(21) 申请号 201410084376.5
(22) 申请日 2014.03.10
(71) 申请人 盐城工学院
 地址 224051 江苏省盐城市建军东路 211 号
(72) 发明人 诸华军 吴其胜 张长森 侯贵华
 邓凤敏 曹亚龙
(51) Int. Cl.
 C04B 28/26 (2006.01)
 C04B 22/04 (2006.01)

(54) 发明名称
 高强度偏高岭土无机聚合物发泡材料及其制备方法
(57) 摘要
 本发明公开了一种高强度偏高岭土无机聚合物发泡材料及其实备方法，采用该方法可制得强度较高的偏高岭土无机聚合物发泡材料，且具有制备工艺简单、稳定性好、养护时间短、耐久性和耐腐蚀性能优异、节能环保等优点。本发明的高强度偏高岭土无机聚合物发泡材料由 550 ～ 750 重量份偏高岭土、300 ～ 500 重量份水玻璃、0.3 ～ 1.2 重量份铝粉浆配制而成，其制备方法是将加入铝粉浆的偏高岭土无机聚合物浆体经标准条件养护 8 ～ 12h 后脱模，再将其置于 40 ～ 60℃恒温水浴养护箱中蒸养 60 ～ 80h。
1. 一种高强度偏高岭土无机聚合物发泡材料，其特征在于由以下重量份的原料配制而成：
偏高岭土 550 ～ 750、水玻璃 300 ～ 500、铝粉膏 0.3 ～ 1.2。
2. 根据权利要求 1 所述的高强度偏高岭土无机聚合物发泡材料，其特征在于所述的偏高岭土由高岭土经 600 ～ 900℃煅烧 2h 所得的 400 目以上的粉体。
3. 根据权利要求 1 所述的高强度偏高岭土无机聚合物发泡材料，其特征在于所述的水玻璃由模数为 1.2 ～ 1.5 的水玻璃加水后配制而成，两者按重量份配比如下：1.2 ～ 1.5 模数的水玻璃 70、水 30。
4. 根据权利要求 3 所述的高强度偏高岭土无机聚合物发泡材料，其特征在于所述的模数为 1.2 ～ 1.5 的水玻璃由模数为 3.2 的水玻璃加入分析纯氢氧化钠调制而成。
5. 一种权利要求 1-4 任意一项所述高强度偏高岭土无机聚合物发泡材料的制备方法，其特征在于制备步骤如下：
步骤一，将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌，再快速搅拌后制成均匀浆体；
步骤二，将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌后制得发泡材料浆体；
步骤三，将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护后脱模，再将脱模后的发泡材料置于恒温水浴养护箱中蒸养。
6. 根据权利要求 5 所述的高强度偏高岭土无机聚合物发泡材料的制备方法，其特征在于所述的步骤一中慢速搅拌时间控制为 2 ～ 4min，快速搅拌时间控制为 1 ～ 3min，步骤二中快速搅拌时间控制为 1 ～ 2min，步骤三中标准条件养护时间控制为 8 ～ 12h，蒸养时间控制为 60 ～ 80h。
7. 根据权利要求 5 所述的高强度偏高岭土无机聚合物发泡材料的制备方法，其特征在于所述的恒温水浴箱蒸养温度范围为 40 ～ 60℃。
高强度偏高岭土无机聚合物发泡材料及其制备方法

技术领域
【0001】本发明涉及一种发泡材料及其制备方法，更具体地说涉及一种高强度偏高岭土无机聚合物发泡材料及其制备方法。

背景技术
【0002】偏高岭土无机聚合物是由偏高岭土经碱激发作用后形成的铝硅酸盐类无机胶凝材料。无机聚合物研究始于20世纪50年代，前苏联的格卢霍夫斯基（Glukhovsky）和帕什科夫（Pashkov）通过在碎石和高炉矿渣的混合物中加入碱溶液，获得了强度高且稳定性好的胶凝材料，当时称为“土壤水泥（Soil cement）”。到了70年代，法国的戴维德维斯（Davidovits）用偏高岭土制备了一种新型胶凝材料，并于1979年将其命名为“无机聚合物（Geopolymers）”。偏高岭土无机聚合物所用的主要原料偏高岭土是由高岭土（Al₂O₃·2SiO₂·2H₂O）经一定温度煅烧脱水后制得。偏高岭土无机聚合物具有硬化体强度高、耐腐蚀和耐久性能优异、制备过程污染物排放量小等优势性能，是目前材料界研究的热点。

【0003】发泡材料又称为多孔材料，是一种由相互贯通或封闭的孔洞构成的网络状结构材料，由于基体中大量孔洞的存在，发泡材料具有密度低、保温效果好、隔声减震效果好、节约原材料等优势性能，现已广泛应用于石油、化工、冷藏、船舶、电力等工业领域，特别是在建筑工业领域，发泡材料发挥的效用越来越明显。随着资源节约型、环境友好型社会加快推，发泡材料也越来越受到关注，其应用领域不断拓宽，展示了广阔的应用前景。《建材工业“十二五”发展规划》将“绿色建筑材料发展工程”作为重点工程，其中就包括保温材料、轻质节能材料的开发和应用。

【0004】发泡材料种类很多，按照原材料使用的不同可以分为无机发泡材料、有机发泡材料和复合发泡材料。无机发泡材料具有耐久性和耐腐蚀性能优异、耐高温性能强、制备工艺简单、生产成本低等优势，应用领域不断拓宽。在建材行业，以无机发泡材料中的水泥基发泡材料最为广泛。公开号101597923“一种偏高岭土保温型材”以偏高岭土、水玻璃、粉煤灰和熟石灰为主要原料，并以聚苯乙烯发泡颗粒、珍珠岩、空心玻璃珠或石棉的一种或任意组合物为减轻材料，制备浆体、搅拌成型并在常温干燥后制备偏高岭土保温型材，但存在制备工艺复杂、密度偏大等不足。公开号102515645“建筑用发泡水泥防火保温板”，公开号102633521“无机超轻水泥发泡防火保温板及其制备方法”，公开号103145384“轻质环保发泡水泥保温材料”，公开号103360103“粉煤灰混凝土加气保温砖及其生产方法”均以水泥为主要原料制备轻质发泡材料，而水泥行业是典型的资源、能源消耗型产业，生产过程中产生的大量气体和粉尘对环境造成了严重污染。根据计算，生产1吨水泥需要消耗1.1吨石灰石，排放出近1吨CO₂，对资源和环境造成极大影响。此外，水泥基发泡材料普遍存在密度偏高、稳泡效果较差、强度偏低等缺陷，相关研究工作仍需加强。

【0005】本发明的偏高岭土无机聚合物发泡材料及其制备方法，由偏高岭土无机聚合物和铝粉膏作用后制成发泡材料，属于新型无机发泡材料，除具有无机发泡材料的优势性能外，
说明 书

该材料还具有固化速率快，缩短加工周期，浆体黏度大，稳泡效果好，制备工艺简单，污染性气体和粉尘排放量小等特性，发展前景广阔。

发明内容

本发明的目的提供一种高信度偏高信土无机聚合物发泡材料及其制备方法，解决水泥发泡材料生产带来的环境问题和现有偏高信土无机聚合物发泡材料生产工艺复杂、强度低的问题。

本发明的目的通过以下技术方案实现的：

本发明的高强度偏高信土无机聚合物发泡材料，是由 550 ～ 750 重量份的偏高信土、300 ～ 500 重量份的水玻璃、0.3 ～ 1.2 重量份的铝粉膏配制而成。

本发明的高强度偏高信土无机聚合物发泡材料，其进一步的技术方案是所述的偏高信土由偏高信土经 600 ～ 900°C 烘烧 2h 所得的 400 目以上的粉体。

本发明的高强度偏高信土无机聚合物发泡材料，其进一步的技术方案是所述的水玻璃由模数为 1.2 ～1.5 的水玻璃加水后配制而成，两者按重量份配比如下：1.2 ～1.5 模数的水玻璃 70，水 30；再进一步的技术方案是所述的模数为 1.2 ～1.5 的水玻璃由模数为 3.2 的水玻璃加入氧化钠水溶液制而成。

本发明的高强度偏高信土无机聚合物发泡材料制备方法，其进一步的技术方案是所述的制备步骤如下：

步骤一、将偏高信土和水玻璃在砂浆搅拌机中慢速搅拌，再快速搅拌后制成均匀浆体；

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌后制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护后脱模，再将脱模后的发泡材料置于恒温水浴养护箱中蒸养。

再进一步的技术方案是所述的步骤一中慢速搅拌时间控制为 2 ～4min，快速搅拌时间为 1 ～ 3min，步骤二中快速搅拌时间控制为 1 ～ 2min，步骤三中标准条件养护时间为 8 ～ 12h，蒸养时间为 60 ～ 80h，恒温水浴箱蒸养温度范围为 40 ～ 60°C。

本发明与现有技术相比具有以下有益效果：

（1）本发明的偏高信土无机聚合物发泡材料具有耐久性和耐腐蚀性能优异等特性，该产品的开发应用可有效提高发泡材料的使用性能和服役寿命。

（2）本发明的偏高信土无机聚合物发泡材料所用原材料中不含有水泥，避免水泥生产带来的环境问题，具有节能减排等优势性能。

（3）本发明的偏高信土无机聚合物发泡材料所用原料简单，避免了使用多种原料带来的生产工艺复杂性。

（4）本发明的偏高信土无机聚合物发泡材料无需使用稳泡剂即制得性能优异的发泡材料，不但降低了产品生产成本，且大幅简化了产品生产工艺。

（5）本发明的偏高信土无机聚合物发泡材料具有固化速率快的特性，可有效提高生产效率，降低生产成本。

（6）本发明的偏高信土无机聚合物发泡材料具有强度高的优势性能，拓宽了该发泡材料的应用领域，既可将其应用于常规保温材料的制备，也可用于保温砖、砌块、隔断等
对强度要求较高构件的制备。
[0023] (7) 本发明的偏高岭土无机聚合物发泡材料所用原料均为无机材料，避免了有机发泡材料易燃烧，毒性大的缺陷。
[0024] (8) 本发明的偏高岭土无机聚合物发泡材料制备方法，采用低温蒸养的技术方法，能进一步加速发泡材料固化反应的进行，提高材料的早期力学性能，不但有利于生产效率的提高，且可提高产品成品率。
[0025] (9) 本发明的偏高岭土无机聚合物发泡材料和制备方法联用，可制得强度高，耐高温性能强，耐久性和耐腐蚀性优异的发泡材料，具有应用范围广、节能环保、安全系数高等优势特点，发展前景广阔。

具体实施方式
[0026] 以下通过具体实施例说明本发明，但本发明并不仅仅限定于这些实施例。
[0027] 实施例 1
[0028] 一种偏高岭土无机聚合物发泡材料由以下质量的原料配制而成：偏高岭土 (500目) 550g，水玻璃 300g，铝粉膏 0.3g。
[0029] 一种偏高岭土无机聚合物发泡材料的制备方法，按以下顺序的步骤制得：
[0030] 步骤一、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 3min，再快速搅拌 2min 后制成均匀浆体；
[0031] 步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 1min 后制成发泡材料浆体；
[0032] 步骤三、将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护 8h 后脱模，再将脱模后的发泡材料置于 40℃的恒温水浴养护箱中蒸养 60h，制得的偏高岭土无机聚合物发泡材料性能的结果见表 1。
[0033] 实施例 2
[0034] 一种偏高岭土无机聚合物发泡材料由以下质量的原料配制而成：偏高岭土 (600目) 550g，水玻璃 350g，铝粉膏 0.6g。
[0035] 一种偏高岭土无机聚合物发泡材料的制备方法，按以下顺序的步骤制得：
[0036] 步骤一、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 2min，再快速搅拌 3min 后制成均匀浆体；
[0037] 步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 1min 后制成发泡材料浆体；
[0038] 步骤三、将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护 12h 后脱模，再将脱模后的发泡材料置于 50℃的恒温水浴养护箱中蒸养 80h，制得的偏高岭土无机聚合物发泡材料性能的结果见表 1。
[0039] 实施例 3
[0040] 一种偏高岭土无机聚合物发泡材料由以下质量的原料配制而成：偏高岭土 (500目) 600g，水玻璃 400g，铝粉膏 0.6g。
[0041] 一种偏高岭土无机聚合物发泡材料的制备方法，按以下顺序的步骤制得：
[0042] 步骤一、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 4min，再快速搅拌 1min 后
制成均匀浆体；

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 2min 后
制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具内，经标准条件养护 10h 后
脱模，再将脱模后的发泡材料置于 50℃的恒温水浴养护箱中蒸养 75h，制得的偏高岭土无
机聚合物发泡材料性能的结果见表 1。

步骤四、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 3min，再快速搅拌 2min 后
制成均匀浆体；

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 2min 后
制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具内，经标准条件养护 10h 后
脱模，再将脱模后的发泡材料置于 50℃的恒温水浴养护箱中蒸养 70h，制得的偏高岭土无
机聚合物发泡材料性能的结果见表 1。

实施例 5

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 2min 后
制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具内，经标准条件养护 10h 后
脱模，再将脱模后的发泡材料置于 60℃的恒温水浴养护箱中蒸养 70h，制得的偏高岭土无
机聚合物发泡材料性能的结果见表 1。

实施例 6

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 2min 后
制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具内，经标准条件养护 12h 后
脱模，再将脱模后的发泡材料置于 50℃的恒温水浴养护箱中蒸养 80h，制得的偏高岭土无
机聚合物发泡材料性能的结果见表 1。
实施例 7

一种偏高岭土无机聚合物发泡材料由以下质量的原料配制而成：偏高岭土 (500 目) 700g, 水玻璃 500g, 钨粉膏 1.2g。

步骤一、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 4min, 再快速搅拌 2min 后制成均匀浆体；

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 1min 后制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护 8h 后脱模，再将脱模后的发泡材料置于 40℃的恒温水浴养护箱中蒸养 60h, 制得的偏高岭土无机聚合物发泡材料性能的结果见表 1。

实施例 8

一种偏高岭土无机聚合物发泡材料由以下质量的原料配制而成：偏高岭土 (500 目) 750g, 水玻璃 500g, 钨粉膏 1.2g。

步骤一、将偏高岭土和水玻璃在砂浆搅拌机中慢速搅拌 2min, 再快速搅拌 3min 后制成均匀浆体；

步骤二、将铝粉膏快速加入步骤一制成的浆体中，经砂浆搅拌机快速搅拌 2min 后制得发泡材料浆体；

步骤三、将步骤二制得的发泡材料浆体快速注入模具中，经标准条件养护 8h 后脱模，再将脱模后的发泡材料置于 60℃的恒温水浴养护箱中蒸养 70h, 制得的偏高岭土无机聚合物发泡材料性能的结果见表 1。

表 1 偏高岭土无机聚合物发泡材料性能一览表

<table>
<thead>
<tr>
<th>实施例</th>
<th>蒸养温度/℃</th>
<th>抗压强度 (3 天)/MPa</th>
<th>抗折强度 (3 天)/MPa</th>
<th>干密度/(kg·m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>40</td>
<td>11.2</td>
<td>2.6</td>
<td>1356</td>
</tr>
<tr>
<td>实施例 2</td>
<td>50</td>
<td>9.1</td>
<td>2.1</td>
<td>961</td>
</tr>
<tr>
<td>实施例 3</td>
<td>50</td>
<td>8.3</td>
<td>1.9</td>
<td>878</td>
</tr>
<tr>
<td>实施例 4</td>
<td>50</td>
<td>5.3</td>
<td>1.5</td>
<td>685</td>
</tr>
<tr>
<td>实施例 5</td>
<td>60</td>
<td>6.2</td>
<td>1.7</td>
<td>662</td>
</tr>
<tr>
<td>实施例 6</td>
<td>50</td>
<td>5.6</td>
<td>1.6</td>
<td>707</td>
</tr>
<tr>
<td>实施例 7</td>
<td>40</td>
<td>3.3</td>
<td>1.0</td>
<td>566</td>
</tr>
<tr>
<td>实施例 8</td>
<td>60</td>
<td>4.1</td>
<td>1.2</td>
<td>592</td>
</tr>
</tbody>
</table>
从表 1 中数据可以看出，以偏高岭土、水玻璃和铝粉膏为主要原料，在低温蒸养（40 ~ 60℃）条件下，可制得高强度的偏高岭土无机聚合物发泡材料。养护温度的提高能加快偏高岭土无机聚合物反应速率，提高偏高岭土无机聚合物的早期强度。因此，将本发明的偏高岭土无机聚合物发泡材料及其制备方法应用于工程实际，不但能提高结构物的性能和使用寿命，且可有效提高生产效率，降低生产成本。同时，为偏高岭土无机聚合物的工业化应用提供新材料和新技术支持。