(54) 发明名称
一种提高纸浆模塑纤维留着率的方法

(57) 摘要
本发明提供一种提高纸浆模塑产品纤维留着率的方法，其原理在于将纸浆疏解干燥后，添加防油剂、防水剂等化学助剂，搅拌均匀后添加阳离子聚丙烯酰胺，通过阳离子聚丙烯酰胺与纸浆纤维的絮凝反应形成巨大的絮凝团，细小的纸浆纤维与助剂结合成絮凝团后，由于物化性质的改变，不易被废水冲刷流失，提高了纸浆留着率。从而保证了纸浆产品的质量，同时避免了由于纸浆纤维流失产生的经济损失和资源浪费，具有很好的开发前景和市场价值。
1. 一种提高纸浆模塑纤维留着率的方法，具体步骤如下：
 ①化学改性溶液的制备：在混合池内加入包括占干纸浆纤维质量 0.02 ～ 0.08% 的
 阳离子聚丙烯酰胺、1 ～ 3% 的防火剂、0.01 ～ 0.76% 的防油剂的化学助剂，并加入纯净水
 稀释，稀释后得到化学助剂固含量占总溶液质量 65 ～ 90% 的化学改性溶液；步骤①中所述
 阳离子聚丙烯酰胺的目数为 15 ～ 40 目；
 ②纸浆纤维的制备：将干纸浆纤维分散并用纯净水稀释成纸浆质量浓度为 1% 的纸浆
 纤维；
 ③混合反应：将步骤 1 制备的化学改性溶液与步骤 2 制备的纸浆纤维放入反应罐中混
 合，搅拌均匀并充分反应；
 ④成型：将步骤 3 充分反应后的混合物注入纸浆模塑成型装置的材料成形区，依次经
 注浆、吸滤、冷压、热压程序后成型。
2. 如权利要求 1 所述的方法，其特征在于：步骤①中所述防火剂为 SH-202R 型硅酮类
 防火剂，防油剂为 SINO-300 型全氟-羟基硅烷共聚体防油剂。
3. 如权利要求 1 所述的方法，其特征在于：所述纸浆纤维为针叶木浆纤维、阔叶木纤维
 和非木材类纸浆纤维中的一种或多种。
4. 如权利要求 1 所述的方法，其特征在于：步骤③中搅拌均匀的程序是通过高速数显
 搅拌机，在转速 1200 ～ 1500r/min 条件下混合搅拌 1 ～ 3min 实现的。
5. 如权利要求 1 所述的方法，其特征在于：步骤④中的注浆程序时间为 6 ～ 7s，吸滤程
 序时间为 20 ～ 40s，冷压程序时间为 1 ～ 5s，热压程序为在 160 ～ 220℃下热压 1 ～ 5s。
一种提高纸浆模塑纤维留着率的方法

技术领域
[0001] 本发明涉及一种纸浆模塑领域，特别涉及一种提高纸浆模塑纤维留着率的方法。

背景技术
[0002] 目前我国的造纸行业蓬勃发展，但其高污染、高能耗的缺陷一直存在，如何转型为环保、绿色的可持续发展的行业？是该领域技术人员亟待解决的问题。为了达到环保的要求，必须从材料和能源的节约着手，以满足消费者多样化的需求为目标，在节能减排的条件下进行纸张生产。近年来，为了降低成本，纸张定量越来越低、越来越薄，虽然这种方法对能源节约起到一定作用，但却由于纸张纤维量的减小不可避免地影响了纸张的大部分物理性能，产品质量降低，无法满足消费者的消费需求。
[0003] 纤维是构成纸浆的根本元素，纸浆其实是纤维相互交织形成的集合体，纸浆的许多物理性能都是由纤维交织形成的集合体的功能性质体现的。因此通过在纸浆中加入添加剂以提高纸浆纤维的留着率是一种在保证纸浆性能的条件下，同时降低成本的环保型纸浆生产方法。其中，阳离子聚丙烯酰胺（也可简称 CPAM）是目前使用最普遍的一种多功能添加剂，根据分子量，水解度和电荷性的不同，其性能也有差异，可用作增干剂、增湿剂，又可作为助留剂或絮凝剂。CPAM 作为助留助滤剂时，是单独使用还是与其他添加剂共同作用？在生产中的最佳浓度如何确定？这是目前造纸业面对的技术难题之一。
[0004] 现有技术中，主要采用助留剂来增加纤维的留着率，但这种方法存在造纸成本过高，填料流失率高等技术缺陷。

发明内容
[0005] 针对现有技术的不足以及上述提出的问题，本发明提供一种提高纸浆模塑纤维留着率的方法。
[0006] 本发明通过以下的技术方案实现：
[0007] 首先，对纸浆纤维进行预处理，与化学改性助剂（如防水剂、防油剂）均匀混合；其次，在预处理后的纸浆纤维中加入 CPAM 助留剂，并均匀混合；最后，将加入助留剂的混合物注入纸浆模塑成型装置内，加工成型。
[0008] 具体包括以下步骤：
[0009] ①、化学改性溶液的制备：在混合池内加入包括占绝干纸浆纤维质量 0.02~2% 的阳离子聚丙烯酰胺、1~3% 的防水剂、0.01~0.76% 的防油剂的化学助剂，并加入纯净水稀释，稀释后得到化学助剂固含量占总溶液质量 65~90% 的化学改性溶液；
[0010] ②、纸浆纤维的制备：绝干纸浆纤维分散并用纯净水稀释成纸浆质量浓度为 1% 的纸浆纤维；
[0011] ③、混合反应：将步骤①制备的化学改性溶液与步骤②制备的纸浆纤维放入反应罐中混合，搅拌均匀并充分反应；
[0012] ④、成型：将步骤③充分反应后的混合物注入纸浆模塑成型装置的材料成形区，依
次经注浆、吸滤、冷压、热压程序后成型。
[0013] 步骤①中所述阳离子聚丙烯酰胺的目数为 15-40 目。
[0014] 步骤①中所述防水剂为 SH-202R 型硅钢类防水剂，防油剂为 SINO-300 型全氟-羟基碳硅共聚体防油剂。
[0015] 所述纸浆纤维为针叶木浆纤维、阔叶木纤维和非木材类纸浆纤维中的一种或多种。
[0016] 步骤③中搅拌均匀的程序是通过高速数显搅拌机，在转速 1200-1500r/min 条件下混合搅拌 1-3min 实现的。
[0017] 步骤④中的注浆程序时间为 6-7s，吸滤程序时间为 20-40s，冷压程序时间为 1-5s，热压程序为在 160-220℃加热压 1～5s。
[0018] 本发明的原理为 : 加入防水剂及防油剂等化学助剂，使纸张成品具有良好的抗湿及干强度等物化性能，加入的阳离子聚丙烯酰胺与纸浆纤维会产生絮聚作用，絮聚团，由于絮聚团的存在，纸页中的填料在水流冲刷下流失率大大降低，增加了填料的留着率。
[0019] 本发明的有益效果在于：
[0020] 1. 提高了纸浆纤维留着率与浆料的滤水性能，减少纸浆用量的情况下，也可以生产出高质量、具有良好物化性能的纸张；
[0021] 2. 生产过程无任何有毒有害物质释放，生产的纸张也是绿色环保的产品。
[0022] 3. 大大减少生产成本。

具体实施方式
[0023] 实施例 1
[0024] ①、化学改性溶液的制备 : 在混合池内加入包括占绝干纸浆纤维质量 0.02% 的阳离子聚丙烯酰胺，1% 的防水剂，0.06% 的防油剂的化学助剂，并加入纯净水稀释，稀释后得到化学助剂固含量占总溶液质量 69% 的化学改性溶液；
[0025] ②、纸浆纤维的制备 : 绝干纸浆纤维分散并用纯净水稀释成纸浆质量浓度为 1% 的纸浆纤维；
[0026] ③、混合反应 : 将步骤①制备的化学改性溶液与步骤②制备的纸浆纤维放入反应罐中混合，搅拌均匀并充分反应；
[0027] ④、成型 : 将步骤③充分反应后的混合物注入纸浆模塑成型装置的材料成形区，依次经注浆 6.3s，吸滤 30s，冷压 3s，最后 190℃热压 3s 后成型。
[0028] 其中所述阳离子聚丙烯酰胺的目数为 25 目。
[0029] 所述防水剂为 SH-202R 型硅钢类防水剂，防油剂为 SINO-300 型全氟-羟基碳硅共聚体防油剂。
[0030] 实施例 1 制备得到的纸张产品经分析和检测，产品的防油、防水及物化性能达到良好级别。本实施例中，阳离子淀粉和膨润土的添加量不变的情况下，添加 0.02% 阳离子聚丙烯酰胺可提高 3.5% 留着率，每吨纸浆可节省经济成本 415.4 元。
[0031] 实施例 2
[0032] ①、化学改性溶液的制备 : 在混合池内加入包括占绝干纸浆纤维质量 0.04% 的阳
离子聚丙烯酰胺,2%的防水剂,0.07%的防油剂的化学助剂,并加入纯净水稀释,稀释后得到化学助剂固含量占总溶液质量69%的化学改性溶液；

(0033) ②、纸浆纤维的制备:将制备的化学改性溶液与步骤②制备的纸浆纤维在反应罐中混合,搅拌均匀并充分反应；

(0035) ④、成型:将步骤③充分反应后的混合物注入纸浆模塑成型装置的材料成形区,依次经注浆6.3s,吸滤30s,冷压3s,最后190℃热压3s后成型。

(0036) 其中所述阳离子聚丙烯酰胺的目数为25目。

(0037) 所述防水剂为SH-202型硅酮类防水剂,防油剂为SINO-300型全氟硅基硅共聚体防油剂。

(0038) 实施例2 制备得到的纸张产品经分析和检测,产品的防水、防油及物化性能达到良好级别。本实施例中,在阳离子淀粉和膨润土的添加量不变的情况下,添加0.04%阳离子聚丙烯酰胺可提高5.9%留着率,每吨纸浆可节省经济成本380.4元。

(0039) 实施例3

(0040) ①、化学改性溶液的制备:在混合池内加入包括占纸浆纤维质量0.08%的阳离子聚丙烯酰胺、4%的防水剂、0.08%的防油剂的化学助剂,并加入纯净水稀释,稀释后得到化学助剂固含量占总溶液质量69%的化学改性溶液；

(0041) ②、纸浆纤维的制备:将制备的化学改性溶液与步骤②制备的纸浆纤维放入反应罐中混合,搅拌均匀并充分反应；

(0042) ③、混合反应:将步骤①制备的化学改性溶液与步骤②制备的纸浆纤维在反应罐中混合,搅拌均匀并充分反应；

(0043) ④、成型:将步骤③充分反应后的混合物注入纸浆模塑成型装置的材料成形区,依次经注浆6.3s,吸滤30s,冷压3s,最后190℃热压3s后成型。

(0044) 其中所述阳离子聚丙烯酰胺的目数为25目。

(0045) 所述防水剂为SH-202型硅酮类防水剂,防油剂为SINO-300型全氟-烃基硅共聚体防油剂。

(0046) 实施例3 制备得到的纸张产品经分析和检测,产品的防水、防油及物化性能达到相关检测标准。本实施例中,在阳离子淀粉和膨润土的添加量不变的情况下,添加0.08%阳离子聚丙烯酰胺可提高6.3%留着率,每吨纸浆可节省经济成本361.4元。

(0047) 实施例4

(0048) ①、化学改性溶液的制备:在混合池内加入包括占纸浆纤维质量0.03%的阳离子聚丙烯酰胺、5%的防水剂、0.05%的防油剂的化学助剂,并加入纯净水稀释,稀释后得到化学助剂固含量占总溶液质量69%的化学改性溶液；

(0049) ②、纸浆纤维的制备:将制备的化学改性溶液与步骤②制备的纸浆纤维放入反应罐中混合,搅拌均匀并充分反应；

(0050) ③、混合反应:将步骤①制备的化学改性溶液与步骤②制备的纸浆纤维放入反应罐中混合,搅拌均匀并充分反应；

(0051) ④、成型:将步骤③充分反应后的混合物注入纸浆模塑成型装置的材料成形区,依
次经注浆 6.3s、吸滤 30s、冷压 3s、最后 190℃热压 3s 后成型。
[0052] 其中所述阳离子聚丙烯酰胺的目数为 25 目。
[0053] 所述防水剂为 SH-202R 型硅酮类防水剂，防油剂为 SINO-300 型全氟羟基碳硅共聚
体防油剂。
[0054] 实施例 4 制备得到的纸张产品经分析和检测，产品的防油、防水及物化性能达到
相关检测标准。本实施例中，在阳离子淀粉和膨润土的添加量不变的情况下，添加 0.03% 阳
离子聚丙烯酰胺可提高 5.6% 留着率，每吨纸浆可节省经济成本 398.4 元。
[0055] 本发明并不局限于上述实施方式，如果对发明的各种改动或变型不脱离本发明的
精神和范围，倘若这些改动和变型属于本发明的权利要求和等同技术范围之内，则本发明
也意图包含这些改动和变型。