

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199866116 B2
(10) Patent No. 738461

(54) Title
Shuffling of heterologous DNA sequences

(51)⁶ International Patent Classification(s)
C12N 015/10 C12Q 001/68

(21) Application No: 199866116 (22) Application Date: 1998 .03 .18

(87) WIPO No: WO98/41623

(30) Priority Data

(31) Number	(32) Date	(33) Country
0304/97	1997 .03 .18	DK
0432/97	1997 .04 .17	DK

(43) Publication Date : 1998 .10 .12
(43) Publication Journal Date : 1998 .11 .19
(44) Accepted Journal Date : 2001 .09 .20

(71) Applicant(s)
Novozymes A/S

(72) Inventor(s)
Torben Vedel Borchert; Titus Kretzschmar; Joel R. Cherry

(74) Agent/Attorney
SPRUSON and FERGUSON, GPO Box 3898, SYDNEY NSW 2001

(56) Related Art
WO 95/22625

OPI DATE 12/10/98 APPLN. ID 66116/98
AOJP DATE 19/11/98 PCT NUMBER PCT/DK98/00105

AU9866116

T)

(51) International Patent Classification 6 : C12N 15/10, C12Q 1/68		A1	(11) International Publication Number: WO 98/41623 (43) International Publication Date: 24 September 1998 (24.09.98)
(21) International Application Number: PCT/DK98/00105 (22) International Filing Date: 18 March 1998 (18.03.98) (23) Priority Data: 0304/97 18 March 1997 (18.03.97) DK 0432/97 17 April 1997 (17.04.97) DK <i>Novozymes A/S, Knagshøjvej 36 (71) Applicant: NOVO NORDISK A/S [DK/DK], Novo A/S, DK-2880 Bagsværd (DK).</i>		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(72) Inventors: BORCHERT, Torben; Smakkevej 1, DK-4040 Jyllinge (DK). KRETZSCHMAR, Titus; Kaspermühlstrasse 6, D-81739 Munich (DE). CHERRY, Joel, R.; 916 Anderson Road, Davis, CA 95616 (US).		Published <i>With international search report.</i>	

(54) Title: SHUFFLING OF HETEROLOGOUS DNA SEQUENCES

(57) Abstract

The present invention relates to a new method of shuffling especially heterologous polynucleotide sequences, screening and/or selection of new recombinant proteins resulting therefrom having a desired biological activity, and especially to production and identification of novel proteases exhibiting desired properties. The method comprises the following steps; i) identification of at least one conserved region between the heterologous sequences of interest; ii) generating fragments of each of the heterologous sequences of interest, wherein said fragments comprise the conserved region(s), in a preferred embodiment due to the use of parts of the region(s) as primers; and iii) shuffling/recombinant said fragments using the conserved region(s) as (a) homologous linking point(s).

TITLE: Shuffling of heterologous DNA sequences

FIELD OF THE INVENTION

5 The present invention relates to a new method of shuffling especially heterologous polynucleotide sequences, screening and/or selection of new recombinant proteins resulting therefrom having a desired biological activity, and especially to the production and identification of novel proteases exhibiting desired properties.

10 BACKGROUND OF THE INVENTION

It is generally found that a protein performing a certain bioactivity exhibits a certain variation between genera, and even between members of the same species differences may exist. This variation is even more outspoken at the genomic level.

15 This natural genetic diversity among genes coding for proteins having basically the same bioactivity has been generated in nature over billions of years and reflects a natural optimisation of the proteins coded for in respect of the environment of the organism in question.

20 However, in general it has been found that the naturally occurring bioactive molecules are not optimized for the various uses to which they are put by mankind, especially when they are used for industrial purposes.

25 It has therefore been of interest to industry to identify such bioactive proteins that exhibit optimal properties in respect of the use for which it is intended.

30 This has been done for many years by screening of natural sources, or by use of mutagenesis. For instance, within the technical field of enzymes for use in e.g. detergents, the washing and/or dishwashing performance of e.g. naturally occurring proteases, lipases, amylases and cellulases has been improved significantly by *in vitro* modifications of the enzymes.

35 In most cases these improvements have been obtained by site-directed mutagenesis resulting in substitution, deletion or insertion of specific amino acid residues which have been chosen either on the basis of their type or on the basis of their location in the secondary or tertiary structure of the mature enzyme (see for instance US patent no. 4,518,584).

Prior Art:

Numerous methods to create genetic diversity, such as by site directed or random mutagenesis, have been proposed and described in scientific literature as well as patent applications. For further details in this respect reference is made to the related art section of WO 95/22625, wherein a review is provided.

One method of the shuffling of homologous DNA sequences has been described by Stemmer (Stemmer, (1994), Proc. Natl. Acad. Sci. 10 USA, Vol. 91, 10747-10751; Stemmer, (1994), Nature, vol. 370, 389-391). The method concerns shuffling homologous DNA sequences by using *in vitro* PCR techniques. Positive recombinant genes containing shuffled DNA sequences are selected from a DNA library based on the improved function of the expressed proteins.

15 WO 95/22625 is believed to be the most pertinent reference in relation to the present invention in its "gene shuffling" aspect. In WO 95/22625 a method for shuffling of homologous DNA sequences is described. An important step in the method described in WO 95/22625 is to cleave the homologous template double-stranded 20 polynucleotide into random fragments of a desired size followed by homologously reassembling of the fragments into full-length genes.

A disadvantage inherent to the method of WO 95/22625 is, however, that the diversity generated through that method is limited due to the use of homologous gene sequences (as defined in WO 25 95/22625).

Another disadvantage in the method of WO 95/22625 lies in the production of the random fragments by the cleavage of the template double-stranded polynucleotide.

30 A further reference of interest is WO 95/17413 describing a method of gene or DNA shuffling by recombination of DNA sequences either by recombination of synthesized double-stranded fragments or recombination of PCR generated sequences. According to the method described in WO 95/17413 the recombination has to be performed among DNA sequences with sufficient sequence homology to 35 enable hybridization of the different sequences to be recombined.

WO 95/17413 therefore also entails the disadvantage that the diversity generated is relatively limited.

The present invention does not contain any steps involving production of random fragments by the cleavage of the template double-stranded polynucleotide, as described in WO 95/22625.

Further, WO 95/22625 relates to shuffling of homologous genes, while the present invention relates to shuffling of heterologous genes.

SUMMARY OF THE INVENTION:

The problem to be solved by the present invention is to 10 avoid the limitation of shuffling only homologous DNA sequences by providing a method to shuffle/recombine heterologous sequences of interest.

The solution is to use at least one "conserved sequence region", wherein there is a sufficient degree of homology between 15 the heterologous sequences to be shuffled, as a "linking point" between said heterologous sequences.

Accordingly, disclosed herein is a method of shuffling of heterologous sequences of interest comprising the following steps,

- 20 i) identification of at least one conserved region between the heterologous sequences of interest;
- ii) generating fragments of each of the heterologous sequences of interest, wherein said fragments comprise the conserved region(s); and
- 25 iii) shuffling/recombining said fragments using the conserved region(s) as (a) homologous linking point(s).

Also disclosed herein is a method for producing a shuffled protein having a desired biological activity 30 comprising in addition to the steps of the first aspect the further steps:

- iv) expressing the numerous different recombinant proteins encoded by the numerous different shuffled sequences from step iii); and
- 35 v) screen or select the numerous different recombinant proteins from step ii) in a suitable screening or selection system for one or more recombinant protein(s) having a desired activity.

The term "conserved region" denotes a sequence region (preferably of at least 10 bp), wherein there is a relatively high sequence identity between said heterologous sequences.

5 In order for the conserved region to be used as "linking point" between said heterologous sequences, the sequence identity between the heterologous sequences, within said conserved regions, is sufficiently high to enable hybridization of the heterologous sequences using said conserved region as hybridization point ("linking point").

Thus, according to a first embodiment of the invention, there is provided a method for shuffling heterologous sequences, comprising the steps of:

- 10 (a) identifying at least one conserved region between the heterologous sequences to be shuffled;
- 15 (b) generating primers directed to the conserved region(s) identified in step (a); and
- (c) generating DNA fragments with the use of the primers generated in step (b) and the heterologous sequences of step (a) as templates, wherein shuffled sequences are generated.

According to a second embodiment of the invention, there is provided a method for shuffling more than one heterologous sequence, comprising the steps of:

- 20 (a) identifying at least one conserved region between the heterologous sequences to be shuffled, wherein a conserved region of one heterologous sequence has at least 80% identity to the conserved region of another heterologous sequence;
- (b) generating primers directed to the conserved region(s) identified in step (a);
- (c) generating DNA fragments with the use of the primers generated in step (b); and
- (d) shuffling the DNA fragments generated in step (c).

According to a third embodiment of the invention, there is provided a method for shuffling more than one heterologous sequence, comprising the steps of:

- 30 (a) identifying at least one conserved region between the heterologous sequences to be shuffled, wherein a conserved region of one heterologous sequence has at least 80% identity to the conserved region of another heterologous sequence;
- (b) generating primers directed to the conserved region(s) identified in step (a), wherein the primers are directed to a DNA sequence having a homologous overlap of at least 10 bp within the conserved region;
- 35 (c) generating DNA fragments with the use of the primers generated in step (b); and
- (d) shuffling the DNA fragments generated in step (c).

According to a fourth embodiment of the invention, there is provided a method for shuffling heterologous DNA sequences of interest having at least one conserved region, the method comprising the steps of:

4a

(a) identifying at least one conserved region in at least two heterologous DNA sequences;

(b) constructing at least a first and a second set of PCR primers, wherein each set comprises a sense and an anti-sense primer, and defines a DNA sequence having a homologous overlap of at least 10 bp within the conserved region of the heterologous DNA sequence of step (a),

5 wherein the first set of PCR primers comprises primer A and A', primer A is directed to a sequence region 5' of the conserved region and primer A' is directed to one of (i) a sequence 3' of the conserved region, or (ii) a sequence partially within the 10 conserved region, and

10 wherein the second set of PCR primers comprises primer B and B', primer B is directed to one of (i) a sequence 3' of the conserved region, or (ii) a sequence partially within the conserved region, and primer B' is directed to a sequence 3' of the conserved region;

15 (c) amplifying at least one of the heterologous DNA sequences of step (a) with the first and second primer sets of step (b); and

(d) generating DNA fragments.

According to preferred aspects of the first to fourth embodiments, the methods further comprise the steps of:

20 expressing proteins encoded by the shuffled sequences; and

screening or selecting the expressed proteins for a protein having a desired activity.

25 Thus, proteins produced by these methods are also provided.

Brief Description of Drawings

Fig. 1: Fig 1 illustrates the general concept of the invention, where

a) the black boxes define mutual, common, conserved regions of the sequences of interest, and

b) the PCR primers named "a, a', b, b', etc." are primers directed to the conserved regions. Primers ("a" and "b"), ("b'" and "c") etc.. have a sequence overlap of preferably at least 10 bp, and

c) primers "z" and "z'" are primers directed to the flanking parts of the sequence area of the sequences of interest which are shuffled according to the method of the invention.

30 Fig 2: Shows an alignment of 5 protease (subtilase) DNA sequences. Herein are a number of conserved regions such as the common partial sequences numbered 1-5.

35 Fig 3: Shows an alignment of different lipases.

Definitions

Prior to discussing this invention in further detail, the following terms will be defined.

"Shuffling": The term "shuffling" means recombination of nucleotide sequence(s) between two or more DNA sequences of interest resulting in output DNA sequences (i.e. DNA sequences having been subjected to a shuffling cycle) having a number of nucleo-

tides exchanged, in comparison to the input DNA sequences (i.e. starting point DNA sequences of interest).

Alternatively, the term "shuffling" may be termed "recombin-ing".

5 "Homology of DNA sequences": In the present context the de-gree of DNA sequence homology is determined as the degree of iden-tity between two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art, such as GAP pro-10 vided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), *Journal of Molecular Biology*, 48, 443-453).

15 "Homologous": The term "homologous" means that one single-stranded nucleic acid sequence may hybridize to a complementary single-stranded nucleic acid sequence. The degree of hybridiza-tion may depend on a number of factors including the amount of identity between the sequences and the hybridization conditions such as temperature and salt concentration as discussed later 20 (*vide infra*).

Using the computer program GAP (*vide supra*) with the follow-ing settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, it is in the present context believed that two DNA sequences will be able to hybridize (using 25 medium stringency hybridization conditions as defined below) if they mutually exhibit a degree of identity of at least 50%, more preferably at least 60%, more preferably at least 70%, more prefer-ably at least 80%, more preferably at least 85%, and even more preferably at least 90%.

30 "Heterologous": Two DNA sequences are said to be heterolo-gous if one of them comprises a partial sequence of at least 40 bp which does not exhibit a degree of identity of more than 50%, more preferably of more than 70%, more preferably of more than 80%, more preferably of more than 85%, more preferably of more than 90%, and even more preferably of more than 95%, of any partial se-35 quence in the other. More preferably the first partial sequence is at least 60 bp, more preferably the first partial sequence is at least 80 bp, even more preferably the first partial sequence is at

least 120 bp, and most preferably the first partial sequence is at least 500 bp.

"Hybridization:" Suitable experimental conditions for determining if two or more DNA sequences of interest do hybridize or not are herein defined as hybridization at medium stringency as described in detail below.

A suitable experimental low stringency hybridization protocol between two DNA sequences of interest involves presoaking of a filter containing the DNA fragments to hybridize in 5 x SSC 10 (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 μ g/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a 15 concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) Anal. Biochem. 132:6-13), 32P-dCTP-labeled (specific activity $> 1 \times 10^9$ cpm/ μ g) probe (DNA sequence) for 12 hours at approx. 45°C. The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least 55°C, more preferably at 20 least 60°C, and even more preferably at least 65°C (high stringency).

Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using an X-ray film.

"Alignment": The term "alignment" used herein in connection 25 with an alignment of a number of DNA and/or amino acid sequences means that the sequences of interest are aligned in order to identify mutual/common sequences of homology/identity between the sequences of interest. This procedure is used to identify common "conserved regions" (vide infra), between sequences of interest. 30 An alignment may suitably be determined by means of computer programs known in the art, such as PILEUP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, 35 C.D., (1970), Journal of Molecular Biology, 48, 443-453).

"Conserved regions:" The term "conserved region" used herein in connection with a "conserved region" between DNA and/or amino acid sequences of interest means a mutual, common sequence region

of two or more sequences of interest, wherein there is a relatively high degree of sequence identity between two or more of the heterologous sequences of interest. In the present context a conserved region is preferably at least 10 base pairs (bp), more 5 preferably at least 20 bp, and even more preferably at least 30 bp.

Using the computer program GAP (*vide supra*) with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the degree of DNA sequence 10 identity within the conserved region, between two or more of the heterologous sequences of interest, is preferably at least 80%, more preferably at least 85%, more preferably at least 90%, and even more preferably at least 95%.

"Primer": The term "primer" used herein, especially in connection with a PCR reaction, is a primer (especially a "PCR-primer") defined and constructed according to general standard specification known in the art ("PCR A practical approach" IRL Press, (1991)).

"A primer directed to a sequence:" The term "a primer directed to a sequence" means that the primer (preferably to be used in a PCR reaction) is constructed so as to exhibit at least 80% degree of sequence identity to the sequence part of interest, more preferably at least 90% degree of sequence identity to the sequence part of interest, which said primer consequently is 25 "directed to".

"Sequence overlap extension PCR reaction (SOE-PCR)": The term "SOE-PCR" is a standard PCR reaction protocol known in the art, and in the present context it is defined and performed according to standard protocols defined in the art ("PCR A practical 30 approach" IRL Press, (1991)).

"Flanking": The term "flanking" used herein in connection with DNA sequences comprised in a PCR-fragment means the outmost end partial sequences of the PCR-fragment, both in the 5' and 3' ends of the PCR fragment.

35 "Subtilases": A serine protease is an enzyme which catalyzes the hydrolysis of peptide bonds, and in which there is an essential serine residue at the active site (White, Handler and Smith,

1973 "Principles of Biochemistry," Fifth Edition, McGraw-Hill Book Company, NY, pp. 271-272).

The bacterial serine proteases have molecular weights in the range of 20,000 to 45,000 Daltons. They are inhibited by diisopropylfluorophosphate. They hydrolyze simple terminal esters and are similar in activity to eukaryotic chymotrypsin, also a serine protease. A more narrow term, alkaline protease, covering a sub-group, reflects the high pH optimum of some of the serine proteases, from pH 9.0 to 11.0 (for review, see Priest (1977) 10 Bacteriological Rev. 41 711-753).

A sub-group of the serine proteases tentatively designated subtilases has been proposed by Siezen et al., Protein Engng. 4 (1991) 719-737. They are defined by homology analysis of more than 40 amino acid sequences of serine proteases previously referred to 15 as subtilisin-like proteases.

DETAILED DESCRIPTION OF THE INVENTION

A method for shuffling heterologous sequences of interest

In a preferred embodiment the fragments generated in step 20 ii) of the first aspect of the invention is generated by use of PCR technology.

Accordingly, an aspect of the invention relates to a method of shuffling of heterologous DNA sequences of interest, according to the first aspect of the invention, comprising the following 25 steps

- i) identification of one or more conserved region(s) (hereafter named "A,B,C" etc..) in two or more of the heterologous sequences;
- ii) construction of at least two sets of PCR primers (each set 30 comprising a sense and an anti-sense primer) for one or more conserved region(s) identified in i) wherein
in one set the sense primer (named: "a"=sense primer) is directed to a sequence region 5' (sense strand) of said conserved region (e.g. conserved region "A"), and
35 the anti-sense primer (named "a'"=anti-sense primer) is directed either to a sequence region 3' (sense strand) of said conserved region or directed to a

sequence region at least partially within said conserved region,
5 and in another set the sense primer (named: "b"=sense primer) is directed either to a sequence region 5' (sense strand) of said conserved region or directed to a sequence region at least partially within said conserved region and the anti-sense primer (named: "b'"=anti-sense primer) is directed to a sequence region 3' (sense strand) of said conserved region (e.g. conserved region "A"), and
10 the two sequence regions defined by the regions between primer set "a" and "a'" and "b" and "b'" (both said regions including the actual primer sequences) have a homologous sequence overlap of at least 10 base
15 pairs (bp) within the conserved region;
19 iii) for one or more identified conserved regions of interest in step i) two PCR amplification reactions are performed with the heterologous DNA sequences in step i) as template, and where
20 one of the PCR reactions uses the 5' primer set identified in step ii) (e.g. named "a","a') and the second PCR reaction uses the 3' primer set identified in step ii) (e.g. named "b","b');
25 iv) isolation of the PCR fragments generated as described in step iii) for one or more of the identified conserved region in step i);
29 v) pooling of two or more isolated PCR fragments from step iv) and performing a Sequence overlap extension PCR reaction (SOE-PCR) using said isolated PCR fragments as templates;
30 and
34 vi) isolation of the PCR fragment obtained in step v), wherein said isolated PCR fragment comprises numerous different shuffled sequences containing a shuffled mixture of the PCR fragments isolated in step iv), wherein said shuffled sequences are
35 characterized in that the partial DNA sequences, originating from the homologous sequence overlaps in step ii), have at least 80%

identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step i).

A method of producing one or more recombinant protein(s) having a
5 desired biological activity

In an second aspect the invention relates to a method of producing a shuffled protein having a desired biological activity comprising in addition to the steps i) to vi) immediately above the further steps:

10 vii) expressing the numerous different recombinant proteins encoded by the numerous different shuffled sequences in step vi); and
viii) screen or select the numerous different recombinant proteins from step vii) in a suitable screening or selection system for one or more recombinant protein(s) having a desired activity.

15

Heterologous DNA sequences

The method of the present invention may be used to shuffle 20 basically all heterologous DNA sequences of interest.

Preferably, it is used to shuffle heterologous DNA sequences encoding an enzymatic activity, such as amylase, lipase, cutinase, cellulase, oxidase, phytase, and protease activity.

An further advantage of the present method is that it makes 25 it possible to shuffle heterologous sequences encoding different activities, e.g. different enzymatic activities.

The method of the invention is in particular suitable to shuffle heterologous DNA sequences encoding a protease activity, in particular a subtilase activity.

30 A number of subtilase DNA sequences are published in the art. A number of those subtilase DNA sequences are in the present context heterologous DNA sequences, and it is generally believed that they are mutually too heterologous to be shuffled by the shuffling methods presently known in the art (WO 95/17413, WO 35 95/22625). However the method according to the invention enables shuffling of such sequences. For further details reference is made to a working example herein (*vide infra*).

Further, the present invention is suitable to shuffle different lipase sequences. For further details reference is made to a working example herein (*vide infra*).

The heterologous DNA sequences used as templates may beforehand have been cloned into suitable vectors, such as a plasmid. Alternatively, a PCR-reaction may be performed directly on 5 microorganisms known to comprise the DNA sequence of interest according to standard PCR protocols known in the art.

Identification of one or more conserved regions in heterologous sequences:

Identification of conserved regions may be done by an alignment of the heterologous sequences by standard computer programs (*vide supra*).

10 Alternatively, the method may be performed on completely new sequences, where the relevant "conserved regions" are chosen as conserved regions which are known in the art to be conserved regions for this particular class of proteins.

15 E.g., the method may be used to shuffle completely unknown subtilase sequences, which are known to be very conserved in e.g. regions around the active site amino acids. PCR reaction may then be performed directly on new unknown strains with primers directed to those conserved regions.

PCR-primers

The PCR primers are constructed according to the standard descriptions in the art. Preferably, they are 10-75 base pairs (bp) long.

Homologous sequence overlap

20 A preferred method of the invention comprises the following steps:

(a) identification of one or more conserved region(s) (hereafter named "A, B, C" etc.) in two or more of the heterologous sequences;

(b) construction of at least two sets of PCR primers (each set comprising a sense and an anti- 25 sense primer) for one or more conserved region(s) identified in (a) wherein in one set the sense primer (named: "a"=sense primer) is directed to a sequence region 5' (sense strand) of said conserved region (e.g. conserved region "A"), and the anti-sense primer (named "a"=anti-sense primer) is directed either to a sequence region 3' (sense strand) of said conserved region or directed to a sequence region at least partially within said conserved region, and in the second set the sense primer (named: "b"=sense primer) is directed either to a said sequence region 5' (sense strand) of 30 said conserved region or directed to a sequence region at least partially within said conserved region and the anti-sense primer (named: "b"=anti-sense primer) is directed to a sequence region 3' (sense strand) of said conserved region (e.g. conserved region "A"), and the two sequence regions defined by the regions between primer set "a" and "a" and "b" and "b" (both said regions is including the actual primer sequences) have a homologous sequence overlap of at least 10 base pairs (bp) within the conserved region;

(c) for one or more identified conserved region of interest in step a) two PCR amplification reactions are performed with the heterologous DNA sequences in step a) as template, and where one of the PCR reactions is using the 5' primer set identified in step b) (e.g. named "a", "a") and the second PCR reaction is using the 3' primer set identified in step b) (e.g. named "b", "b");

5 (d) isolation of the PCR fragments generated as described in step (c) for one or more of the identified conserved region in step (a);

(e) pooling of two or more isolated PCR fragments from step (d) and performance of a sequence overlap extension PCR reaction (SOE-PCR) using said isolated PCR fragments as templates; and

(f) isolation of the PCR fragment obtained in step e), wherein said isolated PCR fragment 10 comprises numerous different shuffled sequences containing a shuffled mixture of the PCR fragments isolated in step (d), wherein said shuffled sequences are characterised in that the partial DNA sequences, originating from the homologous sequence overlaps in step b), have at least 80% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a).

15 In step (b) above of the invention the two sequence regions defined by the regions between primer set "a" and "a" and "b" and "b" (both said regions including the actual primer sequences) have a homologous sequence overlap of at least 10 base pairs (bp) within the conserved region.

Said homologous sequence overlap is more preferably of at least 15bp, more preferably of at least 20bp, and even more preferably of at least 35bp.

20 The homologous sequence overlaps in step (b) above have at least 80% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a) above, more preferably the homologous sequence overlaps in step (b) have at least 90% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a) above, and even more preferably the homologous sequence overlaps in step (b) have at least 95% identity to one 25 or more partial sequences in one or more of the original heterologous DNA sequences in step (a) above.

PCR-reactions

If not otherwise mentioned the PCR-reaction performed according to the invention is performed according to standard protocols known in the art.

30 The term "Isolation of PCR fragment" is intended to cover an aliquot containing the PCR fragment. However, the PCR fragment is preferably isolated to an extent which removes surplus of primers, nucleotides, etc.

Further, the fragment used for SOE-PCR in step (e) above, may alternatively be generated by other processes than the PCR amplification process described in step (c) above. Suitable fragments used for the SOE-PCR in step (e), may e.g. be generated by cutting out suitable fragments by restriction enzyme digestion at appropriate sites (e.g. restriction sites situated on each site of a

conserved region identified in step (a). Such alternative processes for generating such suitable fragments for use in the SOE-PCR in step (e) are considered within the scope of the invention.

In an embodiment of the invention the PCR DNA fragment(s) is(are) prepared under conditions resulting in a low, medium or high random mutagenesis frequency.

5 To obtain low mutagenesis frequency the DNA sequence(s) (comprising the DNA fragment(s)) may be prepared by a standard PCR amplification method (US 4,683,202 or Saiki *et al.*, (1988), Science 239, 487-491).

10 A medium or high mutagenesis frequency may be obtained by performing the PCR amplification under conditions which increase the misincorporation of nucleotides, for instance as described by Deshler, (1992), GATA 9(4), 103-106; Leung *et al.*, (1989), Technique, Vol.1, No.1, 11-15.

Final shuffles sequences

15 One of the advantages of the present invention is that the final "shuffled sequences" in step (f) above only comprise sequence information which is originally derived from the original heterologous sequences of interest in step (a) above. The present invention does not use artificially made "linker sequences" to recombine one or more of the heterologous sequences, which is a strategy known in the art to e.g. be able to shuffle different domains in proteins, wherein each domain is encoded by different heterologous sequences (WO 95/17413).

20 Accordingly, the invention relates to a method characterised in that each of the shuffled sequences, the partial DNA sequences, originating from the homologous sequence overlaps in step (b), only contains sequence information which is originally derived from the original heterologous sequences in step (a) (in the first to third aspect of the invention) (i.e. said "homologous sequence overlaps" in step (b) has at least 80% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a)).

25 More preferably, the "homologous sequence overlaps" in step (b) have at least 90% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a); and even more preferably the "homologous sequence overlaps" in step (b) have at least 95% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a), and most preferably the "homologous sequence overlaps" in step (b) have 100% identity to one or more partial sequences in one or more of the original heterologous DNA sequences in step (a).

Expressing the recombinant protein from the shuffled sequences

Expression of the recombinant protein encoded by the shuffled sequence of the present invention may be performed by use of

standard expression vectors and corresponding expression systems known in the art.

Suitable screening or selection system

5 In its second aspect the present invention relates to a method for producing one or more recombinant protein(s) having a desired biological activity.

A suitable screening or selection system will depend on the desired biological activity.

10 A number of suitable screening or selection systems to screen or select for a desired biological activity are described in the art. Examples are:

15 Strauberg et al. (Biotechnology 13: 669-673 (1995), which describes a screening system to screen for subtilisin variants having a calcium-independent stability;

Bryan et al. (Proteins 1:326-334 (1986)), which describes a screening assay to screen for proteases having enhanced thermal stability; and

20 WO 97/04079 which describes a screening assay to screen for lipases having an improved wash performance in washing detergents.

A preferred embodiment of the invention comprises screening or selection of recombinant protein(s), wherein the desired biological activity is performance in dish-washing or laundry detergents. Examples of suitable dish-washing or laundry detergents are 25 disclosed in WO 97/04079 and WO 95/30011.

The invention is described in further detail in the following examples which are not in any way intended to limit the scope of the invention.

30 MATERIALS AND METHODS

Strains

E. coli strain: DH10B (Life Technologies)

35 Bacillus subtilis strain: DN1885 amyE. A derivative of B,s 168RUB200 (J. Bacteriology 172:4315-4321 (1990))

Plasmids

pKH400: pKH400 was constructed from pJS3 (E. coli - B. subtilis shuttle vector containing a synthetic gene encoding for subtilase 309 (described by Jacob Schiødt et al. in Protein and Peptide 5 letters 3:39-44 (1996)), by introduction of two BamHI sites at positions 1841 and 3992.

Protease sequences used for shuffling

GenBank entries A13050_1, D26542, A22550, Swiss-Prot entry 10 SUBT_BACAM P00782, and PD498 (Patent Application No. WO 96/34963).

General molecular biology methods

Unless otherwise mentioned the DNA manipulations and transformations were performed using standard methods of molecular 15 biology (Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds.) "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.) "Molecular Biological Methods for Bacillus". John Wiley and Sons, 20 1990).

Enzymes for DNA manipulations were used according to the specifications of the suppliers.

Enzymes for DNA manipulations

25 Unless otherwise mentioned all enzymes for DNA manipulations, such as e.g. restriction endonucleases, ligases etc., are obtained from New England Biolabs, Inc.

EXAMPLES

30

EXAMPLE 1**A) Vector construction**

35 1) Amplification of the pre-pro sequences

Host cells harboring the plasmid DNA encoding the full length enzymes A13050_1 (GenBank), SUBT_BACAM P00782 (Swiss-Prot), D26542 (GenBank), A22550 (GenBank), and PD498 (Patent Application No. WO

96/34963) were starting material. By standard mini-prep isolation of plasmid DNA, purified DNA was obtained. With these template DNAs, 5 standard PCRs were performed to amplify the respective pre-pro sequences. The fragments were generated using the proof 5 reading Pwo DNA polymerase (Boehringer Mannheim) and the following sets of primers directed against the very N- and C-termini of the respective pre-pro sequences:

A13050_1

10 TiK111: 5' GAG GAG GGA AAC CGA ATG AGG AAA AAG AGT TTT TGG.
TiK117: 5' CGC GGT CGG GTA CCG TTT GCG CCA AGG CAT G.

SUBT_BACAM P00782

TiK112: 5' GAG GAG GGA AAC CGA ATG AGA GGC AAA AAA GTA TGG.
15 TiK118: 5' CGC GGT CGG GTA CCG ACT GCG CGT ACG CAT G.

D26542

TiK110: 5' GAG GAG GGA AAC CGA ATG AGA CAA AGT CTA AAA GTT ATG.
TiK116: 5' CGC GGT CGG GTA CCG TTT GAC TGA TGG TTA CTT C.

20

A22550

TiK109: 5' GAG GAG GGA AAC CGA ATG AAG AAA CCG TTG GGG.
TiK115: 5' CGC GGT CGG GTA CCG ATT GCG CCA TTG TCG TTA C.

25 PD498

TiK113: 5' GAG GAG GGA AAC CGA ATG AAG TTC AAA AAA ATA GCC.
TiK119: 5' CGC GGT CGG GTA CCG CAG AAT AGT AAG GGT CAT TC.

The obtained DNA fragments of a length between 300-400 bp 30 were purified by agarose gel-electrophoresis with subsequent gel extraction (QIAGEN) and subjected to assembly by splice-by-overlap extension PCR (SOE-PCR).

2) SOE-PCR

35 The pre-pro fragments were then separately spliced by SOE-PCR to the 3' part of the promoter of the vector pKH400. The 3' part of the promoter was obtained by standard PCR with the Pwo DNA polymerase using 1 ng of pKH400 as template and the primers:

TiK106: 5' CGA CGG CCA GCA TTG G.

TiK107: 5' CAT TCG GTT TCC CTC CTC.

The resulting 160 bp fragment was gel-purified. Subsequently, 5 SOE-PCRs were performed under standard conditions (Pwo DNA polymerase) using as template each of the 5 pre-pro sequences mixed with equal molar amounts of the 3' part of the promoter. The assembling primers were:

TiK120: 5' CTT TGA TAC GTT TAA ACT ACC.

TiK121: 5' CGC GGT CGG GTA CCG.

10 The obtained fragments were also gel-purified.

3) Insertion of the pre-pro sequences into the pKH400 shuttle vector

The pKH400 vector was cut with Pme I and Acc65 I to remove 15 the existing linker sequence. The 5 purified SOE-PCR fragments from 2) were also digested with the same enzymes and gel-purified. Only with the SOE-PCR of the SUBT_BACAM P00782 pre-pro sequence special caution was required because it contains an internal Pme I-site so that a partial digest was performed. In separate standard ligation mixes the pre-pro fragments were then ligated to the pKH400 vector. After transformation of DH10B E.coli cells, colonies were selected on ampicillin containing media. Correctly transformed cells were identified by control digest and sequenced. The thus obtained vectors were named pTK4001-4005.

25

B) Preparation of the small fragments of the protéases A13050_1 (GenBank), SUBT_BACAM P00782 (Swiss-Prot), D26542 (GenBank), A22550 (GenBank), and PD498 (Patent Application No. WO 96/34963).

30 1) Standard PCR reactions were assembled with 0.5 μ l of mini-prep DNA of each protease gene as templates. Since these five protease genes shall be fragmented into six fragments (I-VI), 30 PCRs are required (see fig 1). The Ampli-Taq polymerase (5U) was used in combination with the following primer sets (the numbering corresponds to the amino acid position in A22550). If there are primers labeled #.1, #.2, etc., then equal molar amounts of them are mixed 35 prior to PCR and treated as one primer in the PCR:

Set I)

TiK122.1 (116-124)

5' CCG GCG CAG GCG GTA CCX TRS GGX ATW XCX CXX RTX MAA GC.

TiK122.2 (116-124)

5 5' CCG GCG CAG GCG GTA CCX TRS GGX ATW XCA WWC ATX WAT AC.

TiK123 (174-180)

5' GTT CCX GCX ACR TGX GTX CC.

Set II)

10 TiK124 (174-180)

5' GGX ACX CAY GTX GCX GGA AC.

TiK125.1 (217-223)

5' GCC CAC TSX AKX CCG YTX AC.

TiK125.2 (217-223)

15 5' GCC CAC TSX AKX CCT YGX GC.

TiK125.3 (217-223)

5' GCC CAX TSR AKX CCK XXX RCW AT.

Set III)

20 TiK126.1 (217-223)

5' GTX ARC GGX MTX SAG TGG GC.

TiK126.2 (217-223)

5' GCX CRA GGX MTX SAG TGG GC.

TiK126.3 (217-223)

25 5' TWG CYC AAG GWW TXS AXT GKR.

TiK126.5 (217-223)

5' TWG CTC AAG GHH THS ART GG.

TiK127.1 (255-261)

5' GCX GCX ACX ACX ASX ACX CC.

30 TiK127.2 (255-261)

5' GCY SCW AYW AMX AGW AYA YCA.

Set IV)

TiK128.1 (255-261)

35 5' GGX GTX STX GTX GTX GCX GC.

TiK128.2 (255-261)

5' TGR TRT WCT MKT WRT WGS RGC.

TiK129.1 (292-299)

5' GBX CCX ACR YTX GAR AAW GAX G.
TiK129.2 (292-299)
5' GBX CCR TAC TGX GAR AAR CTX G.
TiK129.3 (292-299)
5 5' GKX CCA TAC KKA GAR AAR YTT G.
TiK129.5 (292-299)
5' GKR CCA TAC KKA GAR AAG YTT G.

Set V)

10 TiK130.1 (292-299)
5' CXT CWT TYT CXA RYG TXG GXV C.
TiK130.2 (292-299)
5' CXA GYT TYT CXC AGT AYG GXV C.
TiK130.3 (292-299)
15 5' CAA GYT TCT CTM MGT ATG GSM C.
TiK130.5 (292-299)
5' CAA GTT TCT CTC AGT ATG GGA C.
TiK131.1 (324-330)
5' GGX GWX GCC ATX GAY GTX CC.
20 TiK131.2 (324-330)
5' GGA GTA GCC ATX GAX GTW CC.

Set VI)

TiK132.1 (324-330)
25 5' GGX ACR TCX ATG GCX WCX CC.
TiK132.2 (324-330)
5' GGW ACX TCX ATG GCA WCX CC.
TiK133.1 (375-380)
5' CGG CCC CGA CGC GTT TAC YGX RYX GCX SYY TSX RC.
30 TiK133.2 (375-380)
5' CGG CCC CGA CGC GTT TAT CKT RYX GCX XXY TYW G.
TiK133.3 (375-380)
5' CGG CCC CGA CGC GTT TAT CKT RCX GCX GCX TYT GMR TT.
TiK133.4 (375-380)
35 5' CGG CCC CGA CGC GTT TAT CTT ACG GCA GCC TCA GC.

(X = deoxy-inosine, Y = 50% C + 50% T, R = 50% A + 50% G, S = 50% C + 50% G, W = 50% A + 50% T, K = 50% T + 50% G, M = 50% A + 50%

C, B = 33.3% C + 33.3% G + 33.3% T, V = 33.3% C + 33.3% G + 33.3%
A, H = 33.3% C + 33.3% A + 33.3%).

After 30 cycles at annealing temperatures ranging from 40-
5 60°C the amplified fragments were gel-purified and recovered.

2) SOE-PCR to randomly assemble the small fragments

Equimolar amounts of each of the purified fragments were taken and mixed in one tube as templates for assembly in an otherwise standard SOE-PCR with Ampli-Taq polymerase. The external primers used are:

TiK134.1: CCG GCG CAG GCG GTA CC.

TiK135.1: CGG CCC CGA CGC GTT TA.

15 Also the primer pairs

TiK134.2: GGC GCA GGC GGT AC.

TiK135.2: GCC CCG ACG CGT TTA.

and

TiK134.3: CGC AGG CGG TAC.

20 TiK135.3: CCC GAC GCG TT.

can be used. The annealing temperatures are ranging from 40°C to 70°C.

The re-assembly is also achieved by sequentially re-assembling all conceivable combinations of fragments, e.g.: In 25 tube 1 all seven fragments obtained by PCR with the primers of set I (see above, B1-2) are mixed, in tube 2 fragments obtained by PCR with the primers of set II are mixed, in tube 3 fragments obtained by PCR with the primers of set III are mixed, in tube 4 fragments obtained by PCR with the primers of set IV are mixed, in tube 5 30 fragments obtained by PCR with the primers of set V are mixed, in tube 6 fragments obtained by PCR with the primers of set VI are mixed.

Then, a SOE-PCR is performed by mixing aliquots of tube 1 and 2 and using the resulting mixture as template for a primary 35 SOE-PCR with corresponding external primers. The same is performed with mixtures of aliquots of tubes 3 and 4 as well as tubes 5 and 6. The respective external primer pairs are TiK134.#/125.# for fragments 1 and 2, TiK126.#/129.# for fragments 3 and 4, and TiK

130.#/135.# for fragments 5 and 6. The amplified assembled fragments of about 340, 260, and 280 bp length, respectively, are purified by agarose gel electrophoresis. In a secondary SOE-PCR the obtained fragments are mixed and assembled using primer pair 5 TiK134.#/135.# as external primers. The obtained full-length protease genes are gel-purified as described above.

In another example, aliquots of tubes 1, 2, and 3 are mixed and re-assembled by a primary SOE-PCR with primer pair TiK134.#/127.#. Aliquots of tubes 4, 5, and 6 are also mixed in 10 another tube and re-assembled by another SOE-PCR using the primers TiK128.#/135.#. The generated fragments of about 450 bp length are purified as described above, mixed and reassembled in a secondary SOE-PCR with external primers TiK134.#/135.#. The obtained full-length protease genes are gel-purified as described above.

15 In principle, every combination of fragments may be assembled in separate SOE-PCRs. In subsequent SOE-PCRs the obtained assembled units are assembled to larger units until the final full length gene is obtained. The overall number of SOE-PCRs used for that purpose is only limited by experimental capacity. The only 20 prerequisite which is inherent to SOE-PCR is that the fragments to be assembled must contain a sequence overlap as defined earlier.

C) Cloning of the SOE-PCR-derived full-length protease-hybrids to yield library #1

25 The full-length protease-hybrid genes from step B2) as well as the newly constructed shuttle vectors pTK4001-4005 from A3) are separately digested with Acc65 I and Mlu I. In standard ligation procedures the protease genes are separately ligated to each of the five vectors pTK4001-4005 and transformed into E.coli DH10B. 30 Selection of correctly transformed cells is performed with ampicillin. DNA of these clones is prepared and designated library #1. The library size is about 10^6 independent transformants.

D) Screening of library #1

35 Aliquots of library #1 are used to transform Bacilli cells DN1885. The transformants are screened for the desired properties.

By this method and using a standard protease activity assay to screen for the desired property in step D) above a number of new shuffled subtilisins with a desired property were identified.

The results are indicated in Table 1 below.

5

Table 1

Clone	pre-pro	frag.1 (5')	frag.2	frag.3	frag.4	frag.5	frag.6 (3')
8	BPN	Sav	Sav	Sav	Sav	Sav	Sav
6	Alc	Sav	Sav	Sav	Sav	Sav	Sav
12	Esp	Sav	Sav	Sav	Sav	Sav	Sav
10	PD498	Sav	Sav	Sav	Sav	Sav	Sav
4	Esp	PD138	Esp	Esp	Esp	Esp	JA16
22	Alc	PD138	Esp	Esp	Esp	Esp	JA16
11	PD498	PD138	Esp	Esp	Esp	Esp	JA16
1	Alc	PD138	Esp	PD138	Esp	Esp	JA16
3	BPN	PD138	Esp	Esp	PD138	Sav	Sav
17	Esp	PD138	PD138	Esp	Esp	Esp	JA16
19	PD498	Alc	BPN	Esp	Esp	Esp	JA16
16	Alc	Alc	BPN	Esp	PD138	Esp	JA16

Identity of clones:

10 Alcalase: A13050_1 (GenBank) BPN: P00782 (SwisProt)
 Esperase: D26542 (GenBank) Savinase: A22550 (GenBank)
 PD498: WO 96/34963 JA16: WO 92/17576
 PD138 WO 93/18140

15 23 clones having protease activity were identified of which 12 were different. Clones 8, 9, 18, 20, 23 were the same; clones 6, 15, 21 were the same, clones 12, 14 were the same, clones 10, 13 were the same, and clones 4, 7 were the same. In respect of mature enzymes 7 different were identified.

20 From Table 1 it is seen that the process of the invention makes it possible to obtain active proteins representing combinations of proteins quite distantly related.

25 **Example 2**

The same methods as described in example 1 can be used for amplification of PCR fragments from fungal lipases.

The fungal lipases from the following fungi are aligned using the alignment program from Geneworks (using the following pa-

rameters:cost to open a gap = 5, cost to lengthen a gap = 25, Minimum Diagonal lLength = 4, Maximum Diagonal Length = 10, Consensus cutoff = 50%): Rhizomucor Miehei (LIP_RHIMI from the Swiss Prot data base), Rhizopus Delemar (LIP_RHIDL from the Swiss Prot data base), Penecillium camembertii (MDLA_PENCA from the Swiss Prot data base) Absidia reflexa (WO 96/13578) and Humicola lanuginosa (US 5536661).

Primers for amplification of Absidia (Absidia), Rhizopus (LIP_RHIDL) and Rhizomucor (LIP_RHIMI) lipase genes for shuffling 10 N: according to the IUPAC nomenclature means all 4 bases (A, T, G, C).

Set 1)

5' primer for YCRT/SVI/VPG: TAY TGY MGR ACN GTN ATH CCN GG or
15 TAY TGY MGR AGY/TCN GTN GTN CCN GG
3' primer for VFRGT/S: NSW NCC YCK RAA NAC

Set 2)

5' primer for VFRGT/S: GTN TTY MGR GGN WSN
20 3' primer for KVHK/AGF: RAA NCC YTT RTG NAC YTT or
RAA NCC NGC RTG NAC YTT

Set 3)

5' primer for KVHK/AGF: AAR GTN CAY AAR GGN TTY or
25 AAR GTN CAY GCN GGN TTY
3' primer for VTGHSLGG: CC NCC YAR NGA RTG NCC NGT NAC or
CC NCC YAR RCT RTG NCC NGT NAC

Set 4)

30 5' primer for VTGHSLGG: GTN ACN GGN CAY TCN YTR GGN GG or
GTN ACN GGN CAY AGY YTR GGN GG
3' primer for FGFLH: RTG YAR RAA NCC RAA

Set 5)

35 5' primer for FGFLH: TTY GGN TTY YTR CAY
3' primer for IVPFT: NGT RAA NGG NAC DAT

Primers for amplification of *Humicola lanuginosa*(*Humicola*) and *Penicillium camembertii* (*MDLA_PENCA*) lipase genes for shuffling

Set 1)

5 5' primer for CPEVE: TGY CCN GAR GTN GAR
3' primer for VLS/AFRG: NCC YCK RAA NGM YAR NAC

Set 2)

5' primer for VLS/AFRG: GTN YTR KCN TTY MGR GGN
10 3' primer for GFT/WSSW: CCA NGA NGA NGT RAA NCC or
CCA RSW RSW CCA RAA NCC

Set 3)

5' primer for GFT/WSSW: GGN TTY ACN TCN TCN TGG or
15 GGN TTY TGG WSY WSY TGG
3' primer for GHSLGG/AA: NGC NSC NCC YAR NGA RTG NCC or
NGC NSC NCC YAR RCT RTG NCC

Set 4)

20 5' primer for GHSLGG/AA: GGN CAY TCN YTR GGN GSN GCN or
GGN CAY AGY YTR GGN GSN GCN
3' primer for PRVGN: RTT NCC NAC YCK NGG

Set 5)

25 5' primer for PRVGN: CCN MGR GTN GGN AAY
3' primer for THTND: RTC RTT NGT RTG NGT

Set 6)

5' primer for THTND: ACN CAY ACN AAY GAY
30 3' primer for PEYWI: DAT CCA RTA YTC NGG

Set 7)

5' primer for PEYWI: CCN GAR TAY TGG ATH
35 3' primer for AHL/IWYF: RAA RTA CCA DAK RTG NGC

Primers for shuffling of all five genes:

Set 1)

5' primer for AN/TA/SYCR: GCN AMY KCN TAY TGY MG for Absidia,
Rhizopus and Rhizomucor sequences

5' primer for AN/TA/SYCGNNDA: GCN AMY KCN TAY TGY GGN AAR AAY AAY
5 GAY GC for Humicola

5' primer for AN/TA/SYCEADYTA: GCN AMY KCN TAY TGY GAR GCN GAY TAY
ACN GC for *P. camenbertii*

3' primer for E/QKTIY: RTA DAT NGT YTT YTS for Absidia, Rhizopus
10 and Rhizomucor sequences

3' primer for ALDNTE/QKTIY: RTA DAT NGT YTT YTS NGT RTT RTC YAR
NGC for Humicola

3' primer for AVDHTE/QKTIY: RTA DAT NGT YTT YTS NGT RTG RTC NAC
NGC for *P. camenbertii*

15

Set 2)

5' primer for E/QKTIY: SAR AAR ACN ATH TAY for Absidia, Rhizopus
and Rhizomucor sequences

5' primer for E/QKTIYLA/SFRG: SAR AAR ACN ATH TAY YTR KCN TTY MGR
20 GGN for the two other sequences

3' primer for KVHK/AGF: RAA NCC YTT RTG NAC YTT or RAA NCC NGC RTG
NAC YTT for Absidia, Rhizopus and Rhizomucor sequences

3' primer for ICSGCKVHK/AGF: RAA NCC YTT RTG NAC YTT RCA NCC NGA
25 RCA DAT or RAA NCC NGC RTG NAC YTT RCA NCC NGA RCA DAT for Humi-
cola

3' primer for LCDGCKVHK/AGF: RAA NCC YTT RTG NAC YTT RCA NCC RTC
RCA YAR or RAA NCC NGC RTG NAC YTT RCA NCC RTC RCA YAR for *P. ca-*
menbertii

30

Set 3)

5' primer for KVHK/AGF: AAR GTN CAY AAR GGN TTY or AAR GTN CAY GCN
GGN TTY for Absidia, Rhizopus and Rhizomucor sequences

5' primer for KVHK/AGFTSSW: AAR GTN CAY AAR GGN TTY ACN TCN TCN
35 TGG or AAR GTN CAY GCN GGN TTY ACN TCN TCN TGG for Humicola

5' primer for KVHK/AGFWSSW: AAR GTN CAY AAR GGN TTY TGG WSY WSY
TGG or AAR GTN CAY GCN GGN TTY TGG WSY WSY TGG for *P. camenbertii*

3' primer for GHSLGG/AA: NGC NSC NCC YAR NGA RTG NCC or NGC NSC NCC YAR RCT RTG NCC for all five sequences

Set 4)

5 5' primer for GHSLGG/AA: GGN CAY TCN YTN GGN GSN GCN or GGN CAY AGY YTN GGN GSN GCN for all five sequences

3' primer for PRVGN/D: RTY NCC NAC YCK NGG for all the genes except Absidia

10 3' primer for TQGQPRVGN/D: RTY NCC NAC YCK NGG YTG NCC YTG NGT for Absidia

Set 5)

5' primer for PRVGN/D: CCN MGR GTN GGN RAY for all the genes except Absidia

5' primer for PRVGN/DPAFA: CCN MGR GTN GGN RAY CCN GCN TTY GCN for Absidia

3' primer for RDIVPH/R/K: YK NGG NAC DAT RTC YCK for Absidia, Rhizopus and Rhizomucor sequences

20 3' primer for I/FTHTRDIVPH/R/K: YK NGG NAC DAT RTC YCK NGT RTG NGT RAW for the two other sequences

Set 6)

25 5' primer for RDIVPH/R/K: MGR GAY ATH GTN CCN MR for Absidia, Rhizopus and Rhizomucor sequences

5' primer for RDIVPH/R/KLP: MGR GAY ATH GTN CCN MRN YTR CCN for the two other sequences

30 3' primer for EYWIK/T: YKT DAT CCA RTA YTC for Rhizomucor, Humicola and P.camenbertii

3' primer for PGVEYWIK/T: YKT DAT CCA RTA YTC NAC NCC NGG for Rhizopus

35 3' primer for AGEEYWIK/T: YKT DAT CCA RTA YTC YTC NCC NGC for Absidia

Set 7)

5' primer for EYWIK/T: GAR TAY TGG ATH AAR or GAR TAY TGG ATH ACN
for Rhizomucor, Humicola and P.camenbertii

5' primer for EYWI_KSGT: GAR TAY TGG ATH AAR WSY GGN ACN for
5 Rhizopus

5' primer for EYWI_KKDSS: GAR TAY TGG ATH AAR AAR GAY WSY WSY for
Absidia

3' primer for DHLSY: RTA NGA/RCT YAR RTG RTC for Absidia, Rhizopus
10 and Rhizomucor sequences

3' primer for IPDIPDHLSY: RTA NGA/RCT YAR RTG RTC NGG DAT RTC NGG
DAT for Humicola

3' primer for TDFEDHLSY: RTA NGA/RCT YAR RTG RTC YTC RAA RTC NGT
for P.camenbertii

15

For the SOE-PCR the 5' primers from the first set of primers
and the 3' primer for the last set of primers can be used.

The SOE-PCR fragments can then be combined with a lipase 5'
and 3' end, when the 5' and 3' ends have been generated by PCR.

20 The 5' end can be generated by PCR by using specific 5' primers
(containing a sequence for the BamHI recognition site in the 5'
end) for the 5' end of the genes of interest and using the comple-
mentary sequence from the 5' primer from the first set of primers
as the 3' primer. The 3' end can be generated by PCR by using spe-
25 cific 3' primers (containing a sequence for the XbaI recognition
site in the 5' end) for the 3' end of the genes of interest and
the complementary sequence from the 3' primer from the last set of
primers as the 5' primer.

A second SOE is then used to generate the complete sequence,
30 by using the specific 5' and 3' primers from the genes of inter-
est.

The genes can then be cloned into the yeast vector pJSO26 as
a BamHI-XbaI fragment (see WO 97/07205).

Example 3

The overall same method as described in example 2 can be
used for amplification and recombination of PCR fragments of
Pseudomonas lipases. The term "overall same method" denotes that

it may be advantageous to use slightly different vectors as compared to example 2. Based on the sequence and primer information disclosed below it is a matter of routine for a person skilled in the art to modify the vectors etc. from example 2, in order to recombine below mentioned *Pseudomonas* lipases according to a shuffling method of the invention.

The *Pseudomonas* lipases mentioned below are aligned using the alignment program from Geneworks (using the following parameters: cost to open a gap = 5, cost to lengthen a gap = 25, Minimum Diagonal length = 4, Maximum Diagonal Length = 10, Consensus cutoff = 50%).

Pseudomonas lipases

Pseudomonas aeruginosa TE3285 (file ate3285d)

Pseudomonas pseudoalcaligenes M1 (Lipomax wt) (file pseudm1d)

Pseudomonas sp. SD705 (mature) (file spsd705d)

Pseudomonas wisconsinensis (file wisconsd) *Proteus vulgaris* K80 (file provulgd) *Pseudomonas fragi* IFO 12049 (file fr12049d).

Suitable primers for shuffling of *Pseudomonas* lipases:

I = Inosin, Numbers refer to the numbers in the alignment (see figure 4), S means sense strand, the antisense oligonucleotide is of course also used:

5 109-131
S1: 5'-TA(C/T)CCIAT(C/T)(G/T)I(C/T)T(G/A)(G/A)(C/T)ICA(C/T)GG-3'
250-269
S2: 5'-GA(G/A)(G/C)IICGIGGIG(A/C)I(G/C)A(G/A)(T/C)T-3'
10 318-343
S3: 5'-GT(C/A)AA(C/T)(C/T)T(G/A)ITCGG(C/T)CA(C/T)AG(C/T)CAIGG-3'
607-628
15 S4: 5'-
TIAA(C/T)(G/C/A)(G/C/A)(C/T/A)(A/C)(A/G)I(T/C)(A/T)(C/T)CCI(C/T)(A/G)(T/G/A)GG-3'
801-817
20 S5: 5'-AA(C/T)GA(C/T)GG(C/T)(C/A/T)TGGT(C/T/G)GG-3'
871-890
S6: 5'-
CA(C/T)(C/G)T(C/G)GA(C/T)(G/A)(A/C/T)(G/C)(G/A)T(G/C/A)AACCA-3'

The claims defining the invention are as follows:

1. A method for shuffling heterologous sequences, comprising the steps of:
 - (a) identifying at least one conserved region between the heterologous sequences to be shuffled;
 - (b) generating primers directed to the conserved region(s) identified in step (a); and
 - (c) generating DNA fragments with the use of the primers generated in step (b) and the heterologous sequences of step (a) as templates, wherein shuffled sequences are generated.
10. 2. The method of claim 1, further comprising the steps of:
 - (d) expressing proteins encoded by the shuffled sequences generated in step (c); and
 - (e) screening or selecting the expressed proteins for a protein having a desired activity.
15. 3. The method of claim 1, wherein the primers of step (b) are directed to a DNA sequence having a homologous overlap of at least 10 bp within the conserved region.
4. The method of claim 1, wherein the primers of step (b) are directed to a DNA sequence having a homologous overlap of at least 15 bp within the conserved region.
5. The method of claim 1, wherein the primers of step (b) are directed to a DNA sequence having a homologous overlap of at least 20 bp within the conserved region.
20. 6. The method of claim 1, wherein the heterologous sequences encode an enzyme.
7. The method of claim 6, wherein the enzyme is one of a protease, cellulase, phytase, oxidase, cutinase, or a lipase.
25. 8. The method of claim 7, wherein the protease is a serine protease.
9. The method of claim 8, wherein the serine protease is a subtilase.
10. A method for shuffling more than one heterologous sequence, comprising the steps of:
 - (a) identifying at least one conserved region between the heterologous sequences to be shuffled, wherein a conserved region of one heterologous sequence has at least 80% identity to the conserved region of another heterologous sequence;
 - (b) generating primers directed to the conserved region(s) identified in step (a);
 - (c) generating DNA fragments with the use of the primers generated in step (b); and
 - (d) shuffling the DNA fragments generated in step (c).
30. 11. The method of claim 10, further comprising the steps of:
 - (e) expressing proteins encoded by the shuffled sequences generated in step (d); and

(f) screening or selecting the expressed proteins for a protein having a desired activity.

12. The method of claim 10, wherein a conserved region of one heterologous sequence has at least 90% identity to the conserved region of another heterologous sequence.

13. The method of claim 10, wherein a conserved region of one heterologous sequence has at least 95% identity to the conserved region of another heterologous sequence.

14. A method for shuffling more than one heterologous sequence, comprising the steps of:

- identifying at least one conserved region between the heterologous sequences to be shuffled, wherein a conserved region of one heterologous sequence has at least 80% identity to the conserved region of another heterologous sequence;
- generating primers directed to the conserved region(s) identified in step (a), wherein the primers are directed to a DNA sequence having a homologous overlap of at least 10 bp within the conserved region;
- generating DNA fragments with the use of the primers generated in step (b); and
- shuffling the DNA fragments generated in step (c).

15. A method for shuffling heterologous DNA sequences of interest having at least one conserved region, the method comprising the steps of:

- identifying at least one conserved region in at least two heterologous DNA sequences;
- constructing at least a first and a second set of PCR primers, wherein each set comprises a sense and an anti-sense primer, and defines a DNA sequence having a homologous overlap of at least 10 bp within the conserved region of the heterologous DNA sequence of step (a),
wherein the first set of PCR primers comprises primer A and A', primer A is directed to a sequence region 5' of the conserved region and primer A' is directed to one of (i) a sequence 3' of the conserved region, or (ii) a sequence partially within the conserved region, and
wherein the second set of PCR primers comprises primer B and B', primer B is directed to one of (i) a sequence 3' of the conserved region, or (ii) a sequence partially within the conserved region, and primer B' is directed to a sequence 3' of the conserved region;
- amplifying at least one of the heterologous DNA sequences of step (a) with the first and second primer sets of step (b); and
- generating DNA fragments.

16. The method of claim 15, further comprising the steps of:

- (e) expressing proteins encoded by the shuffled sequences generated in step (d); and
- (f) screening or selecting the expressed proteins for a protein having a desired activity.

5 17. The method of claim 15, wherein the heterologous sequences encode an enzyme.

18. The method of claim 17, wherein the enzyme is a protease or a lipase.

19. The method of claim 18, wherein the protease is a serine protease.

20. The method of claim 19, wherein the serine protease is a subtilase.

10 21. The method of claim 1, wherein the conserved region(s) are flanking sequences.

22. The method of claim 1, wherein the heterologous sequences to be shuffled comprise a partial sequence of at least 40 base pairs in length not having more than 90% sequence identity.

15 23. The method of claim 22, wherein the heterologous sequences to be shuffled comprise a partial sequence of at least 40 base pairs in length not having more than 95 % sequence identity.

24. The method of claim 1, wherein the heterologous sequences to be shuffled are obtained from different species.

20 25. The method of any one of claims 1, 3 to 10, 12 to 15 or 17 to 24, further comprising the steps of:

- expressing proteins encoded by the shuffled sequences; and
- screening or selecting the expressed proteins for a protein having a desired activity.

25 26. A method for shuffling of heterologous sequences, said method being substantially as hereinbefore described with reference to any one of the examples.

27. A method for producing a shuffled protein having a desired biological activity, said method being substantially as hereinbefore described with reference to any one of the examples.

30 28. A method for producing one or more recombinant protein(s) having a desired biological activity, said method being substantially as hereinbefore described with reference to any one of the examples.

29. A shuffled sequence prepared by the method of any one of claims 1 to 26.

30. The sequence of claim 29, which encodes a protein having a desired activity.

35 31. The sequence of claim 30, wherein the heterologous sequences encode an enzyme.

32. The sequence of claim 31, wherein the enzyme is a protease or a lipase.

The sequence of claim 32, wherein the protease is a serine protease.

34. The sequence of claim 35 or claim 36, wherein the serine protease is a subtilase.

35. A protein having a desired activity produced by the method of any one of claims 2, 11, 16, 25, 27 or 28.

36. A protein having a desired activity, encoded by a sequence of any one of claims 30 to 34.

37. The protein of claim 34, which is an enzyme.

38. The protein of claim 37, wherein the enzyme is a protease or a lipase.

39. The protein of claim 38, wherein the protease is a serine protease.

40. The protein of claim 39, wherein the serine protease is a subtilase.

Dated 25 July, 2001

Novozymes A/S

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON

33
34
35
36
37
38
39
40

1/8

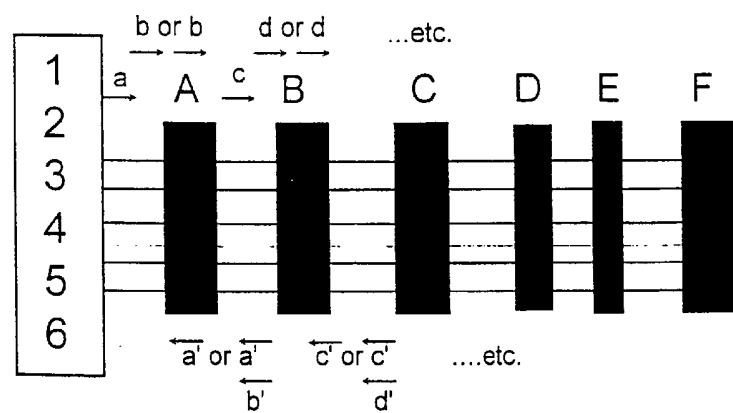


Fig. 1

2/8

1	M M R - K K S F W L G M L T A F M L V F T	[MA F S D S A S A	A13050_1.PRO
1	M - K - K P L G K I V A S T A L L I S - -	V A F S S S I A S	A22550.PRO
1	M - R - Q S I K V M V L S T - - - V A - -	L L F M A N P A A	D26542.PRO
1	M - R - G K K V W I S I L L E A L A L I F T	[M A F G S T S S A	P00782.PRO
1	M - K F K K I A A L S L A T S L A L F - -	P A F G G S S L A	PD498.PRO
30	A Q P - - - - - A K - N V E K - - - - - D -	Y I V G E	A13050_1.PRO
27	A A E - - - - - E A - - - - - K - - - - -	E K Y L I - -	A22550.PRO
24	A S E - - - - - E K - - - - - K - - - - -	E - Y L I - -	D26542.PRO
29	Q A A - - - - - G K S N G E K - - - - - K -	Y I V G F	P00782.PRO
28	K E A A P K P F Q P I N K - T L D K G A F E S G E - V I V K E	PD498.PRO	
45	K S G - - - - - - - - - - - V K - - T - -	[A S V K K D	A13050_1.PRO
38	- - - G F N E Q E A V S E F V E Q V E - -	[A N D E V A I L S	A22550.PRO
34	- - - - - - - - - - - V - - - - - E P E E V S A Q S	D26542.PRO	
45	K Q T - - - - - - - - - - - M S - - T M S A A K K K D	P00782.PRO	
56	K D G - - - - - - - - - - - V S K K A Q G S A L N K A	PD498.PRO	
57	I I K E S G G K V D K Q F R I I N A A K A K L D K E A L K E	A13050_1.PRO	
63	E E E E V E I E L L H E F E T I P V L S V E L S P E D V D A	A22550.PRO	
45	V E E S Y D D V D V I H E F E E I P V I H A E L T K K E L K K	D26542.PRO	
59	V I S E K G G K V Q K Q F K Y V D A A S A T L N E K A V K E	P00782.PRO	
72	E A N E E Q K A S A K D P E Q V L E V A D V - - - D Q A V K A	PD498.PRO	
87	V K N D P D V A Y V E E D - - - - - H V A H A L A Q T V	A13050_1.PRO	
93	L E L D P A I S Y I E E D - - - - - A E V T T M A Q S V	A22550.PRO	
75	L K K D P N V K A I E E N - - - - - A E V T - I S Q T V	D26542.PRO	
89	L K K D P S V A Y V E E D - - - - - H V A H A Y A Q S V	P00782.PRO	
99	L E N N P N V E Y A E P N Y T F Q A T W S P N D P Y Y S A Y	PD498.PRO	
110	P Y G I P L I K A D K V Q A Q G F K G A N V K V A V L D T G	A13050_1.PRO	
116	P W G I S R V Q A P A A H N R G L T G S G V K V A V L D T G	A22550.PRO	
97	P W G I S F I N T Q Q A H N R G I F G N G A R V A V L D T G	D26542.PRO	
112	P Y G V S Q I K A P A L H S O G Y T G S N V K V A V I D S G	P00782.PRO	
129	Q Y G P Q N T S T P A A W D V T R G S S T Q T V A V L D S G	PD498.PRO	
140	I Q A S H P D L - - N V V G G A S F V A G E A Y N - T D G N	A13050_1.PRO	
146	I - S T H P D L - - N I R G G A S F V P G E P S T - Q D G N	A22550.PRO	
127	I - A S H P D L - - R I A G G A S E F I S S E P S Y - H D N N	D26542.PRO	
142	I D S S H P D L - - K V A G G A S M V E S E T N F F Q D N N	P00782.PRO	
159	V D Y N H P D L A R K V I K G Y D E I D R D N N P - M D L N	PD498.PRO	
167	G H G T H V A G T V A A - L D N T T G V L G V A P S V S L Y	A13050_1.PRO	
172	G H G T H V A G T T I A A - L N N S I G V L G V A P S A E L Y	A22550.PRO	
153	G H G T H V A G T T I A A - L N N S I G V L G V A P S A D L Y	D26542.PRO	
170	S H G T H V A G T V A A - L N N S I G V L G V A P S A S L Y	P00782.PRO	
188	G H G T H V A G T V A A D T N N G I G V A G M A P D T K I L	PD498.PRO	
196	A V K V L N S S G S G S Y S G I V S G I E W A T T N G M D V	A13050_1.PRO	
201	A V K V L G A S G S G S V S S I A Q G I E W A G N N G M H V	A22550.PRO	
182	A V K V L D R N G S G S L A S V A Q G I E W A I N N N M H I	D26542.PRO	
199	A V K V L G A D G S G Q Y S W I I N G I E W A I A N N M D V	P00782.PRO	
218	A V R V L D A N G S G S L D S I A S G I R Y A A D Q G A K V	PD498.PRO	

Fig. 2 (a)
SUBSTITUTE SHEET (RULE 26)

226	I N M S L G G A S G S T A M K Q A V D N A Y A R G V V V V A	A13050_1.PRO
231	A N L S L G S P S P S A T L E Q A V N S A T S R G V L V V A	A22550.PRO
212	I N M S L G S T S G S S T L E L A V N R A N N A G I L L V G	D26542.PRO
229	I N M S L G G P S G S A A L K A A V D K A V A S G V V V V A	P00782.PRO
248	L N L S L G C E C N S T T L K S A V D Y A W N K G A V V V A	PD498.PRO
256	A A G N S G S S G N T N T I G Y P A K Y D S V I A V G A V D	A13050_1.PRO
261	A S G N S G A G S I S - - - Y P A R Y A N A M A V G A T D	A22550.PRO
242	A A G N T G R Q G V N - - - Y P A R Y S G V M A V A A V D	D26542.PRO
259	A A G N E G T S G S S S T V G Y P G K Y P S V I A V G A V D	P00782.PRO
278	A A G N D N V S R T F - - - Q P A S Y E N A I A V G A I D	PD498.PRO
286	S N S N R A S F S S V G A E L E V M A P G A G V Y S T Y P T	A13050_1.PRO
287	Q N N N R A S F S S Q Y G A G L D I V A P G V N V Q S T Y P G	A22550.PRO
268	Q N G Q R A S F S T Y G P E I E I S A P G V N V N S T Y T G	D26542.PRO
289	S S N Q R A S F S S V G P E L D V M A P G V S I Q S T L P G	P00782.PRO
304	S N D R K A S F S N Y G T W V D V T A P G V N I A S T V P N	PD498.PRO
316	N T Y A T L N G T S M A S P H V A G A A A L I L S K H P N L	A13050_1.PRO
317	S T Y A S L N G T S M A T P H V A G A A A L V K Q K N P S W	A22550.PRO
298	N R Y V S L S G T S M A T P H V A G V A A L V K S R Y P S Y	D26542.PRO
319	N K Y G A Y N G T S M A S P H V A G A A A L I L S K H P N W	P00782.PRO
334	N G Y S Y M S G T S M A S P H V A G L A A L L A S Q - - G K	PD498.PRO
346	S A S Q V R N R L S S T A T Y L - - - G S S E Y Y G K G L I	A13050_1.PRO
347	S N V Q I R N H L K N T A T S L - - - G S T N L Y G S G L V	A22550.PRO
328	T N N Q I R Q R I N Q T A T Y L - - - G S P S L Y G N G L V	D26542.PRO
349	T N T Q V R S S I L E N T T T K L - - - G D S F Y Y G K G L I	P00782.PRO
362	N N V Q I R Q A I E Q T A D K I S G T G T N F K Y G K - - I	PD498.PRO
373	N V E A A A Q	A13050_1.PRO
374	N A E A A T R	A22550.PRO
355	H A G R A T Q	D26542.PRO
376	N V Q A A A Q	P00782.PRO
390	N S N K A V R Y	PD498.PRO

Fig. 2 (b)

Percent Similarity

	1	2	3	4	5	
1	52.2	48.6	66.5	41.8	1	
2	74.2	59.9	51.6	41.8	2	
3	83.6	56.7	48.1	39.4	3	
4	44.2	75.6	85.2	45.4	4	
5	100.0	100.0	100.0	93.1	5	
	1	2	3	4	5	

A13050_1.PRO

A22550.PRO

D26542.PRO

P00782.PRO

PD498.PRO

Fig. 2 (c)

SUBSTITUTE SHEET (RULE 26)

5/8

LIP_RHIMI	MV-LKQRANY LGF-LIVFFT AFLVEAVPI- -KRQSNSTV- -----DSLPP	40
LIP_RHIDL	MVSFISISQG VSLCLLVSSM MLGSSAVPVS CKSGSSNTAV SASDNAALPP	50
ABSIDIA	M----HSHF VVLLLAFFIC MCSVSGVPL- -QIDPRDDK- -----SYVPE	37
MDLA_PENCA	M-----R LSFFTALSA- ---VASLG--- ----- YA-LPG	21
Humicola	M-----R SSL--VLFF- ---VSAWT--- ----- A-LAS	18
Consensus	M----- .SL.L.VF... .VSAVP.- -..... -----A.LP.	50
 LIP_RHIMI	 LIPSRTSAPS SSPSTTDPEA -P-AM----- ---SRNGPLP S--DVETKY-	77
LIP_RHIDL	LISSRCAPPS NKGSKSDLQA EPYNMQNKTE WYESHGGNLT SIGKRDDNLV	100
ABSIDIA	QYPLKVNGLP PEGVSVIQGY ----- CENCTMY P----EKN--	68
MDLA_PENCA	KLQSR----- ----- D-----	27
Humicola	PIR-R----- ----- E-----	23
Consensus	.I.SR...P. ----- ----- E...-----E.-----	100
 LIP_RHIMI	 -GMALNATSY PDSVVQAMSI ----DGG-IR AATSQEINEL TYTTTLSANS	121
LIP_RHIDL	GGMTLDDPSD APPISLSSST NSASDCGKVV AATTAAQIEF TKYAGIAATA	150
ABSIDIA	----SVSAF SSSSTQDYRI ----- ASEAEIKAH TFYTALSANA	102
MDLA_PENCA	----- ----- VSTSELDQF EFWVQYAAAS	46
Humicola	----- ----- VSQDLFNQF NLFAQYSAAA	42
Consensus	----- ----- AS..EI..F T.Y...SA.A	150
 LIP_RHIMI	 YC---RTVIP GATWDCI--H C-DA-TEDLK IIKFTWS-TLI YDTNAMVARG	163
LIP_RHIDL	YC---RSVVP GNKWDCCV--Q C-QKWPDPGK IITTFT-SLL SDTNGYVLR	193
ABSIDIA	YC---RTVIP GGRWSCP--H C-GV-ASNLIQ ITKFTFS-TLI TDTNVLVAVG	144
MDLA_PENCA	YYEADTYAQV GDKLSCSKGN CPEVEATGAT VSYDFSDSTI TDTAGYIADV	96
Humicola	YCGKNNDAPA GTNITCTGNA CPEVEKADAT FLYSFEDSGV GDVTGFLALD	92
Consensus	YC---RTV.P G..W.C... C.-V...D.. I..TFS-SLI .DTNG.VA..	200
 LIP_RHIMI	 DSEKTIYIVF RGSSSIRNWI ADLTFVPVSY PPV-SGTVKH KGFLDSYGEV	212
LIP_RHIDL	DKQKTIYLVF RGTNSFRSAI TDIVFNFSDY KPV-KGAKVH AGFLSSYEQV	242
ABSIDIA	EKEKTIYVF RGTSSIRNAI ADIVFVPVNY PPV-NGAKVH KGFLDSYNEV	193
MDLA_PENCA	HTNSAVVLAf RGSSYSVRNWV ADATF-VHTN PGLCDGCLAE LGFWSSWKLV	145
Humicola	NTNKLIVLSF RGSRSIENWI GNLFNFDLKEI NDICSGCRGH DGFTSSWRSV	142
Consensus	...KTIYLVF RGS.SIRNWI AD..F....Y PPV-.G.KVH .GFLSSY..V	250
 LIP_RHIMI	 QNELVATVLD QFKQYPSYKV AVTGHSLGGA TALLCALDLY QREEGLSSSN	262
LIP_RHIDL	VNDYFPVVQE QLTAHPTYKV IVTGHSLGGA QALLAGMDLY QREPRLSPKN	292
ABSIDIA	QDKLVAEVKA QLDRHPGYKI VVTGHSLGGA TAVLSALDLY HHGH---AN	239
MDLA_PENCA	RDDIIKEKE VVAQNPNEYL VVVGHSLGAA VATLAATDLR GKGYP---S	191
Humicola	ADTLRQKVED AVREHPDYRV VFTGHSLGGA LATVAGADLR GNGY---D	187
Consensus	.D.L...V.. Q...HP.YKV VVTGHSLGGA .A.LAA.DLY ..G.----.N	300
 LIP_RHIMI	 LFLYTQGQPR VGDPAFANYV VST-GIPYRR TVNERDIVPH LPPAAFGLH	311
LIP_RHIDL	LSIFTVGGR VGNPTFAYV EST-GIPFQR TVHKRDIVPH VPPQSGFGLH	341
ABSIDIA	IEIYTQGQPR IGTPAFANYV IGT-KIPYQR LVHERDIVPH LPPGAFGFLH	288
MDLA_PENCA	AKLYAYASPAF VGNAAALAKYI TAQ--GNNFR FTHTNDPVPK LPLLSSMGYVH	239
Humicola	IDVFSYGAFL VGNRAFAEFL TVQTGGTLYR ITHTNNDIVPH LPPREFGYSH	237
Consensus	...YT.G.PR VGNPAFA.YV ..T-GIP..R .VH.RDIVPH LPP..FGFLH	350

Fig. 3 (a)
SUBSTITUTE SHEET (RULE 26)

LIP_RHIMI	AGEEYWITDN SPETVQVC-T SDLET----S DCSNSIVP-F TSVLDHLSYF	355
LIP_RHIDL	PGVESWIKSG TSN-VQIC-T SEIET----K DCSNSIVP-F TSILDHLSYF	384
ABSIDIA	AGEEFWIMKD SSLRV--C-P NGIET----D NCSNSIVP-F TSVIDHLSYL	330
MDLA_PENCA	VSPEYWITSP NNATVSTSDI KVIDGDVSFD GNTGTGLPLL TDFEAHIWYF	289
Humicola	SSPEYWIKSG TLVPVTRNDI VKIEG---ID ATGGNNQPNI PDIPAHLWYF	284
Consensus	.G.EYWI.S.V..C.. ..IET----D .CSNSIVP-F TS..DHLSYF	400
LIP_RHIMI	GIN---TGLC T----- 363	
LIP_RHIDL	DIN---EGSC L----- 392	
ABSIDIA	DMN---TGLC L----- 338	
MDLA_PENCA	VQVDAGKGPG LPPKRV 305	
Humicola	GLI---GTC L----- 291	
Consensus	.N---.G.C L----- 416	

Fig. 3 (b)

SUBSTITUTE SHEET (RULE 26)

ABSIDIA	M-----HSHF VVLLLA VFIC MCSVSGVPL- -----	----- QIDP	28
LIP_RHIMI	MV-LKQRANY LGF-LIVFFT AFLVEAVPI- -KRQSNSTV- -----DSLPP	40	
LIP_RHIDL	MVSFISISQG VSLCLLVSSM MLGSSAVPVS GKSGSSNTAV SASDNAALPP	50	
Consensus	MV-....S.. V.L.L.VF.. M..VSAVP.- -K..S..T.- -----LPP	50	
.			
ABSIDIA	-RDDKS YVPE QYPLKVN--- -----	----- GPLP EGVSVIQGYC	58
LIP_RHIMI	LIPSRSTSAPS SSPSTTDPEA -P-AM-----	---SRNGPLP S--DVETKY-	77
LIP_RHIDL	LISSRCAPPS NKGSKSDLQA EPYNNMQKNTW WYESHGGNLT SIGKRDDNLV	100	
Consensus	LI.SR...PS ..PSK.D..A -P-.M-----	---S..GPLP S....V...Y.	100
.			
ABSIDIA	ENCTMYPEKN SVSAFSSST ----QD--YR IASEAEIKAH TFYTALSANA	102	
LIP_RHIMI	-GMALNATSY PDSVVQAMSI ----DGG-IR AATSQEINEL TYYTTLANS	121	
LIP_RHIDL	GGMTLDDPSD APPISLSSST NSASDGKVV AATTAQIQLF TKYAGIAATA	150	
Consensus	.GMTL...S. ..S...SSST ----DGG-.R AAT.ABI.E. T.YT.LSANA	150	
.			
ABSIDIA	YCRTVIPHGR WSCPCHCGV-A SNLQITKTF S TLITDTNVLV AVGEKEKTIY	151	
LIP_RHIMI	YCRTVIPHAT WDC1HCDA-T EDLKIIKTF S TLIYDTNAMV ARGDSEKTIY	170	
LIP_RHIDL	YCRSVVPGNK WDCVQCQKWW PDGKIIITFT SLLSDTNGYV LRSDKQKTIY	200	
Consensus	YCRTVIPH.. WDC.HC..-. .DLKIIKTF S TLI.DTN..V ARGDKEKTIY	200	
.			
ABSIDIA	VVFRGTSSIR NAIADIVFVP VNYPPVNGAK VHKGFLDSY EVQDKLVAEV	201	
LIP_RHIMI	IVFRGSSSIR NWIADLTFVP VSYPVPSGTK VHKGFLDSY EVQNELVATV	220	
LIP_RHIDL	LVFRGTNSFR SAITDIVFNF SDYKPVKGAK VHAGFLSSYE QVVMNDYFPVV	250	
Consensus	.VFRGTSSIR NAIADIVFVP V.YPPV.GAK VHKGFLDSY. EVQN.LVA.V	250	
.			
ABSIDIA	KAQLDRHPGY KIVVTGHSLG GATAVLSALD LYHHGH---- ANIEIYTQGQ	247	
LIP_RHIMI	LDQFKQYPSY KVAVTGHSLG GATALLCALD LYQREEGLSS SNLFLYTQGQ	270	
LIP_RHIDL	QEQLTAHPTY KVIVTGHSLG GAQALLAGMD LYQREPRLSP KNLSIFTVGG	300	
Consensus	..QL..HP.Y KV.VTGHSLG GATALL.ALD LYQRE..LS. .NL.IYTQGQ	300	
.			
ABSIDIA	PRIGTPAFAN YVIGTKIPYQ RLVHERDIVP HLPPGAFGFL HAGEEFWIMK	297	
LIP_RHIMI	PRVGDPAFAN YVYSTGIPYR RTVNERDIVP HLPPAAGFGL HAGEEYWITD	320	
LIP_RHIDL	PRVGNPTPAY YVESTGIPFQ RTVHKRDIVP HVPPQSFGFL HPGVESWIKS	350	
Consensus	PRVG.PAFAN YV.STGIPYQ RTVHERDIVP HLPP.AFGFL HAGEE.WI..	350	
.			
ABSIDIA	DSSLRV--CP NGIETDNCSEN SIVPFTSVID HLSYLDMNTG LCL 338		
LIP_RHIMI	NSPETVQVCT SDLETSDCSN SIVPFTSVLD HLSYFGINTG LCT 363		
LIP_RHIDL	GTSN-VQICT SEIETKDCSN SIVPFTSILD HLSYFDINEG SCL 392		
Consensus	.SS..VQ.CT S.IET.DCSN SIVPFTSVLD HLSYFDINTG LCL 393		
.			

Fig. 3 (c)

8/8

Humicola	MRSSL--VLF FVSAWT-ALA SPIR-REVSQ DLFNQFNLF	QYSAAAYCGK	46
MDLA_PENCA	MRLSFFTALS AVASLGYALP GKLQSRDVST	SELDQFEFWV QYAAASYYEA	50
Consensus	MR.S....L. .V.....AL.R.VS.QF....	QY.AA.Y...	50

Humicola	NNDAPAGTNI TCTGNACPEV EKADATFLYS FEDSGVGDVT	GFLALDNTNK	96
MDLA_PENCA	DYTAQVGDKL SCSKGNCPEV EATGATVSYD FSDSTITDTA	GYIAVDHTNS	100
Consensus	...A..G....C....CPEV E...AT..Y. F.DS...D..	G..A.D.TN.	100

Humicola	LIVLSFRGSR SIEWIGNLN FDLKEINDIC SGCRGHDGFT	SSWRSVADTL	146
MDLA_PENCA	AVVLAFRGSY SVRNWVADAT F-VHTNPGLC DGCLAEGLFW	SSWLVRDDI	149
Consensus	..VL.FRGS. S..NW.... F.....C .GC....GF. SSW..V.D..		150

Humicola	RQKVEDAVRE HPDYRVVFTG HSLGGALATV AGADLRGNGY	-DIDVFSYGA	195
MDLA_PENCA	IKELEVVAQ NPNEYLVVVG HSLGAAVATL AATDLRGKGY	PSAKLYAYAS	199
ConsensusV... .P.Y..V..G HSLG.A.AT. A..DLRG.GYY..	200

Humicola	PRVGNAFAE FLTQGTGGTL YRITHNDIV PRLPPREFGY	SHSSPEYWIK	245
MDLA_PENCA	PRVGNAALAK YITAQ--GNN FRFTHTNDPV PKLPLLSMGY	VHVSPEYWIT	247
Consensus	PRVGN.A.A. ..T.Q..G.. .R.THTND.V P.LP....GY	.H.SPEYWI.	250

Humicola	SGTLVPVTRN DIVKIEG--- IDATGGNNQP NIPDIPAHW	YFGLI---G	288
MDLA_PENCA	SPNNATVSTS DIKVIDGDVS FDGNTGTGLP	LLTDFEAHIW YFVQVDAGKG	297
Consensus	S.....V... DI..I.G... .D...G...P ...D..AH.W	YF.....G	300

Humicola	TCL-----	291	
MDLA_PENCA	PGLPFKRV	305	
Consensus	..L.....	308	
	...		

Fig. 3 (d)