PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :

GOGF 9/46 » Al |)

(11) International Publication Number:

WO 93725962

International Publication Date: 23 December 1993 (23.12.93)

(21) International Application Number: PCT/EP92/01382

(22) International Filing Date: 18 June 1992 (18.06.92)

(71) Applicant (for all designated States except US): INTERNA.-
TIONAL BUSINESS MACHINES CORPORATION
[US/US]; Armonk, NY 10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only) : DUSCHER, Reinhard
[DE/DE]; Im Eichenpfidle 54, D-7030 Boblingen (DE).
GARGYA, Tony [GB/DE]; Ahornweg 2/3, D-7400 Tii-
bingen (DE). KURTH, Gerold [DE/DE]; Calmba-
cherstr. 42, D-7030 Boblingen (DE).

(74) Agent: JOST, Ottokarl; IBM Deutschland Information-
ssysteme GmbH, Patentwesen und Urheberrecht, Pascal
StraBe 100, D-7000 Stuttgart 80 (DE).

(81) Designated States: JP, US, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IT, LU, MC, NL, SE).

Published
With international search report.

(54) Title: DISTRIBUTED APPLICATIONS PROCESSING NETW(RK

415
- 77
410 .
| 440 | / A0 o
FUNCTIONS .
| PROGRAMS | DATA DATA 430
| 450 | TRANSMISSION TRANSMISSION f
| < l AGENT AGENG REMOTE
APPLICATION FUNCTION
| NAVIGATORS | LOCAL REMOTE
| ' /460 |
| ENVIRONMENT |
ROUTINES i
N < 405 4
1 (57) Abstract 400

A system is described in which a local task (415) running on a local computer (400) can use a remote task (430) running on
a remote computer (405). The local task (415) firstly establishes a conversation between a local data transmission agent (410) in
the local computer (400) and a remote data transmission agent (420) in the remote computer (405). This conversation is assigned a !
handle (XmitHandle). The local task (415) can then use this handle (XmitHandle) to call tasks (430) running on the remote corr-
puter (405). Data is passed between the local task (415) and the local data transmission agent (410) by the use of a shared memory

buffer. Data is similarly passed between the remote task (430) and

the remote data transmission agent (420) by the use of a shared

memory buffer. The local (410) and remote (420) data transmission agents are connected together in a network which is prefer-

ably an SNA network.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Beain

Bravil

Canada
Central African Republic
Congo
Swiwzeriand
€dte d'lvoire
Camgroon
Crachoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

FOR THE PURPOSES OF INFORMATION ONLY

France

Gabon

Uniwd Kingdom
Guinca

Greece

Hungary

treland

Haly

Japan

Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Licchtenstein

Sri tanka
Luxcmbourg
Mouaco
Madagascar

Mali

Mongolia

Mavuritania
Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovak Republic
Senegal

Sovict Union
Chad

Togo

Ukraine

United States of America
Vict Nam

-

WO 93/25962 PCT/EP92/01382

DESCRIPTION
DISTRIBUTED APPLICATIONS PROCESSING NETWORKA
Field of the Invention

The invention concerns a system for running a remote
task on a remote computer requested by a local task
running on a local computer, the remote computers
being connected in a network with the local computer,
wherein the local computer contains a local data
transmission agent, said local data transmission agent
transmitting requests to the remote computer to
initiate operation of the remote task and transmitting
and receiving data during operation of the remote
task, and the remote computer contains a remote data
transmission agent, said remote data transmission
agent receiving requests from the local computer to
initiate operation of the remote task and transmitting
and receiving data during operation of the remote
task.

Background Art

The prior art discloses a variety of computer
networks. The IBM System Journal, Volume 22, Number 4,
1983 includes a series of articles devoted to a review
of the IBM System Network Architecture (SNA). On page
345 of that publication a network is defined as "a
configuration of terminals, controllers, and
processors and the links that connect them". When such
a configuration supports user applications involving
data processing and information exchange and conforms
to the specifications of the IBM System Network
Architecture it is called an SNA network. Essentially

WO 93/25962 : PCT/EP92/01382

SNA defines logical entities that are related to the
physical entities in a network and specifies the rules

for interactions among these logical entities.

The logical entities of an SNA network include network
addressable units and the path control network that
connects them. Network addressable units communicate
with one another using logical connections called
"sessions". The three types of Network Addressable
Units (NAUs) are the Logical Unit (LU), the Physical
Unit (PU), and the System Services Control Point
(SSCP) which are defined as follows:

Logical Unit (LU). An LU is a port through which end
users may access the SNA network. An end user uses an
LU to communicate with another end user and to request

services of a System Services Control Point (SSCP).

Physical Unit (PU). A PU is a component that manages

the resources of a node in cooperation with an SSCP.

System Services Control Point (SSCP). This is a focal
point for configuration management, problem
determination and directory services for end users.
SSCPs may have sessions with LUs and PUs. When such a
session occurs, the LU or PU is in the domain of the
SSCP. In addition to sessions with LUs and PUs, SSCPs
may also communicate with each other to coordinate the
initiation and the termination of sessions between
Logical Units and in different domains.

From the hardware standpoint, a simple network
comprises a host system having a processing unit and a
plurality of local terminals that are assigned to

individual users. The local terminals are selectiVely

WO 93/25962 v PCT/EP92/01382

connectable to the host system through one or more
communication links. These links may comprise merely a
coaxial cable, a dedicated telephone line, or in some

cases, a satellite communication link.

The host processing unit mostly an operating system
which supports the creation of a large number of
virtual machines, each of which 4s assigned, on
request, to an end user. A virtual machine processes
tasks for the assigned end user, by time sharing the
host processor hardware of the host system. Some host
systems may include more than one hardware processor
so that true simultaneous processing occurs at the
host since a plurality of processors are running in
parallel. More often, there is merely one hardware
processor that "concurrently" runs data processing
tasks for the virtual machines by a time sharing
technique. This is transparent to the end users at the
terminals.

Two general types of terminals are employed in data
processing networks. The first is referred to as a
"dumb terminal" in that it comprises merely a keyboard
and a display device and little or no processing
capability other than that required to make a
connection with the host system. The second type of
terminal is referred to as an Intelligent Work Station
(IWS) and is provided with its own processor unit and
supporting peripheral devices. The terms IWS and
Personal Computer (PC) are often used interchangeably.
With the ready availability of PCs having very
attractive price performance characteristics, most new
networks are implemented with IWS type terminals and
many of the older networks are being modified with the

replacement of dumb terminals with IWS type terminals.

WO 93/25962 PCT/EP92/01382

Providing each end user on the network with its own
processing capability relieves the host CPU from doing
many of the data processing tasks that were previously
done at the host. The nature of the tasks that are
processed by the host CPU therefore has changed and
more sophisticated applications such as electronic
mail and electronic calendaring are now implemented on
the network under the control of the host system. Both
of these applications involve what is referred to as
distributed application programs, in that one part of
the application program is resident on the host system
and another is resident on the IWS terminal.

A survey of the products available to run distributed
application programs is given in the article "Typing
micro-mainframe knot" by V. Rawzino, published in

Datamation, vol. 30, no. 11, 15 July 1984, pp. 82-90.

Many of the current data processing networks are
designed in accordance with the IBM SNA architecture
which was first described in 1974. Since then various
new functions and services have been added. As
suggested earlier, SNA networks can be viewed as a
plurality of nodes interconnected by data links. At
each of these nodes, path control elements send
information packets, referred to as Path Information
Units (PIUs) between resource managers called Logical
Units (LUs). These logical connections of the paths
are called a session. A transport network for data is
therefore defined by the path control elements and the
data link control elements.

Nodes can be connected by a plurality of links and
comprise a plurality of LUs. Various types of LUs
sessions and protocols have been established within
the framework of the SNA architecture. There are three

WO 93/25962 PCT/EP92/01382

general classes of sessions. The first class is
unspecified by SNA. The second class involves
terminals and the third involves program to program
communication. For example LU 6 provides SNA defined
interprogram communication protocols which avoids the
limitations of terminal LU types such as LU 2 and LU
7. LU 6.2 is referred to as Advanced Program to
Program Communication or APPC protocols.

Logical Units are more than message ports. LUs
provide operating system services such as program to
program communication involving one ore more local
programs. Each application program views the LUs as a
logical operating system and the network of loosely
coupled LUs connected by sessions as a distributed
operating system.

The LU allocates a plurality of resources to its
programs, which are dependent on the particular
hardware and its configuration. Some of the resources
that are made available are remote while others are
local, i.e., associated with the same LU as the
application program. The sessions are considered
logical resources at each LU, but are shared between

particular LUs.

The control function of an LU is resource allocétion
Programs ask one for access to a resource. Sessions
which carry messages between LUs or programs running
on LUs are considered shared resources. A session is
divided into a plurality of serially executed

conversations.

Two LUs connected by a session have a shared
responsibility in allocating sessions to application

WO 93/25962 : PCT/EP92/01382

programs for use as "conversations." The application
programs are therefore sometimes referred to as
"transaction programs."

The successful connection between LUs occurs as a
result of a common set of protocols which function
first to activate a session between two LUs and second
to facilitate the exchange of message data.

The SNA format and protocol reference manual
designated SC30-3112, published by the IBM Corporation
describes SNA by defining, for example, with
programming language declarations, the format of
messages that flow between network entities and the
programs that generate, manipulate, translate, send

and return messages.

The SNA transaction program reference manual for LU
6.2 referred to as GC30-3084, published by the IBM
Corporation defines the verbs that describe the
functions provided by the implementing products.

Two articles are known which review SNA and its
relationship to communication between intelligent
workstations. These are "Peer-to-peer network
management in an IBM SNA network" by S. Simon in IEEE
Network, vol. 5, no. 2, March 1991, pp. 30-34 and
"Comming :a new SNA" by L.D. Passmore in Datamation,
vol. 31, no. 22, 15 November 1985, pp. 102-112.

Two European patent applications are known in which
various aspects of the sharing of applications
programs between computers are described. These are
EP-A-0 371 229 (Hewlett-Packard) and EP-A-0 424 715
(IBM).

WO 93/25962 PCT/EP92/01382

One US patent is known in which is shzring of
applications between computers is desc:ribed. This is
US-A-4 274 139. '

Japanese Patent Application JP-A-63-2(9248 (Fujitsu)
(English Language Abstract published in Patent
Abstracts of Japan, vol. 12, no. 498, p. 110)
describes a communication control section within a
host which transfers data to a workstation.

Summary of the Invention

The object of this invention is to provide an improved
system for running tasks on one computer requested by
tasks on another computer.

This object is solved according to the invention by
associating with the transaction processing
environment in which the remote task is ruh a handle
which is stored in the local computer and is used by
the local task to access the remote task, by providing
in the local computer a local shared buffer accessible
by the local task and the local data transmission
agent and by providing in the remote computer a remote
shared buffer accessible by the remote task and the

remote data transmission agent.

In one embodiment of the invention the local shared
buffer is provided by the local task and the remote
shared buffer is provided by the remote data
transmission agent. The local task may be either a
function program, or an application navigator, or an

environment routine.

WO 93/25962 PCT/EP92/01382

The inventive method comprises the following steps:
opening a conversation between the remote computer and
the local computer and assigning a handle to represent
a transaction processing environment in which the
remote task is to be run; sending a function name
identifying a remote task to be run in the transaction
processing environment and a first data block
containing data required as input by the remote task
to the remote computer from the local computer;
receiving a second data block at the local computer
containing the output from the remote task run at the
remote computer; and closing the conversation between

the remote computer and the local computer.

In one embodiment of the inventive method the
conversation between the local computer and the remote
computer is opened by a first one of the local tasks
and a second one of the local tasks sends the remote
task name to the transaction processing environment
and a first data block to the remote computer from the
local computer using the handle returned by the first
one of the tasks.

In another embodiment of the inventive method the
conversation between the local computer and the remote
computer is opened by a first one of the local tasks
and the conversation between the local computer and
the remote computer is closed by a third one of the
local tasks using the handle returned by the first one
of the tasks.

Description of the Figures

Fig. 1 shows an overview of an information handling

system

WO 93/25962 PCT/EP92/01382

9
Fig. 2 shows an intelligent workstation
Fig. 3 shows an overview of an SNA network
Fig. 4 shows an overview of the current invention
Fig. 5 shows the structure of the transmission data
agents ' .

Fig. 6 shows the structure of the data buffer for
the BusOpenUICXmit routine

Fig. 7 shows the structure of the data buffer for
the BusCloseUICXmit routine

Fig. 8 shows the structure of the data buffer for
the BusUICXmit routine

Fig. 9 shows one example of the use of the

invention

Fig. 10 shows another example of the use of the
invention

Detailed Description of the Invention

Fig.l illustrates one example of an information
handling system comprising a network 30, such as an
SNA network, of a host computer 20 and interactive
type terminals or intelligent work stations (IWS)
10a-£, of a type shown in more detail in Fig. 2.
Functionally the system operates to allow each work
station 10 to communicate with the host computer 20
and the other work stations 10 through the network 30.
For the communications link any one of the various

WO 93/25962 PCT/EP92/01382

10

protocolls may be used, however, in the preferred
embodiment of the invention the SNA communications
protocoll is used. '

The host computer 20 includes a host processing unit
which may be, by way of example, an IBM /370, an IBM
/390 system, an IBM PS/2, an IBM AS/400 or an IBM
RS/6000. The host processing unitt runs an operating
system such as IBM VM, IBM MVS, IBM 0S/2 or IBM VSE.

Fig. 2 illustrates the functional components of one of
the workstations 10 as shown in Fig. 1. The
workstation 10 comprises a processing unit 110, which
includes a microprocessor 130, which is, for example,
an Intel 80386 microprocessor, a semiconductor memory
120, a control block 140 which functions to control
input-output operations in addition to the interaction
between the microprocessor 130 and the memory 120.

The workstation further includes a group of
convéntional peripheral units including a display
device 150, mouse 165, keyboard 160, printer 170, a
storage unit 190, and modem 180. Since the details of
the above described functional blocks can be found in
the prior art, only brief functional description of
each block is set forth along with the description of
their interaction, sufficient to provide a person of
ordinary skill in the art with the basis of

understanding applicant's invention.

Processing unit 110 corresponds, for example, to the
system unit of an IBM personal computer such as the
IBM PS/2 model 80 system. Processing unit 110 is
provided with an operating system program which may be
the IBM multitasking O0S/2 operating system which is

WO 93/25962 PCT/EP92/01382

11.

normally employed to run the PS/2 model 80. The
operating system program is stored in memory 120 along
with the application programs that the user has '
selected to run. When the system supports a
distributed application program, only one part, e.g.,
part A of the distributed application program is
stored in the workstation 10 while the other part,
part B, is stored in the host computer 20 or in
another workstation 10. Depending on the capacity of
memory 120 and the size of the application programs,
portions of these programs as needed may be
transferred to memory 120 from the storage unit 190
which may include, for example, a 40 megabyte hard
disk drive and a diskette drive. The basic function of
storage unit 190 is to store programs and data that
are employed by the workstation 10 and which may
readily be transferred to the memory unit 120 when
needed. The function of the diskette drive is to
provide a removable storage function of entering
programs and data into the workstation 10 and a
vehicle for storing data in a form that is readily
transportable for use on other workstations 10 or the
host computer 20.

Display device 150, mouse 165 and keyboard 160
together provide for the interactive nature of the
terminal, in that in normal operation the
interpretation that the system gives to a specific
mouse command keystroke by the operator depends, in
substantially all situations, on what is being
displayed to the operator at that point in time.

In some situations the operator, by clicking the mouse
165 or by entering commands into the system, causes

the system to perform a certain function. In other

WO 93/25962 PCT/EP92/01382

_12..

situations, the system requests the entry of certain
data generally by displaying a prompt type of
menu/message screen. The depth of the interaction
between the operator and the system varies by the type

of operating system and the application program.

The workstation 10 shown in Fig. 2 may also include a
printer 170, which functions to sprovide hard copy
output of data. Lastly, the modem 180 functions to
transfer data from the workstation 10 of Fig. 2, to a

host computer 20 or other workstations 10.

Fig. 3 shows the various layers of programming that
are employed in an SNA-type network. The SNA
programming environment according to the current
invention may be considered to consist of seven layers
as shown. The top layer 210 is the End User Layer and
consists of the end user programs and includes the
Remote Data Transmission Services 220 of the current

invention.

The second layer 230 is called the NAU Services. These
services include, for example presentation services,
terminal services and formatting data for specific
applications. Layer 240 is referred to as Data Flow
Control. Its function is to maintain send/receive
modes and perform high level error correction. Layer
250 is the data Transmission Control layer. Its
function involves such things as encryption and
descryption plus session level pacing. Layer 260 is
the Path Control which does routing, segmenting data
units and virtual route pacing. The Data Link layer is
the layer 270. It functions to provide link level
addressing, sequencing and error control. The last

layer 280 is the Physical layer which defines for

WO 93/25962 PCT/EP92/01382

13

example the pin assignments on connectors for the

various signals.

APPC defines the NAU services, Data Flow Control and
Transmission Control. As explained on page 306 of the
previously referenced IBM Systems Journal, the method
of defining the LU 6.2 conversation functions, is in
terms of programming language like statements called
verbs. Documentation with verbs which are completely
defined by the procedural logic that generates session
flows, provides significantly greater precision than
English prose. A set of verbs is referred to as a
protocol boundary rather than as an application

program interface.

The presentation services component interprets verbs
and can be thought of as including a subroutine for
each verb. The LU resource manager does allocation of
conversation resources and assignment of conversations
to the sessions, keeping gueues of free sessions and
pending allocation requests. Its equivalent component
in products also allocates local resources in products
specific ways. The function of the following LU 6.2
verbs is set forth on page 307 of the previously
mentioned IBM System Journal. The LU 6.2 verbs
discussed are: SEND DATA, RECEIVE_AND WAIT,
PREPARE_TO_RECEIVE, FLUSH, REQUEST_TO_SEND,
SEND_ERROR, CONFIRM, ALLOCATE AND DEALLOCATE.

The ALLOCATE verb initiates new activity at another LU
by building a conversation to a named partner program.
The named partner is placed in execution and given
addressability to the conversation that started it.
The ALLOCATE verb carries several parameters including
the following.

WO 93/25962 PCT/EP92/01382

14

1. LU_NAME. This is the name of the LU at which the
partner program is located.

2, TPN. TPN is the Transaction Program Name of the
partner program with which the conversation is
desired.

3. MODE_NAME. MODE_NAME specifies the type of
transportation service that the conversation is
to provide. For example, a SECURE, a BULK, or a
LOW_DELAY conversation can be requested. The LU
uses a session with the appropriate MODE_NAME to

carry the conversation.

The target of the conversation is a newly created
process or task, which means that the distributed
processing in the network at any instant of time
consists of a number of independent distributed
transactions, each of which consists of two or more
transaction programs connected by a conversation. The
DEALLOCATE verb ends the conversation. In as much as
each partner may issue DEALLOCATE, a conversation
varies from a single short message to many exchanges
of long or short messages. A conversation could
continue indefinitely, terminated only be a failure of
a Logical Unit or by the session that carries it.
Transaction programs are not ended by DEALLOCATE, but
continue until they terminate their own execution, end
abnormally or are terminated by control operator
action.

Both network application programs and service
transaction programs use the execution services
provided by Logical Units. Service transaction

programs run on Logical Units in the same way'as other

WO 93/25962 PCT/EP92/01382

._15._

transaction programs. They interact with the human
operator or they may run as a pure programmed
operator. Many service transaction programs effect
only the local Logical Unit. An example is a ‘command
to display the current set of active transaction

programs.

Other control transactions, especially those that
relate to sessions, can effect other Logical Units as
well as applications at other Logical Units. For
example, a local command to prematurely terminate a
transaction that is using a conversation causes the
conversation to be ended abnormally, a state change
that must be transmitted to the partner Logical Unit
for presentation to the transaction program that is
sharing the conversation. Or a decision to activate
one or more of the sessions shared by the two LUs may
be made by one LU operator but must be communicated to
the other Logical Unit. Advanced program to program
communication for SNA includes several control
operator verbs that provide LU to LU control and
coordination, especially for activation and
deactivation of sessions. When a distributed service
transaction program starts at one LU, it createsva
conversation to a partner transaction program in a
partner LU. The two transaction programs then
cooperate to preform the desired control activity.

Fig. 4 shows how the Remote Data Transmission Services
of the current invention work. Each of the work
stations 10a-f and the host computer 20 is provided
with a special component called a data transmission
agent. In the example depicted on Fig. 4, two types of
data transmission agents are shown. A local data

transmission agent 410 is provided in a local computer

WO 93725962 PCT/EP92/01382

16

(or logiCal unit) 400, normally a work station 10,
which runs a task. A remote data transmission agent
420 is provided in a remote computer 405 (or other
logical unit) which may be either another work station
10 or the host computer 20. The remote computer 405
runs a task which may be initiated by the task running
on the local computer 400. The local data transmission
agent 410 and the remote data transmission agent 420
are connected through a network 30.

In the example shown, three types of tasks,
collectively known as data transmission service
requestors 415, are provided on the local computer 400
which may call tasks on the remote computer 405. These
are function programs 440, applications navigators 450
and environment routines 460. Function programs 440
are programs which can modify data relevant to the
application being run. Applications navigators 450
allow the user to navigate through the applications
available on the work station 10 and the host computer
20. Environment routines 460 allow the user to modify
the environment in which he or she is working. Each of
these tasks may issue calls to tasks running on the
remote computer 405 and pass and/or receive data
blocks from these tasks on the remote computer 405.

The remote computer 405 has only one type of task in
the described embodiment of the invention. The remote
function 430 is a callable module which may be called
by a task running on the local computer 400 and may
receive and/or return a data block to the tasks on the

local computer 400.

The local data transmission agent 410 is connected to
the data transmission service requestors 415. Its

WO 93/25962 PCT/EP92/01382

17

function is to allocate a conversation to the remote
system 405, to send a data block and a function name
to the remote data transmission agent 410 of the '
remote system 405 and to receive a data block from the
remote data transmission agent 420 or the remote
system 405, and finally to deallocate a conversation
to the remote system 405.

The remote data transmission agent 420 has the
capability to receive a data block and the name of a
remote function from the local data tansmission agent
410, start the remote function 430 specified, pass the
received data block to the remote function 430, and
send back the data block returned by the remote
function 430 specified to the local data transmission
agent 410 which had sent the name of the remote
function 430.

The function of the data transmission agents 410 and
420 can be better understood by considering Figs. 5.
Fig. 5 shows the transmission data service requestors
415 connected to a series of service units 500. The
series of service units 500 are in turn connected to a
controller 505. The controller 505 is connected to a
series of target processing environments 510a-d. The
target processing environments 510a-d each comprise a
client 520a-d and a server 530a-d. The controller 505,
the series of service units 500 and the clients 520a-d
are contained in the local data transmission agent 410
of Fig.4. The servers 530a-b are in one or more of the
remote computers 405 shown in Fig. 4. The clients
520a-d and servers 530a-d are connected together
through the network 30 and modems 180.

WO 93/25962 PCT/EP92/01382

18

An application running on the local computer 400 may
request one or more services from the remote computer
405. The services are requested by calling the
transmission data service requestors 415 which create
a service unit 500 for each service requested. The
controller 505 routes the different service requests
issued by the application to the requested target
processing environment 510. The‘controller 505 uses a
token supplied by the application running in the local
computer to specify the target processing environment
510 required. After termination of the service
requested in the target processing environment 510,
the result is returned to the application through the
controller 505 and the service unit 500.

The target processing eﬁvironment 510 can be addressed
by more than one service unit 500. This would be due,
for example, two applications running in the local
computer 400 both wishing to use the same service in
the remote computer 405 or two different parts of the
same application running in the local computer 400
wishing to use the same service. In this case two
different service units 500 can be created in the
local computer 400. The service requests are queued in
the target processing environment 510 and are are
executed consecutively. A single application program
can also interact asynchronously with two different
target processing environments 510 by creating two

different service units 500.

The clients 520 and servers 530 communicate with each
other user three functional primitives: SRV_OPEN,
SRV_CLOSE and SRV_RPC. Before a target processing
environment 510 is called, the SRV_OPEN functional
primitive must be used. This causes the controller'to

WO 93/25962 PCT/EP92/01382

19

create a client 520 and to establish, using known SNA
verbs (ALLOCATE, see above) and the above-mentioned
token, a conversation to the desired remote computér
405 with the server 530 in which the remote function
430 is to be executed. A handle is returned to the
controller 505 which characterises the conversation.
Calling the SRV_CLOSE functional primitive results in
the conversation being broken bétween the client 520
and server 530 and the handle being deleted. The
SRV_CLOSE functional primitive uses the DEALLOCATE SNA
verb. The SRV_CLOSE and SRV_OPEN primitives are called
by any of the data transmission service requestors
415. The may indeed be issued by different data
transmission service requestors 415, i.e. a connection
may be established by one data transmission service
requestor 415 and broken by another data transmission
service requestor 415. The connection between the
client 520 and server 530 always remains open until it
is closed even if the data transmission service
requestor 415 which established the conversation is no

longer using the conversation as described below.

The SRV_RPC functional primitive is called by a data
transmission service requestor 415 using the handle
and allows any arbitrary length of data to be
transferred from the client 520 to the server 530 and
vice versa. Using the SRV_RPC functional primitive by
an application program causes a service unit 500 to be
created by the data transmission service requestor
415, Different service units 500 can be created by
different application. Should two different service
units 500 wish to transfer data to the target
processing environment 510 simultaneously, then the
requests are queued in the service units 500.

WO 93/25962 PCT/EP92/01382

20

Suppose an applications program running on the local
computer 400 wishes to call a task (e.g. a remote
function 430) running on the remote computer 405, then
a conversation must be established between the local
computer 400 and the remote computer 405. In order to
do this, the data transmission service requester 415
running the task calls a routine,

BusOpenUICXmit (OpenDataStruct, ¥c), provided by the
local data transmission agent 410. This routine is
equivalent to the SRV_OPEN functional primitive
described above. The routine has two parameters,
OpenDataStruct and rc. The first parameter,
OpenDataStruct, points to a data buffer which contains
all the input and output data which are necessary to
open the conversation with the remote data
transmission agent 420 in the remote computer 410. The
second parameter, rc, is the return code from calling
this routine. It will either indicate that the
conversation has been established or that a problem
has occurred and, if possible, give an indication of
the type of problem.

The structure of the data buffer is shown in Fig. 6.
SymDest refers to the Symbolic Destination Name which
identifies the remote computer 405 with the server 530
on which the remote function 430 runs. The Symbolic
Designation Name is made available to the IBM SNA
Networking Services during installation and
customisation. It corresponds to the LU_NAME, the TPN
and the MODE_NAME parameters of the ALLOCATE verb. The

 Userld is the logon user-id for the remote computer
and PassWd is the logon password. These two values
might be null if a specified password is used which
was defined during the customisation process.

TimeoutValue is a value specifying how long to wait

WO 93/25962 PCT/EP92/01382

...21...

for a conversation to be established between the local
system 400 and the remote system 405 before a bad
return code, rc, is returned. XmitHandle is the handle
that is returned to represent this conversation. It is
used in all subsequent data transfers to the remote
function 430 and also to close the conversation.
Finally RemoteSys contains the indication on the type
of the operating system. This information allows the
caller to determine whether the remote system uses the
ASCII, EBCDIC or other character sets.

Closing the conversation between the local computer
400 and the remote computer 405 is done by the
transmission data service requestors 415 calling the
routine BusCloseUICXmit (CloseDataStruct, rc). This
routine is equivalent to the SRV_CLOSE routine
described above. The first parameter, CloseDataStruct,
points to a data buffer which contains all the input
and output data which are necessary to close the
conversation between the remote data transmission
agent 420 in the remote computer 410. The second
parameter, rc, is the return code from calling this
routine. It will either indicate that the conversation
has been established or that a problem has occurred
and, if possible, give an indication of the type of
problem.

The structure of the data buffer is shown in Fig. 7.
XmitHandle is the handle used to represent the
conversation. CloseParm is a deallocation flag which
may contain one of two values. One value indicates
that the conversation is to be closed immediately,
even if requests are pending from other transmission
data service requestors 415 and queued in the service
units 500. Using this value a bad return code, rc, is

WO 93/25962 PCT/EP92/01382

22

returned. The second value indicates that the
conversation will be closed only when no more service
requests are pehding in the service units 500. If
necessary the close command will itself be queued and
processed after all service requests in the service
units 500 have been processed. Any requests to the
remote function 430 later issued will be refused and a

bad return code returned. *

Having opened the conversation between the local
computer 400 and the remote computer 405, the
transmission data service requestors 415 can make use
of the remote functions 430. This is done by calling
the routine BusUICXmit (XmitDataStuct, rc). This
routine is equivalent to the SRV_RPC routine described
above. The first parameter, XmitDataStruct, points to
a data buffer which contains all the input and output
data which are necessary for the transfer of data from
the data service requestors 415 to the remote
functions 430. The second parameter, rc, is the return
code from calling this routine. It will either
indicate that the conversation has been established or
that a problem has occurred and, if possible, give an

indication of the type of problem.

Fig. 8 shows the structure of the data buffer.
XmitHandle handle is the handle representing the
conversation to be used. XmitLib is the name of the
library in which the remote function 430 in the server
510 is to be found. In some operating systems, e.g.
CMS or MVS, this value is not required. In 0S/2 it
refers to a Dynamic Link Library. XmitServ is the name
of the remote function 430 which is to be called on
the remote computer 405. InputBuf is the address of
the shared memory block containing the data provided

WO 93/25962 PCT/EP92/01382

23

by the transmission data service requestor 415 for
transmission to the remote function 430. It

must be accessible by both the transmission data
service requestor 415 and the clients 520. The
InputBufLen is the length of the data block specified
by InputBuf. OutputBuf is the address of the shared
memory block containing the data used by the data
transmission service requestor 415 which is returned
from the remote function 430. It must also be
accessible by both the transmission data service
requestors 415 and the clients 520. OutputBufLen is
the length of the data block specified by OutputBuf.
XmitServLinkage contains the linkage information for
XmitServ. The TimeoutValue specifies the length of
time a non-queued request may wait for a response from
the remote computer 405 before return of a bad return
code rc to the data transmission service requestor
415. Following the return of a bad return code rc, all
following BusUICXmit service calls which are queued in
the service units 500 for this specific conversation
will be terminated and will return a bad return code
rc and the conversation will be closed. Finally
XmitServRC is the return code of the remote function
430 returned to the remote data transmission agent 420
by the completion of the remote function 430 running

on the remote system 405.

When the transmission data service requestor 415 calls
the routine BusUICXmit (XmitDataStuct, rc), the call
is passed to the local data transmission agent 410.
This access the shared input buffer and passes the
data contained therein to the remote data transmission
agent 420. This transfer is done using known SNA or
other data transmission methods. At the remote data
transmission agent 420, the incoming data is passed to

WO 93/25962 PCT/EP92/01382

24

another shared memory and another routine XmitServ
(InputBufAdr, InputBufLen, OutputBufAdr, OutputBuflen,
rc) called. The InputBufAdr is the address of the '
shared data block provided by the remote data
transmission agent 420 where input data required by
the remote function 430 is supplied. This data block
contains exactly the information which has been passed
from the local data transmissiorf agent 410 by the
BusUICXmit call. In one implementation of the
invention, this data block is interpreted as a binary
stream of bytes and no ASCII/EBCDIC conversion is
performed. In another implementation, the conversion
is performed. The InputBuflen is the length of the
data block specified by InputBufAdr. The OutputBufAdr
is the address of a shared output buffer containing a
data block provided by the remote data transmission
agent where the remote function 430 has to return its
data. This data block contains exactly the information
which is passed to the local data transmission agent
410 after completion of the BusUICXmit call. On input
OutputBufLen stores the length of the output data
block supplied by the caller on the local compiler 400
and specified by OutputBufAdr. On output, the remote
function 430 called by the remote data transmission
agent 420 has to store the length of the data block
actually returned via OutputBufAdr in the parameter
OutputBufLen if the shared output buffer is large
enough to hold the data. If the shared output buffer
is not large enough to store the data block actually
generated by the remote function 430, then this
overflow must be signalled to the data transmission
service requestor 415. This can be done, for example,
by generating a suitable return code, rc, and by
storing the length required to hold the complete data
in OutputBufLen. This value will be returned as

WO 93/25962 PCT/EP92/01382

25

OutputBufLen of the BusUICXmit call to the data
transmission service requestor 415. The data
transmission service requestor 415 will also receive
as much of the output data block as possible, i.e. the
number of bytes specified by the input value of
OutputBufLen. The data transmission service requestor
415 will then carry out corrective actions. The return
code rc for the XmitServ routine¢ is passed to the data
transmission service requestors 415 as the XmitServRC
parameter of the BusUICXmit routine.

To allow the remote data transmission agent 420 to
load, link and execute dynamically the remote
functions 420 specified by the parameter XmitServ of
the BusUICXmit call,‘then the remote functions have to
be organised accordingly on the remote computer 405.
In operating system independent terms, the remote
functions 420 have to be elements of "dynamically
linkable" libraries. The parameter XmitLib of the
BusUICXmit call exactly specifies the library from
which the remote function 430 may be dynamically
linked.

In MVS, the parameter XmitLib has no meaning since it
is assumed that the remote function 430 is a member of
a LOAD-library concatenated by the known MVS methods
(Linklib, LPA, STEPLIB, etc.). The remote data
transmission agent 420 uses the parameter XmitServ
either to load the remote function 430 specified by
XmitServ to get its entry point or by calling the

remote function 430 specified by XmitServ.

In VM, the parameter XmitLib has no meaning since it
is assumed that the remote function 430 is a member of
a LOAD-library accessible by the known VM methods,

WO 93/25962 PCT/EP92/01382

_26..

i.e. the XmitServ must be contained in one of the
LOADLIBs made accessible with GLOBAL LOADLIB
loadlib_1 loadlib_2. The libraries will be searched in
the specified sequence. This statement is issued from
the user-id's PROFILE EXEC which had to be set up
accordingly during customisation. The remote data
transmission agent 420 uses the parameter XmitServ
either to load the remote functifon 430 specified by
XmitServ to get its entry point or by calling the
remote function 430 specified by XmitServ.

In 0S/2, the parameter XmitLib refers to a Dynamic
Link Library (DDL). The remote data transmission agent
420 uses the parameters XmitLib and XmitServ in the
following way. Firstly the remote data transmission
agent 420 loads the DDL specified by the parameter
XmitLib using the known DosLoadModuleCall. It then
issues a DosFetProcAddr call for the parameter
XmitServ to get the remote function's 430 entry point.
Finally the remote data transmission agent calls the
remote function 430.

Two examples will serve to illustrate how the remote
data transmission service works. Firstly suppose that
the user of a local computer 400 wishes to use an
application navigator 450. This application navigator
450 may be either a generic object and view handler or
may be an application-specific application navigator.
As mentioned above, the application navigator 450 is
one example of the transmission data service
requestors 415. Fig 9 will serve to illustrate this

example.

The user of the local computer 400 is presented with
one of a series of presentation front ends 910a-c

WO 93/25962 PCT/EP92/01382

_27..

displayed on a display device 150. On the presentation
front end 910 are displayed a series of icons. The
user uses the mouse 165 to click one of the icons
which then calls the application navigator 450. The
application navigator 450 uses an user interface
conductor 920 to call a local function program 930a
(step <1>). The user interface conductor 920 invokes
the function program 930a which‘represents the

selected action.

Suppose the local function program 930a needs to use
one of the remote functions 430. This is done by
invoking the local data transmission agent 410 routine
BusOpenUICXmit to establish a conversation with the
required remote computer 405 (step <2>). The required
remote computer 405 is specified by the parameter
SymDest on the #usOpenUICXmit call. The local data
transmission agent 410 establishes a LU 6.2
conversation with the remote computer 405 by invoking
the remote data transmission agent 420 in the remote
computer 405. Upon return from the BusOpenUICXmit
call, a conversation has been established (step <3>)
with a handle, XmitHandle, which can be shared by
other local function programs 930b and 930c also
activated by the application navigator 450. This
sharing process is not reflected in Fig. 9.

The local function 930a now invokes the local data
transmission agent 410 routine BusUICXmit to pass data
to the remote function 430a and to call the remote
function 430a (step <4>). The name of the remote
function 430a and the data are specified as parameters
of the BusUICXmit call as described above. The local
data transmission agent 410 passes this data to the

WO 93/25962 PCT/EP92/01382

28.

remote data transmission agent 420 on the remote

computer 405.

The remote data transmission agent 420 invokes the
remote function 430a (step <5>) and, on return from
the remote function 430a (step <6>), passes the data
from the remote computer 405 back to the local
computer 400. The data is then returned by the local
data transmission agent 410 to the calling local
function 930a (step <6>). The local function programs
930a decides what to do with the binary data from the
remote computer 430 and which, if any, other local
function programs 930b or 930c may access it. In this
‘example, it made available to the application
navigator 450 through a shared memory area 940 (step
<8>).

Triggered by user interactions, the application
navigator 450 may call other local function programs
930a-c which may invoke other remote functions 430b.
Since the local function programs 930a-c know that a
conversation to the remote computer 405 already
exists, the steps <4> to <7> can be repeated. Such a
scenario is shown in steps <9> to <13> which
demonstrates the execution of the other remote
function 430b by the local function program 930b.

Finally the user decides to end the task. The
application navigator 450 calls the local function
program 930c which invokes all clean up activities and
calls the BusCloseUICXmit routine in the local data
transmission agent 410. This closes the conversation
(shown in steps <14> to <16>) and clears all local

application data.

WO 93/25962 PCT/EP92/01382

29

The second example of the use of the remote data
transmission services is shown in Fig. 10. In this
example, the user interface conductor 920 is not used
since the application navigator 450 does not perform
any modification of data stored in the remote computer
405. An example of such a use would be the
interrogation of a remote data bank stored in the
remote computer 405. .

Suppose due to a certain user interaction, the
application navigator 450 requires certain data stored
in the remote computer 405. In step <21> it therefore
invokes the local data transmission agent 410 routine
BusOpenUICXmit to establish a LU 6.2 conversation with
the required remote computer 405. by invoking the
remote data transmission agent 420. The required
remote computer is specified by the SymDest parameter
in the BusOpenUICXmit call. Upon return from the local
data transmission agent 410 a conversation is
established (step <22>).

The application navigator 450 then calls the local
data transmission agent 410 routine BusUICXmit to pass
data to a remote function 430 as shown in step <23>.
The name of the remote function 430 and the data is
specified as a parameters in the BusUICXmit call and
is passed by the local data transmission agent 410 to
the remote data transmission agent 420 on the remote

computer 405.

The remote data transmission agent 420 then invokes
the remote function as shown in step <24>. On return
from the remote function 430 (step <25>), the remote
data transmission agent 420 passes data from the
remote computer 405 to the local computer 400. This :

WO 93/25962 PCT/EP92/01382

30

data is in turned passed by the local data
transmission agent 410 to the calling application
navigator (step <26>) which stores it in a memory area

1000 and can use it for navigation.

Finally the user decides to end the task. The
application navigator 450 invokes, among other clean
up activities, the local data transmission agent 420
routine BusCloseUICXmit to deallocate the conversation
(steps <27> and <28>) and clears all data.

WO 93/25962

PCT/EP92/01382

31

CLAIMS

System for running a remote task (430) on a

remote computer (20; 405) requested by a local

task (415) on a local computer (10; 400), the
remote computers (20; 405) being connected in a
network (30) with the local computer (10; 400),
wherein the local computer+(10; 400) contains a
local data transmission agent (410), said local
data transmission agent (410) transmitting
requests to the remote computer (20; 405) to
initiate operation of the remote task (430) and
transmitting and receiving data during operation
of the remote task (430), and the remote computer
(20; 405) contains a remote data transmission
agent (420), said remote data transmission agent
(420) receiving requests from the local computer
(10; 400) to initiate operation of the remote
task (430) and transmitting and receiving data
during operation of the remote task (430),

characterised in that

with the transaction processing environment (510)
in which the remote task (430) is run a handle
(XmitHandle) is associated which is stored in the
local computer (10; 400) and is used by the local
task (415) to access the remote task (430);

in the local computer (10; 400) a local shared
buffer is provided accessible by the local task
(415) and the local data transmission agent
(410); and

WO 93/25962

PCT/EP92/01382

32

in the remote computer (20; 405) a remote shared
buffer is provided accessible by the remote task
(430) and the remote data transmission agent
(420). '

System according to claim 1 further characterised
in that

the local shared buffer is provided by the local
task (415); and

the remote shared buffer is provided by the
remote data transmission agent (420).

System according to any of the above claims in
which the local task (415) may be

a function program (440);
an application navigator (450); or
an environment routine (460).

System according to any of the above claims in
which the remote computer (20; 405) is connected
with the local computer (10; 400) in an SNA
network (30).

Method for running a remote task (430) on a
remote computer (20, 405) called by a local task
(415) running on a local computer (10, 400)
comprising the following steps

opening a conversation between the remote
computer (20; 405) and the local computer (10;

WO 93/25962

PCT/EP92/01382

_33..

400) and assigning a handle (XmitHandle) to
represent a transaction processing environment
(510) in which the remote task (430) is to be

run;

sending a function name (XmitServ, XmitLib)
identifying a remote task (430) to be run in the
transaction processing environment (510) and a
first data block containing data required as
input by the remote task (430) to the remote
computer (20; 405) from the local computer (10;
400);

receiving a second data block at the local
computer (10; 400) containing the output from the
remote task (430) run at the remote computer (20;
405); and

closing the conversation between the remote
computer (10; 400) and the local computer (20;
405).

Method according to claim 5 in which the step of
opening a conversation between the remote
computer (20; 405) and the local computer (10;
400) comprises

calling a function (SRV_OPEN; BusOpenUICXmit)
which creates a client (520) in the local
computer (10; 400) and establishes a connection
to a server (530) in a remote computer (20; 405),
said server (530) and said client (520) together
forming the transaction processing environment
(510), the said function (SRV_OPEN;
BusOpenUICXmit) returning to the local

WO 93/25962 PCT/EP92/01382

..34_

task (415) the handle (XmitHandle) representing
the conversation.

7. Method according to claim 5 or claim 6 wherein

for every conversation established between the
transaction processing environment (510) and
local task (415), a separate service unit (500)
is established in the local computer (10; 400) to

administer the conversation.

8. Method according to claim 5 wherein the steps of
sending the function name (XmitServ, XmitLib)
identifying the remote task (430) to be run in
the transaction processing environment (510) and
the first data block containing data required as
input by the remote task (430) and receiving the
second data block at the local computer (10; 400)
containing the output from the remote task (430)
comprises

calling a function (SRV_RPC; BusUICXmit) which
contains a parameter pointing to a data buffer
(Fig. 8), said data buffer (Fig. 8) containing
the handle (XmitHandle) indicating the
conversation to be used, the memory address
(InputBuf) of the first data block, the memory
address (OutputBuf) of the second data block and
the name (XmitServ, XmitLib) of the remote task
(430).

9. Method according to claim 5 wherein the step of
closing the conversation between the remote
computer (10; 400) and the local computer (20;
405) comprises

WO 93/25962

10.

11.

PCT/EP92/01382

35

calling a function (SRV_CLOSE; BusCloseUICXmit)
which breaks the connection between the local
computer (10; 400) and the remote computer (20;
405); and '

cancels the handle (XmitHandle).

Method according to any one of claims 5 to 9 in
which

the conversation between the local computer (10;
400) and the remote computer (20; 405) is opened
by a first one of the local tasks (415); and

a second one of the local tasks (415) sends the
remote task name (XmitServ, XmitLib) to the
transaction processing environment (510) and a
first data block to the remote computer (20; 405)
from the local computer (10; 400) using the
handle (XmitHandle) returned by the first one of
the tasks (415).

Method according to any one of claims 5 to 10 in
which

the conversation between the local computer (10;
400) and the remote computer (20; 405) is opened
by a first one of the local tasks (415); and

the conversation between the local computer (10;

400) and the remote computer (20; 405) is closed

by a third one of the local tasks (415) using the
handle (XmitHandle) returned by the first one of

the tasks (415).

WO 93/25962 1 /9 PCT/EP92/01382

2
30
/
100 | | 106 | | 10 104 10 || of
FIG. 1
<10
N 7
/130 —11
KPP b
/190 MEM /180

DISK ———

\ 165

WO 93/25962 PCT/EP92/01382
2/7
22
END USER 210
RDTS PROGRAMS FOR 7
END USER
MANAGE NETWORD //230
NAU SERVICES SESSION SERVICES T
PRESENTATION SERVICES
MAINTAIN SEND-RECEIVE //240
DATA FLOW CONTROL MODES. HIGH LEVEL -
ERROR CORRECTING
TRANSMISSION CONTROL SESSION LEVEL PACING _1-250
ENCRYPTION AND DECRYPTION
: ROUTING L ~260
PATH CONTROL SEGMENTING DATA UNITS -
VIRTUAL ROUTE PACING
DATA LINK ERROR CONTROL, LINK LEVEL ’/,270
ADDRESS SEQUENCING
PHYSICAL SIGNAL CHARACTERISTICS OF ,/”280
CONNECTOR PIN ASSIGNMENTS
FIG. 3
SymDest
Userld
PassWd
TimeoutValue
XmitHandle
RemoteSys
RC FIG.6

S0¥

00¥

PCT/EP92/01382

NOILONNA
J10W3Y

377

L

7
(0}% 7

¥ "Old

WO 93/25962

J10W3Y
IN3OV
NOISSINSNVY1
viva

[

ON¢\

S

VOO
IN3OV
NOISSINSNVYL
viva

SINILNOY
INIWNOYIAN3

om¢\

SHOLVOIAVN
NOILYOIddV

05y~

/
Olv

SAYH4O0dd
SNOILONNA

ory”

Gy

PCT/EP92/01382

WO 93/25962

4/7

GoY || 00¥
o*m _ oLy
[| N
POSS 501C / 8.%\
]
20) -~ A -
=S 2016 A 20¢S o
) _
"q0¢S — Y YITIONINOD -
q0lg a0¢s ~ o
K \ G0S _
o -
%5 | wois J J o0z |
7 I
7
914 00§

WO 93/25962

5/7

XmitHandle

CloseParm

RC

FIG.7

XmitHandle

XmitLib

XmitServ

InputBuf

InputBuflLen

OutputBuf

OutputBufLen

XmitServLinkage

TimeoutValue

XmitServRC

RC

FIG. 8

PCT/EP92/01382

WO 93/25962 PCT/EP92/01382

6/7

430 430

<6> <12>
‘ <11> l 405
<5> 420

DATA TRANSMISSION AGENT REMOTE

N N] e

——30
<45 [<10> *<15> *
<> k3s | Le> <16>
/410
DATA TRANSMISSION AGENT LOCAL

BusOpenUICXmit | BusUICXmit | BusCloseUICXmit

<3> <4> <18>
o [

<7> <10>| T<13> <16>
g1 k8>| FP1 FP2 FP3
B 930a 930b 930¢ 400
| .
t T<1> t T<9> 3 I<14>
B | v e el gog
y <1><9><14>t t t
450 910a 910b 910¢

WO 93/25962

7/7

430 |-

<24>
r . l <25>

PCT/EP92/01382

420

DATA TRANSMISSION AGENT REMOTE

<21>’ l <23>* <27>*

rvmp——

——30

s ——

o

* <28>

DATA TRANSMISSION AGENT LOCAL

/410

BusOpenUICXmit

BusUICXmit | BusCloseUICXmit

<21>

1000

<22>

<23> <28>

<26>

450

|

l
<27>

<26>

FIG. 10

405

400

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 92/01382

1. CLASSIFICATION OF SUBJECT MATTER

(if several classification symbols apply, indicate ail)6

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.C1. 5 GO6F9/46

II. FIELDS SEARCHED

Minimum Documentation Searched’

Classification System Classification Symbols

Int.C1. 5

GO6F

Documentation Searched other than Minimum Documentation

to the Extent that such Documents are Included in the Fields Searched®

IIl. DOCUMENTS CONSIDERED TO BE RELEVANT?

“A” document defining the general state of the art which is not
considered to be of particular relevance

citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
other means r
“P* document published prior to the international filing date but in the art.
later than the priority date claimed “&* document member of the same patent family

Category ° Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.t3
Y COMPUTER TECHNOLOGY REVIEW 1,4-6,8,
vol. 11, no. 6, May 1991, LOS ANGELES US 9
pages 23 - 27
PETER TAIT 'Message Passing Holds The Key
To Distributed Computing'
see page 23, right column, line 31 - page
24, left column, line 25
see page 26, left column, line 23 - line
46
see page 26, middle column, line 58 -
right column, line 7
see page 26, right column, line 24 - line
51
see page 27, left column, line 60 - middle
column, line 35
- /....
© Special categories of cited documents : 10 *T* later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention
“E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L* document which may throw doubts on priority claim(s) or involve an inventive step
which is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

IV. CERTIFICATION

Date of the Actual Completion of the International Search

09 FEBRUARY 1993

Date of Mailing of this International Search Report

23,02 93

International Searching Authority

Signature of Authorized Officer
EUROPEAN PATENT OFFICE OESTERGAARD P.M.

Form PCT/ISA/210 (second sheet) (Jammary 1935)

International Application No

PCT/EP 92/01382

pages 106 - 115 _
CHI-CHING CHANG 'REXDC - A Remote
Execution Mechanism'

see page 107, left column, Tine 51 - right
column, line 22

see page 109, right column, line 17 - page
110, left column, Tine 12

HI. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)
Category ° Citation of Document, with indication, where appropriate, of the relevant passages Relevant to Claim No.
Y ACM TRANSACTIONS ON COMPUTER SYSTEMS 1,4-6,8,
voi. 6, no. 3, August 1988, NEW YORK US 9
pages 258 - 283
D.K. GIFFORD AND N. GLASSER 'Remote Pipes
and Procedures for Efficient Distributed
Communication'
see page 260, line 6 - line 14
see page 260, line 26 - Tine 30
see page 261, line 7 - line 23
see page 262, line 25 - line 27
see page 262, line 44 - page 263, line }7
A COMPUTER COMMUNICATIONS REVIEW 1,4-6,8,
vol. 19, no. 4, September 1989, NEW YORK 9
us

Form PCT/ISA/210 (exira sheet} (January 1985)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

