열층(470)을 포함하여 구성될 수 있다.

상기 천1 방열층(410)은 상기 단위 전지(210) 각각의 표면 위에 형성되고, 상기 외장 케이스(220)의 내측면 위에도 형성된다. 이러한 천1 방열층(410)은 알루미늄(Al), 구리(Cu) 등과 같은 열전도성 재질로 형성되어 상기 단위 전지로부터 발생되는 열을 외부로 방출할 수 있다.

상기 절연층(420)은 상기 천1 방열층(410) 위에 형성된다. 상기 절연층(420)은 상기 천1 방열층(410)과 상기 전극막(430) 사이에 배치되어 상기 천1 방열층(410)과 상기 전극막(430)을 절연 및 접착시키는 역할을 한다.

 이를 위해, 상기 절연층(420)은 아크릴계, 핫멜트(Hot Melt)계, 실리콘계 또는 고무계 등의 접착제로 형성된 양면 접착 필름으로 구현될 수 있다.

상기 전극막(430)은 상기 절연층(420) 위에 형성된다. 상기 전극막(430)은 앞서 설명한 바와 같이 상기 절연층(420)에 의해 상기 절연층(420)과 접착된다. 이러한 전극막(430)은 은(Ag), 구리(Cu), 금(Au), 알루미늄(Al) 등과 같은 전기 전도성 재질로 형성될 수 있다.

이러한 전극막(430)은 상기 단위 전지(210) 각각에 형성된 에너드 전극(양전극) 및 케소드 전극(음전극)에 전기적으로 연결되어, 상기 탄소나노튜브 발열체(440)에 발열 기능을 부여할 수 있다.

상기 탄소나노튜브 발열체(440)는 상기 전극막(430) 위에 형성된다. 상기 탄소나노튜브 발열체(440)는 탄소나노튜브 표면에 금속을 도핑 처리하여 형성될 수 있다.

탄소나노튜브(CNT)는 전기적 특성이 우수하고 열전도 특성이 우수한 것으로 알려져 있지만, 코팅용으로 페이스트(Paste)를 이용하여 사용할 경우 탄소나노튜브이 분산성 확보와 3차원 구조된 제품에서 발생하는 접촉저항의 증가가
전기전도도를 떨어뜨리는 문제점이 있다.

따라서, 본 실험이에서는 상기 탄소나노튜브를 단독으로 사용하기 보다는 상기 탄소나노튜브 표면에 금속을 도포(Metal Doped CNT)시켜 전기전도성과 열전도성을 중대시키는 효과를 부여할 수 있다.

상기 탄소나노튜브에 금속을 도포한 경우, 금속에 의해 적외선(IR) 파장이 반사되고 방열 특성이 증가하는 효과가 있으므로, 상기 탄소나노튜브 발열체는 방열 코팅 소재로도 적합하다.

여기서, 상기 금속은 은(Ag), 구리(Cu), 니켈(Ni), 금(Au), 백금(Pt), 라듐(Pd) 종에서 선택되는 적도로 하나의 제조물과 포함할 수 있다.

상기 기계층(450)은 상기 탄소나노튜브 발열체(440) 위에 형성된다. 상기 기계층(450)은 이축연성폴리에스테르(BOPET), 폴리에틸렌테프탈레이트(PET), 연성폴리스티리(OPS), 연성폴리프로필렌(OPP), PEN(폴리에틸렌라프탈레이트), PES(폴리에테르슬론), PPS(폴리페닐엔실파이드), PI(폴리아미드), PEI(폴리에테르이미드) 중에서 선택되는 적도로 하나의 제조물과 형성될 수 있다.

상기 접착층(460)은 상기 기계층(450) 위에 형성된다. 상기 접착층(460)은 상기 기계층(450)과 상기 제1방열층(470)을 접착시키는 역할을 한다. 이를 위해, 상기 접착층(460)은 아크릴계, 핫멜트(Hot Melt)계, 실리콘계 또는 고무계 중 어느 하나로 형성된 양면 테이프로 구현될 수 있다.

상기 제2방열층(470)은 상기 접착층(460) 위에 형성된다. 상기 제2 방열층(470)은 상기 단위 전지로부터 방출되는 열을 외부로 방출하는 역할을 한다. 이를 위해, 상기 제2 방열층(470)은 알루미늄(Al), 구리(Cu) 등과 같은 열전도성 재질로 형성될 수 있다.

참고로, 상기 제1 및 제2방열층(410, 470)과 접착층(460)은 상기 방열 필름에 해당하고, 상기 접연층(420), 전극막(430), 탄소나노튜브 발열체(440) 및 기계층(450)은 상기 방열 필름에 해당한다.

이하에서는 상기 방열 및 발열 필름(230)을 제조하는 방법에 대해 설명한다.

먼저, 상기 기계층(450)의 일면에 상기 전극막(430)과 상기 탄소나노튜브 발열체(440)를 인쇄한다.

이어서, 상기 전극막(430) 아래에 상기 제1방열층(410)을 위치시키고, 그 사이에 상기 접연층(420)을 배치하여, 상기 전극막 및 탄소나노튜브 발열체(440)가 인쇄된 기계층(450)을 상기 제1방열층(410)과 접착시킨다.

이어서, 상기 기계층(450)의 타면에 상기 제2방열층(470)을 위치시키고, 그 사이에 상기 접착층(460)을 배치하여, 상기 제1방열층(410)과 접착된 기계층(450)을 상기 제2방열층(470)과 접착시킨다.

이러한 과정을 거쳐 상기 방열 및 발열 필름(230)을 제조할 수 있으며, 이렇게 제조된 방열 및 발열 필름(230)은 패드 프린팅, 스프레이 코팅, 전사 필름을 이용한 프린팅 등을 통해 상기 단위 전지(210)와 상기 외장 케이스(220)에 코팅될
수 있다.
[76] 한편, 본 발명의 일 실시예에 따른 전지 조립체(200)는 온도 센서(240) 및 컨트롤러(도 6의 640 참조)를 더 포함할 수 있다.
[77] 상기 온도 센서(240)는 상기 복수의 단위 전지(210) 중 적어도 하나에 설치되어 상기 단위 전지(210)의 온도를 감지한다. 본 실시예에서 상기 온도 센서(240)는 NTC(Negative Temperature Coefficient) 센서로 구현될 수 있다.
[78] 상기 컨트롤러는 상기 온도 센서(240)의 온도 검출 결과에 기초하여 상기 단락(430)으로의 전원 공급량을 제어한다. 이를써, 상기 컨트롤러는 상기 단위 전지(210)의 온도를 베타리의 최적 온도 조건인 0~30도 사이로 유지할 수 있다. 본 실시예에서 상기 컨트롤러는 자동차(특히 전기자동차)의 ECU(Electronic Control Unit) 컨트롤러로 구현될 수 있다.
[79] 이하에서는 도 5 및 도 6을 참조하여 온도 센서 및 컨트롤러를 통해 외장 케이스 또는 전지 모듈의 발열 온도를 제어하는 것에 대해 설명하기로 한다.
[80] 도 5는 온도 센서 및 컨트롤러를 통해 외장 케이스의 발열 온도를 단독 제어하는 일례를 도시한 도면이고, 도 6은 온도 센서 및 컨트롤러를 통해 전지 모듈 및 외장 케이스를 듀얼 제어하는 일례를 도시한 도면이다.
[81] 먼저, 도 5에 도시된 바와 같이, 외장 케이스(510)의 내측면에는 방열 및 발열 필름이 코팅되어 있고, 그 위에는 온도 센서인 NTC 센서(520)가 부착되어 있다. 상기 NTC 센서(520)는 상기 외장 케이스(510)의 발열 온도를 측정하여 그 결과 값을 ECU 컨트롤러(530)에 전달한다.
[82] 상기 ECU 컨트롤러(530)는 상기 온도값에 기초하여 베타리(540)의 방열 및 발열 필름으로의 전원 공급량을 조절함으로써, 상기 외장 케이스(510)의 온도를 적절한 상태로 유지할 수 있다.
[83] 다음으로, 도 6에 도시된 바와 같이, 전지 모듈(610)에는 방열 및 발열 필름이 코팅되어 있고, 그 위에는 온도 센서인 NTC 센서(620)가 부착되어 있다. 상기 NTC 센서(620)는 상기 전지 모듈(610)의 발열 온도를 측정하여 그 결과값을 ECU 컨트롤러(640)에 전달한다.
[84] 상기 ECU 컨트롤러(640)는 상기 온도값에 기초하여 베타리(650)의 전원 공급량을 조절함으로써, 상기 전지 모듈(610) 및 외장 케이스(630)에 삽입 또는 코팅된 방열 및 발열 필름으로의 전원 공급량을 제어할 수 있다. 이를써, 상기 ECU 컨트롤러(640)는 상기 전지 모듈(610) 및 외장 케이스(630)의 온도를 최상의 조건(0~30도)으로 유지할 수 있다.
[85] 이와 같이, 본 발명의 일 실시예에서는 전지 모듈 및/또는 외장 케이스에 탄소나노튜브 발열체(금속 도핑 탄소나노튜브)를 포함하는 방열 및 발열 필름을 코팅(englazing)하고, 상기 코팅된 탄소나노튜브 발열체의 전기적 특성과 열전도 특성을 극대화시킴으로써, 방열 기능과 발열 기능을 동시에 부여할 수 있다.
[86] 따라서, 본 발명의 일 실시예에 의하면, 겨울철 자동차 운행 초기에 외부의 온도에 의해 발이진 베타리 효율을 올려줄 수 있을 뿐만 아니라, 운행하는 중에
발생되는 배터리의 열을 보다 빠르게 식혀줄 수 있다. 또한, 본 발명의 일 실시에서는 온도 센서 및 컨트롤러를 통해 전지 모듈 및/또는 외장 케이스의 발열 온도를 조절함으로써, 그 온도를 최상의 조건(0 ~ 30도)으로 유지시켜 줄 수 있으며, 이를 통해 전지 발열에 의한 화재를 방지할 수 있다.

지급까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 같은한 것들에 의해 정해져야 한다.

실험 1. 방열판면에 의한 방열 효과 실험

실시예 1

이축 연속된 폴리에틸렌테프탈레이트(BOPET)를 기재층으로 하고 탄소나노튜브발열체와 Ag로 되어 있는 전극막을 인쇄하였다. 상기 탄소나노튜브발열체는 Ag를 탄소나노튜브 표면에 도핑처리하여 형성되었다. 이어서, 상기 전극막 아래에 제 1방열층을 위치시키고, 그 사이에 아크릴계 접착제로 형성된 절연층을 배치하여, 상기 전극막 및 탄소나노튜브 발열체가 인쇄된 기재층을 상기 제 1방열층과 접착시켰다.

실시예 2

이축 연속된 폴리에틸렌테프탈레이트(BOPET)를 기재층으로 하고 탄소나노튜브발열체를 인쇄하였다. 인쇄된 탄소나노튜브발열체에 Cu로 되어 있는 전극막을 인쇄하였다. 상기 탄소나노튜브발열체는 구리를 탄소나노튜브 표면에 도핑처리하여 형성되었다. 이어서, 상기 전극막 아래에 제 1방열층을 위치시키고, 그 사이에 아크릴계 접착제로 형성된 절연층을 배치하여, 상기 전극막 및 탄소나노튜브 발열체가 인쇄된 기재층을 상기 제 1방열층과 접착시켰다.

비교예 1

탄소나노튜브발열체를 포함하지 않는 것을 제외하고는 상기 실시예 1과 같이 제조하였다.

비교예 2

탄소나노튜브 표면에 Ag를 도핑시키지 않고, 탄소나노튜브를 단독으로 사용하는 것을 제외하고는 상기 실시예 1과 같이 제조하였다.
상기 실험 1, 2 및 비교에 1, 2의 방열필름에 의한 방열효과를 DC로 가열되는 평평한 Heater 위에 2mm 두께의 A5052 알루미늄 plate를 놓고, 제작된 시편을 고열전도 접착 수지(3.6W/mK)로 부착하여 일정 온도에 도달하게끔 가열시킨 후, 가열 Heater를 Off한 상태에서 시간 경과에 따라 시편의 표면 온도를 K-type Thermocouple로 측정하였다. 그 결과, 방열필름을 부착한 부분을 제외하고는 나머지 부분의 온도는 일정하고, 방열 필름을 부착한 부분은 방열 필름의 방열 효과에 따라 온도저하속도가 상이하게 나타났다.

이 때, 전술한 실험 1 및 실험 2, 비교에 1 및 비교에 2에 따른 방열필름의 온도 측정 결과를 하기의 표 1에 나타내었다.

<table>
<thead>
<tr>
<th>시간</th>
<th>실험에 1(℃)</th>
<th>실험에 2(℃)</th>
<th>비교에 1(℃)</th>
<th>비교에 2(℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>80.0</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>2</td>
<td>3분 경과 후</td>
<td>77.8</td>
<td>78.0</td>
<td>79.0</td>
</tr>
<tr>
<td>3</td>
<td>6분 경과 후</td>
<td>75.7</td>
<td>76.0</td>
<td>77.3</td>
</tr>
<tr>
<td>4</td>
<td>9분 경과 후</td>
<td>73.7</td>
<td>73.8</td>
<td>75.4</td>
</tr>
<tr>
<td>5</td>
<td>12분 경과 후</td>
<td>71.4</td>
<td>71.4</td>
<td>74.8</td>
</tr>
<tr>
<td>6</td>
<td>15분 경과 후</td>
<td>69.2</td>
<td>69.2</td>
<td>73.2</td>
</tr>
</tbody>
</table>

상기 표 1에 기재한 바와 같이, 실험에 1, 2의 경우가, 비교에 1, 2의 탄소나노튜브 발열제를 포함하지 않는 방열필름에 비해, 방열 온기의 온도가 더 많이 저하되는 것을 확인할 수 있었다. 즉, 탄소나노튜브 발열제를 포함하는 발열필름을 방열필름의 구성으로 포함함으로써, 온도를 크게 저하시키고, 발열 제품의 온도를 크게 낮출 수 있다는 것을 확인할 수 있었다. 결과적으로, 본 발명의 방열필름이 열전도 특성이 더 우수함을 알 수 있었다.

이상과 같이 본 발명은 비교 환경된 실시에와 도변에 의해 설명되었으나, 본 발명은 상기의 실시에에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기계로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.
청구범위

[청구항 1] 열전도성 제절로 형성되어 상기 단위 전지의 열을 방출하는 제1 및 제2 방열층; 및 상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함하는 것을 특징으로 하는 방열필름.

[청구항 2] 제 1항에 있어서, 상기 제1 방열층과 상기 접착층 사이에 형성되는 발열 필름을 더 포함하는 것을 특징으로 하는 방열필름.

[청구항 3] 제 2항에 있어서, 상기 발열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기재층; 및 상기 기재층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기재층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접착시키는 절연층을 포함하는 것을 특징으로 하는 방열필름.

[청구항 4] 제 3항에 있어서, 상기 탄소나노튜브 발열체는 은(Ag), 구리(Cu), 니켈(Ni), 금(Au), 빅금(Pt), 팔라듐(Pd) 중 적어도 하나를 포함하는 금속을 탄소나노튜브 표면에 도핑 처리하여 형성되는 것을 특징으로 하는 방열필름.

[청구항 5] 제 3항에 있어서, 상기 절연층은 아크릴계, 헛 البلد(Hot Melt)계, 실리콘계 또는 고무계 중 어느 하나의 접착제로 형성된 얇은 접착 필름인 것을 특징으로 하는 방열필름.

[청구항 6] 제 3항에 있어서, 상기 기재층의 전극막은 상기 단위 전지 각각의 에노드 전극 및 캐소드 전극에 전기적으로 연결되어, 상기 탄소나노튜브 발열체에 발열 기능을 부여하는 것을 특징으로 하는 방열필름.

[청구항 7] 제 3항에 있어서, 상기 기재중은 이축연산플리에스테르(BOPET), 폴리에틸렌테라프탈레이트(PET), 연산폴리스티렌(OPS), 연산폴리프로필렌(OPP), PEN(폴리에틸렌나프탈레이트), PES(폴리에테르존), PPS(폴리에틸렌전화이드), PTFE(폴리에테르이미드) 중에서 선택되는 적어도 하나의 제질로
형성되는 것을 특정으로 하는 방열필름.

[청구항 8]
제 1항에 있어서,
상기 접착층은
아크릴제, 핫멜트(Hot Melt)계, 실리콘계 또는 고무계 중 어느 하나로 형성된 얇은 테이프인 것을 특정으로 하는 방열필름.

[청구항 9]
복수의 단위 전지를 포함하는 전지 모듈;
상기 전지 모듈을 내부 공간에 수납하는 외장 케이스; 및
상기 복수의 단위 전지 사이에 삽입되어 상기 복수의 단위 전지 각각과 밀착되고, 상기 외장 케이스의 내측면에 부착되는 방열 필름을 포함하고,
상기 방열 필름은
열전도성 재질로 형성되어 상기 단위 전지의 열을 방출하는 제1 및 제2 방열층; 및
상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함하는 것을 특정으로 하는 방열과 방열 기능을 가지는 전지 조립체.

[청구항 10]
제 9항에 있어서,
상기 복수의 단위 전지 중 적어도 하나에 설치되는 온도 센서; 및
상기 기재층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기재층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접착시키는 접착층을 포함하는 것을 특정으로 하는 방열과 방열 기능을 가지는 전지 조립체.

[청구항 11]
제 10항에 있어서,
상기 방열 필름은
전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기재층; 및
상기 기재층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기재층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접착시키는 접착층을 포함하는 것을 특정으로 하는 방열과 방열 기능을 가지는 전지 조립체.

[청구항 12]
제 9항에 있어서,
상기 복수의 단위 전지 중 적어도 하나에 설치되는 온도 센서; 및
상기 온도 센서의 온도 검출 결과에 기초하여 상기 기재층의 전극막으로의 전원 공급량을 제어하는 컨트롤러를 더 포함하는 것을 특정으로 하는 방열과 방열 기능을 가지는 전지 조립체.

[청구항 13]
복수의 단위 전지; 및
상기 복수의 단위 전지 사이에 삽입되어 상기 복수의 단위 전지 각각과 밀착되는 방열 필름을 포함하고,
상기방열필름은
열전도성 재질로 형성되어 상기 단위 전지의 열을 방출하는 제1 및 제2 방열층; 및
상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 전지 모듈.

[청구항 14]
제 13항에 있어서,
상기 제1 방열층과 상기 접착층 사이에 형성되는 발열 필름을 더 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 전지 모듈.

[청구항 15]
제 14항에 있어서,
상기 발열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기제층; 및 상기 기제층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기제층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접착시키는 접착층을 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 전지 모듈.

[청구항 16]
복수의 단위 전지를 포함하는 전지 모듈을 내부 공간에 수납하는 외장 케이스에 있어서,
상기 외장 케이스의 내측면에는 상기 단위 전지로부터 발생되는 열을 방출하는 방열 필름이 부착되고,
상기 발열 필름은 열전도성 재질로 형성되어 상기 단위 전지로부터 발생되는 열을 방출하는 제1 및 제2 방열층; 및 상기 제1 및 제2 방열층 사이에 형성되어 상기 제1 및 제2 방열층을 접착시키는 접착층을 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 외장 케이스.

[청구항 17]
제16항에 있어서,
상기 제1 방열층과 상기 접착층 사이에 형성되는 발열 필름을 더 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 외장 케이스.

[청구항 18]
제17항에 있어서,
상기 발열 필름은 전극막 및 탄소나노튜브(CNT) 발열체가 인쇄되는 기제층; 및 상기 기제층의 전극막과 상기 제1 방열층 사이에 형성되어 상기 기제층을 상기 제1 방열층에 접착시키고, 상기 전극막과 상기 제1 방열층을 접착시키는 접착층을 포함하는 것을 특징으로 하는 방열과 발열 기능을 가진 외장 케이스.

[청구항 19]
제 16항에 있어서,
상기 외장 케이스의 내측면 중 적어도 한 곳에 설치되는 온도 센서; 및
상기 온도 센서의 온도 검출 결과에 기초하여 상기 기재층의 전극막으로의 전원 공급량을 제어하는 컨트롤러를 더 포함하는 것을 특징으로 하는 발열과 발열 기능을 가지는 외장 케이스.