Title: NOTOCHORDAL CELL MATRIX AS A STIMULANT FOR INTERVERTEBRAL DISC REGENERATION

(57) Abstract: A solubilized notochordal cell matrix powder dissolved in a carrier solvent or formed as a gel is provided. The notochordal cell matrix powder originates from lyophilized and treated porcine nucleus pulposus tissue containing notochordal cells. The powder contains less than 20% of porcine nucleic acids, and the powder contains a substantially unchanged amount of porcine protein content compared to the originating porcine nucleus pulposus tissue. The solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce a significant increase in glycosaminoglycans and type-II collagen matrix. Embodiments of the invention can be used for the disc regenerative treatment of discogenic back and neck pain in an orthopaedic and/or pharmaceutical setting/approach.

FIG. 1C
NOTOCHORDAL CELL MATRIX AS A STIMULANT FOR INTERVERTEBRAL DISC REGENERATION

FIELD OF THE INVENTION

This invention relates to intervertebral disc regeneration.

BACKGROUND OF THE INVENTION

Low back pain as a result of intervertebral disc (IVD) degeneration is a common condition with a high impact on society, physically for the afflicted individual, as well as economically.

Current treatment methods for degeneration-induced low back pain are fusion, and total disc replacement. Both methods are somewhat successful in alleviating low back pain, but do not have a sufficiently high clinical efficacy and are too often accompanied by complications. Furthermore, disc prostheses are inherently of limited longevity. Ultimately, it is desired to restore a degenerating disc to a healthy state, i.e. regeneration. Unfortunately, this is not straightforward, requires biologically active intervention and has so far been unsuccessful. The present invention advances the art and introduces notochordal cell matrix as a stimulant for intervertebral disc regeneration.
Prior to skeletal maturity, our discs are healthy and filled by a central nucleus pulposus (NP) tissue rich in notochordal cells (NCs). By age 10, we lose these NCs and thereafter our discs contain mostly chondrocyte-like cells, named nucleus pulposus cells (NPCs). About a decade or two after we lose our NCs, our discs start to degenerate with age. Other species, e.g. pigs, keep their NCs even as adults. Their IVDs do not degenerate. Hence, we believe that NCs help to maintain a healthy IVD by producing soluble factors. We further believe that these factors are present in the extra-cellular matrix of NC-rich NP tissue, and our invention is to use the matrix from NC-rich NP to directly stimulate degenerated IVDs to repair and regenerate.

SUMMARY OF THE INVENTION

The present invention provides a method of making a notochordal cell matrix solution or gel for the purposes of regenerating the intervertebral disc. In addition, the invention provides an intervertebral disc regeneration stimulant processed by the method as described.

First, porcine nucleus pulposus tissue containing notochordal cells is lyophilized to destroy cells within the tissue and to make a dry and brittle tissue. Second, the dry and brittle tissue is treated by DNase, RNAse, detergent, or a combination thereof (e.g. benzonase & Triton) to remove cellular and nucleic acid remnants. This treatment results in at least 80%
removal of porcine nucleic acids from the porcine nucleus pulposus tissue, while substantially maintaining porcine protein content within the porcine nucleus pulposus tissue. In a different way of saying, the treatment results in the material containing less than 20% of porcine nucleic acid, and containing a substantially unchanged amount of porcine protein content compared to the originating porcine nucleus pulposus tissue.

The order of first lyophilization followed by nucleic acid removal is important to achieve this result. Porcine genomic material harbors endogenous retroviruses (PERVs). PERVs do not come to expression in the pig itself, but may become active upon implantation in different species, e.g. human. Hence, removal of genomic material to minimize the risk of disease transmission is an important step prior to its application in a regenerative therapy.

In the case of removal of nucleic acids from NP tissue, either in a wet state or after disintegration, which is different from the present invention, such treatment has resulted in the removal of more than 90% of the nucleic acid content but also at a considerable loss of extracellular matrix proteins (> 40%). The present invention teaches the substantial removal of nucleic acid from porcine NP tissue, while largely or substantially maintaining its protein content (e.g. active factors).
Third, the treated material is further lyophilized and pulverized into a notochordal cell matrix powder. The notochordal cell matrix powder is solubilized by dissolving the notochordal cell matrix powder in a carrier solvent or formed as a gel.

The solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce a substantial increase in glycosaminoglycans and type-II collagen matrix.

The solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce a significant increase in glycosaminoglycans. In one example, the solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce an at least a multi-fold (e.g. at least two to three times) increase in glycosaminoglycans. In another example, the solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce an at least a seven times increase in glycosaminoglycans. In general, the increase depends on the species, the dosage of powder administered and whether it is administered in-vitro or in-vivo.
The intervertebral disc regeneration stimulant solution or gel is defined as a solubilized notochordal cell matrix powder dissolved in a carrier solvent or formed as a gel, whereby the notochordal cell matrix powder originates from lyophilized and treated porcine nucleus pulposus tissue containing notochordal cells. The powder contains less than 20% of porcine nucleic acid, and the powder contains a substantially unchanged amount of porcine protein content compared to the originating porcine nucleus pulposus tissue.

Embodiments of the invention have the following advantages:

• Porcine notochordal nucleus pulposus tissue is plentiful.
• Porcine notochordal nucleus pulposus tissue can be easily processed following the described steps, supra, to produce a powder that is not harmful and which can stimulate IVD regeneration.
• By using notochordal cell matrix powder, the difficult and time-consuming step to identify and produce the specific soluble active factors secreted by notochordal cells is unnecessary.
• The solubilized notochordal cell matrix powder can be injected into the IVD through a small gage needle (< 27G) causing minimal harm to its outer annulus fibrosus.
• The solubilized notochordal cell matrix powder forms a self-assembling hydrogel at higher concentrations, may be used as a (stem)
cell carrier, to replenish the decreasing cell number that characterizes intervertebral disc degeneration.

- The solubilized notochordal cell matrix powder is sufficient, on its own, to induce stem cells to become NPCs.

- The solubilized notochordal cell matrix powder at higher concentrations has rheological properties similar to the natural nucleus pulposus. Thus, it can replenish and easily integrate into the nucleus pulposus tissue.

- The solubilized notochordal cell matrix powder at higher concentrations has considerable swelling potential. Thus it can add swelling pressure to the nucleus pulposus.

- The solubilized notochordal cell matrix powder can be combined with suitable carriers, creating a sustained release of its soluble components and therefore a longer-lasting regenerative effect.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGs. 1A-C shows according to exemplary embodiments of the invention the biochemical content expressed as glycosaminoglycan (GAG) in **FIG. 1A**, DNA in **FIG. 1B**, and GAG per DNA in **FIG. 1C** of NPCs embedded in alginate beads, treated with base medium (BM), base medium plus soluble factors from medium conditioned with notochordal cell tissue culture (NCCM), or base
medium plus solubilized notochordal cell matrix powder (NCM) in culture for 4 weeks. NCM not only stimulates cells to proliferate, but also each cell to produce more GAG resulting in almost a 7x overall increase in GAG production.

FIG. 2 shows according to exemplary embodiments of the invention alcian blue staining of base medium (BM), base medium plus soluble factors from medium conditioned with notochordal cell tissue culture (NCCM), or base medium plus solubilized notochordal cell matrix powder (NCM) treated NPC embedded alginate beads cultured for 4 weeks, at 10x and 40x magnification. Darker homogenous staining of NCM exposed beads indicated increased and well distributed GAG production. The increased proliferation of cells in clusters with NCM is also demonstrated.

FIG. 3 shows according to exemplary embodiments of the invention collagen type I and type II immunohistochemical staining of NPCs embedded in alginate beads, treated with base medium (BM), base medium plus soluble factors from medium conditioned with notochordal cell tissue culture (NCCM), or base medium plus solubilized notochordal cell matrix powder (NCM) in culture for 4 weeks. As indicated by darker staining, NCM hardly induce any production of type I collagen but was a very strong stimulant for type II collagen.
FIGs. 4A-B shows according to exemplary embodiments of the invention in FIG. 4A DNA and in FIG. 4B protein content in untreated and benzonase-treated solubihzed porcine notochordal cell matrix powder, where "hr" denotes exposure duration to benzonase and "U" to the benzonase concentration in IU/ml. After treatment for 6 hr with 100 or 200 IU/ml benzonase only 20% of the porcine DNA remained in the NCM while the majority of the protein remained.

FIG. 5 shows according to an exemplary embodiment of the invention as an instructive stem cell carrier. The left panel is a live/dead cell staining with calcein-AM and propidium iodide of human bone marrow stromal cells (MSCs) mixed in 20% w/vol solubihzed notochordal cell matrix powder, injected through a 27G needle and subsequently cultured in base medium (24 hrs). The right panel are Safranin O stained thin histology sections of MSC pellet cultures (4 weeks) in base medium (control), base medium plus 10 ng/ml TGF/β1 (+TGF/β1) or base medium plus 10 mg/ml solubihzed notochordal cell matrix powder (+NCM). After injection in NCM, MSCs remain viable (solid & hollow arrows). Within 24 hr, they attach to the NCM forming a more spindle shape (hollow arrows). NCM stimulates MSC to proliferate (larger cell mass) and assume a chondrogenic phenotype producing a matrix rich in GAGs (Safranin O = lighter stain).
FIGs. 6A-C show according to an exemplary embodiment of the invention the rheology and osmotic properties of the solubilized notochordal cell matrix powder: FIG. 6A) storage (G') and loss (G'') modulus and FIG. 6B) phase shift (tan ϕ) frequency sweep of bovine young adult nucleus pulposus tissue (NP) and 10, 20 and 30% w/vol solubilized notochordal cell matrix powder (NCM); FIG. 6C) osmotic pressure as function of solubilized notochordal cell matrix powder concentration (% w/vol, NCM gel) calculated from swelling against various concentration polyethylene glycol solutions (analysis method as outlined in NO Chahine, et al. Biophys J, 89(3): 1543-1550, 2005). The rheological properties of NCM, especially at higher concentrations approach that of natural nucleus pulposus tissue. At concentrations greater than 15% w/vol, NCM has enough osmotic potential to restore tonicity to nucleus pulposus tissue whose own natural osmotic potential is 0.1 - 0.2 MPa.

DETAILED DESCRIPTION

According to an embodiment of the invention, healthy NC-rich NP tissue is harvested, e.g. from porcine spines. The tissue is then lyophilized, thereby destroying the cells, and leaving behind a dry brittle tissue. Benzonase,
DNAse, RNase, detergent, or a combination thereof is then used to remove the cellular and nucleic acid remnants, after which the tissue is lyophilized again. The brittle tissue is then pulverized to a fine powder. This powder can be dissolved in a carrier solvent like PBS, a viscous carrier like hyaluronic acid or even a sustained release hydrogel or microspheres, and injected into the IVD to stimulate intervertebral disc regeneration. According to the invention, the dissolved and directly injected powder has the ability to promote healthy matrix production and inhibit inflammation. Additionally, it may inhibit matrix catabolism, inhibit neovascularization and inhibit neo-innervation within the IVD.

Exemplary Embodiment and Results

An experiment was performed to test whether the powdered NC-rich NP tissue Matrix (NCM) has a stimulatory effect and how similar this is to just proteins produced by NC cells, i.e. NC Conditioned Medium (NCCM).

NCCM was produced by incubating porcine NC-rich NP tissue for 4 days in high glucose DMEM with 1% penicillin/streptomycin (p/s) at 37°C, 5% CO₂ and 5% O₂. Afterwards, the medium was poured through a 70 μm strainer to remove the NCs and tissue. Subsequently, it was filtered through a 3 kDa filter, the solutes that remained were resuspended in low glucose (lg) DMEM, and the NCCM was stored at -80°C.
NCM was produced by lyophilizing porcine NP tissue overnight after which it was ground to a fine powder. The protein content of both NCCM and NCM was measured so that when NCM was resuspended in low glucose (lg) DMEM, the final protein concentrations of both were the same.

These (NCM and NCCM) were compared to base medium (BM = lgDMEM supplemented with ITS, ascorbic acid, L-proline, bovine serum albumin and p/s).

Cells, similar to those in human adult discs, i.e. NPCs, were harvested from the caudal discs of bovine tails by enzymatic digestion, and seeded in 1.2% alginate beads at 3 million cells/ml alginate. The beads were cultured for 4 weeks in BM, NCCM or NCM (both with the same supplements as BM).

After culture, the beads were analysed for glycosaminoglycan (GAG) and DNA content (directly correlated to cell number). GAG is the main ECM component of NP tissue, it gives the NP tissue its functional mechanical properties and it is the first to be decreased during IVD degeneration.

As observed previously, just the proteins derived from NCs (NCCM) caused the disc cells to proliferate 1.3x compared to BM (FIG. 1B). It also stimulated each cell to produce 1.8x more GAG than those cultured without the added proteins (BM, FIG. 1C). These two mechanisms combined resulted
in an overall increase in GAG content that was a little over 2x with the NC proteins (NCCM) than without (BM, FIG. 1A).

With the powdered NC-matrix added to the medium (NCM), the cells proliferated almost 5x more than without (BM, FIG. 1B), and stimulated each cell to produce 3x more GAG (FIG. 1C). Thus, the overall increase in stimulated GAG content was 7x greater with the NC-matrix powder than without (NCM vs BM, FIG. 1A). This superior stimulation of GAG production by NP-matrix powder (NCM) as compared to just the proteins from NCs (NCCM) was unexpected and surprising, suggesting that either presentation of the NC-derived proteins or a synergistic effect combining the proteins with the NC-matrix provides a greater anabolic effect on cells in the center of our discs.

The results from the biochemical assays were also confirmed histologically on Alcian blue stained sections (FIG. 2), where darker blue in NCCM and especially NCM indicates a higher GAG content. At 40x magnification, an increased cell number is observed in NCM compared to NCCM and especially BM.

In vitro experiments have been conducted to further assess the feasibility of NC-matrix powder in intervertebral disc regeneration. NCCM has been demonstrated to have anti-some catabolic and anti-inflammatory effect on
inflammation-induced NPCs. Furthermore, NCCM has been shown to inhibit neurite growth and blood vessel formation. We expect the NCM to have similar or better effects than NCCM.

Pigs harbor endogenous retroviruses (PERVs) in their genome, which are able to infect human cells. Therefore, before clinical application becomes feasible, NC-matrix powder (NCM) needs to be decellularized, while maintaining a high as possible protein content. Decellularization is performed with benzonase, which cleaves DNA and RNA to small fragments that can afterwards be removed through washing steps.

A test was performed to remove DNA from NCM. Again, NCM was produced by lyophilizing and grinding porcine NC-rich NP tissue (n=3). The powder was then incubated on a shaker at 37° C with 2 different concentrations of benzonase (100 U/ml and 200 U/ml) in Tris-EDTA buffer, up to 3 different timepoints (30 min, 2 hrs or 6 hrs). Afterwards, the samples were washed twice with PBS, and the untreated powder, as well as each of the treatment groups, was assayed for DNA and protein content. DNA content decreased with duration of benzonase treatment, and small differences were observed between the two benzonase concentrations. Although some variations in protein content were observed between treatment groups, there were no clear trends for decreasing protein content with treatment time or benzonase
concentration. Altogether, these results indicate that it is possible to remove DNA from the NCM, while largely maintaining the protein content.

Once the effects of NC-matrix powder on vessel- and neurite formation, as well as its anti-inflammatory effects have been established, *in vivo* animal experiments will be performed. If successful, NC-matrix powder could be tested in clinical trials.

In vitro experiments with bovine NPCs used ~ 2 mg NCM / 6×10^5 NPCs. This resulted in a strong increase in GAG production as well as cell proliferation. Based on work with Beagle’s thoracic NP tissue and bovine caudal NP tissue, we expect the weight of the Beagle’s lumbar NP tissue to be ~100 mg, containing ~2×10^5 NPCs. Hence, the NCM dosage range that will therefore be tested in a canine *in vivo* model will be 1 mg, 5 mg, 10 mg and 20 mg NCM per 100 mg NP tissue. Because bio-availability will be affected by the tissue, organ and injection method and cell response *in vivo* may be different to *in vitro*, a broad dosage range should be explored. When translating from the canine to human, the exact interspecies differences are also unknown and we speculate that dosages for the human may be +/- one order of magnitude different. For example these could be as broad as 0.1 to 100 mg NCM powder to every 100 mg NP tissue of the human disc.
Embodiments of the invention can be used for the disc regenerative treatment of discogenic back and neck pain in an orthopaedic and/or pharmaceutical setting/ approach.

In another embodiment, the notochordal cell matrix (NCM) is a hydrogel. In a concentrated form, 10 to 30% w/vol, the NCM behaves like a loose self-assembling hydrogel that can be injected through a hypodermic needle.

In yet another embodiment, the NCM can be used as a cell carrier. When mixed and injected through a 27G needle, human bone marrow stromal cells (hBMSCs) maintain their viability (0 fir, rounded form) and thereafter even attach to the matrix components of the NCM hydrogel (spindle form, FIG. 5).

In still another embodiment, the NCM can be progenitor cell instructive. When progenitor cells (hBMSCs) in pellet culture are exposed to NCM (10 mg/ml) in a 4 week culture, they are instructed to differentiate into chondrogenic cells producing a matrix rich in proteoglycans and collagen type-II (FIG. 5).

In still another embodiment, the NCM has material properties, which can help to restore the biomechanical characteristic of the IVD to a healthy state. The NCM has rheological properties that are concentration dependent and that at higher concentrations start to approach that of the natural NP tissue (FIGs.
6A-B). NCM also has considerable osmotic swelling potential (FIG. 6C), which can help to directly restore the swelling properties of glycosaminogycan (GAG) depleted moderately degenerated discs.
CLAIMS

What is claimed is:

1. A method of making a notochordal cell matrix solution or gel for purposes of regenerating intervertebral disc, comprising:
 (a) lyophilizing porcine nucleus pulposus tissue containing notochordal cells to destroy cells within the tissue and to make a dry and brittle tissue;
 (b) treating the dry and brittle tissue to remove cellular and nucleic acid remnants, wherein the treatment results in at least 80% removal of porcine nucleic acids from the porcine nucleus pulposus tissue while substantially maintaining porcine protein content within the porcine nucleus pulposus tissue;
 (c) further lyophilizing the treated material and pulverizing the treated material into a notochordal cell matrix powder; and
 (d) solubilizing the notochordal cell matrix powder by dissolving the notochordal cell matrix powder in a carrier solvent or formed as a gel.

2. The method as set forth in claim 1, wherein the solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce a substantial increase in glycosaminoglycans and type-II collagen matrix.
3. The method as set forth in claim 1, wherein the solubilized notochordal cell matrix powder is capable of stimulating native or stem cells to proliferate and produce an at least a multi-fold increase in glycosaminoglycans.

4. An intervertebral disc regeneration stimulant processed by the method as set forth in claim 1.

5. An intervertebral disc regeneration stimulant solution or gel, comprising: a solubilized notochordal cell matrix powder, wherein the notochordal cell matrix powder originates from lyophilized and treated porcine nucleus pulposus tissue containing notochordal cells, wherein the powder contains less than 20% of porcine nucleic acids, wherein the powder contains a substantially unchanged amount of porcine protein content compared to the originating porcine nucleus pulposus tissue, and wherein the solubilized notochordal cell matrix powder is dissolved in a carrier solvent or formed as a gel.
FIG. 3

SUBSTITUTE SHEET (RULE 26)
FIG. 6A
FIG. 6B
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61L27/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "S" document member of the same patent family

Date of the actual completion of the international search: 28 March 2017

Date of mailing of the international search report: 06/04/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Van den Bui eke, H
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2015/048317 AI (CHILDRENS MERCY HOSPITAL [US]; UNIV KANSAS [US]) 2 April 1 2015 (2015-04-02) page 2, paragraph 6 - page 4, paragraph 8 page 44, paragraph 142 - page 45, paragraph 145</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>wo 02/081660 AI (UNIV HEALTH NETWORK [CA]; ERWIN W MARK [CA]; SALO PAUL T [CA]; INMAN R) 17 October 2002 (2002-10-17) page 11, line 20 - page 14, line 27</td>
<td>1-5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015048317 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009202653 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02081660 A1</td>
</tr>
</tbody>
</table>