

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2013/040686 A1

(43) International Publication Date
28 March 2013 (28.03.2013)

(51) International Patent Classification:
G02B 21/36 (2006.01) *G02B 21/34* (2006.01)
G02B 21/06 (2006.01)

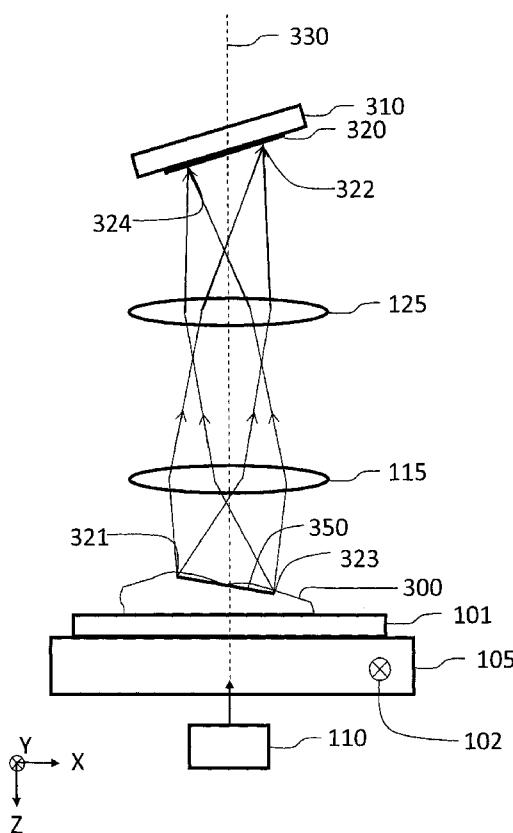
(72) Inventors; and
(71) Applicants (for US only): **DAMASKINOS, Savvas (NMI)** [CA/CA]; 8 Lennox Crescent, Kitchener, Ontario N2N 2H3 (CA). **DIXON, Arthur Edward** [CA/CA]; 601 Stonebury Crescent, Waterloo, Ontario N2K 3R2 (CA).

(21) International Application Number:
PCT/CA2012/000868

(74) Agent: **SCHNURR, Daryl W.**; c/o Miller Thomson LLP, Accelerator Building, 295 Hagey Blvd., Suite 300, Waterloo, Ontario N2L 6R5 (CA).

(22) International Filing Date:
21 September 2012 (21.09.2012)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,


(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
61/537,460 21 September 2011 (21.09.2011) US

(71) Applicant (for all designated States except US): **HURON TECHNOLOGIES INTERNATIONAL INC.** [CA/CA]; 550 Parkside Drive, Unit B6, Waterloo, Ontario N2L 5V4 (CA).

[Continued on next page]

(54) Title: SLIDE SCANNER WITH A TILTED IMAGE PLANE

(57) Abstract: An instrument and method for scanning a large microscope specimen uses a light source and at least one lens to focus light from the specimen onto a detector array. The specimen holder is located on a scanning stage and the detector array is dynamically tilted about a scan direction during the scan to maintain focus across the width of the scan strip as the scan proceeds. A degree of tilt varies during the scan as is required to maintain lateral focus relative to the detector array.

Fig. 3

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

SLIDE SCANNER WITH A TILTED IMAGE PLANE

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

[0001] This invention relates to the fields of microscopic imaging of large specimens

5 with particular emphasis on brightfield and fluorescence imaging. Applications include imaging tissue specimens, genetic microarrays, protein arrays, tissue arrays, cells and cell populations, biochips, arrays of biomolecules, detection of nanoparticles, photoluminescence imaging of semiconductor materials and devices, and many others.

10 DESCRIPTION OF THE PRIOR ART

[0002] Several technologies are used for imaging large specimens at high resolution.

Tiling microscopes record an image of a small area of the specimen using a digital camera (usually a CCD camera), the specimen is moved with a computer-controlled microscope stage to image an adjacent area, an image of the adjacent area is recorded,

15 the stage is moved again to the next area, and so on until a number of image tiles have been recorded that together cover the whole area of the specimen. Images of each area (image tiles) are recorded when the stage is stationary, after waiting long enough for vibrations from the moving stage to dissipate, and using an exposure time that is sufficient to record the fluorescence images. These image tiles can be butted together,

20 or overlapped and stitched using computer stitching algorithms, to form one image of the entire specimen. Such images may contain tiling artifacts caused by different focus positions for adjacent tiles. For large specimens, thousands of tiles may be required to image the entire specimen, requiring many changes in focus which increase the chances of tiling artifacts.

25 [0003] Strip scanning instruments are often used for imaging large specimens on microscope slides. In these instruments infinity-corrected microscope optics are used, with a high Numerical Aperture (high NA) microscope objective and a tube lens of the appropriate focal length to focus an image of the specimen directly onto a CCD or CMOS linear array sensor or TDI sensor, and with the correct magnification to match the 30 resolution of the microscope objective with the detector pixel size for maximum magnification in the digitized image {as described in "Choosing Objective Lenses: The Importance of Numerical Aperture and Magnification in Digital Optical Microscopy", David W. Piston, Biol. Bull. 195, 1-4 (1998)}. A linear CCD detector array with 1000 or 2000 pixels is often used, and three separate linear detectors with appropriate filters to

pass red, green and blue light are used for RGB brightfield imaging. A high Numerical Aperture 20X microscope objective is often used, with a 1mm field of view. The sample is moved at constant speed in the direction perpendicular to the long dimension of the linear detector array to scan a narrow strip across a microscope slide. The entire slide 5 can be imaged by imaging repeated strips and butting them together to create the final image. Another version of this technology uses TDI (Time Delay and Integration) array sensors which increase both sensitivity and imaging speed. In both of these instruments, exposure is varied by changing illumination intensity and/or scan speed.

[0004] Such a microscope is shown in **Fig. 1 (Prior Art)**. A tissue specimen **100** (or 10 other specimen to be imaged) mounted on microscope slide **101** is illuminated from below by illumination source **110**. Light passing through the specimen is collected by infinity-corrected microscope objective **115** which is focused on the specimen by piezo positioner **120**. The microscope objective **115** and tube lens **125** form a real image of the specimen on linear detector array **130**. An image of the specimen is collected by 15 moving the microscope slide at constant speed in scan direction **102** along the Y direction using motorized stage **105** in a direction perpendicular to the long dimension of the detector array **130**, combining a sequence of equally-spaced line images from the array to construct an image of one strip across the specimen. Strips are then assembled to form a complete image of the specimen.

20 [0005] For brightfield imaging, most strip-scanning instruments illuminate the specimen from below, and detect the image in transmission using a sensor placed above the specimen. In brightfield, signal strength is high, and red, green and blue channels are often detected simultaneously with separate linear detector arrays to produce a colour image.

25 [0006] A prior art scanning microscope for fluorescence imaging is shown in **Fig. 2**. A tissue specimen **100** (or other specimen to be imaged) mounted on microscope slide **101** is illuminated from above by illumination source **200**. In fluorescence imaging, the illumination source is usually mounted above the specimen (epifluorescence) so that the intense illumination light that passes through the specimen is not mixed with the weaker 30 fluorescence emission from the specimen, as it would be if the illumination source were below the specimen. Several different optical combinations can be used for epifluorescence illumination – including illumination light that is injected into the microscope tube between the microscope objective and the tube lens, using a dichroic beamsplitter to reflect it down through the microscope objective and onto the specimen.

35 In addition, a narrow wavelength band for the illumination light is chosen to match the

absorption peak of the fluorophore in use. Fluorescence emitted by the specimen is collected by infinity-corrected microscope objective **115** which is focused on the specimen by piezo positioner **120**. Emission filter **205** is chosen to reject light at the illumination wavelength and to pass the emission band of the fluorophore in use. The microscope objective **115** and tube lens **125** form a real image of the specimen on TDI detector array **210**. An image of the specimen is collected by moving the microscope slide at constant speed in scan direction **102** along the Y direction using motorized stage **105** in a direction perpendicular to the long dimension of the detector array **210**, combining a sequence of equally-spaced, time-integrated line images from the array to construct an image of one strip across the specimen. Strips are then assembled to form a complete image of the specimen. When a CCD-based TDI array is used, each line image stored in memory is the result of integrating the charge generated in all of the previous lines of the array while the scan proceeds, and thus has both increased signal/noise and amplitude (due to increased exposure time) when compared to the result if a linear array detector were used.

[0007] A description of strip scanning instruments, using either linear arrays or TDI arrays, is given in US Patent Application Publication # US2009/0141126 A1 (“Fully Automatic Rapid Microscope Slide Scanner”, by Dirk Soenksen).

[0008] When either linear arrays or TDI arrays are used for scanning a tissue specimen, focus is maintained along the scan strip by moving microscope objective **115** with piezo positioner **120**. A focus map for each strip is created before scanning with measurements at several positions along the strip and focus is maintained by the piezo positioner in accordance with the focus map; or automatic focus is achieved during scanning using a separate detector or focus-measuring device. The measurement of best focus position for autofocusing a point scanner (or one using a linear array detector) was described in “Autofocusing for wide field-of-view laser scanning imaging systems”, G. Li, S. Damaskinos & A. Dixon, Scanning **28**(2), 74-75 (2006). This paper describes the use of an X-Z image acquired at each of several focus points on the specimen to produce a best focus position by segmenting the X-Z image along X and calculating a best focus position for each segment. The result of a best linear fit for these focus positions is used as the line of best focus. In the Y direction, the best focus is determined by a best linear fit to focus positions calculated for various Y locations. Spatial domain intensity gradient-based solutions were found to work better than spatial frequency domain-based solutions.

[0009] If the specimen is not flat, or the specimen is tilted about the scan direction, proper focus may not be achieved across the whole width of the strip. In addition, focus at the edge of adjacent strips may be different, making it difficult to stitch image strips together to assemble a complete image of the specimen without focus mismatch at the 5 edge of strips. These problems are made worse when magnification is increased (which decreases depth of field) and when the width of the scan strip on the specimen is increased.

DEFINITIONS

10 [0010] For the purposes of this patent document, a “large microscope specimen” (or “macroscopic specimen”) is defined as one that is larger than the field of view of a compound optical microscope containing a microscope objective that has the same Numerical Aperture (NA) as that of the scanner described in this document.

15 [0011] For the purposes of this patent document, “TDI” or “Time Delay and Integration” is defined as the method and detectors used for scanning moving objects consisting of a CCD- or CMOS-based TDI detector array and associated electronics. In a CCD-based TDI array, charge is transferred from one row of pixels in the detector array to the next in synchronism with the motion of the real image of the moving object. As the object moves, charge builds up and the result is charge integration just as if a longer exposure 20 were used to image a stationary object. When an object position in the moving real image (and integrated charge) reaches the last row of the array, that line of pixels is read out. In operation, the image of the moving specimen is acquired one row at a time by sequentially reading out the last line of pixels on the detector. This line of pixels contains the sum of charge transferred from all previous lines of pixels collected in 25 synchronism with the image moving across the detector. One example of such a camera is the DALSA Piranha TDI camera. In a CMOS-based TDI detector, voltage signals are transferred instead of charge.

30 [0012] For the purposes of this patent document, a “frame grabber” is any electronic device that captures individual, digital still frames from an analog video signal or a digital video stream or digital camera. It is often employed as a component of a computer vision system, in which video frames are captured in digital form and then displayed, stored or transmitted in raw or compressed digital form. This definition includes direct camera connections via USB, Ethernet, IEEE 1394 (“FireWire”) and other interfaces that are now practical.

[0013] For the purposes of this patent document, “depth of focus” of a microscope is defined as the range the image plane can be moved while acceptable focus is maintained, and “depth of field” is the thickness of the specimen that is sharp at a given focus level. “Depth of focus” pertains to the image space, and “depth of field” pertains to 5 the object (or specimen) space.

[0014] For the purposes of this patent document, “fluorescence” includes single-photon and multi-photon excitation, and photoluminescence; and “specimen” includes, but is not limited to, tissue specimens, genetic microarrays, protein arrays, tissue arrays, cells and 10 cell populations, biochips, arrays of biomolecules, plant and animal material, insects and semiconductor materials and devices. Specimens may be mounted on or contained in any kind of specimen holder.

[0015] The “scan plane” is a plane perpendicular to the optical axis of the instrument in which the specimen is moved by the moving specimen stage. When the specimen is mounted on a microscope slide, the scan plane is parallel to the surface of the 15 microscope slide, unless the slide is tilted with respect to the moving specimen stage.

[0016] An “object plane” is a plane in the specimen (often just below the surface) that corresponds to an “image plane” on which a real image of the object plane is formed, and on which the detector is situated. An “object line” is a line in the object plane which corresponds to an “image line” (a line in the “image plane”) on which a real image of the 20 object line is formed, and on which a linear detector is situated. The image detected by this linear detector is a “line image”.

[0017] “Dynamic tilt” is defined as tilting the detector about the scan direction in order to maintain lateral focus across the width of a scan strip during a scan, where the degree of tilt varies during the scan to maintain lateral focus.

25 [0018] The “scan direction” is the direction of stage motion during scanning (the Y-direction in all diagrams).

OBJECTS OF THE INVENTION:

30 1. [0019] It is an object of this invention to provide an instrument and method of scanning a large microscope specimen on a glass microscope slide (or other specimen holder) using a linear detector array that can be dynamically tilted about the scan direction during scan such that focus can be maintained across the width of the scan strip as the scan proceeds.

2. [0020] It is an object of this invention to provide an instrument and method of scanning a large microscope specimen on a glass microscope slide (or other specimen holder) for fluorescence imaging using a TDI detector array that can be dynamically tilted about the scan direction during scan such that focus can be maintained across the width of the scan strip as the scan proceeds.
- 5
3. [0021] It is an object of this invention to provide an instrument and method of scanning a large microscope specimen on a glass microscope slide (or other specimen holder) for fluorescence imaging using a 2D detector array that can be dynamically tilted about the scan direction during scan and Moving Specimen Image Averaging such that focus can be maintained across the width of the scan strip as the scan proceeds.
- 10
4. [0022] It is an object of this invention to provide a method of measuring the focus and tilt required before scanning to maintain focus relative to the specimen and across the width of the scan strip as the scan proceeds.

15

BRIEF DESCRIPTION OF THE DIAGRAMS

[0023] **Figure 1** is a schematic view of a prior-art brightfield microscope slide scanner using a linear detector array.

20 [0024] **Figure 2** is a schematic view of a prior-art fluorescence microscope slide scanner using a TDI detector array.

[0025] **Figure 3** is a schematic view of a brightfield scanner using a detector array tilted about the scan direction, showing how this results in an object plane that is also tilted about the scan direction.

25 [0026] **Figure 4** is a schematic view of a brightfield scanner with a detector array tilted about the scan direction.

[0027] **Figure 5** is a schematic view of a fluorescence scanner with a detector array tilted about the scan direction.

[0028] **Figure 6** shows a 256 x 4000 pixel detector array (top) and three sequential fields of view of the array as the specimen moves during scanning (bottom).

30

DESCRIPTION OF THE INVENTION

[0029] **Figure 3** shows a slide scanner for transmission imaging that is a **first embodiment** of this invention. A tissue specimen **300** (or other specimen to be imaged) is mounted on microscope slide **101** (or other sample holder) on a scanning stage **105**. For transmission imaging, the specimen is illuminated from below by light source **110**.

5 Microscope objective **115** (or other imaging objective) and tube lens **125** focus light from the specimen onto linear detector array **310**, which is tilted with respect to the scan plane about an axis (the Y axis) that is in the plane of the microscope slide and is parallel to the direction of stage motion **102** (along the Y direction), and is perpendicular to the row of pixels along the long dimension of the array. When focused by lens **125**,

10 light from tilted object line **350** in specimen **300** is collected by the row of detector pixels in image line **320** in linear array detector **310**. Light from specimen **300** at position **321** will be focused on a pixel at position **322** on image line **320**, and light from the specimen at position **323** will be focused on a pixel at position **324** on image line **320**. Each pixel in detector **310** collects data from a different position on tilted object line **350**. Light

15 source **110**, microscope objective **115**, tube lens **125**, and detector **310** are situated on the optical axis **330** of the instrument. This diagram shows the standard infinity-corrected microscope configuration comprised of microscope objective **115** and tube lens **125**, however a simpler optical train using only a single objective lens focusing light from the specimen directly onto the linear array detector is also possible. In **Figure 3**, as

20 in **Figure 1**, axial focus (focus in the Z direction) is achieved by moving microscope objective **115** in the Z direction using piezo positioner **120** (not shown in this figure). Alternatively, either specimen **300** or detector **310** can be moved in the Z direction to achieve axial focus. In this first embodiment, motion of the scanning stage **105**, focus motion of objective **115**, and dynamic tilt of array detector **310** are computer controlled

25 (see **Figure 4**).

[0030] **Figure 4** shows a slide scanner **450** for transmission imaging that is a second embodiment of this invention. A tissue specimen **400** (or other specimen to be imaged) mounted on microscope slide **401** is illuminated from below by illumination source **110**. Light passing through the specimen is collected by infinity-corrected microscope

30 objective **115** which is focused on the specimen by piezo positioner **120** (or other focusing mechanism). The microscope objective **115** and tube lens **125** form a real image of the specimen on linear detector array **425**, which can be tilted about tilt axis **430** using piezoelectric pusher **420** (or other tilt mechanism). The long dimension of linear detector array **425** is perpendicular to scan direction **102**. Tilt axis **430** is parallel

35 to scan direction **102**. An image of the specimen is collected by moving the microscope

slide at constant speed using motorized stage **405** in a direction perpendicular to the long dimension of the detector array **425**, combining a sequence of equally-spaced line images from the array to construct an image of one strip across the specimen, with strip width equal to the length of object line **410**. When one strip is imaged, motorized stage 5 **405** moves the specimen in the X direction a distance equal to the strip width, and a second strip is scanned. This procedure is repeated until the entire area of the specimen (or the area of interest) has been scanned. Strips are then assembled to form a complete image. Computer **440** controls motorized stage **405**, piezoelectric pusher **420**, and piezo positioner **120**, and collects data from detector array **425**. In addition to 10 controlling all of the electromechanical parts of the scanner **450**, it also performs all of the other functions necessary to acquire, store, process and display digital image data.

[0031] Note that all scanners described in Figures 3 to 6 of this patent document are computer-controlled, and use a computer programmed to acquire, store, process and display digital image data. Except for Figure 4, the computer portion of these 15 instruments is not shown in the diagrams. Preferably, a computer is programmed and configured to vary a degree of tilt of the detector array dynamically during the scan about the scan direction in order to maintain the focus relative to the specimen.

[0032] In prior-art scanners, several focus positions are measured along each strip before scanning, and a focus map is produced to enable dynamic focus during scanning 20 using piezo positioner **120** to move microscope objective **115** under computer control. When a specimen is not flat, like tissue specimen **400**, it is important to maintain focus across the width of each strip (strip width **400** in this diagram) and also to make sure that the edges of adjacent strips have the same focus inside the specimen. This is important 25 because if the edges of adjacent strips are focused at a different depth inside the specimen, it is difficult to match the image data at the edge of the strips, and an image artifact results. Matching is sometimes done by simply butting together strip edges, which requires precision knowledge of pixel positions in each strip, or by overlapping adjacent strips and using a feature-matching algorithm to align the two images. In either 30 case, if the focus positions of the two strip edges are different, an image artifact can result in the final image. The present invention has two important advantages over prior-art scanners: tilting the detector about the scan direction makes it possible to maintain focus across the width of the strip, and when combined with focus movements using the piezo positioner, the focus positions can be matched at the edges of adjacent strips. These advantages become even more important when the strip width is increased.

[0033] Both focus position and tilt can be measured by performing an X-Z scan at several Y positions along each strip before scanning, with the detector tilt set at zero. An X-Z scan can be performed by moving microscope objective **115** in the Z direction using piezo positioner **120** (or alternatively, by moving specimen **400** or linear detector array **425** in the Z direction), while storing a series of line images across the strip using the linear detector. Each line image is segmented into several line segments, and the spatial frequency of the image calculated for each segment. Since the in-focus image is that with the highest spatial frequencies and best contrast, it is then possible to calculate the best focus position for each segment, which allows the tilt angle for the detector and the focus position for the microscope objective to be calculated and stored at each of several Y positions along the strip. It is important that several segments are measured across the width of each line image, in order to ensure that all parts of the object line are in focus, and some segments of the object line are not in the air above the specimen, which could happen if focus measurements were made only at the centre and the two ends of the line. This procedure is repeated for several positions in the scan (Y) direction, and the results stored as a focus and tilt map to be used while scanning. Both focus position and tilt can be adjusted during scan using the focus and tilt map. The focus positions of the edge of the strip can be stored and matched with the edge of the next strip when the focus and tilt measurements for that strip are measured later.

[0034] **Figure 5** shows a slide scanner for fluorescence imaging that is a **third embodiment** of this invention. A tissue specimen **500** (or other specimen to be imaged in fluorescence) mounted on microscope slide **401** is illuminated from above by illumination source **200**. In fluorescence imaging the illumination source is usually mounted above the specimen (epifluorescence) so that the intense illumination light that passes through the specimen is not mixed with the weaker fluorescence emission from the specimen, as it would be if the illumination source were below the specimen. {Several other optical combinations can be used for epifluorescence illumination. For example, illumination light can be injected into the microscope tube between the microscope objective **115** and emission filter **205**, using a dichroic beamsplitter to reflect it down through the microscope objective **115** and onto the specimen **500** (this optical combination is not shown in **Figure 5**)}. A narrow wavelength band for the illumination light is chosen to match the absorption peak of the fluorophore in use. Fluorescence emitted by the specimen is collected by infinity-corrected microscope objective **115** which is focused on the specimen by piezo positioner **120**. Emission filter **205** is chosen to reject light at the illumination wavelength and to pass the emission band of the

fluorophore in use. The microscope objective **115** and tube lens **125** form a real image of the specimen on TDI detector array **525**, which can be tilted about tilt axis **430** using piezoelectric pusher **420** (or other tilt mechanism). The long dimension of linear detector array **525** is perpendicular to scan direction **102**. Tilt axis **430** is parallel to scan direction **102**. An image of the specimen is collected by moving the microscope slide at constant speed using motorized stage **405** in a direction perpendicular to the long dimension of the detector array **525**, combining a sequence of equally-spaced line images from the array to construct an image of one strip across the specimen, with strip width equal to the length of object line **410**. When one strip is imaged, motorized stage **405** moves the specimen in the X direction a distance equal to the strip width, and a second strip is scanned. This procedure is repeated until the entire area of the specimen (or the area of interest) has been scanned. Strips are then assembled to form a complete image. When a CCD-based TDI array is used, each line image stored in memory is the result of integrating the charge generated in all of the previous lines of the array while the scan proceeds, and thus has both increased signal/noise and amplitude (due to increased exposure time) when compared to the result from a linear array detector. In this third embodiment, computer **440** (shown in **Figure 4**) controls motorized stage **405**, piezoelectric pusher **420**, and piezo positioner **120**, and collects data from detector array **525**. In addition to controlling all of the electromechanical parts of the fourth embodiment scanner, it also performs all of the other functions necessary to acquire, store, process and display digital image data.

[0035] An instrument and method for scanning microscope slides using a CCD or CMOS two-dimensional detector array that adds intermediate image frames acquired every time the microscope slide has moved an incremental distance equal to that between rows of pixels in the final image has been described in US Patent Application Serial No. 61/427,153, "Pathology Slide Scanner", by A.E. Dixon. The instrument described in that application has all of the advantages of a slide scanner that uses a TDI array, but uses ordinary CCD or CMOS (or other technology) two-dimensional arrays instead. In addition, since the final image is the sum of a large number of intermediate image frames, each intermediate frame being displaced a distance equal to the distance between rows of pixels in the final image, it can have a larger dynamic range than that supported by the detector array, and this increased dynamic range enables multiple fluorophores to be imaged simultaneously using separate detector arrays for each fluorophore, with adjustment for the emission strength (brightness of the image from each fluorophore) after scan is complete. Each line in the final image is the result of

adding several exposures of the same line using sequential adjacent lines of pixels in the detector array and then dividing by the number of exposures, or adding the data from each exposure to a data set with a larger dynamic range. For example, one could add 256 exposures from an 8-bit detector into a 16-bit image store for each line in the final image. **Figure 6** shows a 256 X 4000 pixel detector array **630** (top) and the motion of the field-of-view of the array as the stage moves the specimen during scan (bottom). During scan, intermediate image **620** is stored in computer **440** (not shown), then after the specimen has moved a distance equal to the distance between rows of pixels in the final image, intermediate image **621** is added to data in the computer, shifted by one row of pixels, followed by intermediate image **622**, and so on. Using the array shown in **Figure 6**, each pixel in the final strip image stored in computer **440** is the sum of 256 exposures of the same pixel position in the specimen. In this particular example, if the frame grabber produces 8-bit images, the resulting stored image has a dynamic range of 16 bits (each pixel is made up of a sum of 256 exposures where each exposure has a maximum value of 255). The final image will have an exposure time that is 256 times larger than that achieved at the same scan speed using a linear detector array, which is a major advantage when imaging weak fluorophores. This technique is called **Moving Specimen Image Averaging (MSIA)**, and for the purposes of this patent document, this is the definition of Moving Specimen Image Averaging. The fluorescence image of the specimen strip being scanned is stored and adjacent strip images are assembled to produce a final image of the entire specimen. Adjacent strips may be assembled by butting them together, or by collecting overlapping strip images and using feature-matching software for registration.

[0036] In **Figure 5**, if TDI detector array **525** is replaced by an ordinary two-dimensional (2D) detector array (not a TDI array), then Moving Specimen Image Averaging can be used to acquire fluorescence image strips as described above. This is a **fourth embodiment** of this invention. Both focus position and tilt can be measured by performing a Z-scan at several Y positions along each strip before scanning, with the detector tilt set at zero. With the detector parallel to the scan plane, a Z-scan can be performed by moving the microscope objective in the Z direction using the piezo positioner to a series of equally-spaced positions in Z, while storing the resulting series of 2D images, each of which has the same width as the scan strip, using the 2D detector (or alternatively, a Z-scan can be performed by moving either the detector or the specimen in the Z direction). This results in a 3D image stack at each Y position, and if the detector used as an example in the description above is used, this image stack

contains 256 x 4000 x N pixels, where N is the number of positions in Z at which each exposure is made. Each of the long, thin images in the stack can be segmented into several short segments, and the spatial frequency of the image calculated for each segment. Since the in-focus image is that with the highest spatial frequencies and best contrast, it is then possible to calculate the best focus position for each segment, which allows the tilt angle for the detector and the focus position for the microscope objective to be calculated and stored at each of several Y positions along the strip. This procedure is repeated for several positions in the scan (Y) direction, and the results stored as a focus and tilt map to be used while scanning. Both focus position and tilt can be adjusted during scan using the focus and tilt map. The focus positions of the edge of the strip can be stored and matched with the edge of the next strip when the focus and tilt measurements for that strip are measured later. This focus and tilt map can be used for imaging by controlling detector tilt about the scan direction (as shown in **Figure 5**).

[0037] A scanner using Moving Specimen Image Averaging has a major cost advantage over one using a TDI detector, since ordinary 2D arrays are much less expensive than TDI arrays, and the electronic signals for controlling MSIA exposures are usually available from the stage controller used for controlling stage motion in a scanning stage microscope. The same detector used for scanning can be used for measuring focus and tilt to produce a focus and tilt map of the strip before scanning, and a 3D image of a region of interest can be acquired by using the instrument as a tiling microscope. When used as a tiling microscope, the exposure time can be set to whatever time is required for the fluorophore being imaged, since it is not set by the scan speed as it is while scanning along the length of the strip.

We Claim:

1. An instrument for scanning a large microscope specimen on a specimen holder, the instrument comprising a light source and at least one lens that focuses light from the specimen onto a detector array, the specimen holder being located on a scanning stage, the detector array being dynamically tilted about a scan direction during a scan to maintain focus across a width of a scan strip as the scan proceeds, the instrument having means to focus axially.
2. An instrument as claimed in Claim 1 wherein a degree of tilt of the detector array about the scan direction varies during the scan, as required to maintain the focus.
3. An instrument as claimed in Claim 2 wherein the specimen has an object plane that corresponds to an image plane in which the detector array is situated and on which a real image of the object plane is formed.
4. An instrument as claimed in Claim 1 wherein the instrument has a means for determining prior to scanning a required tilt and focus and variation in tilt required to maintain the focus during the scan.
5. An instrument as claimed in Claim 4 wherein the means for determining is capable of maintaining focus relative to the specimen across a width of a scan strip as the scan proceeds.
6. An instrument as claimed in Claim 1 wherein the detector array is a linear detector array.
7. An instrument as claimed in Claim 1 wherein the instrument is used for fluorescence imaging and the detector array is a 2D detector array configured for Moving Specimen Image Averaging.
8. An instrument as claimed in Claim 1 wherein the instrument is used for fluorescence and the detector array is a TDI detector array.
9. An instrument as claimed in Claim 1 wherein the instrument has a microscope objective and tube lens as at least one lens, the detector array being tilted with respect to the scan plane about a Y axis that is in a plane of the specimen holder and is parallel to a direction of motion of the specimen holder along a Y direction.

10. An instrument as claimed in Claim 9 wherein the detector array is perpendicular to a row of pixels along the long dimension of the detector array.
11. An instrument as claimed in Claim 1 wherein a dynamic tilt of the detector array and a variation thereof is connected to be controlled by a computer during the scan.
12. An instrument as claimed in Claim 2 wherein a dynamic tilt of the detector array and a variation thereof is connected to be controlled by a computer during the scan.
13. A method of scanning a large microscope specimen on a specimen holder using an instrument comprising a light source and at least one lens that focuses light from the specimen onto a detector array, the specimen holder being located on a scanning stage, the method comprising dynamically tilting the detector array about a scan direction during a scan to maintain focus relative to the specimen across a width of a scan strip as the scan proceeds, while focusing the instrument relative to the specimen axially.
14. A method of scanning a large microscope specimen as claimed in Claim 13 including the step of varying a degree of tilt of the detector array about the scan direction during the scan, as required to maintain the focus.
15. A method of scanning a large microscope specimen as claimed in Claim 13 including the step of moving the scanning stage at constant speed in a direction perpendicular to a long dimension of the detector array, combining a sequence of equally-spaced line images from the array to construct an image of one strip across the specimen, after the one strip is imaged, causing the stage to move the specimen in an X direction a distance equal to a strip width and scanning a second strip, repeating the steps until an entire area of interest of the specimen has been scanned.
16. A method of scanning a large microscope specimen as claimed in Claim 15 wherein the area of interest is a whole of the specimen.
17. A method of scanning a large microscope specimen as claimed in Claim 14 including the steps of assembling image strips of the strips that are imaged to form a complete image.
18. A method of scanning a large microscope specimen as claimed in Claim 15 including the steps of configuring a computer to control the scanning stage, a piezoelectric pusher and a piezo positioner and to collect data from the detector array.

19. A method of scanning a large microscope specimen as claimed in Claim 16 including the steps of configuring a computer to acquire, store, process and display digital image data.
20. A method of scanning a large microscope specimen as claimed in Claim 13 including the steps of imaging the specimen in fluorescence collecting the fluorescence emitted by the specimen forming a real image of the specimen on a TDI detector array.
21. A method of scanning a large microscope specimen as claimed in Claim 1 including the steps of using one of a linear detector, a 2D detector array configured for Moving Specimen Image Averaging and a TDI detector array.
22. A method of scanning a large microscope specimen as claimed in Claim 1 including the steps of programming a computer and using the computer to control variation of a degree of tilt of the detector array about the scan direction during the scan to maintain focus relative to the specimen.

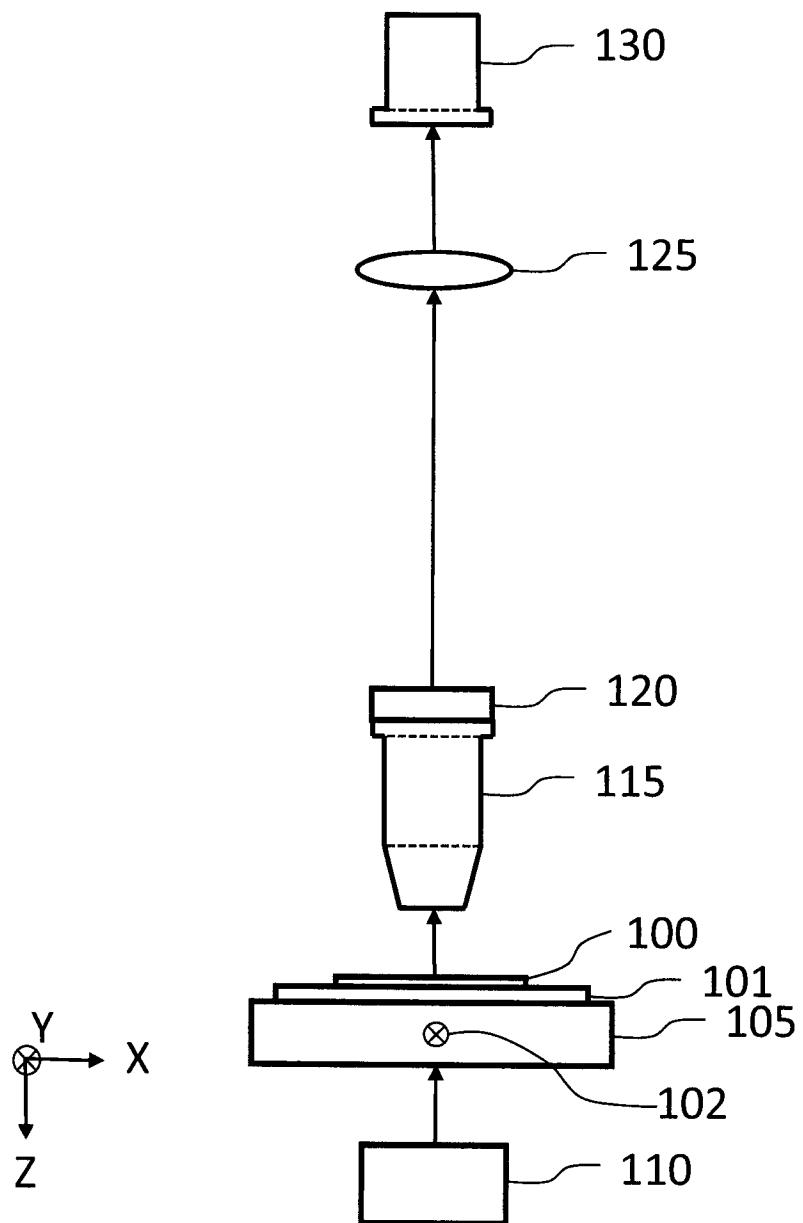


Fig. 1
Prior Art

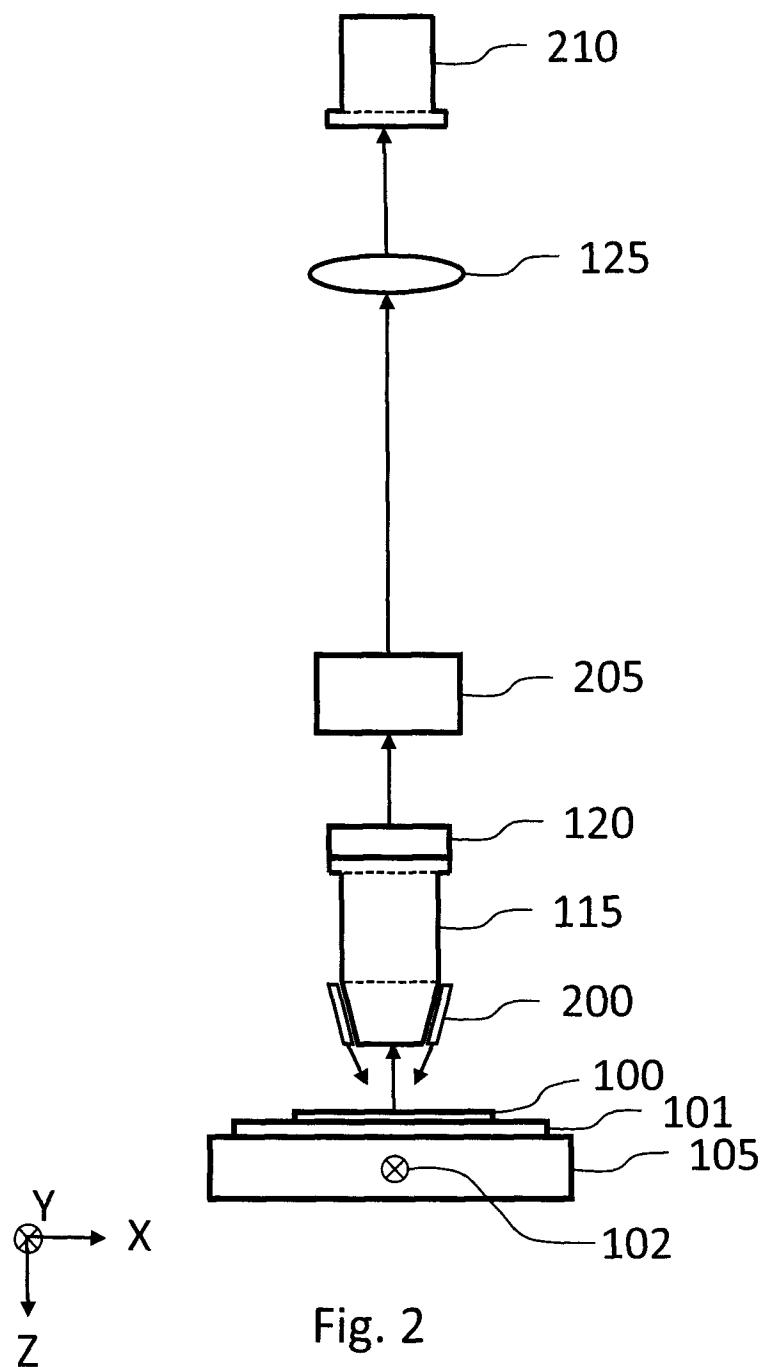


Fig. 2
Prior Art

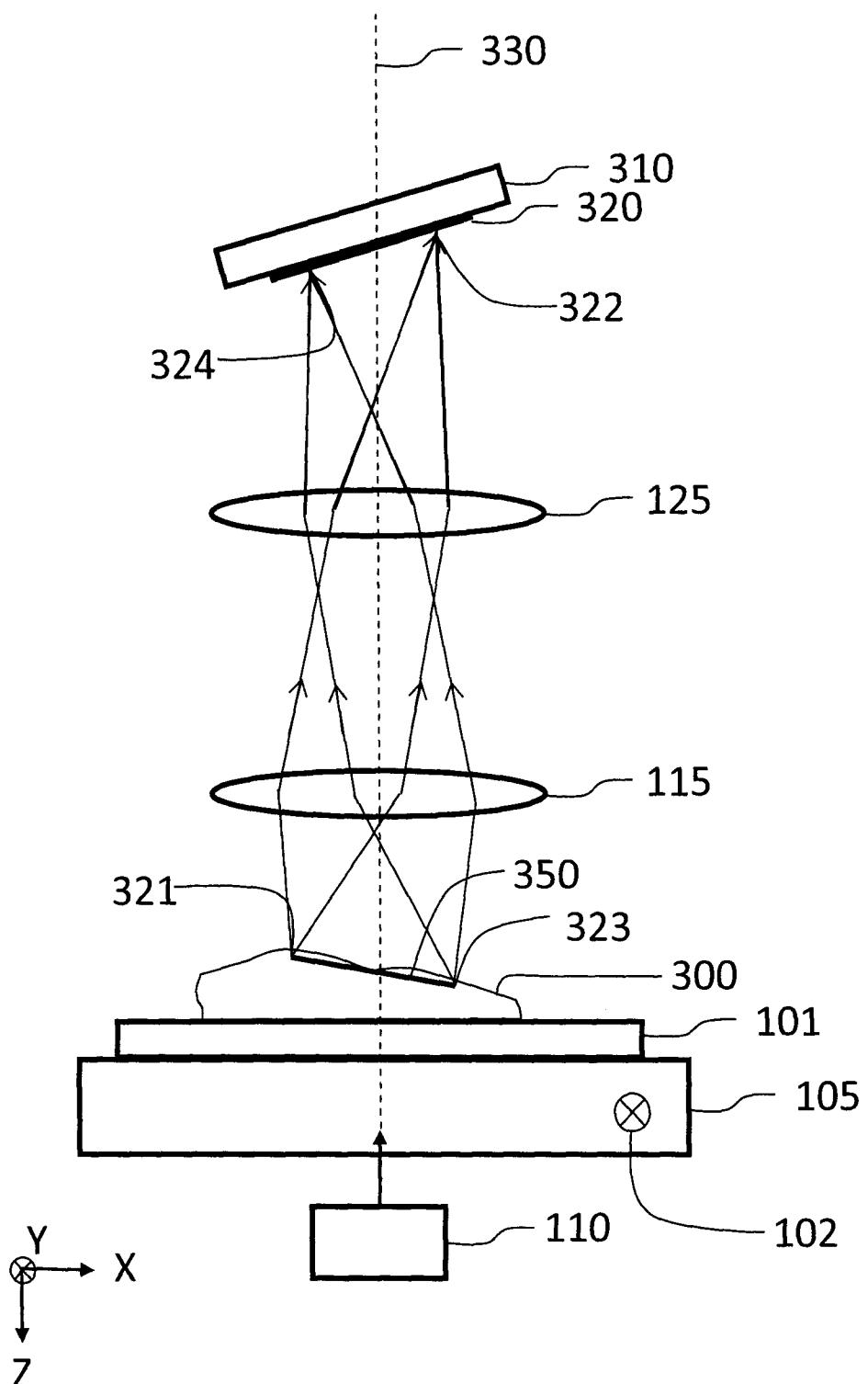


Fig. 3

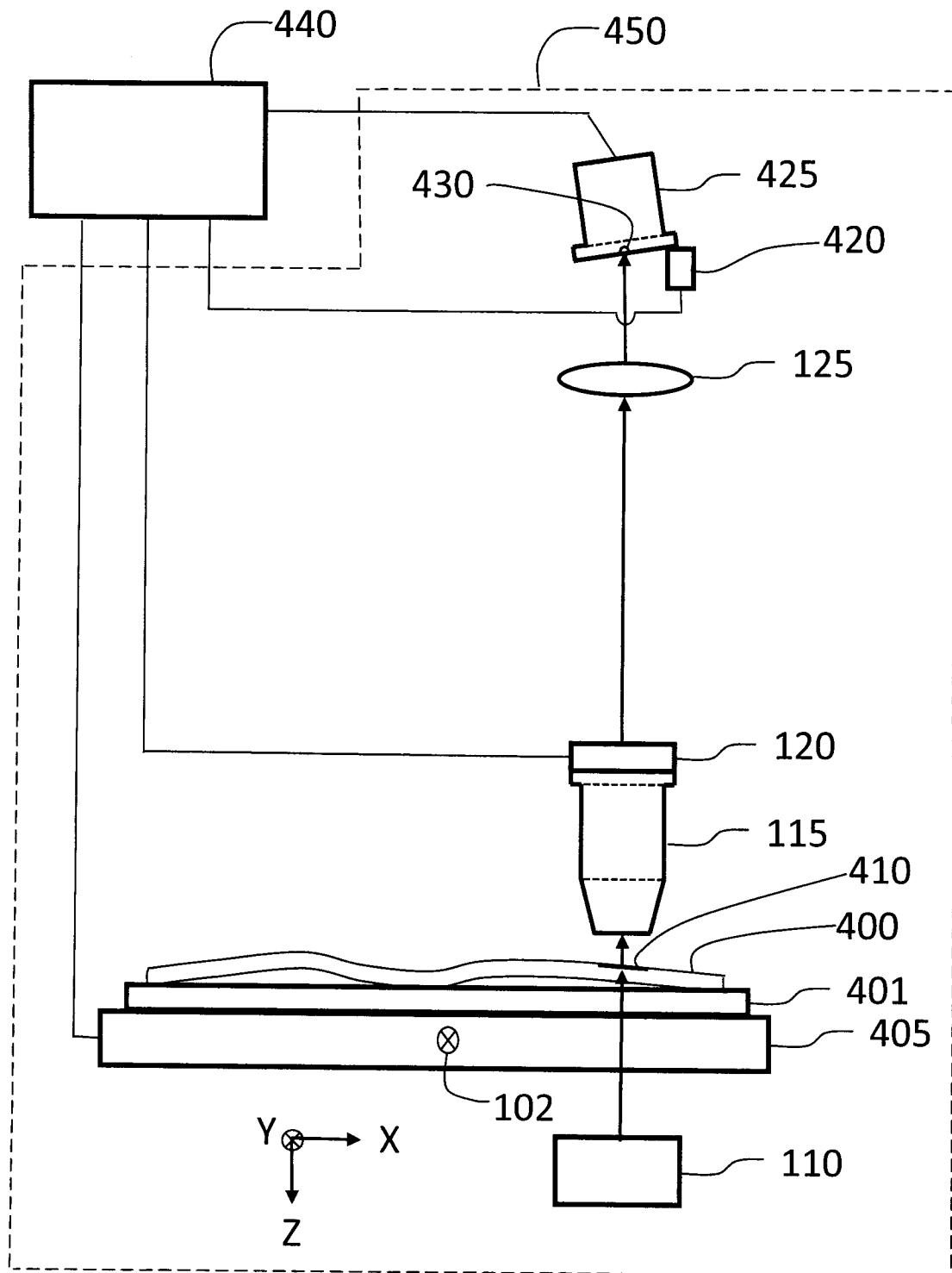


Fig. 4

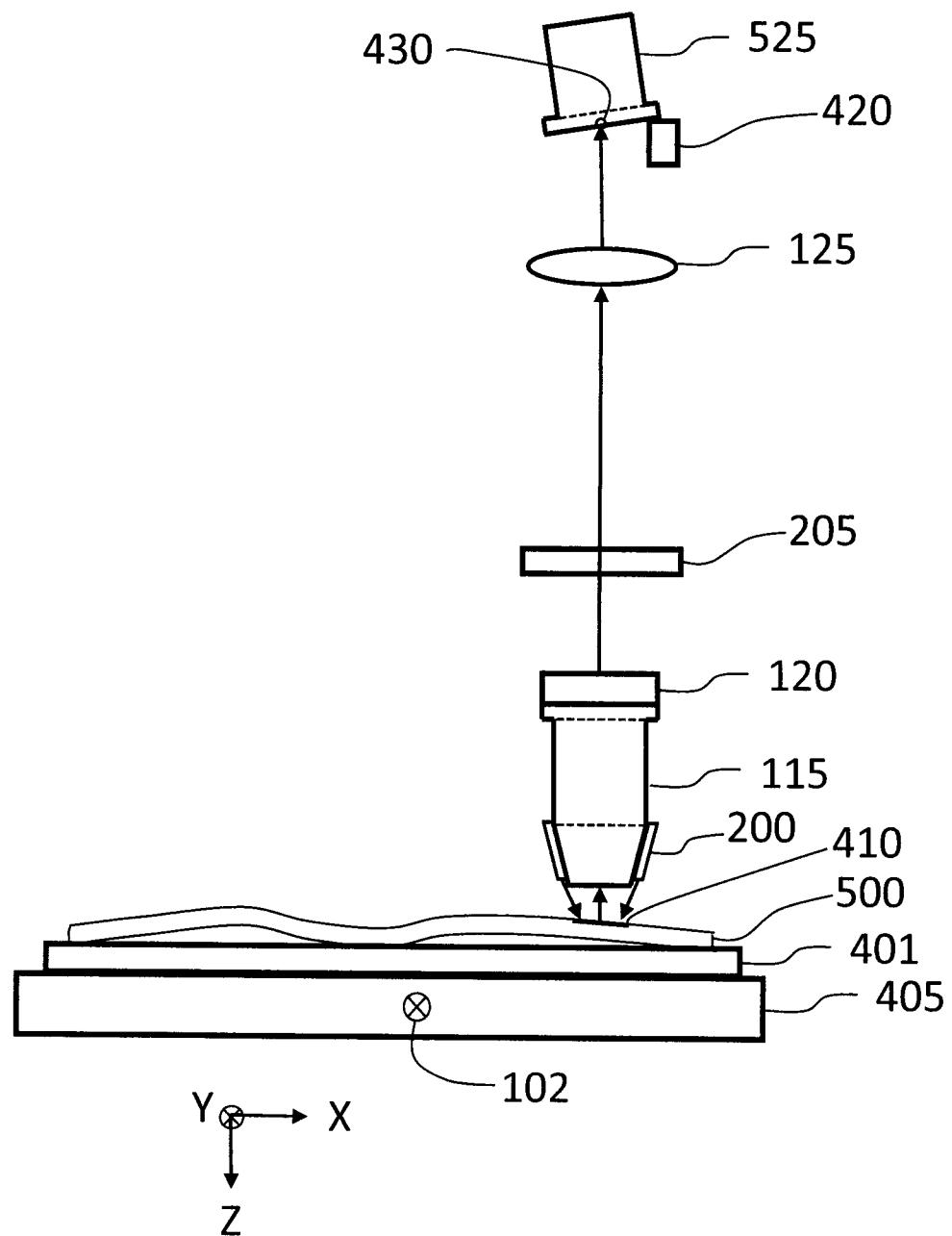


Fig. 5

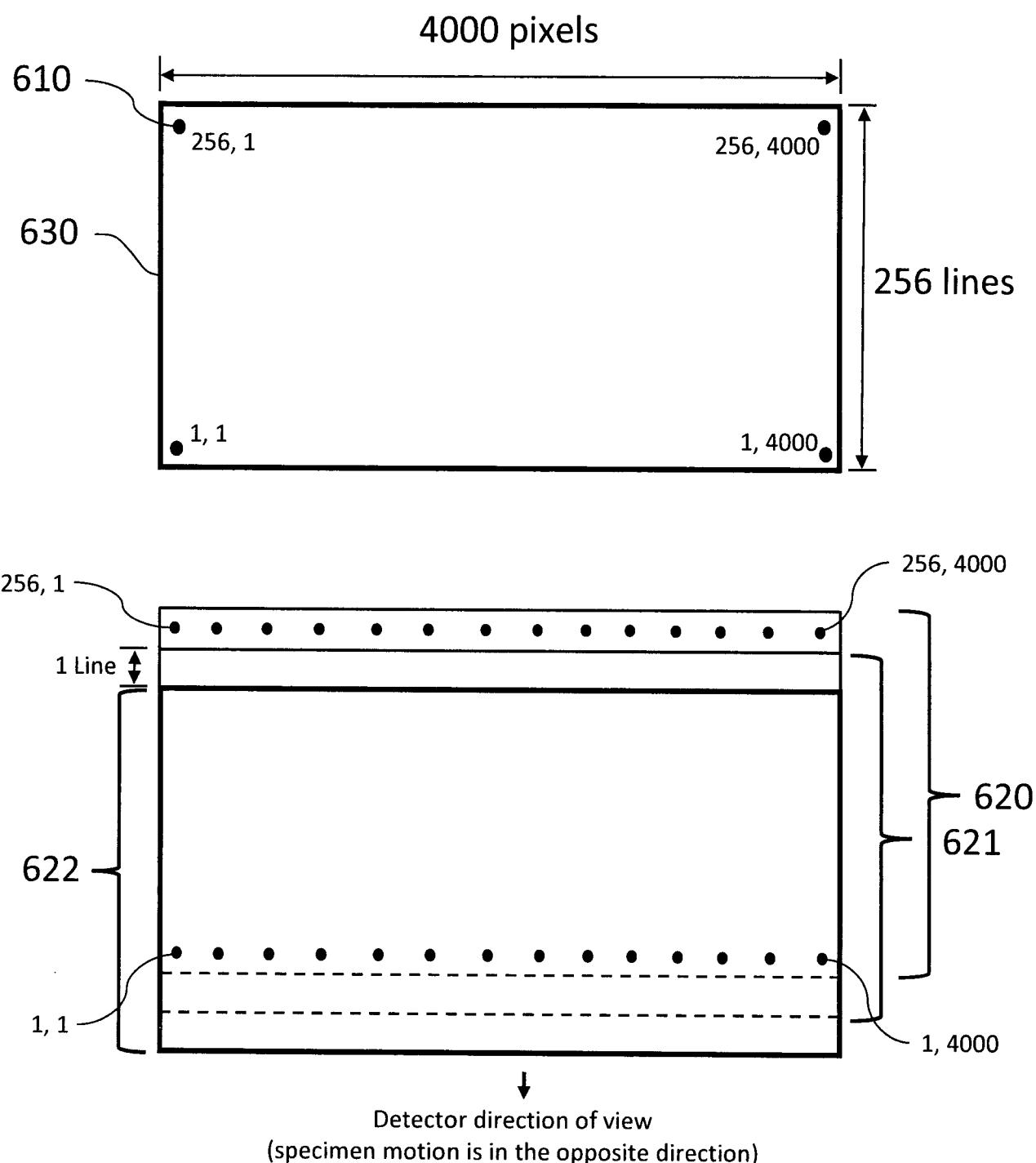


Fig. 6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2012/000868

A. CLASSIFICATION OF SUBJECT MATTER

IPC: **G02B 21/36** (2006.01), **G02B 21/06** (2006.01), **G02B 21/34** (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: **G02B 21/36** (2006.01), **G02B 21/06** (2006.01), **G02B 21/34** (2006.01) (in combination with keywords)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
Total Patent (keywords tilt, angle, sensor, detector, focus, field, tiling microscope)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US7893988B2, Olson et al. 22 February 2011 (22-02-2011) (See column 10, line 64-column 11, line 8)	1-22
Y	JP08043059, Sato 16 February 1996 (16-02-1996) (See figures 1, 2, paragraphs 0009-0014, 0020-0021)	1-22
A	US6875972B2, Kreh 05 April 2005 (05-04-2005) (See whole document)	1-22
A	US2005089208A1, Dong et al. 28 April 2005 (28-04-2005) (See whole document)	1-22
A	US8059336B2, Ptitsyn et al. 15 November 2011 (15-11-2011) (See whole document)	1-22

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

09 January 2013 (09-01-2013)

Date of mailing of the international search report

30 January 2013 (30-01-2013)

Name and mailing address of the ISA/CA

Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT

50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

David E. Green (819) 994-8213

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/CA2012/000868

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date
US7893988B2	22 February 2011 (22-02-2011)	AT406591T AU4740301A DE60135562D1 EP1317685A2 EP1317685B1 EP1597695A2 EP1597695A4 EP1627344A1 EP1627344A4 EP1751599A2 EP1751599A4 EP1989583A2 EP1989583A4 EP1990667A1 EP2282230A2 EP2282230A3 GB0304410D0 GB2388646A GB2388646B JP2003293876A JP3911185B2 JP2007525689A JP4728228B2 JP2008500586A JP4891232B2 JP2004514920A JP2006519443A JP2009528578A JP2010061678A JP2011232762A JP2012059290A JP2012093764A US6711283B1 US6772081B1 US2004170312A1 US6917696B2 US2003189110A1 US6959720B2 US2004252875A1 US7035478B2 US2004267500A1 US7035748B2 US7098634B1 US2005257831A1 US7114513B2 US2006265170A1 US7406392B2 US2007036462A1 US7428324B2 US2005270638A1 US7457446B2 US2004256538A1 US7518652B2 US2009303321A1 US7646495B2 US2006007345A1 US7668362B2 US2004167806A1 US7738688B2 US2009028414A1 US7826649B2 US2009011396A1 US7881898B2 US2010027856A1 US2011044518A1 US7949168B2	15 September 2008 (15-09-2008) 12 November 2001 (12-11-2001) 09 October 2008 (09-10-2008) 11 June 2003 (11-06-2003) 27 August 2008 (27-08-2008) 23 November 2005 (23-11-2005) 06 June 2007 (06-06-2007) 22 February 2006 (22-02-2006) 15 October 2008 (15-10-2008) 14 February 2007 (14-02-2007) 21 July 2010 (21-07-2010) 12 November 2008 (12-11-2008) 27 April 2011 (27-04-2011) 12 November 2008 (12-11-2008) 09 February 2011 (09-02-2011) 25 May 2011 (25-05-2011) 02 April 2003 (02-04-2003) 19 November 2003 (19-11-2003) 16 November 2005 (16-11-2005) 15 October 2003 (15-10-2003) 09 May 2007 (09-05-2007) 06 September 2007 (06-09-2007) 20 July 2011 (20-07-2011) 10 January 2008 (10-01-2008) 07 March 2012 (07-03-2012) 20 May 2004 (20-05-2004) 24 August 2006 (24-08-2006) 06 August 2009 (06-08-2009) 18 March 2010 (18-03-2010) 17 November 2011 (17-11-2011) 22 March 2012 (22-03-2012) 17 May 2012 (17-05-2012) 23 March 2004 (23-03-2004) 03 August 2004 (03-08-2004) 02 September 2004 (02-09-2004) 12 July 2005 (12-07-2005) 09 October 2003 (09-10-2003) 01 November 2005 (01-11-2005) 16 December 2004 (16-12-2004) 25 April 2006 (25-04-2006) 30 December 2004 (30-12-2004) 25 April 2006 (25-04-2006) 29 August 2006 (29-08-2006) 24 November 2005 (24-11-2005) 03 October 2006 (03-10-2006) 23 November 2006 (23-11-2006) 29 July 2008 (29-07-2008) 15 February 2007 (15-02-2007) 23 September 2008 (23-09-2008) 08 December 2005 (08-12-2005) 25 November 2008 (25-11-2008) 23 December 2004 (23-12-2004) 14 April 2009 (14-04-2009) 10 December 2009 (10-12-2009) 12 January 2010 (12-01-2010) 12 January 2006 (12-01-2006) 23 February 2010 (23-02-2010) 26 August 2004 (26-08-2004) 15 June 2010 (15-06-2010) 29 January 2009 (29-01-2009) 02 November 2010 (02-11-2010) 08 January 2009 (08-01-2009) 01 February 2011 (01-02-2011) 04 February 2010 (04-02-2010) 24 February 2011 (24-02-2011) 24 May 2011 (24-05-2011)

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/CA2012/000868

(Continuation of Family Members)

US2011037847A1 17 February 2011 (17-02-2011)
US7978894B2 12 July 2011 (12-07-2011)
US2009141126A1 04 June 2009 (04-06-2009)
US8055042B2 08 November 2011 (08-11-2011)
US2011221882A1 15 September 2011 (15-09-2011)
US8094902B2 10 January 2012 (10-01-2012)
US2010141753A1 10 June 2010 (10-06-2010)
US8103082B2 24 January 2012 (24-01-2012)
US2007147673A1 28 June 2007 (28-06-2007)
US8164622B2 24 April 2012 (24-04-2012)
US2010260407A1 14 October 2010 (14-10-2010)
US2011141263A1 16 June 2011 (16-06-2011)
US2012002892A1 05 January 2012 (05-01-2012)
US2012075457A1 29 March 2012 (29-03-2012)
US2012113242A1 10 May 2012 (10-05-2012)
US2012114204A1 10 May 2012 (10-05-2012)
US2012206589A1 16 August 2012 (16-08-2012)
WO0184209A2 08 November 2001 (08-11-2001)
WO0184209A3 19 December 2002 (19-12-2002)
WO0184209B1 16 January 2003 (16-01-2003)
WO2004077338A2 10 September 2004 (10-09-2004)
WO2004077338A3 09 June 2005 (09-06-2005)
WO2004095360A1 04 November 2004 (04-11-2004)
WO2005119325A2 15 December 2005 (15-12-2005)
WO2005119325A3 07 December 2006 (07-12-2006)
WO2007101205A2 07 September 2007 (07-09-2007)
WO2007101205A3 22 May 2008 (22-05-2008)

JP08043059	16 February 1996 (16-02-1996)	None
US6875972B2	05 April 2005 (05-04-2005)	DE10234756B3 12 February 2004 (12-02-2004) US2004124334A1 01 July 2004 (01-07-2004)
US2005089208A1	28 April 2005 (28-04-2005)	US2005089208A1 28 April 2005 (28-04-2005) WO2005010495A2 03 February 2005 (03-02-2005) WO2005010495A3 30 June 2005 (30-06-2005)
US8059336B2	15 November 2011 (15-11-2011)	US2009231689A1 17 September 2009 (17-09-2009) WO2008137746A1 13 November 2008 (13-11-2008)