

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

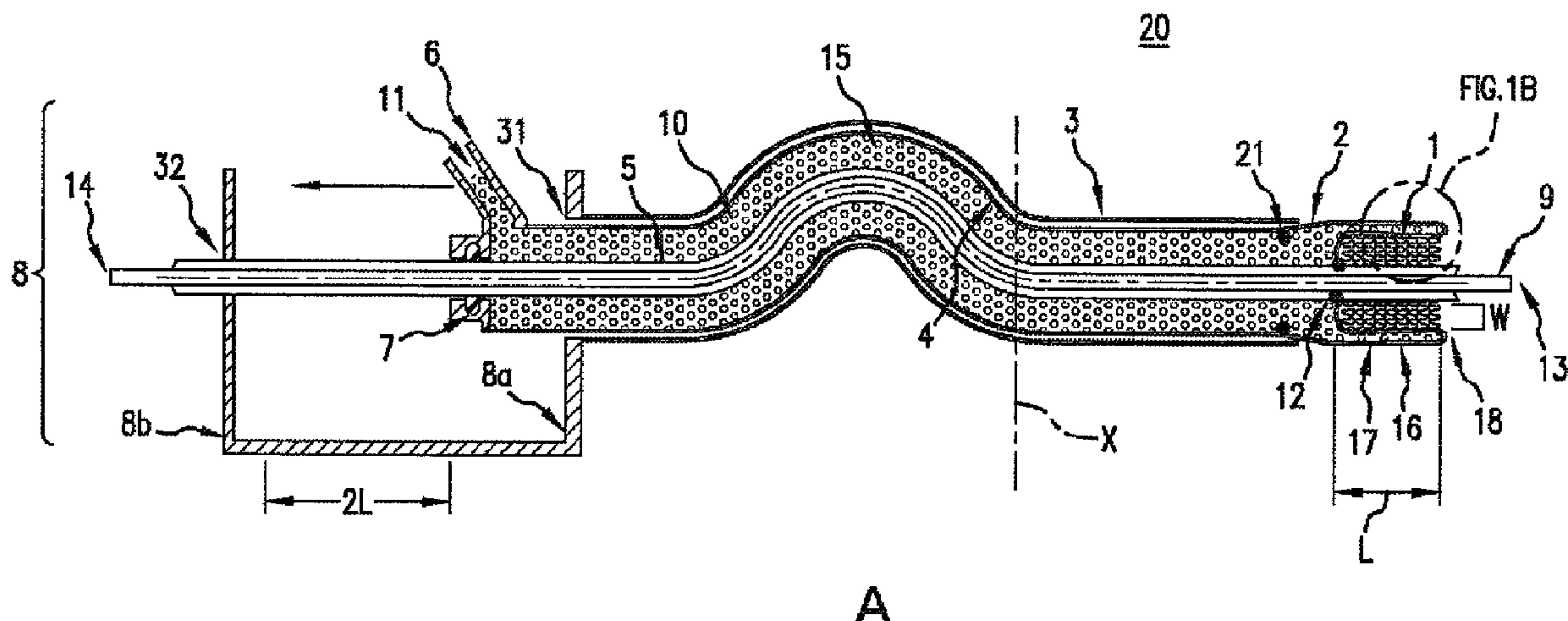
(22) Date de dépôt/Filing Date: 2013/07/23

(41) Mise à la disp. pub./Open to Public Insp.: 2014/03/06

(62) Demande originale/Original Application: 2 878 799

(30) Priorité/Priority: 2012/07/27 (US13/560,132)

(51) Cl.Int./Int.Cl. **A61F 2/966** (2013.01)


(71) Demandeur/Applicant:
MEDINOL LTD., IL

(72) Inventeurs/Inventors:
COHEN, ITSHAK, IL;
MAXIMUK, SHAHAR, IL;
MOISEYEV, GILAD, IL

(74) Agent: NORTON ROSE FULBRIGHT CANADA
LLP/S.E.N.C.R.L., S.R.L.

(54) Titre : CATHETER COMPORTANT UN MANCHON RETRACTABLE ET PROCEDE D'UTILISATION D'UN SYSTEME
DE CATHETER

(54) Title: CATHETER WITH RETRACTABLE SLEEVE AND METHOD OF USING CATHETER SYSTEM

A

(57) Abrégé/Abstract:

Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.

ABSTRACT

Apparatus and method for delivering and deploying an intravascular device into the vessel including an outer and inner tube that are axially linked by a housing structure at the proximal end of the catheter, and a retractable sleeve structure having a middle tube and sleeve tip. The sleeve tip is sealed to the inner tube at the distal end, and continuously extends into the middle tube. At the proximal end of the sleeve structure, the middle tube is sealed to either a housing structure or slideable proximal ring, forming a sealed chamber between the inner tube and the sleeve structure. A radial space is formed between the sleeve tip and the inner tube optimized for intravascular device placement. During retraction of the sleeve structure, the fold of the sleeve tip peels away from the device, which expands to its deployed state while minimizing axial forces and friction.

CATHETER WITH RETRACTABLE SLEEVE AND METHOD OF USING CATHETER SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates to the field of catheters, in particular a catheter system with a retractable sleeve structure for use, for example, in delivery and deployment of an intravascular device. The catheter system is specifically designed for use in the delivery of an intravascular device through tortuous vessels and its deployment therein.

BACKGROUND

[0002] Transluminally implantable intravascular devices, such as stents or grafts, are initially mounted upon or within a delivery catheter and then crimped into a compact configuration of a relatively small diameter to facilitate insertion and transluminal advancement of the device into the desired lesion requiring treatment. Thereafter, such devices are radially expanded to a larger operative diameter either by removing a constraining layer thereby releasing the device or by inflating a balloon on which the device is crimped. When expanded the device serves to support the vessel against its tendency to reclose and may also serve as a matrix for releasing a medically active substance.

[0003] It will be appreciated that the term "stent" may be used herein below as a general and non-limiting example of a catheter-mounted intravascular device. Both self-expanding and balloon expandable stents are well known and widely available in a variety of designs and configurations.

[0004] Prior art catheter systems for stent delivery provided a restraining sheath overlying the stent. One problem that arises when mounting the stent on the catheter system as well as during retraction of the sheath is excessive friction and rubbing between the sheath and the stent that may complicate and sometimes render stent deployment impossible. In addition, stents are often coated with a special polymer, a drug, or a combination thereof. Excessive friction and rubbing between the stent and the constraining sheath may cause damage to the integrity of the coated surface material of the stent by the friction between the sheath and the external surface of the stent. Moreover, such friction tends to increase even more when using longer stents or stents with a narrower crimping profile. Accordingly, it is an object of the invention to minimize friction between the catheter and the stent during deployment.

[0005] Another problem in the art arises with stents having relatively low axial rigidity, where axial friction forces applied during deployment or mounting of the stent on the catheter system may shorten the stent. It is therefore advantageous to have a catheter system that minimizes axial friction forces applied to the stent during deployment and mounting.

[0006] Yet another problem known in the art is related to the size of the proximal portion or the handle of catheter systems of self-expandable stents. Deploying such stents requires pulling the constraining sheath backward in the proximal direction a length which equals at least the length of the stent. When using longer stents (*i.e.* 100 millimeters and more) this limitation becomes a disadvantage as it leads to relatively long handles with a bulky mechanical structure that may be uncomfortable to operate. It is therefore advantageous to have a catheter system with a relatively short handle.

SUMMARY OF THE INVENTION

[0007] The present invention relates to a catheter system with a retractable sleeve structure and a method of using the catheter system. The catheter system comprises a multi-component tubular structure capable of deploying an intravascular device while minimizing axial frictional loads on the device during deployment. The catheter system of the invention uses a retractable sleeve structure filled with fluid during delivery and deployment. The catheter system comprises an inner tube disposed coaxially with an outer tube, wherein the inner tube comprises an interior lumen for a guide wire and an exterior surface on which a retractable sleeve structure is mounted. The outer tube forms a lumen for each of the guide wire, inner tube and the retractable sleeve structure.

[0008] The retractable sleeve structure extends through the length of the inner tube and forms a sealed chamber therewith. The retractable sleeve structure comprises a middle tube and a distal sleeve tip, the sleeve tip forming a fold over the distal end of the intravascular device thereby creating a double layered sheath around the device. The double layered sheath, when pressurized with fluid, may be pulled back, thereby releasing the device without exerting any friction forces thereon.

[0009] The invention also relates to a method of deploying an intravascular device. The method comprises the steps of filling the sealed chamber with fluid, navigating the catheter to a target site, positioning the sleeve tip with a mounted device at the target site, pressurizing the fluid and pulling the retractable sleeve structure proximally, thereby causing the sleeve tip to unfold and release the device at the target site exerting minimal friction forces on the device. In one embodiment the retractable sleeve structure is pulled back by sliding a handle connected to a

proximal portion of the middle tube. In another embodiment the retractable sleeve structure is pulled back by applying a force to a collapsible proximal portion of the middle tube using, for example, a knob or wheel. The force in the proximal direction may push the collapsible proximal portion towards the proximal end of the housing structure, thereby collapsing the collapsible portion, for example, in an accordion-like fashion. This embodiment has an advantage that it enables the use of a shorter guide wire and shorter housing compared to other catheter systems, and is particularly useful when using relatively long stents. In another embodiment, the retractable sleeve structure includes a rear retractable portion that is affixed to an insertion tube and folds back onto itself, thus retracting the sleeve tip and deploying the stent. In yet another embodiment, the inner tube includes a curved portion at the proximal end that coils within the housing structure; thus, the retractable sleeve structure is retracted over the curved portion during deployment. These embodiments likewise have an advantage that they enable the use of a shorter housing compared to other catheter systems, and further enable easier operation of the retractable sleeve structure.

[0010] Another aspect of the invention relates to a method of mounting an intravascular device onto the catheter system. In one embodiment the method comprises the steps of retracting the sleeve tip to an unfolded position, filling the retractable sleeve structure with fluid, and holding a crimped intravascular device onto the inner tube with a separate device, and advancing the sleeve tip over the crimped intravascular device thereby forming a fold over a portion of the crimped intravascular device. In this mounting embodiment, the intravascular device is released, the catheter system is pulled proximally, and the process is incrementally repeated until the intravascular device is mostly or entirely located under the fold of the sleeve tip. Once the intravascular device is fully sheathed by the fold, the method may further comprise releasing

fluid into the sealed chamber for storage. This aspect of the invention may be useful in particular to mount an intravascular device onto a catheter system for later deployment according to the method of deploying an intravascular device indicated above.

[0011] Storage of the catheter system may be accomplished at a neutral air pressure. However, prior to use, the air in the retractable sleeve structure is replaced with fluid through the use of a sealable port. During this process, any residual air in the sleeve structure may be evacuated through a micro-orifice in the fold of the sleeve tip.

DESCRIPTION OF DRAWINGS

[0012] **Figure 1A** illustrates a cross-section of the catheter system in a pre-deployment state according to the principles of the invention.

[0013] **Figure 1B** illustrates an enlarged portion of **Figure 1A**.

[0014] **Figure 2** illustrates a cross-section of the catheter system in a stage of partial deployment of an intravascular device as the sleeve tip of the retractable sleeve structure is partially withdrawn by sliding the handle one-third of the distance toward the proximal end of the housing structure.

[0015] **Figure 3** illustrates a cross-section of the catheter system in a stage of partial deployment of an intravascular device as the sleeve tip of the retractable sleeve structure is partially withdrawn by sliding the handle two thirds of the distance toward the proximal end of the housing structure.

[0016] **Figure 4** illustrates a cross-section of the catheter system in a post-deployment state according to the principles of the invention.

[0017] **Figure 5A-5B** illustrate a cross-section of one alternative embodiment of the catheter system according to the principles of the present invention in pre-deployment and post-deployment stages.

[0018] **Figures 6A-6B** illustrate a cross-section of another alternative embodiment of the catheter system according to the principles of the present invention in pre-deployment and post-deployment stages.

[0019] **Figures 7A-7B** illustrate a cross-section of another alternative embodiment of the catheter system according to the principles of the present invention in pre-deployment and post-deployment stages.

[0020] **Figures 8A-8D** illustrate a half of a cross-section view of a method of placing the intravascular device onto the catheter system and under the constraining sheath.

[0021] The intravascular devices shown in these Figures are two-dimensional representations of the intravascular device embodiments of the instant invention. The skilled artisan will recognize that the device is a three-dimensional structure having a cylindrical portion, as described further below.

DETAILED DESCRIPTION OF THE INVENTION

[0022] The catheter system with a retractable sleeve structure of the invention allows an intravascular device to be delivered to a target vessel without subjecting the device to frictional

forces during deployment associated with other delivery systems using a constraining sheath. The catheter system of the invention includes an elongate inner tube defining proximal and distal ends and a lumen extending longitudinally therethrough wherein a guide wire is movably disposed. The catheter system further includes an elongate outer tube having a proximal and a distal end, wherein the inner tube coaxially extends therethrough along the entire length. The inner tube and outer tube are affixed to a housing structure in the proximal portion of the catheter system, the housing structure includes a distal opening to which the outer tube is affixed, as well as a proximal opening to which the inner tube is affixed. “Distal” is defined herein as being closer to the insertion end of the catheter (*i.e.* the end typically inserted into the body) and the term “proximal” is defined as being closer to the end of the catheter that generally remains outside the body, as demarcated by line **X** in the Figures herein.

[0023] A retractable sleeve structure having a proximal and a distal end extends through the axial space created between the inner and the outer tubes. The retractable sleeve structure comprises a middle tube and a sleeve tip which coaxially extends substantially along the length of the inner and outer tubes. The retractable sleeve structure may be sealingly connected to the inner tube at the distal end with a distal ring thereby forming a sealed chamber. In a pre-deployment state the intravascular device is mounted in a radial space created between the inner tube and a double layered sheath created by folding the sleeve tip onto itself.

[0024] The outer tube, the middle tube and inner tube may be manufactured from kink resistant and flexible materials or composite structures, for example polyether ether ketone (PEEK), polyethylene terephthalate (PET), Polyimide (PI), braided Nylon 12 or suitable materials readily understood in the art. The method of affixing the outer tube and inner tube to the housing structure can be achieved through methods that are well known in the art. Non-

limiting examples of joining methods include fusing (*e.g.* heat fusion), welding (*e.g.* ultrasonic welding) and joining by adhesive methods (*e.g.*, gluing). Combinations of these methods and materials are contemplated by this invention.

[0025] The sleeve tip is manufactured from materials having sufficient radial rigidity to prevent expansion beyond a desired maximum diameter. Non-limiting examples include ultra-thin polyethylene terephthalate (PET) or a Polyimide (PI). Advantages of a sleeve tip formed by PET include flexibility. In one embodiment, the sleeve tip is formed of a material about 5-20 micrometers thick, preferably 10 micrometers thick. The two adjacent portions of the sleeve tip created by the fold, *i.e.* the inner and outer portions of the fold, are maintained apart from each other preferably by a few micrometers so as to avoid rubbing against each other; such separation is enabled by pressurizing sealed chamber. Alternatively, or in addition, the interior surface of the sleeve tip material may be coated with a dry hydrogel which when wetted – *e.g.* by the filling of the retractable sleeve with fluid – will swell and form a sufficiently rigid sleeve tip, minimizing or cancelling the need for pressurization. Hydrogels useful in this embodiment include for example, polyvinylpyrrolidone (PVP) or TG-2000 (Life Science Polymers), but other hydrogels known in the art will be equally useful. The method of combining or joining the sleeve tip and other components of the retractable sleeve structure can be achieved through methods that are well known in the art. Non-limiting examples of joining methods include fusing (*e.g.* heat fusion), welding (*e.g.* ultrasonic welding) and joining by adhesive methods (*e.g.*, gluing). Combinations of these materials and methods are contemplated by this invention. In one embodiment, for example, the distal end of the middle tube is joined to the proximal end of the sleeve tip by a middle connection ring that provides adhesion.

[0026] In one embodiment, a proximal ring sealingly connects the retractable sleeve structure to the inner tube within the housing. The proximal end of the retractable sleeve structure may further comprise a handle designed to facilitate moving the retractable sleeve structure from a distal position within the housing structure to a proximal position. The retractable sleeve structure further comprises a sealable port. The retractable sleeve structure together with the inner tube form a sealed chamber, in which fluid may be added or removed through the sealable port. For the purpose of this application, "fluid" is understood according to its proper definition in the area of physics, inclusive of any substance that moves when exposed to shearing forces. "Fluid" therefore includes without limitation, substances in a gaseous phase as well as substances in a partial or wholly liquid phase, such as water, water-based solutions, saline, oils or gels. The retractable sleeve structure may be retracted by sliding the handle from a first distal position to a second more proximal position, thereby withdrawing and unfolding the sleeve tip and releasing the device. Because the outer tube and the inner tube are fixedly connected to the housing structure, the outer and inner tubes are not affected by sliding the handle of the retractable sleeve structure.

[0027] The invention also relates to a method of deploying an intravascular device. The first deployment step comprises pressurizing the retractable sleeve structure with fluid. In one embodiment, the retractable sleeve structure is packaged at neutral air pressure such that the operator will pressurize the retractable sleeve structure with fluid prior to its use. During pressurization of the retractable sleeve structure with fluid, it may be necessary to remove remaining air from the sleeve. In certain embodiments, a micro-orifice in the sleeve tip allows remaining air to evacuate the sealed chamber prior to or while the sealed chamber is filled with a pressurized fluid by applying a pressure of 1-10 atm through the sealable port. The micro-orifice

preferably has a diameter in the range of 30-40 micrometers, thus allowing air to exit the sealed chamber while generally minimizing the pressurized fluid flow through the micro-orifice. Insertion and pressurization of the fluid can be achieved using methods that are well known in the art. In one embodiment, physiologically-compatible fluid is used in the sealed chamber, such as, for example, a physiologically-compatible saline solution. Other biocompatible fluids may similarly be used as is known in the art. The sealed chamber may be filled to a pressure in the range of 1-10 Atm. In one preferred embodiment, the sealed chamber is pressurized to 4 Atm.

[0028] Employment of a pressurized fluid may provide an advantage by maintaining the adjacent inner and outer portions of the fold of the sleeve tip apart from each other by at least a few micrometers so as to avoid rubbing. The method of evacuating air through a micro-orifice in the distal portion of the sleeve tip may be advantageous compared to other methods known in the art for evacuating air (e.g. by application of a vacuum) because the micro-orifice enables evacuation of a greater percentage of residual air from the sealed chamber.

[0029] In one embodiment, use of a fluid may comprise a hydrogel or other material with similar properties, including water absorbency and hydrophilic properties. In this embodiment, hydrogel is applied during the manufacturing stage, for example, by coating the inner surface of the sleeve tip. Hydrogel may also be introduced through the sealable port following the manufacturing stage. Upon contact with an aqueous liquid, hydrogel increases in volume, thus assisting in evacuating air through the micro-orifice, while simultaneously increasing the axial rigidity of the sleeve tip. The method of applying hydrogel to the sealed chamber is thus advantageous in evacuating air and providing the desired level of axial rigidity upon introduction of an aqueous liquid without the need to pressurize the fluid within the sealed chamber as a separate step.

[0030] The method of deploying an intravascular device further comprises navigating the sleeve tip to the target site in the body lumen so that the mounted device is positioned at the target site for deployment. The sleeve tip is delivered to the target site in the body lumen by methods known in the art. The employment of thin, flexible, light-weight materials, as well as the use of pressurized fluid --and/or a hydrogel-- in the retractable sleeve structure, enables the navigation of the catheter system via tortuous lumen while minimizing axial and frictional forces applied on the catheter.

[0031] Referring now to the drawings wherein the figures are for purposes of illustrating preferred embodiments of the present invention only, and not for purposes of limiting the scope of the invention in any way, **Figure 1A** shows one embodiment of the catheter system **20** in a pre-deployment state having a proximal end and a distal end. The catheter system includes a guide wire **9** comprising a distal end **13** extending into the lumen during deployment and a proximal end **14** that remains outside the body during deployment. The guide wire **9** extends through the lumen of inner tube **5**. The inner tube **5** has a proximal end and a distal end. The inner tube **5** extends through housing structure **8** having a distal end **8a** and a proximal end **8b**. In this embodiment, the housing structure **8** has a length equal to or greater than a distance **2L**, *i.e.* a length twice distance **L** (detailed herein below). The housing structure **8** includes a distal opening **31** and a proximal opening **32**. The inner tube **5** extends through distal opening **31** of the housing structure **8** to the proximal opening **32**, to which the inner tube **5** is affixed. In **Figure 1A**, the inner tube **5** traverses the proximal opening **32** through the housing structure **8**. Outer tube **3** forms a lumen through which extends the inner tube **5** and guide wire **9**. The outer tube **3** is affixed to the housing structure **8** at distal opening **31**.

[0032] The outer tube **3** and the inner tube **5** are affixed to the housing structure **8**, and form a consistent radial space between the outer surface of the inner tube **5** and the internal surface of the outer tube **3**. A retractable sleeve structure **2** extends through the radial space formed by outer tube **3** and inner tube **5**. The retractable sleeve structure **2** comprises middle tube **4** having a proximal end and a distal end and a sleeve tip **16** having a proximal end and a distal end. The sleeve tip **16** may have a micro-orifice **18** to permit air to evacuate the sealed chamber **15** prior to or while the sealed chamber **15** is filled with a pressurized fluid **10** through the sealable port **11**. In one embodiment, as shown in **Figure 1A**, the proximal end of middle tube **4** is sealingly connected to the inner tube **5** via proximal ring **7**. In the embodiment of **Figure 1A**, the proximal ring **7** forms a fluid-tight, moveable seal against inner tube **5**. The retractable sleeve structure **2** further comprises a handle **6** which may be utilized to control movement of the retractable sleeve structure **2**, including movement of the slideable proximal ring **7** along inner tube **5**. As shown in **Figure 1A**, the sealable port **11** is located in the handle **6**; the sealable port **11** may be used to control the contents and pressure of fluids in the sealed chamber **15** formed by the retractable sleeve structure **2** together with the inner tube **5**. In another embodiment, the sealable port **11** may be positioned on the middle tube **4** separate from the handle **6**. The distal end of middle tube **4** is fixed to the proximal end of the sleeve tip **16**. The distal end of the sleeve tip **16** may be sealed to the inner tube **5** via a distal ring **12** as shown in **Figure 1A**. Pressurized fluid **10** is introduced into the sealed chamber **15** formed by the retractable sleeve structure **2** and inner tube **5** through the sealable port **11**. Similarly, the pressure of the fluid in the retractable sleeve structure may be controlled via the sealable port **11**. Generally, the housing structure of any embodiment described herein may be an open or closed structure.

[0033] In one embodiment, the retractable sleeve structure has, while pressurized, a substantially constant outer diameter along the longitudinal extent of the middle tube 4 and sleeve tip 16. The sleeve tip 16 radially extends a radial distance **W** from inner tube 5 and folds onto itself forming a sheath around the crimped device 1. While the device may be any transluminally implantable intravascular device, the device 1 depicted in **Figure 1A** and other Figures is a cylindrical stent, here illustrated in a crimped state. Fold 17 of the retractable sleeve structure 2 extends a longitudinal distance **L** which is equal to or greater than the length of the intravascular device. In other words, the length of the material making up the fold is equal to or greater than twice the length of the mounted intravascular device.

[0034] **Figure 1B** shows an enlarged portion of the catheter system 20, including the fold 17 of the sleeve tip 16 that forms a radial distance **W** between the retractable sleeve structure 2 and the inner tube 5. The space formed between the sleeve tip 16 and inner tube 5 is suitable for mounting a device 1 prior to deployment. In this embodiment the fold length **L** (shown in **Figure 1A**) closely matches the length of the mounted device 1.

[0035] In one embodiment, the method of deploying an intravascular device further comprises retracting the retractable sleeve structure 2, whereby the sleeve tip 16 is withdrawn or peeled away from the device in a proximal direction, thereby releasing the device 1. **Figure 1A** and **Figures 2 through 4** illustrate the steps according to one embodiment of the invention. With reference to **Figure 1A**, the handle 6 of the retractable sleeve structure 2 begins in a first position near the distal end of the housing structure 8. In one embodiment of this invention, the retraction step comprises applying a proximally-directed force on the handle 6, thereby sliding the proximal ring 7 in a longitudinal direction along the inner tube 5. As shown in **Figure 2**, as the proximal ring 7 slides a distance of approximately one-third of $2L$, and the sleeve tip 16

withdraws a longitudinal distance of approximately one-third of L . Because the outer tube **3** and inner tube **5** are fixedly connected to the housing structure **8** – which remains stationary during this step – only the retractable sleeve structure is affected by applying a proximally-directed force to the handle **6** and sliding the handle **6** in a proximal direction. This step is further illustrated by **Figure 3**, wherein the handle **6** and proximal ring **7** slides a distance of approximately two-thirds of $2L$, and the sleeve tip **16** therefore withdraws a longitudinal distance of approximately two-thirds of L . The step is completed, as shown in **Figure 4** with the full deployment of the device **1** by sliding the proximal ring **7** and handle **6** the entire distance $2L$ to a second position adjacent to the proximal end **8b** of the housing structure **8**, thereby withdrawing the sleeve tip **16** a distance L . The retraction of the retractable sleeve structure **2** thereby releases the device **1** while minimizing friction on the exterior surface of the device **1**. The device **1** is then able to expand into the target site of the body lumen. Throughout the process, the proximal ring **7** maintains a fluid-tight seal against inner tube **5**, thus maintaining pressurization of the retractable sleeve structure **2**.

[0036] **Figure 4** shows the catheter system **20** in a post-deployment state. The retraction of the retractable sleeve structure **2** released the device **1** within the body lumen. As the retractable sleeve structure **2** is retracted, the sleeve tip **16** is peeled away from the intravascular device thereby releasing it into the body lumen. Retraction of the sleeve structure a distance of $2L$ will result in withdrawal of the sleeve tip **16** a length L , thus eliminating the fold.

[0037] **Figure 5A** shows another embodiment of the catheter system **20**, wherein the retractable sleeve structure **2** further comprises a collapsible proximal portion sleeve **24** sealingly attached at its proximal end to the proximal end **8b** of the housing structure **8**, and sealingly attached at its distal end to the middle tube **4**. The collapsible proximal portion sleeve **24** is

manufactured of a highly flexible material, such as, for example ultra-thin polyethylene terephthalate (PET) or a Polyimide (PI). In this embodiment, the proximal end of the retractable sleeve structure **2** is integral with the proximal portion of the housing structure **8**, and further includes a spout **28** which comprises a sealable port **29**. By contrast with the handle comprising a sealable port of the previous embodiment, the spout **28** does not move during the deployment process. Rather, as shown in **Figure 5A**, the retractable sleeve structure **2** includes a handle **23** which in this embodiment is formed as a knob positioned at the distal portion within the housing structure **8**. During deployment, a radial force is applied to the handle **23**, thereby axially compressing the retractable sleeve structure **2**; simultaneously, a force in the proximal direction is applied to the handle **23**, thereby collapsing the proximal portion sleeve **24**, for example, into accordion-like folds as shown in **Figure 5B**. In order to collect and collapse in an accordion-like manner a distance of $2L$, the knob may be moved back and forth several times as shown by the two sided arrow. As the proximal portion sleeve **24** collapses, the sleeve tip **16** therefore withdraws. The sleeve tip **16** may have a micro-orifice **18** as shown in **Figure 5A** to permit air to evacuate the sealed chamber **15** during this process, or prior to or while the sealed chamber **15** is filled with a pressurized fluid **10** through the sealable port **29**. In other embodiments, the proximal portion sleeve **24** may collapse in other manners as known in the art. Because the embodiment illustrated in **Figures 5A** and **5B** is based on collapsible proximal portion sleeve **24**, this embodiment has the advantage of not requiring housing structures equal to or longer than twice the length of the stent (*i.e.* the length of the housing can be shorter than **2L**), thereby making the catheter system more compact and easier to use.

[0038] The method of deploying the intravascular device of **Figures 5A** and **5B** is accomplished by retracting the retractable sleeve structure **2** through a series of steps involving a

handle **23**, as shown in **Figures 5A** and **5B**. The retraction begins, as shown in **Figure 5A**, with the handle **23** in a first position near the distal end **8a** of the housing structure **8** along the collapsible proximal portion sleeve **24** of the retractable sleeve structure **2**. The first step comprises applying a compression force to the handle **23**, thereby gripping the handle **23** against the proximal portion sleeve **24**. As illustrated by **Figure 5B**, the next step comprises pulling the handle **23** in a proximal direction while maintaining a compression force, thereby collapsing the collapsible proximal portion sleeve **24** toward the proximal end **8b** of the housing structure **8** and releasing the intravascular device. In one embodiment, the collapsible proximal portion sleeve **24** folds in an accordion-like manner, as shown in **Figure 5B**. The method further comprises reducing the compression force on the handle **23** and returning the handle **23** to the first position near the distal end **8a** of the housing structure **8**. These steps are repeated until the collapsible proximal portion sleeve **24** of the retractable sleeve structure **2** has fully collapsed, thereby withdrawing the sleeve tip **16** and releasing the device **1**, viewed either through an imaging medium (e.g. angiography) or as indicated by an abrupt increase in resistance to the retraction force on the handle **23**. In another embodiment of the invention, employment of a wheel in this step may be used to apply a force to the proximal portion sleeve **24** in the proximal direction.

[0039] **Figure 6A** shows another embodiment of the catheter system **20**, wherein the retractable sleeve structure further comprises a rear retractable portion **25**. The rear retractable portion **25** has a distal end **26** that is joined to the proximal end of the middle tube **4**, and is sealingly attached at its proximal end to an insertion tube **27**. The rear retractable portion **25** may be manufactured from flexible materials, for example, polyethylene terephthalate (PET), Polyimide (PI), Nylon 12 or suitable materials readily understood in the art. The insertion tube **27** surrounds the inner tube **5** with a lumen between the insertion tube **27** and inner tube **5** to

enable fluid or air to pass from the insertion tube 27 to the sealed chamber 15 at the distal end of the insertion tube 27. At the proximal end of the insertion tube 27, the insertion tube 27 connects to a spout 28 affixed to the inner tube 5. The spout 28 further comprises a sealable port 29 for controlling the contents and pressure of the fluids in the sealed chamber 15. In another embodiment, the sealable port 28 may be positioned on the rear retractable portion 25 separate from the spout 29. As shown in **Figure 6A**, the sleeve tip 16 may have a micro-orifice 18 to permit air to evacuate the sealed chamber 15 prior to or while the sealed chamber 15 is filled with a pressurized fluid 10 through the sealable port 29. The insertion tube 27 may be manufactured from a metal or a biocompatible polymer. During deployment, a force is applied in the proximal direction at the proximal end of the rear retractable portion 25. Thus, the rear retractable portion 25 folds onto itself and over the insertion tube 27 in the proximal direction, as shown in **Figure 6B**. During this process, the sleeve tip 16 therefore withdraws. Because the embodiment illustrated in **Figures 6A** and **6B** is based on rear retractable portion 25, this embodiment has the advantage of not requiring housing structures equal to or longer than twice the length of the stent (*i.e.* the length of the housing can be shorter than $2L$), thereby making the catheter system more compact and easier to use.

[0040] The method of deploying the intravascular device of **Figures 6A** and **6B** is accomplished by retracting the rear retractable portion 25 through one of several possible means. In one embodiment, the housing structure 8 includes a wheel 35 having an edge 36 that contacts the exterior surface 37 of the rear retractable portion 25, as shown in **Figure 6C**. Upon rotation of the wheel 35, frictional force of the edge 36 against the exterior surface 37 results in the rear retractable portion 25 folding onto itself and over the insertion tube 27. Other mechanical

means readily known to one skilled in the art may be employed to apply a proximal force to the rear retractable portion **25**.

[0041] **Figure 7A** shows a cross-sectional view of another embodiment of the catheter system **20**, wherein the retractable sleeve structure **2** further comprises a curved inner tube portion **30** that is connected to the proximal end of inner tube **5** and extends in a curved direction within the housing structure **8**. The curved inner tube portion **30** is manufactured from a metal or a biocompatible polymer and may coil up to and beyond 360 degrees within the housing structure **8**. The middle tube **4**, handle **6** and proximal ring **7** follow the curved inner tube portion **30**. Handle **6** further comprises a sealable port **11** for controlling the contents and pressure of fluids in the sealed chamber **15**. In another embodiment, the sealable port **11** may be positioned on the middle tube **4** separate from the handle **6**. In this embodiment, the housing structure has a first end **33** that is affixed to outer tube **3** and a second end **34** that is affixed to the curved inner tube portion **30**. During deployment, a force in the proximal direction is applied to the handle **6**, thereby retracting the handle **6** and the retractable sleeve structure **2** over the curved inner tube portion **30** as shown in **Figure 7B**. During this process, the sleeve tip **16** therefore withdraws. The sleeve tip **16** may have a micro-orifice **18** to permit air to evacuate the sealed chamber **15** prior to or while the sealed chamber **15** is filled with a pressurized fluid **10** through the sealable port **11**. Because the embodiment illustrated in **Figures 7A** and **7B** is based on curved inner tube portion **30**, this embodiment has the advantage of not requiring housing structures equal to or longer than twice the length of the stent (*i.e.* the length of the housing can be shorter than **2L**), thereby making the catheter system more compact and easier to use.

[0042] Many different methods may be employed to mount the intravascular device onto the inner tube of the catheter system prior to deployment. One method is illustrated by **Figures 8A – 8D**. The first step of one embodiment is shown in **Figure 8A** and comprises compressing at least a portion of intravascular device **1**, for example a fully crimped stent, around an inner tube **5** using a holding device **19**. The next step, shown in **Figure 8B**, comprises applying a force in the distal direction, for example to the handle of the sleeve tip (not shown), such that the retractable sleeve structure moves in the distal direction to incrementally extend longitudinally over an exposed residual portion of the intravascular device. The axial rigidity of the sleeve tip **16** is accomplished by fluid pressurization through means discussed above. The method further comprises releasing the holding device **19** and pulling the catheter system proximally, as shown in **Figure 8C**. In the next step, the process repeats, as shown in **Figure 8D**. The holding device **19** is compressed against a more distal location on the device **1** than in the previous step and at each cycle the fold of the sleeve tip is extended incrementally in the distal direction to eventually cover or sheath the entire device. In one embodiment, the retractable sleeve structure **2** may be assembled with pressurized fluid in the sealed chamber **15**. The sealed chamber may be deflated once the device is mounted and prior to use.

[0043] In another embodiment of the intravascular device mounting method, the method comprises placing a intravascular device in a crimped state on the inner tube while the handle of the retractable sleeve structure is positioned near the proximal end of the housing structure, such that the sleeve tip is fully withdrawn. In the next step of this embodiment, a force in the distal direction is applied to the handle, such that the retractable sleeve structure moves distally against the mounted intravascular device. Upon contact with the mounted intravascular device, the sleeve tip naturally folds around the intravascular device. A holding device is positioned at the

distal end of the intravascular device holding it in place as the sleeve tip folds over the device.

The fold of the sleeve tip is extended to cover or sheath the entire intravascular device.

[0044] The device may be any stent or graft device, which are well known in the art. Any stent design may be utilized in connection with the present invention. In one example, the stent consists of separate segments designed to expand independently from each other as the sleeve tip is withdrawn; however, it should be understood that the invention is not limited to any particular stent design or structure. A stent or graft having either separate segments or a unitary design (*i.e.*, without separate stent segments designed to expand independently from each other) may be used with this invention, as well as stents that expand at different rates along the longitudinal axis of the stent. The invention further contemplates stents or grafts having diameters of variable sizes and different lengths. One non-limiting example design is the NIRflex stent which is manufactured by Medinol, Ltd., as described in U.S. Patent No. 6,723,119, which is incorporated herein *in toto*, by reference. Another example of a suitable self-expanding stent is described in US Patent Nos. 6,503,270 and 6,355,059, for example, which are also incorporated herein *in toto*, by reference.

[0045] It will be appreciated by persons having ordinary skill in the art that many variations, additions, modifications, and other applications may be made to what has been particularly shown and described herein by way of embodiments, without departing from the spirit or scope of the invention. Therefore it is intended that scope of the invention, as defined by the claims below, includes all foreseeable variations, additions, modifications or applications.

CLAIMS

1. A catheter system having a distal end and a proximal end comprising:
 - an inner tube having a first lumen;
 - an outer tube having a second lumen, wherein said inner tube extends through said second lumen ;
 - a retractable sleeve positioned between the inner tube and outer tube, said retractable sleeve comprising a middle tube and a sleeve tip,
wherein said retractable sleeve and said inner tube form a sealed chamber.
2. The catheter system of according to claim 1, further comprising a housing at the proximal end of said catheter system.
3. The catheter system of claim 2, wherein said housing comprises a distal opening, wherein said outer tube is affixed to the distal opening of said housing.
4. The catheter system according to any of claims 1-3, wherein the outer tube and inner tube are affixed relative to each other.
5. The catheter system according to any of claims 1-4, wherein the catheter system further comprises an intravascular device.
6. The catheter system according to any of claims 1-5, wherein said retractable sleeve structure comprises a sealable port.
7. The catheter system according to any of claims 1-6, wherein the sleeve tip includes a micro-orifice.

8. The catheter system according to any of claims 1-7, wherein the retractable sleeve structure comprises ultra-thin polyethylene terephthalate.
9. The catheter system according to any of claims 1-8, wherein the retractable sleeve structure comprises polyimide.
10. The catheter system of any of claims 1-9 further comprising a distal ring connecting the sleeve tip to the inner tube.
11. The catheter system according to any of claims 1-10, wherein the sealed chamber contains a fluid.
12. The catheter system according to any of claims 1-11, wherein the sealed chamber contains a hydrogel.
13. The catheter system according to any of claims 1-12, wherein said sleeve tip forms a fold.
14. The catheter system of claim 13, having a radial space between the sleeve tip and the inner tube.
15. The catheter system according to any of claims 1-14, wherein the retractable sleeve is movable relative to the inner and outer tubes.
16. The catheter system according to any of claims 2-15, further comprising a handle connected to the retractable sleeve at the proximal end of the middle tube.
17. The catheter system according to claim 16, wherein the sealable port is located in the handle.

18. The catheter system according to any of claims 16-17, wherein the handle further comprises a proximal ring connecting the middle tube to the inner tube.
19. The catheter system of claims 16-18, wherein said housing comprises a proximal opening, wherein said inner tube is affixed to the proximal opening of said housing.
20. The catheter system according to claim 16-18 wherein the inner tube further comprises a curved inner tube portion.
21. The catheter system according to claim 20 wherein the curved inner tube portion is affixed to said housing.
22. The catheter system according to any of claims 2-15, wherein the retractable sleeve comprises a collapsible proximal portion.
23. The catheter system according to claim 22, wherein the retractable sleeve further comprises a knob.
24. The catheter system according to any of claims 22-23 wherein the proximal end of the collapsible proximal portion is connected to the proximal end of the housing.
25. The catheter system according to any of claims 2-15 wherein the retractable sleeve further comprises a rear retractable sleeve portion.
26. The catheter system according to claim 25, wherein the housing further comprises a wheel, wherein the edge of the wheel contacts the surface of the rear retractable sleeve portion.

27. The catheter system according to claim 26, wherein the edge of the wheel and the surface of the rear retractable sleeve portion are jagged.
28. The catheter system according to claim 27, wherein the edge of the wheel and the surface of the rear retractable sleeve portion interlock.
29. The catheter system according to claim 26, wherein the edge of the wheel and the surface of the rear retractable sleeve portion are smooth.
30. The catheter system according to any of claims 25-29, further comprising a spout.
31. The catheter system according to claim 30, wherein the sealable port is located in the spout.
32. The catheter system according to any of claims 25-31, further comprising an insertion tube that connects the spout to the sealed chamber of the retractable sleeve structure.
33. A method of deploying an intravascular device from a catheter system having an inner tube and a retractable sleeve structure comprising a sleeve tip, said retractable sleeve structure and inner tube forming a sealed chamber; comprising the steps of:
 - (a) navigating said sleeve tip to a target site within a body lumen;
 - (b) pressurizing fluid into said sealed chamber;
 - (c) retracting the retractable sleeve structure to withdraw the sleeve tip; and
 - (e) releasing the device.

34. The method of claim 33, further comprising: withdrawing the sleeve tip by applying a force to a handle connected to the retractable sleeve structure.
35. The method according to claim 33, further comprising: withdrawing the sleeve tip by applying a force to the collapsible proximal portion of the retractable sleeve structure.
36. The method according to claim 33, further comprising: withdrawing the sleeve tip by applying a force to a retractable rear portion of the retractable sleeve structure.
37. The method according to claim 36, further comprising: applying a force to the retractable rear portion by turning a wheel.
38. The method according to any of claims 33-37, wherein said step of withdrawing the sleeve tip further unfolds a fold formed by said sleeve tip.
39. The method according to any of claims 33-38, further comprising pressurizing fluid to the sealed chamber through a sealable port.
40. The method according to any of claims 33-39, further comprising evacuating fluid from the sealed chamber through a micro-orifice.
41. The method according to any of claims 33-40, further comprising retracting the retractable sleeve structure a longitudinal distance longer than the length of the intravascular device.
42. The method according to any of claims 33-41, wherein said step of retracting the retractable sleeve structure does not apply any axial force on the device.

43. The method according to any of claims 33-42, further comprising applying hydrogel to the interior surface of the sleeve tip.
44. A method of mounting an intravascular device onto a catheter system having an inner tube and a retractable sleeve structure comprising a sleeve tip, said retractable sleeve structure and inner tube forming a sealed chamber; comprising the following steps:
 - (a) pressurizing the sealed chamber with fluid;
 - (b) compressing at least a portion of said device around said inner tube; and
 - (c) advancing said retractable sleeve structure so that the sleeve tip extends longitudinally over at least a part of the uncompressed portion of said device.
45. The method of claim 44 wherein said device is enveloped by a fold of said sleeve tip.
46. The method according to any of claims 44-45 further comprising an initial step of fully crimping said device onto the inner tube.
47. The method according to any of claims 44-46 wherein said step of advancing is done by applying a force in the distal direction to a handle connected to the sleeve structure.
48. The method according to any of claims 44-47 further comprising: (d) releasing said compressed portion of said device.
49. The method of claim 48 further comprising: (e) repeating the following steps until the device is fully enveloped by said sleeve tip:
 - (1) compressing at least a portion of said device around said inner tube;

(2) advancing said retractable sleeve structure so that the sleeve tip extends longitudinally over at least a part of the uncompressed portion of said device; and

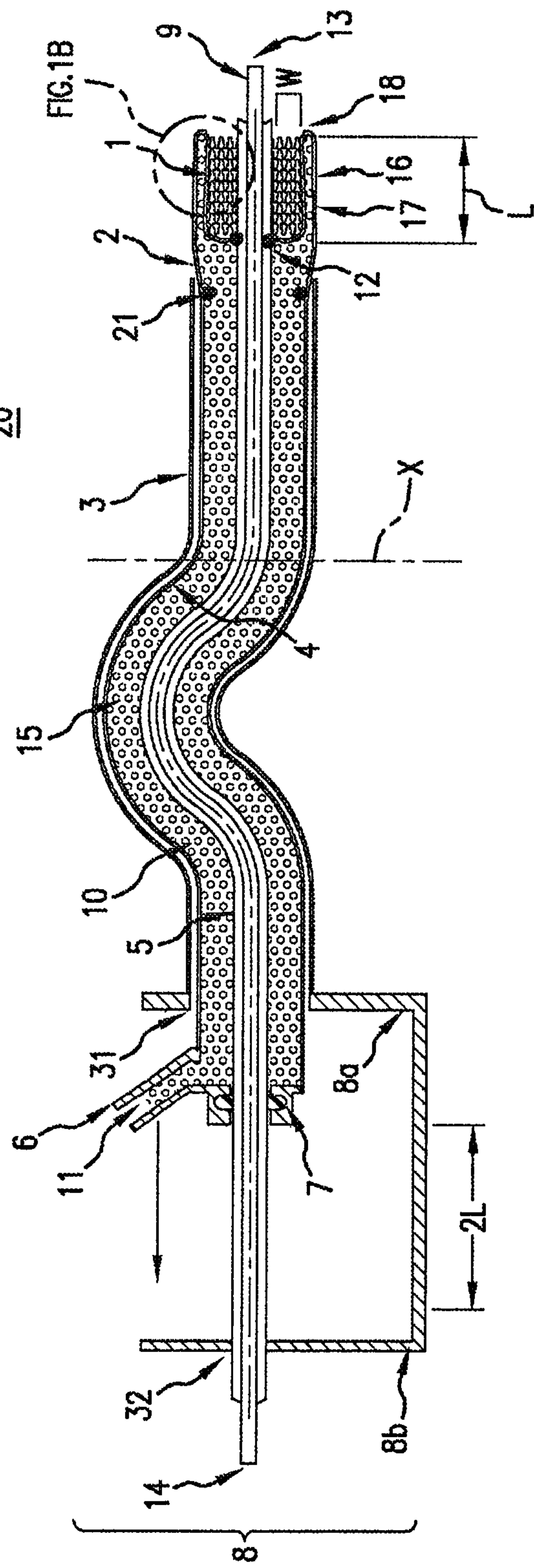
(3) releasing said compressed portion of said device.

50. The method according to any of claims 44-49 wherein said device is a stent or graft.

51. The method according to any of claims 44-50 further comprising: (d) releasing the fluid from the sealed chamber.

52. The method according to any of claims 44-51, further comprising applying hydrogel to the interior surface of the sleeve tip.

53. A method of mounting an intraluminal intravascular device onto the catheter system of claim 16 comprising the following steps:


- (a) positioning the handle in a proximal position within the housing;
- (b) filling the sealed chamber with fluid;
- (c) holding the intravascular device onto the inner tube with a holding device; and
- (d) advancing the retractable sleeve structure distally to extend longitudinally over the device.

54. The method of claim 53 further comprising releasing the fluid from the retractable sleeve structure.

55. The method according to any of claims 53-54, further comprising applying hydrogel to the interior surface of the sleeve tip.

201

३३

◀
—
●
—

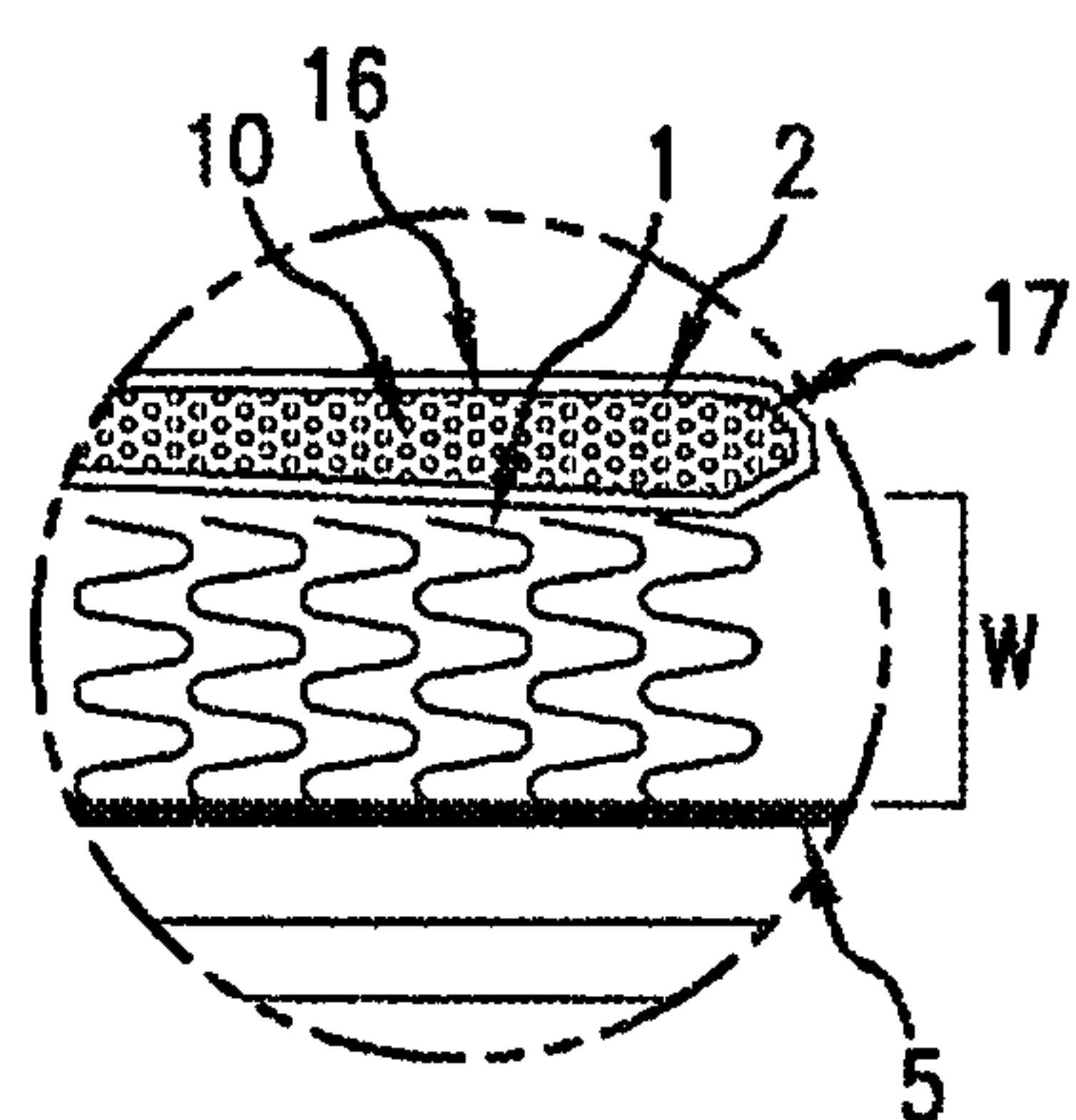
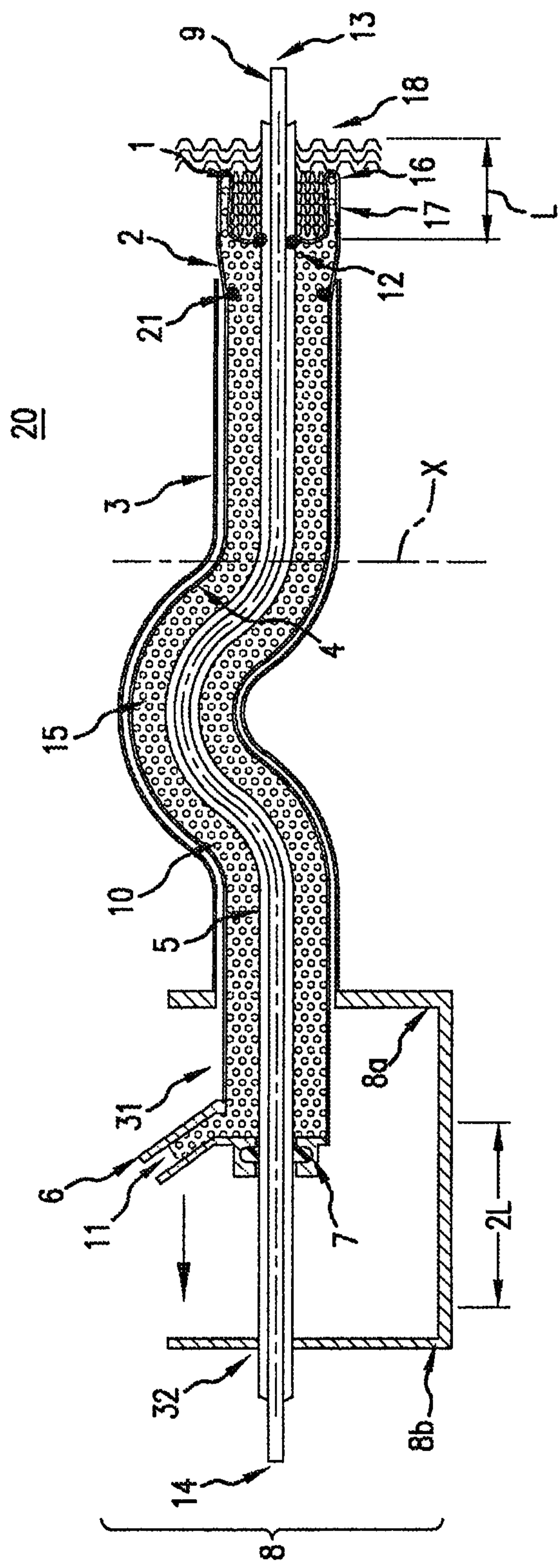
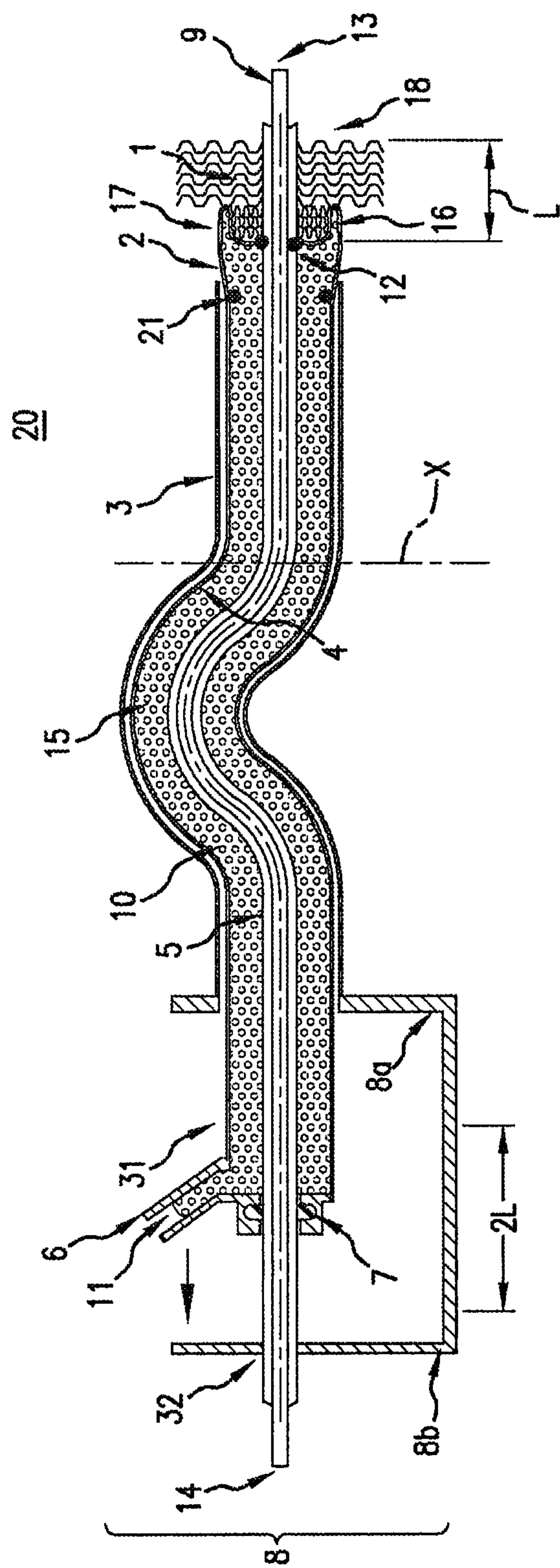




FIG. 1B

2
G.
L.

卷之三

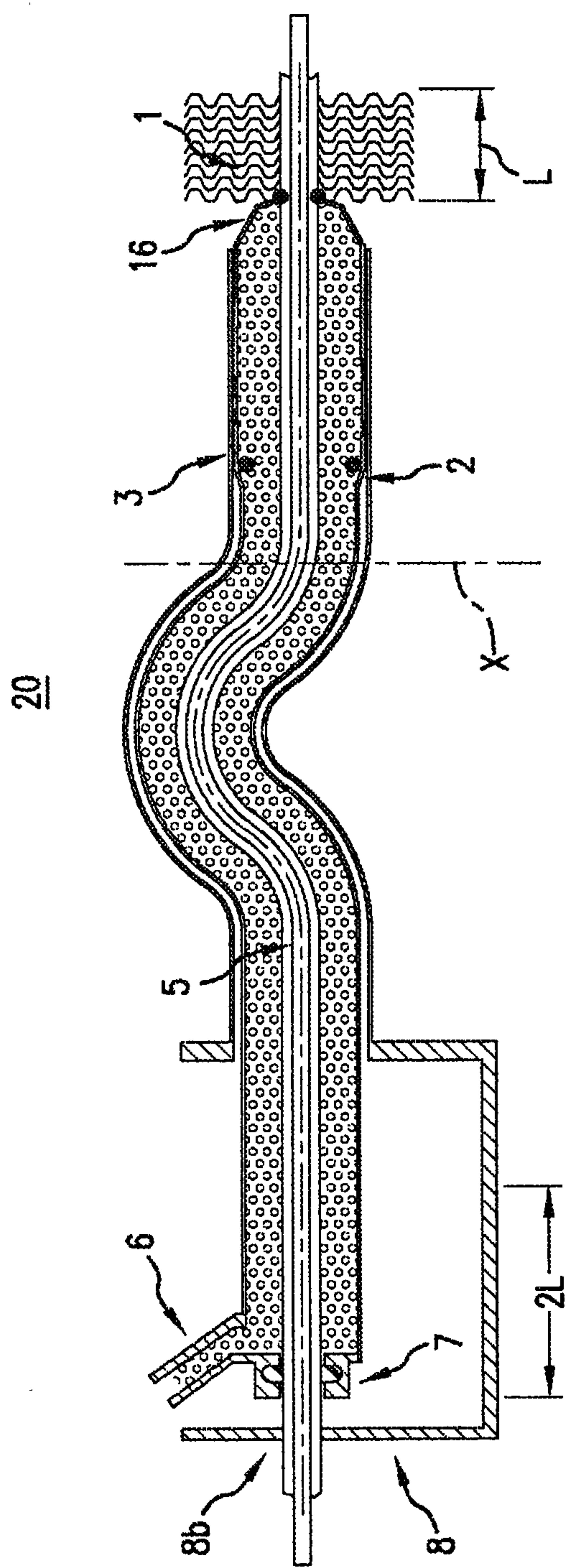


FIG. 4

FIG. 5A

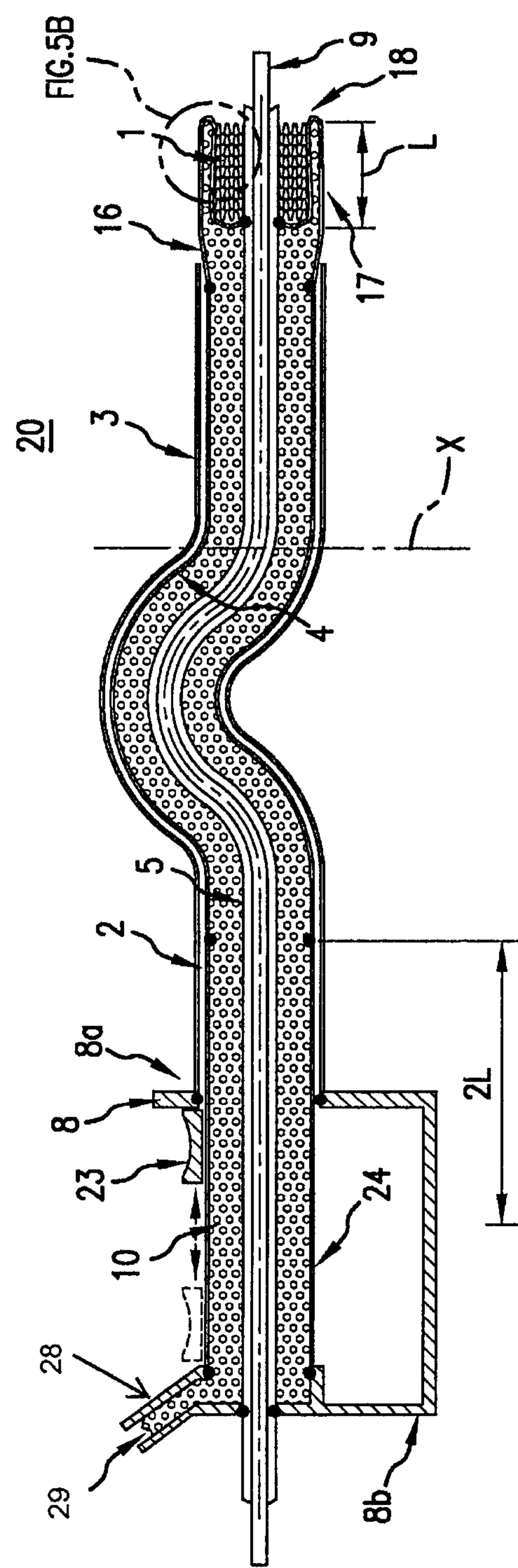


FIG. 5B

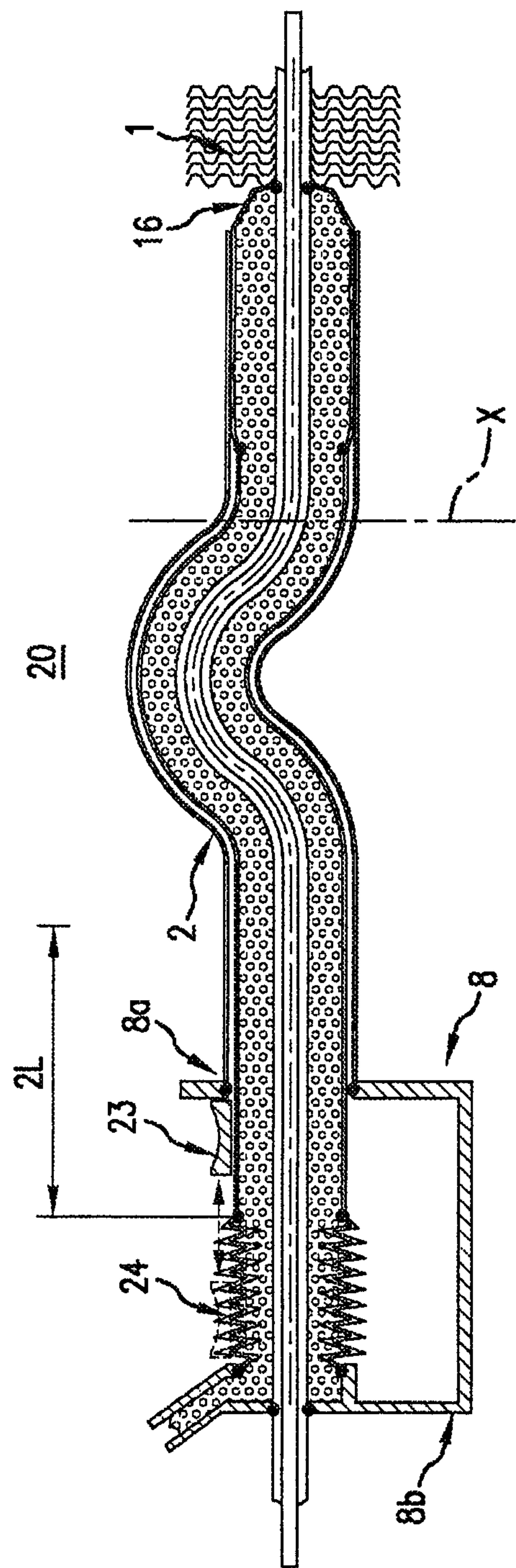


FIG. 5B

FIG. 6A

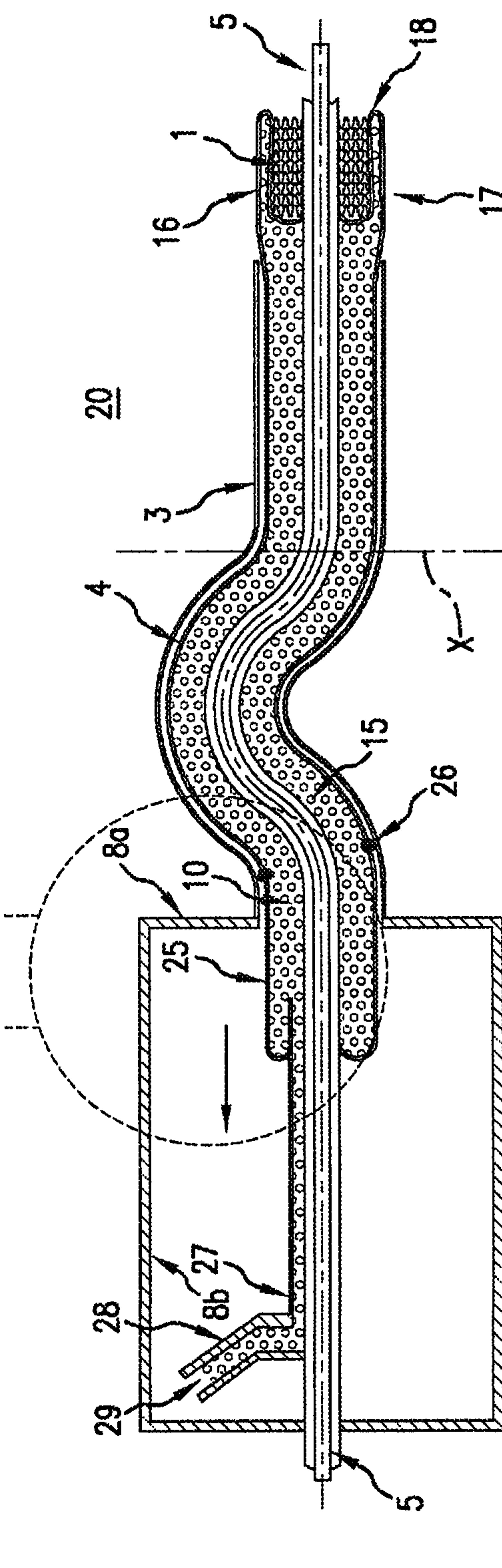
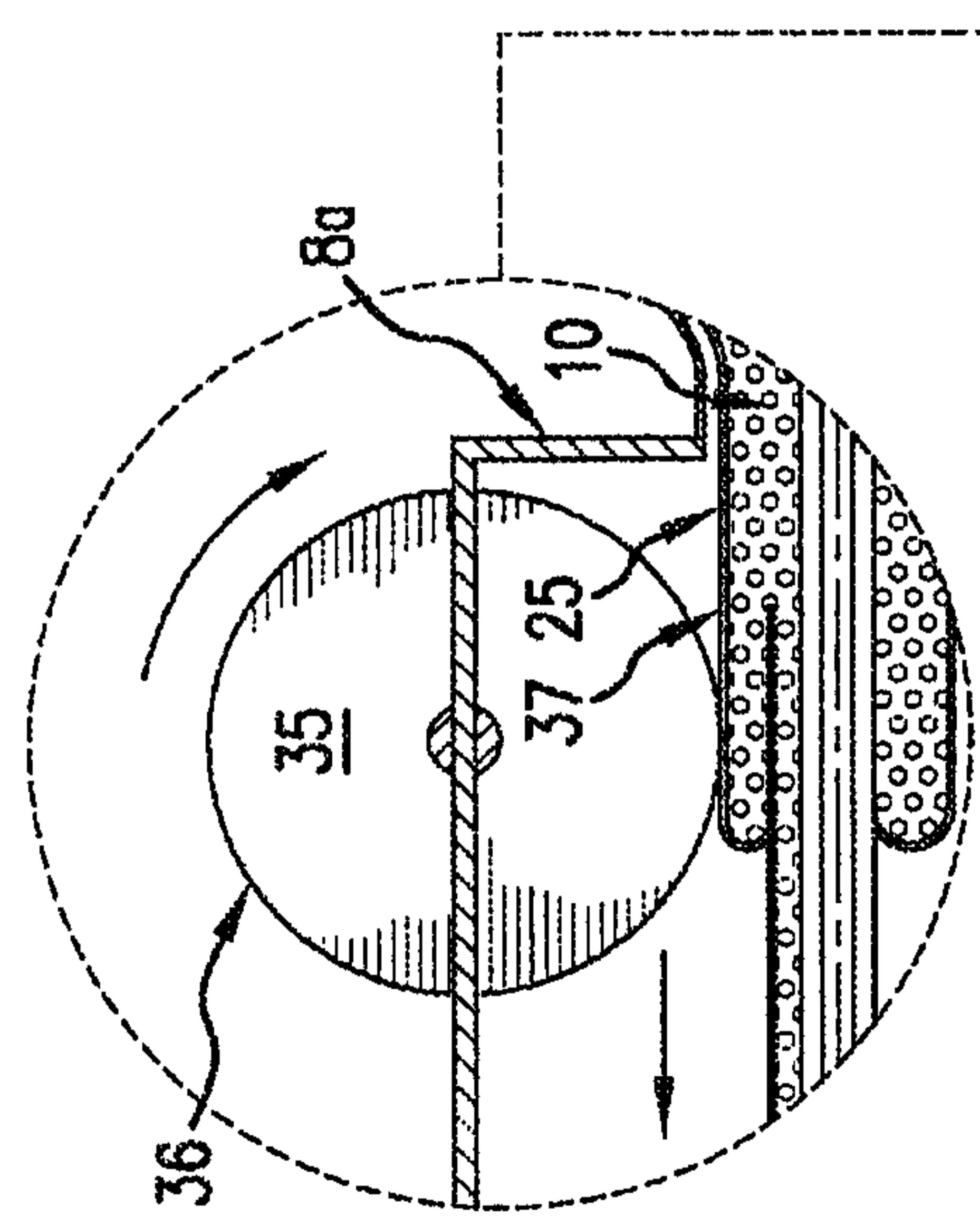



FIG. 6C

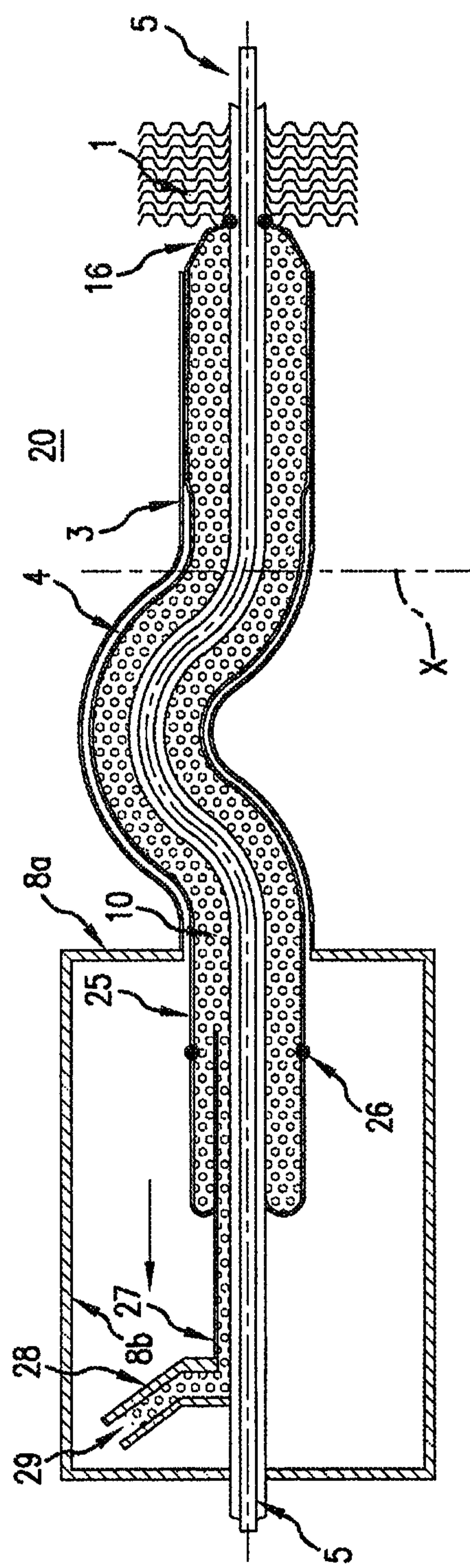


FIG. 6B

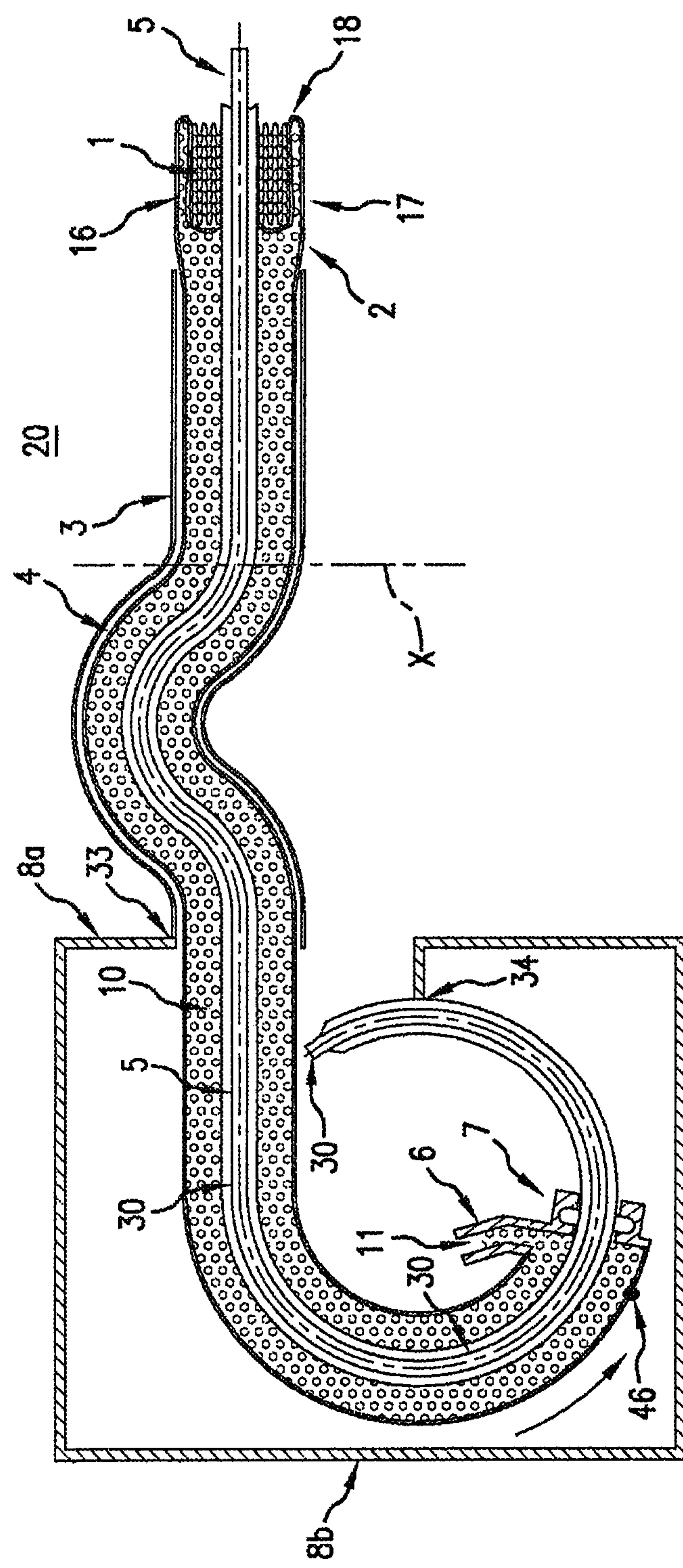
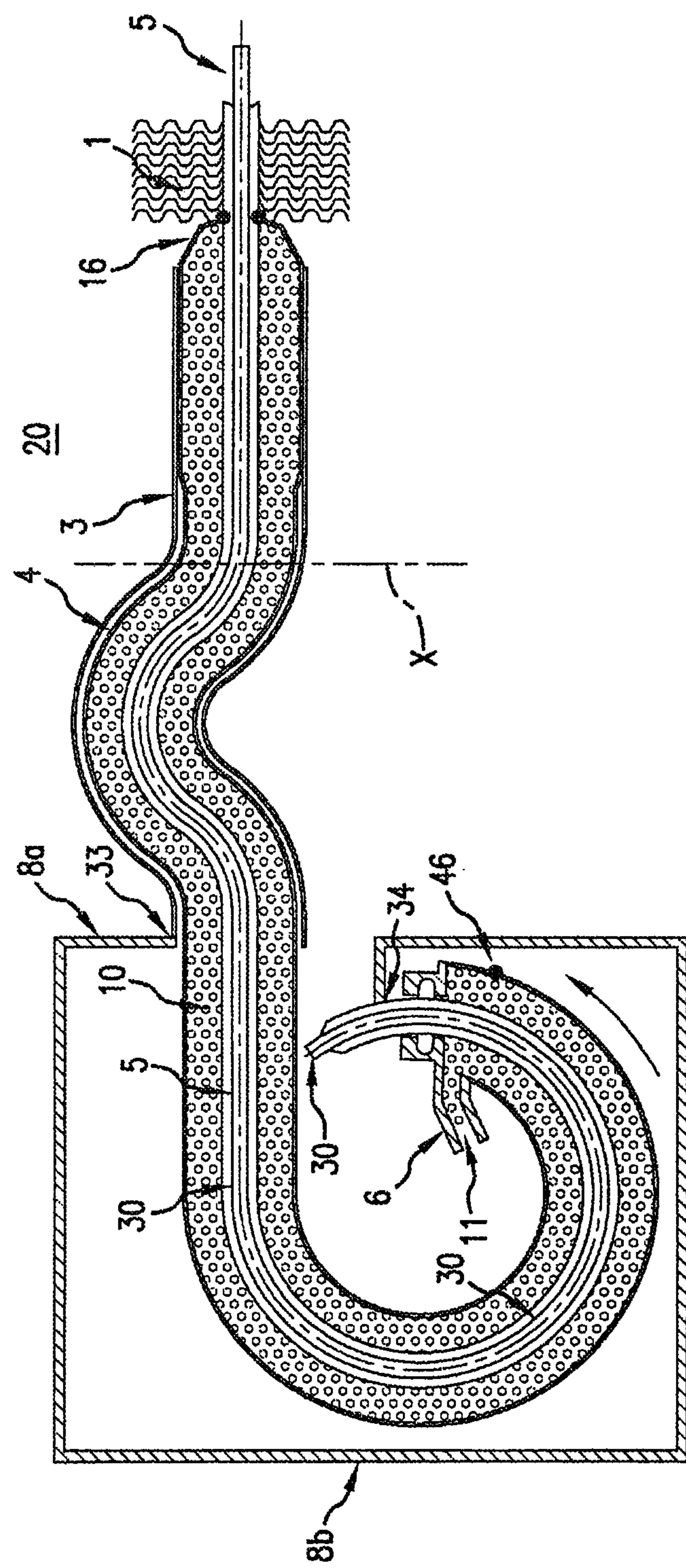



FIG. 7A

卷之三

FIG. 8A

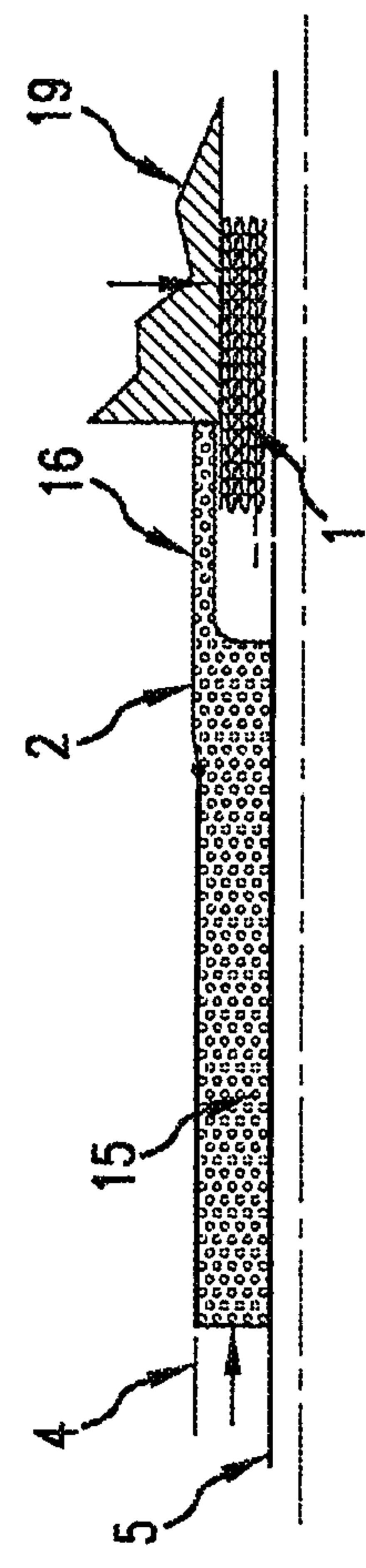


FIG. 8B

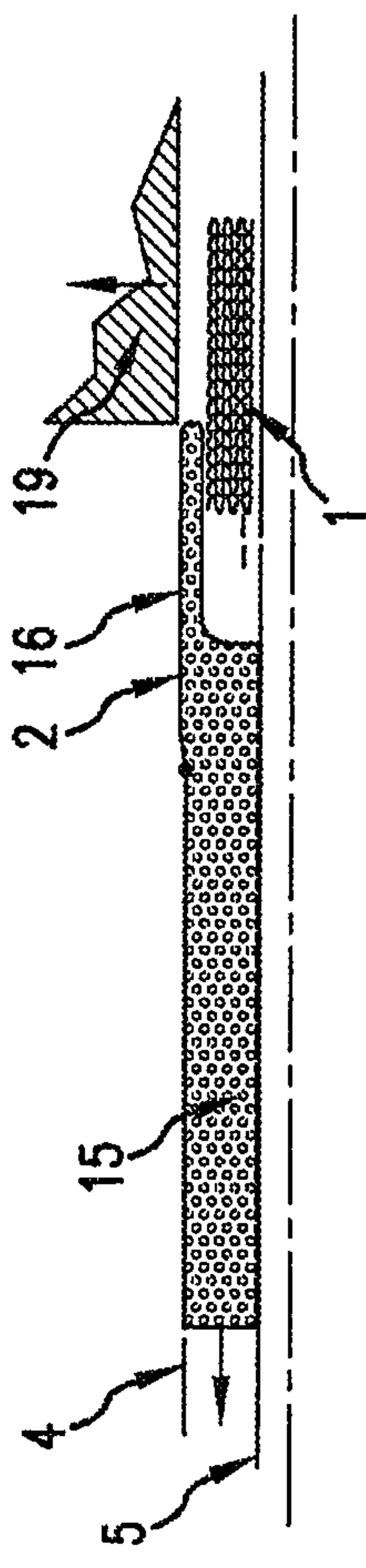


FIG. 8C

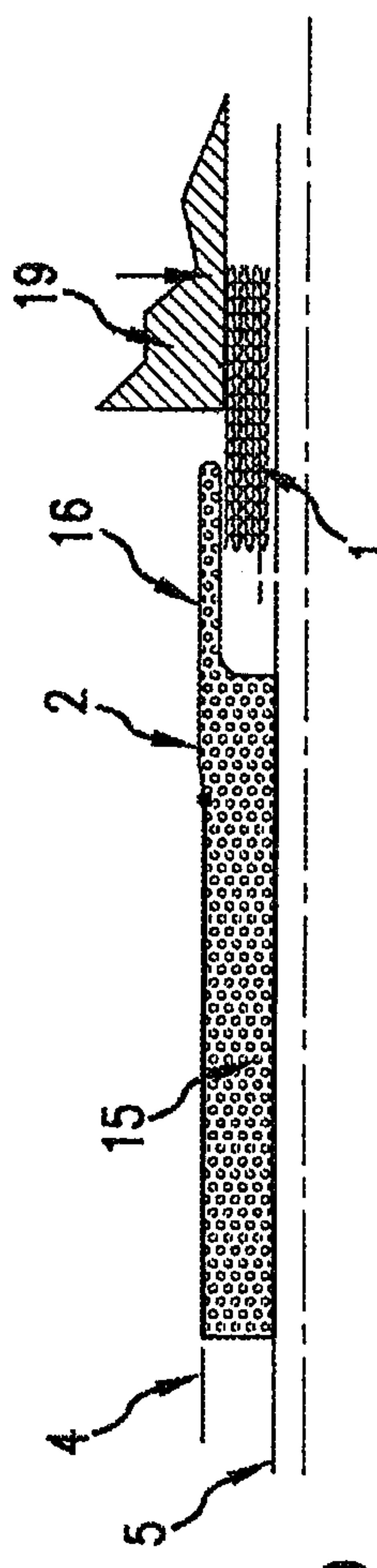
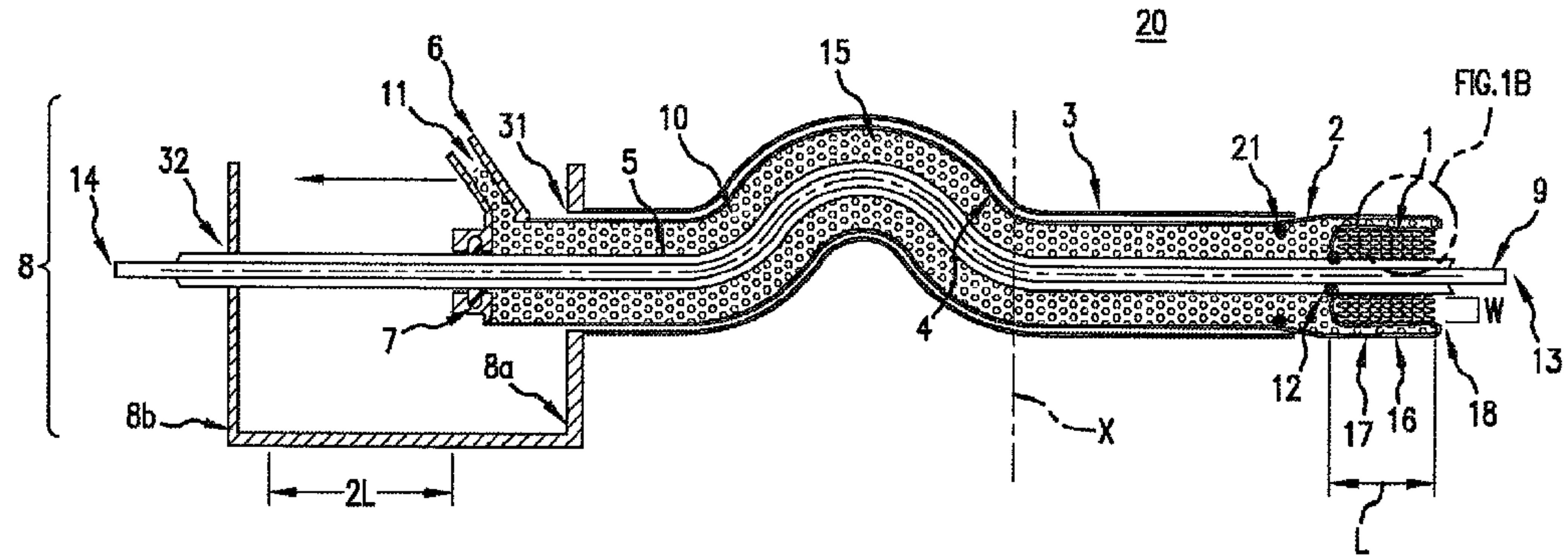



FIG. 8D

A