特許協力条約に基づいて公開された国際出願

国際特許分類: B60L 11/18 (2006.01), B60L 9/18 (2006.01)

国際出願番号: PCT/JP20 10/072281 (74)

出願人 (米国を除く全ての指定国について): トヨタ自動車株式会社 (TOYOTA JIDOSHA KAI\-BUSHIKI KAISHA) (JP/JP); 4718571 愛知県豊田市 トヨタ町1番地 5418571 トヨタ自動車株式会社内 Aichi (JP).

発明者 : および
(1) 発明者/出願人 (米国についてのみ): 海田 啓司 (KAI\-TA, Kei) (JP/JP); 4718571 愛知県豊田市 トヨタ町1番地 トヨタ自動車株式会社内 Aichi (JP). 石下 翔生 (SHISHITA, Teruo) (JP/JP); 4718571 愛知県豊田市 トヨタ町1番地 トヨタ自動車株式会社内 Aichi (JP).

発明の名称: 電動車両およびその制御方法

タイトル: ELECTRIC VEHICLE AND CONTROLLING METHOD THEREFOR

範囲

要約: 第1のバッテリー (110) と、走行用電動機 (30) に対して出力される電力を伝達するための電力線 (PL1) との間には、コンバータ (130) が配置される。一方、第2のバッテリー (120) は、リレー (RL1) を通じて、電力線 (PL1) と接続される。制御装置 (150) は、電動機 (30) の動作状態に応じて、リレー (RL1) のオンオフを制御する。

(57) Abstract: A converter (130) is provided between a first battery (110) and a power line (PL1) that is used for transferring an electric power input/output from a drive motor (30). A second battery (120) is connected to the power line (PL1) via a relay (RL1). A control unit (150) performs the on/off control of the relay (RL1) according to an operating condition of the motor (30).

(54) Title: ELECTRIC VEHICLE AND CONTROLLING METHOD THEREFOR

(54) 発明の名称: 電動車両およびその制御方法
明細書

発明の名称: 電動車両およびその制御方法

技術分野

この発明は、電動車両およびその制御方法に関し、より特定的には、複数の蓄電装置を搭載した電動車両の制御に関する。

背景技術

ハイブリッド自動車や電気自動車等の電動車両は、走行用電動機に対して入出力される電力を蓄積するための蓄電装置（代表的には、二次电池）を搭載する。

特開2010_166790号公報（特許文献1）には、複数の高圧バッテリを並列に接続して、車載電力変換回路としての昇圧コンバータに電力を供給可能とする構成が記載されている。特許文献1の構成では、昇圧コンバータによって、インバータの直流側電圧、すなわち、走行用電動機に印加されるパルス状電圧の振幅を可変制御することができる。

また、複数の蓄電装置を接続した他の例として、特開2010_110124号公報（特許文献2）には、メイン二次電池ブロックと、補助二次電池ブロックとを搭載した電源システムが開示される。特許文献2の電源システムでは、補助二次電池ブロックの出力電圧を電圧変換するためのDC—DCコンバータが設けられる。そして、DC—DCコンバータによって、放電時には補助二次電池ブロックの電圧を昇圧して負荷に電力を供給するとともに、充電時にはメイン二次電池ブロックの電圧を降圧して補助二次電池ブロックに電力を供給することが記載されている。

先行技術文献

特許文献

特許文献1: 特開2010_166790号公報
特許文献2: 特開2010_110124号公報

発明の概要
発明が解決しようとする課題

[0006] 特許文献１の構成では、昇圧コンバータに対して２個の高圧バッテリを、それぞれ単独に接続することも、並列接続することも可能なように、リレーが配置されている。しかしながら、いずれの高圧バッテリの充放電に対しても、昇圧コンバータでの電力損失が発生する。また、高圧バッテリ同士が昇圧コンバータの低電圧側で直接並列接続される構成なので、バッテリ電圧レベルが揃っていないと、２個の高圧バッテリを並列に使用することが困難である。

[0007] 一方、特許文献２の電源システムでは、補助二次電池ブロックに対してのみＤＣ—ＤＣコンバータが配置される。そして、補助二次電池ブロックの出力電圧を、ＤＣ—ＤＣコンバータによってメイン二次電池ブロックと同等まで昇圧することによって、補助二次電池ブロックおよびメイン二次電池ブロックを並列に動作させて、負荷に対して充放電を行うことが記載されている。

[0008] しかしながら、特許文献２の構成では、負荷に対してメイン二次電池ブロックが常時接続される構成となっている。したがって、負荷へ供給される直流電圧は一定レベルとなる。すなわち、特許文献２の構成を、特許文献１のような車載電源装置に適用すると、インバータの直流電圧を可変制御することができない。

[0009] 特許文献２において、負荷への供給電圧を可変制御するためには、メイン二次電池ブロックと負荷との間にもＤＣ—ＤＣコンバータを配置することが必要となる。しかしながら、このように構成すると、電源システムの大型化およびコスト上昇を招いてしまう。

[0010] この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、複数の蓄電装置が搭載された電動車両の電源システムを、直流電圧の可変制御機能を確保しつつ、簡素かつ効率的に構成することである。

課題を解決するための手段
この発明のある局面では、電動車両は、車両駆動力を発生するための電動機と、第1の蓄電装置と、第2の蓄電装置と、電動機に対して入出力される電力を伝達するための電力線と、コンバータと、開閉器と、制御装置とを備える。コンバータは、第1の蓄電装置と電力線との間で双方向の直流電圧変換を実行するように構成される。開閉器は、第2の蓄電装置と電力線との間に接続される。制御装置は、電動機の動作状態に応じて、開閉器のオンオフを制御する。

この発明の他の局面では、電動車両の制御方法であって、電動車両は、車両駆動力を発生するための電動機と、第1の蓄電装置と、第2の蓄電装置と、第1の蓄電装置と電動機に対して入出力される電力を伝達するための電力線との間で双方向の直流電圧変換を実行するためのコンバータとを搭載する。そして、制御方法は、第2の蓄電装置の出力電圧を検出するステップと、電動機の動作状態に応じて、第2の蓄電装置と電力線との間に接続された開閉器のオンオフを制御するステップとを備える。

好ましくは、制御装置は、電動機のトルクおよび回転数に応じて電力線の必要最低電圧を算出する。そして、開閉器は、第2の蓄電装置の出力電圧が必要最低電圧よりも低いときはオフされる。

さらに好ましくは、制御装置は、電動機のトルクおよび回転数に応じて、必要最低電圧以上の範囲で電力線の電圧指令値を設定する。開閉器は、第2の蓄電装置の出力電圧が電圧指令値よりも高いときはオンされる一方で、出力電圧が電圧指令値よりも低いときはオフされる。

さらに好ましくは、開閉器は、第2の蓄電装置の出力電圧から電圧指令値を減算した電圧差が所定のしきい値よりも大きいときはオフされる。

また好ましくは、開閉器は、第2の蓄電装置の充電レベルが所定値よりも低下すると、開閉器をオフされる。

好ましくは、第1および第2の蓄電装置全体での充放電電力上限値は、閉閉器のオフ時には、第1の蓄電装置の充放電電力上限値と共用するとして導入される一方で、開閉器のオン時には、第1の蓄電
装置の充放電力上限値と、第2の蓄電装置の充放電力上限値と、コンパータでの損失電力値に基づいて設定される。

また好ましくは、第1の蓄電装置の出力電圧の定格値は、第2の蓄電装置の出力電圧の定格値よりも低い。

あるいは好ましくは、第1の蓄電装置のパワーディジョンは、第2の蓄電装置のパワーディジョンよりも高く、第1の蓄電装置のエネルギー密度は、第2の蓄電装置のエネルギー密度よりも低い。

発明の効果

この発明によれば、複数の蓄電装置が搭載された電動車両の電源システムを、直流電圧の可変制御機能を確保しつつ、簡素かつ効率的に構成することができる。

図面の簡単な説明

[図1]本発明の実施の形態による電動車両の構成を説明するブロック図である。

[図2]システム電圧とモータジェネレータの動作可能領域との関係を示す概念図である。

[図3]本発明の実施の形態による電動車両における電源システムの制御処理の第1の例を説明するフローチャートである。

[図4]本発明の実施の形態による電動車両における電源システムの制御処理の第2の例を説明するフローチャートである。

[図5]本発明の実施の形態による電動車両における電源システムの充放電電力上限値を示す図表である。

[図6]本発明の実施の形態による電動車両における電源システムの制御処理の変形例を説明するフローチャートである。

[図7]本発明の実施の形態による電動車両における電源システムにおける蓄電装置の特性を説明する概念図である。

発明を実施するための形態

以下に、本発明の実施の形態について図面を参照して詳細に説明する。
お、以下では図中の同一または相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。

図 1 は、本発明の実施の形態による電動車両の構成を説明するブロック図である。

図 1 を参照して、本発明の実施の形態による電動車両は、負荷 10 と、電源システム 100 と、制御装置 150 とを備える。負荷 10 は、インバータ 20 と、モータジェネレータ 30 と、動力伝達ギヤ 40 と、駆動輪 50 とを備える。

モータジェネレータ 30 は、代表的には永久磁石型の三相同期電動機で構成される。モータジェネレータ 30 の出力トルクは、図示しない減速機や動力分割機構によって構成される動力伝達ギヤ 40 を介して駆動輪に伝達されて、電動車両を走行させる。すなわち、モータジェネレータ 30 は、車両駆動力を発生するための「電動機」に対応する。

モータジェネレータ 30 は、電動車両の回生制動動作時には、駆動輪 50 の回転力によって発電することができる。そしてその発電電力は、インバータ 20 によって、電源システム 100 の蓄電装置 110 および／または 120 を充電するための直流電力に変換される。

インバータ 20 は、特許文献 1 にも記載された一般的な三相インバータにより構成される。インバータ 20 は、電力線 P L 1 上の直流電圧を交流電圧に変換して、モータジェネレータ 30 の各相に印加する。すなわち、インバータ 20 は、電力線 P L 1 上の直流電力と、モータジェネレータ 30 を駆動制御する交流電力との間で双方向の D C ／ A C 変換を実行する。電力線 P L 1 は、モータジェネレータ 30 に対して入出力される電力を伝達するための第 1 の電力線に対応する。

制御装置 150 は、図示しない C P U (Central Processing Unit) およびメモリを内蔵した電子制御ユニット (ECU) により構成される。ECU は、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサによる検出値を用いた演算処理を行い、ならうように構成される。あるいは、ECU
の少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。

[0028] 電源システム100は、第1の蓄電装置に対応する蓄電装置110と、第2の蓄電装置に対応する蓄電装置120と、システムメインリレーSMR1, SMR2と、リレーRL1, RL2と、コンバータ130と、平滑コンデンサ140とを含む。

[0029] 蓄電装置110, 120の各々は、代表的には、リチウムイオン電池やニッケル水素電池等の二次電池により構成される。したがって、以下では、蓄電装置110および蓄電装置120を、それぞれバッテリ110およびバッテリ120とも称する。ただし、電気二重層等の他の蓄電素子、あるいは、他の蓄電素子とバッテリとの組み合わせによって、蓄電装置110, 120を構成することも可能である。

[0030] また、蓄電装置110および120は、同一種類の蓄電装置によって構成されてもよく、異なる種類の蓄電装置によって構成されてもよい。蓄電装置110および120を異なる種類の蓄電装置で構成する際の好ましい例については、後述詳細に説明する。

[0031] バッテリ110および120の各々は、直列接続された電池セルによって構成される。すなわち、バッテリ110および120のそれぞれの出力電圧の定格値は、直列接続される電池セルの個数に依存する。

[0032] バッテリ110には、バッテリ電圧Vb1, バッテリ電流Ib1, バッテリ温度 Tb1を検出するための電池センサ115が設けられる。同様に、バッテリ120には、バッテリ電圧Vb2, バッテリ電流Ib2, バッテリ温度 Tb2を検出するための電池センサ125が設けられる。電池センサ115, 125による検出値は、制御装置150へ伝達される。

[0033] システムメインリレーSMR1は、バッテリ110の正極端子と電力線PL2との間に電気的に接続される。システムメインリレーSMR2は、バッテリ110の負極端子と、および電力線GLとの間に電気的に接続される。電力線PL1, PL2は、直流電圧を伝達する。電力線GLは、接地線に相
当する。

リレー R L 1 は、バッテリ 1 2 0 の正極端子と電力線 P L 1 との間に電気的に接続される。リレー R L 2 は、バッテリ 1 2 0 の負極端子と電力線 G L との間に電気的に接続される。リレー R L 1 は「開閉器」に対応する。

なお、リレー R L 2 については、バッテリ 1 2 0 の負極端子をバッテリ 1 1 0 の負極端子と電気的に接続することによって、配置を省略することも可能である。このようにすると、リレーの個数削減により、小型化および低コスト化が図られる。一方で、図 1 の構成のようにリレー R L 2 を配置すると、バッテリ 1 1 0 を完全に電源システムから電気的に切離すことができるので、安全上好ましい構成とすることができる。

システムメインリレー S M R 1、S M R 2 およびリレー R L 1、R L 2 のオン（閉成）およびオフ（開放）は、制御装置 1 5 0 により制御される。

なお、本実施の形態に示される各リレーは、代表的に行う、通電時に接点間を接続することによって閉成（オン）される一方で、非通電時には接点間を非接続することによって開放（オフ）される電磁リレーによって構成される。ただし、閉成（オン）および開放（オフ）を制御可能な構成であれば、半導体リレーを始めとして、任意の開閉器を適用することができる。

コンバータ 1 3 0 は、電力線 P L 1 と、バッテリ 1 1 0 との間で双方向の直流電圧変換を実行するように構成する。たとえば、図 1 の構成例では、コンバータ 1 3 0 は、非絶縁型チョッパ回路の構成を有する。

具体的には、コンバータ 1 3 0 は、電力用半導体スイッチング素子 Q 1、Q 2 と、リアクトル L とを含む。本実施の形態において、電力用半導体スイッチング素子（以下、単に「スイッチング素子」とも称する）としては、IGBT（Insulated Gate Bipolar Transistor）を例示する。ただし、電力用 MOS（Metal Oxide Semiconductor）トランジスタあるいは、電力用バイポーラトランジスタ等、オンオフを制御可能な任意の素子を、スイッチング素子として用いることが可能である。スイッチング素子 Q 1、Q 2 に対しては、逆並列ダイオード D 1、D 2 がそれぞれ配置されている。
リアクトル L は、電力線 P L 2 およびノード N 1 の間に接続される。スイッチング素子 Q 1 は、電力線 P L 1 およびノード N 1 の間に接続される。スイッチング素子 Q 2 は、ノード N 1 および電力線（接地線）G L の間に接続されている。スイッチング素子 Q 1 , Q 2 のオンオフは、制御装置 1 5 0 からの制御信号によって制御される。

平滑コンデンサ 1 4 0 は、電力線 P L 1 および電力線 G L の間に接続される。電圧センサ 2 0 5 は、電力線 P L 1 の直流電圧 V H を検出する。電圧センサ 2 0 5 の検出値は、制御装置 1 5 0 へ伝達される。以下では、インバータ 2 0 の直流側電圧に相当する直流電圧 V H をシステム電圧 V H もと称する。

コンバータ 1 3 0 は、スイッチング素子 Q 1 および/または Q 2 のオンオフ制御により、電力線 P L 2 の直流電圧 V L と、電力線 P L 1 のシステム電圧 V H との電圧変換比 (V H / V b) を制御する。具体的には、システム電圧 V H が電圧指令値 V H r に一致するように、スイッチング素子 Q 1 , Q 2 のデューティ比が制御される。なお、システム電圧 V H を直流電圧 V L から昇圧する必要がない場合には、スイッチング素子 Q 1 および Q 2 をオンおよびオフにそれぞれ固定することにより、V H = V L （電圧変換比 = 1.0）とすることもできる。

コンバータ 1 3 0 では、基本的には、各スイッチング周期内でスイッチング素子 Q 1 および Q 2 が相補的かつ交互にオンオフするように制御される。このようにすると、電流方向に応じて特に制御動作を切換えることなく、バッテリ 1 1 0 の充電および放電のいずれにも対応して、システム電圧 V H を電圧指令値 V H r に制御することができる。

制御装置 1 5 0 は、電池センサ 1 1 5 , 1 2 5 の検出値 (V b 1 , I B 1 , T b 1 , V b 2 , I B 2 , T b 2) および電圧センサ 2 0 5 の検出値 (V H) を受ける。さらに、制御装置 1 5 0 は、電源システム 1 0 0 を適切に動作させるために、モータジェネレータ 3 0 の動作状態および各センサの検出値に基づいて、システムメインリレー S M R 1 , S M R 2 およびリレー R L
1. R L 2 のオンオフを制御する信号と、コンパータ 130 の制御信号とを生成する。制御装置 150 による制御処理については、後後さらに詳細に説明する。

[0045] このように、本発明の実施の形態による電動車両 5 では、電源システム 100 は複数のバッテリ 110 および 120 を含んで構成される。そして、バッテリ 120 は、コンパータを介することなく、直接、電力線 P L 1 に対して電気的に接続される。したがって、リレ R L 1、R L 2 のオン時には、システム電圧 V H を、バッテリ電圧 V b 2 よりも高くすることができない。

[0046] 一方、バッテリ 110 は、コンパータ 130 を介して電力線 P L 1 に接続される。したがって、バッテリ電圧 V b 1 がシステム電圧 V H よりも低い状態でも、バッテリ 110 から電力線 P L 1 へ電力を供給できるとともに、電力線 P L 1 の電力によってバッテリ 110 を充電することができる。

[0047] このため、バッテリ 110 の出力電圧の定格値は、バッテリ 120 の出力電圧の定格値よりも低くすることが好ましい。このようにすると、バッテリ 110 の直列接続される電池セル数を少なくしても、バッテリ 110、120 を並列に使用することができる。

[0048] 次に、モータジェネレータ 30 の動作状態と、システム電圧 V H との関係について詳細に説明する。

[0049] モータジェネレータ 30 を円滑に駆動するためには、モータジェネレータ 30 の動作点、具体的には、回転速度およびトルクに応じて、システム電圧 V H を適切に設定する必要がある。第 1 に、インバータ 20 における D C ／A C 変換の変調率には一定の限界があるため、システム電圧 V H に対して、出力可能な上限トルクが存在する。

[0050] 図 2 は、システム電圧とモータジェネレータの動作可能領域との関係を示す概念図である。

[0051] 図 2 を参照して、モータジェネレータ 30 の動作領域および動作点は、回転数およびトルクの組み合わせによって示される。最大出力線 200 は、シ
システム電圧 \(V_H = V_{\text{max}} \) （上限電圧）であるときの動作可能領域の限界を示すものである。最大出力線 \(200 \) は、トルク \(T < T_{\text{max}} \) （最大トルク）かつ回転数 \(N < N_{\text{max}} \) （最高回転数）であって、出力電力に相当する \(T \times N \) によって制限される部分を有する。システム電圧 \(V_H \) が低下すると、動作可能領域は狭くなっている。

たとえば、動作点 \(P1 \) は、システム電圧 \(V_H = V_a \) で実現可能である。この状態から、ユーザのアクセル操作によって、電動車両 \(5 \) が加速する場合には、車両駆動力の要求値が高くなる。これにより、モータジェネレータ \(30 \) の出力トルクが増加するので、動作点は \(P2 \) に変化する。しかしながら、動作点 \(P2 \) には、システム電圧 \(V_H \) を \(V_b \) （\(V_b > V_a \)）へ上昇させなければ対応することができない。

図2に示した、システム電圧 \(V_H \) と動作領域の限界線との関係に基づいて、モータジェネレータ \(30 \) の各動作点（回転速度、トルク）における、システム電圧 \(V_H \) の下限値（必要最低電圧 \(V_{\text{Hmin}} \)）を求めることができる。

また、モータジェネレータ \(30 \) には、回転数に比例した誘起電圧が発生する。この誘起電圧がシステム電圧 \(V_H \) よりも高くなると、モータジェネレータ \(30 \) の電流を制御できなくなる。したがって、モータジェネレータ \(30 \) の回転数が高くなる電動車両 \(5 \) の高速走行時には、システム電圧 \(V_H \) の必要最低電圧 \(V_{\text{Hmin}} \) が上昇する。

これらの観点から、モータジェネレータ \(30 \) の動作点に対応させて、当該動作点に従った出力を確保するための必要最低電圧 \(V_{\text{Hmin}} \) を予め算出可能であることが理解される。

図3は、本発明の実施の形態による電動車両における電源システムの制御処理の第1の例を説明するフローチャートである。なお、図3を始めて以下に示すフローチャートの各ステップの処理は、制御装置 \(150 \) によるソフトウェア処理またはハードウェア処理によって実行される。また、以下に示すフローチャートの各々による一連の制御処理は、制御装置 \(150 \) によって所定の制御周期毎に実行される。
図3を参照して、制御装置150は、ステップS100において、モータジェネレータ30の動作状態より、上述の必要電圧マップを用いて必要最低電圧VHminを算出する。さらに、ステップS110では、必要最低電圧VHminを考慮して電圧指令値VHRが設定される。

電圧指令値VHRは、VHR = VHminまたは、VHR > VHminに設定される。たとえば、VHR > VHminの領域で、VHR = VHminのときよりも、電源システム100および負荷10での損失が最小となる電圧が存在するときは、燃費優先の観点から、電圧指令値VHRを当該電圧に設定することが好ましい。一方、バッテリ120を積極的に使用したい場合には、電圧指令値VHRが低いほうが好ましいので、VHR = VHminに設定してもよい。

このように、電圧指令値VHRは、必要最低電圧VHminを考慮した上で、モータジェネレータ30の動作点に対応して算出できる。このため、モータジェネレータ30の動作点に対応させて、当該動作点に従った電圧指令値VHRを算出するためのマップ（電圧指令値マップ）を予め作成することが可能である。電圧指令値マップは、制御装置150の図示しないメモリに記憶される。このように、本実施の形態の電動車両では、モータジェネレータ30を円滑かつ効率的に駆動するために、システム電圧VHを可変制御している。すなわち、モータジェネレータ30へ印加される電圧振幅（パルス電圧振幅）とモータジェネレータ30の動作状態（回転速度・トルク）に応じて可変制御される。

制御装置150は、ステップS110では、図1に示した電池センサ115、125の検出値に基づいて、バッテリ情報を読込む。バッテリ情報には、バッテリ電圧VB2が少なくとも含まれる。

制御装置150は、ステップS120により、バッテリ電圧VB2と、ステップS100で設定された電圧指令値VHRとを比較する。VB2 > VHRのとき（S120のYES判定時）には、制御装置150は、ステップS130に処理を進めて、リレーRL1、RL2をオンする。これにより、バ
コンバータ130は、システム電圧VHを電圧指令値VHrと一致させるように、バッテリ110の充放電を制御する。これにより、バッテリ110, 120を並列に用いて、負荷10に対する充放電を制御することが可能となる。この状態で、電動車両5が回生制動を行うと、バッテリ110, 120を並列に充電することができる。

一方、Vb2 < VHr のとき（S120のNO判定時）には、制御装置が150は、ステップS140に処理を進めて、リレーRL1, RL2をオフする。これにより、バッテリ120から電力線PL1から切離される。上述のように、VHr ≥ VHmin であるから、ステップS120の判定によって、少なくとも、Vb2 < VHmin のときにはリレーRL1は確実にオフされる。

このときには、コンバータ130を介して、バッテリ110のみを用いて、負荷10に対する充放電が制御される。この状態で、電動車両5が回生制動を行うと、バッテリ110のみが充電される。

このように、本実施の形態による電動車両では、複数のバッテリ110, 120を備えた電源システムにおいて、バッテリ110のみにコンバータを設ける構成としても、モータジェネレータ30の動作状態に応じたシステムの電圧VHの可変制御を実現することができる。この結果、複数の蓄電装置（バッテリ110、120）の電力によりモータジェネレータ30の出力による走行距離を拡大することができる電源システムを、簡素かつ効率的に構成できる。

特に、車両加速時等に対応したシステム電圧VHの高電圧領域に対しては、電圧指令値（必要最低電圧）よりも出力電圧が低いバッテリ120を電力線PL1から切離すとともに、バッテリバッテリ110の出力電圧をコンバータ130によって昇圧することで対応できる。また、バッテリ120の出力電圧が、電圧指令値（必要最低電圧）よりも高く、バッテリ120が使用可能であるときには、バッテリ110, 120を並列に使用することがで
きる。このように、複数の蓄電装置（バッテリ110、120）を有効に活
用して、モータジェネレータ30の出力による走行のための電力を供給する
ことができるのと、電源システムを小型化かつ低コストで効率的に構成する
ことが可能となる。

なお、バッテリ120を使用する場合に、電圧指令値VHrとバッテリ電
圧Vb2との電圧差ΔV（ΔV = Vb2 - VHr）が大きいと、コンパータ
130による制御の限界を超えてしまうことにより、システム電圧VHが高
くなり過ぎる可能性がある。この点を考慮して、図4に示す制御処理を適用
することも可能である。

図4は、本発明の実施の形態による電動車両における電源システムの制御
処理の第2の例を説明するフローチャートである。

図4を図3と比較して、第2の制御処理例では、制御装置150は、図3
のステップS120に代えて、ステップS120#を実行する。

制御装置150は、ステップS120#では、電圧指令値VHrとバッテリ
電圧Vb2との差が一定範囲内であるか否かを判定する。具体的には、バッ
テリ電圧Vb2V力VHr < Vb2 < VHr + ひの範囲内であるか否か
が判定される。なお、ひは、所定のしきい値である。

そして、VHr < Vb2 < VHr + ひであるとき（S120#のYES判
定時）には、制御装置150は、ステップS130に処理を進めて、バッテ
リ120を電力線P1L1に接続する。一方で、Vb2 < VHrあるいは、V
b2 > VHr + ひのとき（S120#のNO判定時）には、制御装置150
は、ステップS130に処理を進めて、バッテリ120を電力線P1L1から
切離す。

このようにすると、上述した本実施の形態による電動車両の効果に加えて
、システム電圧VHが高くなり過ぎることを防止できる。

（電源システムでの充放電制限）

なお、電動車両の電源システムでは、電源システム100から負荷10に
対して充放電可能な電力範囲が設定される。そして、当該電力範囲内に充放
電電力が収まるように、モータジェネレータ30の出力（トルク）が制限されることが一般的である。充放電可能な電力範囲は、充電電力上限値W_{in}および放電電力上限値W_{out}によって規定される。以下では、W_{in}、W_{out}とも、充放電される電力の大きさ（絶対値）を示すものとする。

[0074] 本実施による電動車両の電源システムでは、バッテリ120が使用される第1のモードと、バッテリ120が不使用とされる第2モードとが選択される。第1および第2のモードのそれぞれについて、バッテリ110単体での充電電力上限値W_{in}および放電電力上限値W_{out}、ならびに、バッテリ120単体での充電電力上限値W_{in}および放電電力上限値W_{out}に基づいて、制御装置150は、電源システム全体でのW_{in}、W_{out}を以下のように設定する。

[0075] 制御装置150は、バッテリ電流I_b1、バッテリ電圧V_b1およびバッテリ温度T_b1に基づいて、バッテリ110のW_{in}、W_{out}を算出する。同様に、制御装置150は、バッテリ電流I_b2、バッテリ電圧V_b2およびバッテリ温度T_b2に基づいて、バッテリ120のW_{in}、W_{out}を算出する。各バッテリでのW_{in}、W_{out}の算出については、公知の任意の手法を適用できるので、詳細な説明は省略する。

[0076] 図5を参照して、バッテリ120を使用する第1のモードでは、バッテリ110, 120が負荷10に対して並列に接続される。したがって、制御装置150は、電源システム100全体での放電電力上限値W_{out}を下記（1）式によって定める。また、充電電力上限値W_{in}は下記（2）式で求められる。

\[
W_{out} = W_{out1} - (L_1 + L_c) + W_{out2} - L_2 \quad \cdots (1)
\]

\[
W_{in} = W_{in1} + (L_1 + L_c) + W_{in2} + L_2 \quad \cdots (2)
\]

なお、（1）、（2）式において、L_2は、バッテリ120から電力線P_L1への通電経路で生じる損失であり、電力ケーブルでの損失およびリレーR_L1による損失等が含まれる。同様に、L_1は、バッテリ110から電力線P_L1への通電経路で生じる損失である。また、L_cは、コンバータ13
0で生じる電力損失である。

これらの損失項 L1, L2, Lc は、実験結果等に基づいて予め定めることができる。L1, L2, Lc は、定数（固定値）としてもよく、電流等のパラメータに応じて変化する変数としてもよい。

一方、バッテリーを不使用とする第 2 のモードでは、バッテリーのみが負荷 10 に対して接続される。したがって、制御装置 150 は、電源システム 100 全体での放電電力上限値 Wout を下記（3）式によって定める。また、また、充電電力上限値 W\text{in} は下記（4）式で求められる。

\[
W_{\text{out}} = W_{\text{out} 0} - (L1 + Lc) \quad \cdots (3)
\]

\[
W_{\text{in}} = W_{\text{in} 0} + (L1 + Lc) \quad \cdots (4)
\]

このように、バッテリーの使用、不使用の切替えに応じて、通電経路での損失およびコンバータ 130 による損失の相違を反映して、電源システム 100 全体での充放電可能な電力範囲を精密に設定することができる。これにより、バッテリー 110, 120 を能力いっぱいまで用いた充放電が可能となるので、バッテリー 110, 120 の電力を効率的に使用できる。

（制御処理の変形例）

図 6 は、本発明の実施の形態による電動車両における電源システムの制御処理の変形例を説明するフローチャートである。

図 6 を参照して、制御装置 150 は、変形例による制御処理では、図 3 または図 4 に示したフローチャートと比較して、ステップ S200 をさらに実行する。また、ステップ S110 で読み込まれるバッテリ情報は、バッテリー電圧 V\text{b}2 に加えて、バッテリー 120 の SO\text{C} (State of Charge) を含む。以下では、バッテリー 120 の SO\text{C} について、SO\text{C} 2 と表記する。

周知のように、SO\text{C} は、バッテリーの満充電容量に対する現在の残存容量の比を百分率で示したものである。SO\text{C} については、バッテリー電流、電圧等に基づいて算出する手法が種々提案されている。これらの公知の手法を適宜用いることによって、制御装置 150 は、バッテリー 120 の SO\text{C} を取得することができる。
制御装置150は、ステップS200により、SOC2をしきい値Sm
と比較する。しきい値Smは、バッテリ120が過放電によって劣化を
生じるSOC領域の境界値に対応して設定される。

制御装置150は、SOC2＜Smのとき（ステップS200のYES
判定時）には、ステップS140に処理を進めて、リレーRL1、RL2
をオフする。これにより、バッテリ120は、電力線PL1から切り離され
て不使用とされる。

バッテリ110、120が並列に使用される状態では、コンパータ130
によるバッテリ110の充放電制御に付随して、バッテリ120の充放電電
力が定まる。したがって、コンパータ130による制御誤差によって、バッ
テリ120のSOCが想定よりも低下すると、過放電による劣化を招く虞があ
る。したがって、このようなSOC領域では、モータジェネレータ30の
動作状態（すなわち、電圧指令値VHr）に関らず、バッテリ120を電力
線PL1から切離すことが好ましい。これにより、バッテリ120を過放電
から保護することができる。

一方、制御装置150は、SOC2＞Smのとき（S200のNO判
定時）には、図3または図4と同様に、ステップS120（またはS120
#）～S140の処理により、バッテリ110の使用および不使用を制御す
る。

この変形例によれば、本発明による電動車両の電源システムにおいて、バ
ッテリ120を過放電から保護することができる。

（複数の蓄電装置の適用例）

本実施の形態による電動車両の電源システムでは、複数の蓄電装置（バッ
テリ110、120）が具備される。上述した電源システムの制御処理は、
出力特性および出力電圧が共通である複数の蓄電装置に対しても、適用でき
ることが理解される。しかしながら、本実施の形態では、一方側の蓄電装置
（バッテリ110）に対してのみコンパータ130を配置する非対称な構成
となっている。この点を考慮して、複数の蓄電装置（バッテリ110、12
0）の出力特性および／または出力電圧を異なるものとすれば、電源システムをさらに効率的に設計できる。

まず、蓄電装置の出力電圧については、上述のように、コンパータ130が設定されたバッテリ110の出力電圧定格値を、バッテリ120の出力電圧定格値よりも低くすることができる。このようにすると、バッテリ110での直列接続される電池セル数を抑制できる。同様に、バッテリ120の出力電圧定格値を、システム電圧VHの上限電圧Vmaxよりも低い範囲で適切に設計することにより、バッテリ120での直列接続される電池セル数を抑制できる。

図7には、蓄電装置の出力特性を説明するためのラゴンプロット（Ragone plot）が示される。

図7を参照して、縦軸は蓄電装置のパワーミュード（W/Kg）を示し、横軸は蓄電装置のエネルギー密度（Wh/Kg）を示す。電動車両の車載蓄電装置への適用を考慮する場面では、加速要求等の短時間の高トルク出力要求に対して、パワーミュードの高い蓄電装置が有利である。一方、通常走行での走行距離を伸ばすためには、エネルギー密度の高い蓄電装置が有利である。

エネルギー密度およびパワーミュードは、蓄電装置の種類（バッテリ／キャパシタ）あるいは、バッテリの種類（ニッケル水素電池／リチウムイオン二次電池）によって異なる。あるいは、同一種類の蓄電装置であっても、設計によって、エネルギー密度およびパワーミュードを変えることができる。

たとえば、二次電池では、活物質を基材に塗布する際の厚みによって、出力特性が変わってくる。一例としては、活物質を薄く広く塗布するようにすれば、単位時間の反応に寄与する活物質の数が増えるので、相対的にパワーミュードが高いバッテリを実現できる。一方で、活物質を厚く塗布するようにすると、パワーミュードが相対的に低下する一方で、エネルギー密度を高めることができる。

本実施の形態による電動車両の電源システムでは、バッテリ120は、電動車両5の加速や高速走行によってモータジェネレータ30に高パワーが必要
求されるとき（すなわち、電圧指令値V_{Hr}が高いとき）には、不使用とされる。したがって、バッテリ120は、モータジェネレータ30の出力パワーガーが比較的低い領域で使用される。このため、バッテリ120については、図6の領域220に示されるような、エネルギー密度が高く、パワー密度が小さい、高エネルギー型の蓄電装置を適用することが好ましい。これにより、ハイブリッド自動車では、モータジェネレータ30のみを用いた、いわゆるEV（Electric Vehicle）走行の距離を延ばすことができる。電気自動車では、航続可能距離が長くなる。

一方で、バッテリ110は、モータジェネレータ30が高パワーを出力する場面での電力供給に対応する必要がある。したがって、バッテリ110については、図6の領域210に示されるような、パワー密度が高くエネルギー密度が低い蓄電装置を用いることが好ましい。

このように、バッテリ110、120については、図6の領域210および220にそれぞれ示される特性の蓄電装置によって使い分けることが好ましい。このようにすると、ユーザからの高出力要求（加速や高速走行）に対応した上で、モータジェネレータ30の出力による走行距離を伸ばすように、電源システムを効率的に構成することができる。

なお、図1に示した電動車両5の負荷10（すなわち、駆動系）の構成は、図示された構成に限定されるものではない。すなわち、上述したように、電気自動車、ハイブリッド自動車、燃料電池自動車等、走行用電動機を搭載した電動車両に対して、本発明は共通に適用することができる。また、走行用電動機の個数についても、特に限定されるものではない。

また、コンバータ130についても、本実施の形態では、非絶縁型チヨッバ回路を例示したが、バッテリ（蓄電装置）110と電力線PL1との間で同等の直流電圧変換が可能であれば、任意の回路構成を適用することが可能である。

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求
の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

産業上の利用可能性

本発明は、複数の蓄電装置を搭載した電動車両に適用することができる。

符号の説明

5 電動車両、10 負荷、20 インバータ、30 モータジエネルギー、40 動力伝達ギヤ、50 駆動輪、100 電源システム、110、120 バッテリ（蓄電装置）、115、125 電池センサ、120 蓄電装置、120 バッテリ、130 コンバータ、140 平滑コンデンサ、150 制御装置、200 最大出力線、205 電圧センサ、D1、D2 逆並列ダイオード、G に P L 1、P L 2 電力線、I b 1、I b 2 バッテリ電流、L リアクトル、L 1、L 2、L c 損失項、N 1 ノード、P 1、P 2 動作点、Q 1、Q 2 電力用半導体スイッチング素子、R L 1、R L 2 リレー、S M R 1、S M R 2 システムメインリレー、S m i n しきい値（S O C）、T b 1、T b 2 バッテリ温度、V H 直流電圧（システム電圧）、V H m i n 必要最低電圧、V H r 電圧指令値、V b 1、V b 2 V バッテリ電圧、W i n、W i n 1、W i n 2 充電電力上限値、W o u t、W o u t 1、W o u t 2 放電電力上限値。
請求の範囲

[請求項1] 車両駆動力を発生するための電動機 (3 0) と、
第 1 の蓄電装置 (1 1 0) と、
第 2 の蓄電装置 (1 2 0) と、
前記電動機に対して入出力される電力を伝達するための電力線 (Pし1) と、
前記第 1 の蓄電装置と前記電力線との間で双方向の直流電圧変換を実行するためのコンバータ (1 3 0) と、
前記第 2 の蓄電装置と前記電力線との間に接続された開閉器 (R L 1) と、
前記電動機の動作状態に応じて、前記開閉器のオンオフを制御する制御装置 (1 5 0) とを備える、電動車両。

[請求項2] 前記制御装置 (1 5 0) は、前記電動機 (3 0) のトルクおよび回転数に対応して前記電力線 (P L 1) の必要最低電圧 (V H m i n) を算出するとともに、前記第 2 の蓄電装置の出力電圧 (V b 2) が前記必要最低電圧よりも低いときには前記開閉器をオフする、請求項 1 記載の電動車両。

[請求項3] 前記制御装置 (1 5 0) は、前記電動機 (3 0) のトルクおよび回転数に対応して、前記必要最低電圧 (V H m i n) 以上の範囲で前記電力線 (P L 1) の電圧指令値 (V H r) を設定するとともに、前記第 2 の蓄電装置の出力電圧 (V b 2) が前記電圧指令値よりも高いときには前記開閉器 (R L 1) をオンする一方で、前記出力電圧が前記電圧指令値よりも低いときには前記開閉器をオフする、請求項 2 記載の電動車両。

[請求項4] 前記制御装置 (1 5 0) は、前記第 2 の蓄電装置の出力電圧 (V b 2) から前記電圧指令値 (V H r) を減算した電圧差が所定のしきい値よりも大きいときには、前記開閉器 (R L 1) をオフする、請求項 3 記載の電動車両。
請求項5 前記制御装置（150）は、前記第2の蓄電装置（110）の充電レベル（SOC2）が所定値（Smín）よりも低下すると、前記開閉器（RL1）をオフする。請求項1記載の電動車両。

請求項6 前記制御装置（150）は、前記開閉器（RL1）のオフ時には、前記第1の蓄電装置（110）の充放電電力上限値（Win1, Wout1）と前記コンバータ（130）での損失電力値（Lc）に基づいて、前記第1および第2の蓄電装置全体での充放電電力上限値（Win, Wout）を設定し、前記開閉器のオン時には、前記第1の蓄電装置の充放電電力上限値と、前記第2の蓄電装置（120）の充放電電力上限値（Win2, Wout2）と、前記コンバータでの損失電力値に基づいて、前記第1および第2の蓄電装置全体での充放電電力上限値（Win, Wout）を設定する。請求項1記載の電動車両。

請求項7 前記第1の蓄電装置（110）の出力電圧（Vb1）の定格値は、前記第2の蓄電装置（120）の出力電圧（Vb2）の定格値よりも低く、請求項1から6のいずれか1項に記載の電動車両。

請求項8 前記第1の蓄電装置（110）のパワー密度は、前記第2の蓄電装置（120）のパワー密度よりも高く。

前記第1の蓄電装置のエネルギー密度は、前記第2の蓄電装置のエネルギ密度よりも低く、請求項1から6のいずれか1項に記載の電動車両。

請求項9 車両駆動力を発生するための電動機（30）と、第1の蓄電装置（110）と、第2の蓄電装置（120）と、前記第1の蓄電装置と前記電動機に対して入出力される電力を伝達するための電力線（PL1）との間で双方の直流電圧変換を実行するためのコンバータ（130）とを搭載した電動車両の制御方法であって、

前記第2の蓄電装置の出力電圧（Vb2）を検出するステップ（S110）と、
前記電動機の動作状態に応じて、前記第2の蓄電装置と前記電力線との間に接続された開閉器（R L 1）のオンオフを制御するステップ（S 120, S 120# - S 140）を備える、電動車両の制御方法。

[請求項10] 前記電動機（3 0）のトルクおよび回転数に応じて前記電力線（P L 1）の必要最低電圧（V H m i n）を算出するステップ（S 100）をさらに備え、

前記制御するステップ（S 120, S 140）は、前記第2の蓄電装置の出力電圧（V b 2）が前記必要最低電圧よりも低いときには前記開閉器をオフする、請求項9記載の電動車両の制御方法。

[請求項11] 前記算出するステップ（S 100）は、前記電動機（3 0）のトルクおよび回転数に応じて、前記必要最低電圧（V H m i n）以上の範囲で前記電力線（P L 1）の電圧指令値（V H r）を設定し、

前記制御するステップ（S 120 — S 140）は、前記第2の蓄電装置の出力電圧（V b 2）が前記電圧指令値よりも高いときには前記開閉器（R L 1）をオンする一方で、前記出力電圧が前記電圧指令値よりも低いときには前記開閉器をオフする、請求項10記載の電動車両の制御方法。

[請求項12] 前記制御するステップ（S 120#, S 140）は、前記第2の蓄電装置の出力電圧（V b 2）から前記電圧指令値（V H r）を減算した電圧差が所定のしきい値（ひ）よりも大きいときには、前記開閉器（R L 1）をオフする、請求項11記載の電動車両の制御方法。

[請求項13] 前記第2の蓄電装置（1 1 0）の充電レベル（S O C 2）が所定値（S m i n）よりも低下すると、前記開閉器（R L 1）をオフするステップ（S 200）をさらに備える、請求項9記載の電動車両の制御方法。
図2

トルク T

T_{\text{max}}

P2

200

VH: 大

VH = V_{\text{max}}

VH = V_{b}

VH = V_{a}

N_{\text{max}}

回転数 N

図3

スタート

S100

MGの動作状態より
VHの必要最低電圧V_{\text{min}}
および電圧指令値
V_{Hr}(V_{Hr} \geq V_{\text{min}})を算出

S110

バッテリ情報読込み

S120

V_{b2} > V_{Hr}？

NO

YES

RL1, RL2 オン
（蓄電装置120使用）

RL1, RL2 オフ
（蓄電装置120不使用）

エンド
[図4]

スタート
S100

MGの動作状態より
VHの必要最低電圧VHmin
および電圧指令値
VHr(VHr≥VHmin)を算出
S110

バッテリ情報読み込み
S120#

VHr<Vb2<VHr+α？

NO

YES

RL1, RL2 オン
（蓄電装置120使用）
S130

RL1, RL2 オフ
（蓄電装置120不使用）
S140

エンド

[図5]

<table>
<thead>
<tr>
<th></th>
<th>バッテリ120使用</th>
<th>バッテリ120不使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wout</td>
<td>Wout1−(L1+Lc)+Wout2−L2</td>
<td>Wout1−(L1+Lc)</td>
</tr>
<tr>
<td>Win</td>
<td>Win1+(L1+Lc)+Win2+L2</td>
<td>Win1+(L1+Lc)</td>
</tr>
</tbody>
</table>
[図6]

スタート

MGの動作状態より
VHの必要最低電圧VHmin
および電圧指令値
VHr(VHr≧VHmin)を算出

バッテリ情報読み込み

S200
SOC2＜Smin？
YES
NO

S120（またはS120#）
Vb2＞VHr？
YES
NO

S130

RL1, RL2 オン
（蓄電装置120使用）

RL1, RL2 オフ
（蓄電装置120不使用）

エンド

[図7]

パワーダENSITY
(W/kg)

エネルギー密度
(Wh/kg)

210

220
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 010 / 072861

A. CLASSIFICATION OF SUBJECT MATTER
B 60L1 1/18 (2006.01)i, B 60L9/1 8 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B 60L11/18, B 60L9/18

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2010-58640 A (Toyota Motor Corp.), 18 March 2010 (18.03.2010), ent ire text; all drawings</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2009-165210 A (Toyota Motor Corp.), 23 July 2009 (23.07.2009), ent ire text; all drawings (Family: none)</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

“A” document defining the general state of the art which is not considered to be of particular relevance
“E” earlier application or patent but published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
“O” document referring to an oral disclosure, use, exhibition or other means
“P” document published prior to the international filing date but later than the priority date claimed
“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
“&” document member of the same patent family

Date of the actual completion of the international search
04 March, 2011 (04.03.11)

Date of mailing of the international search report
15 March, 2011 (15.03.11)

Name and mailing address of the ISA/
Japanese Patent Office

Facsimile No.
Authorized officer
Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2009-519468 A (Coba sys, L.L.C.), 14 May 2009 (14.05.2009), entire text; all drawings</td>
<td>1~13</td>
</tr>
<tr>
<td>A</td>
<td>WO 2008/146577 A (Toyota Motor Corp.), 04 December 2008 (04.12.2008), entire text; all drawings</td>
<td>1~13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2008-236848 A (Mazda Motor Corp.), 02 October 2008 (02.10.2008), entire text; all drawings</td>
<td>1~13</td>
</tr>
<tr>
<td></td>
<td>(Family: none)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Family: none)</td>
<td></td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

```
B60L 1/18 (2006.01) i, B60L 9/18 (2006.01) i
```

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

```
Int.Cl. B60L 11/18 (2006.01) i, B60L 9/18 (2006.01) i
```

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922年
日本国公開実用新案公報	1971年
日本国実用新案登録公報	1996年
日本国登録実用新案公報	1994年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>関連する文書のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときの、その関連する箇所の表示</th>
<th>関連する文書の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2010-58640 A (トヨタ自動車株式会社) 2010.03.18, 全文,全図 & WO 2010/026801 A1</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2009-165210 A (トヨタ自動車株式会社) 2009.07.23, 全文,全図 (ファミリーなし)</td>
<td>1-13</td>
</tr>
</tbody>
</table>

？ C欄の続きにも文献が列挙されている。

* パテントファミリーに関する別紙を参照。

国際調査を完了した日

04.03.2011

国際調査報告の発送日

15.03.2011
国際調査報告

国際出願番号 PCT／JP2010／072861

C (続き)

関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A JP 2008-236848 A (マツダ 株 式 会 社) 2008. 10. 02,</td>
<td>全文, 全 図 (フ アミリー なし)</td>
<td>1-13</td>
</tr>
<tr>
<td>A JP 2005-110410 A (アラコ 株 式 会 社) 2005. 04. 21,</td>
<td>全文, 全 図 (フ アミリー なし)</td>
<td>1-13</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（2009年7月）