

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 June 2004 (10.06.2004)

PCT

(10) International Publication Number
WO 2004/047843 A1

(51) International Patent Classification⁷: A61K 31/519

(21) International Application Number:
PCT/IB2003/005229

(22) International Filing Date:
17 November 2003 (17.11.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/429,784 26 November 2002 (26.11.2002) US

(71) Applicant (for all designated States except US): PFIZER PRODUCTS INC. [US/US]; Eastern Point Road, Groton, CT 06340 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): CHANGELIAN, Paul, Steven [US/US]; Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340 (US).

(74) Agent: LUMB, J., Trevor; c/o Jackie Lawrence, Pfizer Inc., Mailstop 8260-1615, Eastern Point Road, Groton, CT 06340 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

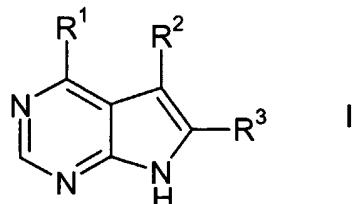
WO 2004/047843 A1

(54) Title: METHOD OF TREATMENT OF TRANSPLANT REJECTION

(57) Abstract: A method of treating or preventing chronic organ transplant rejection comprising administering a compound of the formula (I), wherein R¹, R² and R³ are as defined above.

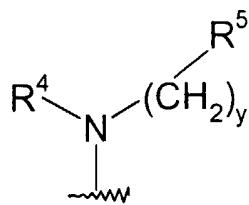
5

Method of Treatment of Transplant RejectionBackground of the Invention


This invention relates to a method of treating or preventing chronic or acute organ transplant rejection using pyrrolo[2,3-d]pyrimidine compounds which are inhibitors of protein kinases, such as the enzyme Janus Kinase 3 (hereinafter also referred to as JAK3) in the treatment of the above indication in mammals, especially humans, and the pharmaceutical compositions useful therefor.

JAK3 is a member of the Janus family of protein kinases. Although the other members of this family are expressed by essentially all tissues, JAK3 expression is limited to hematopoietic cells. This is consistent with its essential role in signaling through the receptors for IL-2, IL-4, IL-7, IL-9 and IL-15 by non-covalent association of JAK3 with the gamma chain common to these multichain receptors. XSCID patient populations have been identified with severely reduced levels of JAK3 protein or with genetic defects to the common gamma chain, suggesting that immunosuppression should result from blocking signaling through the JAK3 pathway. Animal studies have suggested that JAK3 not only plays a critical role in B and T lymphocyte maturation, but that JAK3 is constitutively required to maintain T cell function. Modulation of immune activity through this novel mechanism can prove useful in the treatment of T cell proliferative disorders such as transplant rejection and autoimmune diseases.

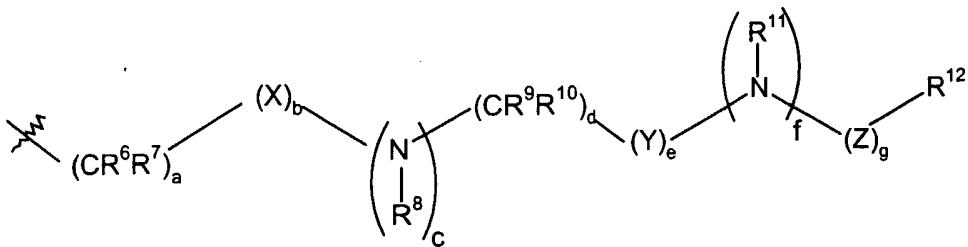
25


Summary of the Invention

The present invention relates to a method of treating or preventing chronic organ transplant rejection (allograft, xenograft) in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

30 or the pharmaceutically acceptable salt thereof; wherein

R^1 is a group of the formula



5

wherein y is 0, 1 or 2;

R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

R⁵ is (C₂-C₉)heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_mR¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl; or a group of the formula

5 wherein a is 0, 1, 2, 3 or 4;
b, c, e, f and g are each independently 0 or 1;
d is 0, 1, 2, or 3;
X is S(O)_n wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;
Y is S(O)_n wherein n is 0, 1 or 2; or carbonyl; and
10 Z is carbonyl, C(O)O-, C(O)NR- or S(O)_n wherein n is 0, 1 or 2;
R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are each independently selected from the group
consisting of hydrogen or (C₁-C₆)alkyl optionally substituted by deuterium, hydroxy,
amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-
C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-
15 C₆)alkyl or (C₁-C₆)acylamino;
R¹² is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-
C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-
C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-
C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, hydroxy(C₁-
20 C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-
C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-
C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-
C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-
C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl,
25 R¹⁵C(O)NH, R¹⁵OC(O)NH, R¹⁵NHC(O)NH, (C₁-C₆)alkyl-S(O)_m, (C₁-C₆)alkyl-S(O)_m-
(C₁-C₆)alkyl, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_m R¹⁶N,
R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each
independently selected from hydrogen or (C₁-C₆)alkyl;
R² and R³ are each independently selected from the group consisting of
30 hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, (C₂-C₆)alkenyl, (C₂-
C₆)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-
C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted
by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio,
(C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl,
35 (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-
C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₆-
C₁₀)arylamino, (C₁-C₆)alkylthio, (C₆-C₁₀)arylthio, (C₁-C₆)alkylsulfinyl, (C₆-
C₁₀)arylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₆-C₁₀)arylsulfonyl, (C₁-C₆)acyl, (C₁-C₆)alkoxy-

5 CO-NH-, (C₁-C₆)alkyamino-CO-, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-(C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkoxy,
10 benzyloxycarbonyl(C₁-C₆)alkoxy, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkoxy, (C₆-C₁₀)aryl, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonylamino, (C₆-C₁₀)aryl(C₁-C₆)alkoxycarbonylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₁-C₆)alkylamino(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)alkyl, hydroxy, (C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)arylamino-CO-NH-, (C₅-C₉)heteroarylamino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino-CO-NH-(C₁-C₆)alkyl, (C₆-C₁₀)arylamino-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₆-C₁₀)arylsulfonyl, (C₆-C₁₀)arylsulfonylamino, (C₆-C₁₀)arylsulfonylamino(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₅-C₉)heteroaryl or (C₂-C₉)heterocycloalkyl;
effective in treating such a condition.

25 The present invention also relates to the pharmaceutically acceptable acid addition salts of compounds of the formula I. The acids which are used to prepare the pharmaceutically acceptable acid addition salts of the aforementioned base compounds of this invention are those which form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, acid citrate, tartrate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate, benzoate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate [i.e., 1,1'-methylene-bis-(2-hydroxy-3- naphthoate)]salts.

35 The invention also relates to base addition salts of formula I. The chemical bases that may be used as reagents to prepare pharmaceutically acceptable base salts of those compounds of formula I that are acidic in nature are those that form non-toxic base salts with such compounds. Such non-toxic base salts include, but are not

5 limited to those derived from such pharmacologically acceptable cations such as alkali metal cations (e.g., potassium and sodium) and alkaline earth metal cations (e.g., calcium and magnesium), ammonium or water-soluble amine addition salts such as N-methylglucamine-(meglumine), and the lower alkanolammonium and other base salts of pharmaceutically acceptable organic amines.

10 The term "alkyl", as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight or branched moieties or combinations thereof.

The term "alkoxy", as used herein, includes O-alkyl groups wherein "alkyl" is defined above.

15 The term "halo", as used herein, unless otherwise indicated, includes fluoro, chloro, bromo or iodo.

The compounds of this invention may contain double bonds. When such bonds are present, the compounds of the invention exist as cis and trans configurations and as mixtures thereof.

20 Unless otherwise indicated, the alkyl and alkenyl groups referred to herein, as well as the alkyl moieties of other groups referred to herein (e.g., alkoxy), may be linear or branched, and they may also be cyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl) or be linear or branched and contain cyclic moieties. Unless otherwise indicated, halogen includes fluorine, chlorine, bromine, and iodine.

25 (C_2-C_9) Heterocycloalkyl when used herein refers to pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydropyranly, pyranyl, thiopyranyl, aziridinyl, oxiranyl, methylenedioxyl, chromenyl, isoxazolidinyl, 1,3-oxazolidin-3-yl, isothiazolidinyl, 1,3-thiazolidin-3-yl, 1,2-pyrazolidin-2-yl, 1,3-pyrazolidin-1-yl, piperidinyl, thiomorpholinyl, 1,2-tetrahydrothiazin-2-yl, 1,3-tetrahydrothiazin-3-yl, 30 tetrahydrothiadiazinyl, morpholinyl, 1,2-tetrahydrodiazin-2-yl, 1,3-tetrahydrodiazin-1-yl, tetrahydroazepinyl, piperazinyl, chromanyl, etc. One of ordinary skill in the art will understand that the connection of said (C_2-C_9) heterocycloalkyl rings is through a carbon or a sp^3 hybridized nitrogen heteroatom.

35 (C_2-C_9) Heteroaryl when used herein refers to furyl, thienyl, thiazolyl, pyrazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrrolyl, triazolyl, tetrazolyl, imidazolyl, 1,3,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-oxadiazolyl, 1,3,5-thiadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, 1,3,5-triazinyl, pyrazolo[3,4-b]pyridinyl, cinnolinyl, pteridinyl, purinyl, 6,7-dihydro-5H-

5 [1]pyrindinyl, benzo[b]thiophenyl, 5, 6, 7, 8-tetrahydro-quinolin-3-yl, benzoxazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, thianaphthetyl, isothianaphthetyl, benzofuranyl, isobenzofuranyl, isoindolyl, indolyl, indolizinyl, indazolyl, isoquinolyl, quinolyl, phthalazinyl, quinoxalinyl, quinazolinyl, benzoxazinyl; etc. One of ordinary skill in the art will understand that the connection of said (C₂-C₉)heterocycloalkyl rings is through a carbon atom or a sp³ hybridized nitrogen heteroatom.

(C₆-C₁₀)aryl when used herein refers to phenyl or naphthyl.

Compounds of formula (I) may be administered in a pharmaceutically acceptable form either alone or in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents. These agents may include but are not limited to cyclosporin A (e.g. Sandimmune® or Neoral®, rapamycin, FK-506 (tacrolimus), leflunomide, deoxyspergualin, mycophenolate (e.g. Cellcept®), azathioprine (e.g. Imuran®), daclizumab (e.g. Zenapax®. OKT3 (e.g. Orthoclone®), AtGam, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, and antiinflammatory steroids (e.g. prednisolone or dexamethasone). These agents may be administered as part of the same or separate dosage forms, via the same or different routes of administration, and on the same or different administration schedules according to standard pharmaceutical practice.

The compounds of this invention include all conformational isomers (e.g., cis and trans isomers. The compounds of the present invention have asymmetric centers and therefore exist in different enantiomeric and diastereomeric forms. This invention relates to the use of all optical isomers and stereoisomers of the compounds of the present invention, and mixtures thereof, and to all pharmaceutical compositions and methods of treatment that may employ or contain them. In this regard, the invention includes both the E and Z configurations. The compounds of formula I may also exist as tautomers. This invention relates to the use of all such tautomers and mixtures thereof.

This invention also encompasses pharmaceutical compositions containing prodrugs of compounds of the formula I. This invention also encompasses methods of treating or preventing disorders that can be treated or prevented by the inhibition of protein kinases, such as the enzyme Janus Kinase 3 comprising administering prodrugs of compounds of the formula I. Compounds of formula I having free amino, amido, hydroxy or carboxylic groups can be converted into prodrugs. Prodrugs

5 include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues which are covalently joined through peptide bonds to free amino, hydroxy or carboxylic acid groups of compounds of formula I. The amino acid residues include the 20 naturally occurring amino acids commonly designated by three letter symbols and also include, 4-
10 hydroxyproline, hydroxylysine, demosine, isodemosine, 3-methylhistidine, norvalin, beta-alanine, gamma-aminobutyric acid, citrulline, homocysteine, homoserine, ornithine and methionine sulfone. Prodrugs also include compounds wherein carbonates, carbamates, amides and alkyl esters which are covalently bonded to the above substituents of formula I through the carbonyl carbon prodrug sidechain.

15 Preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 0; d is 0; e is 0; f is 0; and g is 0.

Other preferred methods the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 0; d is 1; e is 0; f is 0, and g is 0.

20 Other preferred methods the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 0; f is 0; and g is 0.

Other preferred methods the present invention include compounds of formula I wherein a is 0; b is 1; X is $-\text{C}(\text{=N=cyano})-$; c is 1; d is 0; e is 0; f is 0; and g is 0.

Other preferred methods the present invention include compounds of formula I wherein a is 0; b is 0; c is 0; d is 0; e is 0; f is 0; g is 1; and Z is $-\text{C}(\text{O})\text{O}-$.

25 Other preferred methods the present invention include compounds of formula I wherein a is 0; b is 1; X is $\text{S}(\text{O})_n$; n is 2; c is 0; d is 0; e is 0; f is 0; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is $\text{S}(\text{O})_n$; n is 2; c is 0; d is 2; e is 0; f is 1; g is 1; and Z is carbonyl.

30 Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is $\text{S}(\text{O})_n$; n is 2; c is 0; d is 2; e is 0; f is 1; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 1; Y is $\text{S}(\text{O})_n$; n is 2; f is 0; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is $\text{S}(\text{O})_n$; n is 2; c is 1; d is 0; e is 0; f is 0; and g is 0.

5 Other preferred methods of the present invention include compounds of formula I wherein a is 1; b is 1; X is carbonyl; c is 1; d is 0; e is 0; f is 0; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is $S(O)_n$; c is 0; d is 1; e is 1; Y is $S(O)_n$; n is 2; f is 0; and g is 0.

10 Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is $S(O)_n$; c is 0; d is 1; e is 1; Y is $S(O)_n$; n is 2; f is 1; and g is 0.

15 Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is oxygen; c is 0; d is 1; e is 1; Y is $S(O)_n$; n is 2; f is 1; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is oxygen; c is 0; d is 1; e is 1; Y is $S(O)_n$; n is 2; f is 0; and g is 0.

20 Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 1; d is 1; e is 1; Y is $S(O)_n$; f is 0; and g is 0.

Other preferred methods of the present invention include compounds of formula I wherein a is 0; b is 1; X is carbonyl; c is 1; d is 1; e is 1; Y is $S(O)_n$; n is 2; f is 1; and g is 0.

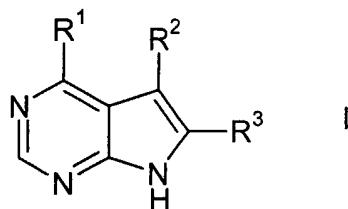
25 Other preferred methods of the present invention include compounds of formula I wherein R^{12} is cyano, trifluoromethyl, (C_1-C_6) alkyl, trifluoromethyl(C_1-C_6)alkyl, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkynyl, cyano(C_1-C_6)alkyl, (C_1-C_6) alkyl- $S(O)_m$ wherein m is 0, 1 or 2.

Specific preferred methods of the present invention include compounds of 30 formula I wherein said compound is selected from the group consisting of:

Methyl-[4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine;

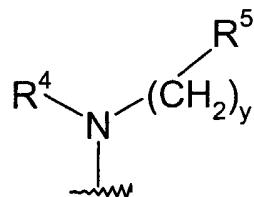
4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid methyl ester;

35 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;


4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid dimethylamide;

5 ({4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-
carbonyl}-amino)-acetic acid ethyl ester;
 3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-
 3-oxo-propionitrile;
 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-
10 yl)-amino]-piperidin-1-yl}-propan-1-one;
 1-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-
 but-3-yn-1-one;
 1-{3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-
 piperidin-1-yl}-propan-1-one;
15 1-{3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-
 piperidin-1-yl}-propan-1-one;
 N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-N'-
 propyl-piperidine-1-carboxamidine;
 N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
20 piperidine-1-carboxamidine;
 Methyl-[(3R,4R)-4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-
 pyrrolo[2,3-d]pyrimidin-4-yl)-amine;
 (3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
 piperidine-1-carboxylic acid methyl ester;
25 3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-
 yl)-amino]-piperidin-1-yl}-propan-1-one;
 (3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
 piperidine-1-carboxylic acid dimethylamide;
 {(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-
30 1-carbonyl}-amino)-acetic acid ethyl ester;
 3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
 piperidin-1-yl}-3-oxo-propionitrile;
 3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-
 d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
35 1-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
 piperidin-1-yl}-but-3-yn-1-one;
 1-{(3R,4R)-3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-
 methyl-piperidin-1-yl}-propan-1-one;

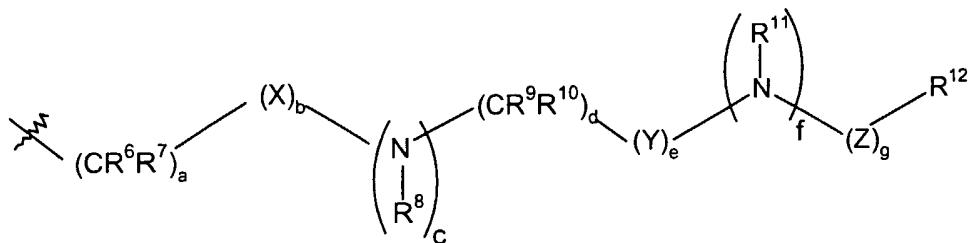
5 1-{(3R,4R)-3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-
methyl-piperidin-1-yl}-propan-1-one;
(3R,4R)-N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
N'-propyl-piperidine-1-carboxamidine; and
(3R,4R)-N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-amino]-piperidine-1-carboxamidine.


10

The present invention relates to a method of treating or preventing acute organ transplant rejection (allograft, xenograft) in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

15 or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula



wherein y is 0, 1 or 2;

R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-
20 C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl
groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-
C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-
C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the
cycloalkyl group is optionally substituted by deuterium, hydroxy, amino,
25 trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-
C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-
C₆)alkyl or (C₁-C₆)acylamino;

R⁵ is (C₂-C₉)heterocycloalkyl wherein the heterocycloalkyl groups must be
substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C₁-C₆)alkyl,
30 (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-
CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino,

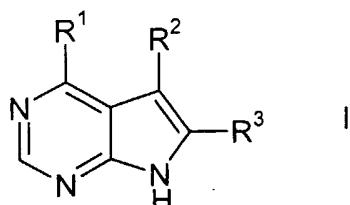
5 amino(C_1 - C_6)alkyl, hydroxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)acyloxy(C_1 - C_6)alkyl, nitro, cyano(C_1 - C_6)alkyl, halo(C_1 - C_6)alkyl, nitro(C_1 - C_6)alkyl, trifluoromethyl, trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)acylamino, (C_1 - C_6)acylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)acylamino, amino(C_1 - C_6)acyl, amino(C_1 - C_6)acyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)acyl, ((C_1 - C_6)alkyl)₂amino(C_1 - C_6)acyl, $R^{15}R^{16}N$ -CO-O-, $R^{15}R^{16}N$ -
10 CO-(C_1 - C_6)alkyl, (C_1 - C_6)alkyl-S(O)_m, $R^{15}R^{16}NS(O)_m$, $R^{15}R^{16}NS(O)_m$ (C_1 - C_6)alkyl, $R^{15}S(O)_mR^{16}N$, $R^{15}S(O)_mR^{16}N(C_1-C_6)alkyl$ wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or (C_1 - C_6)alkyl; or a group of the formula

11

wherein a is 0, 1, 2, 3 or 4;

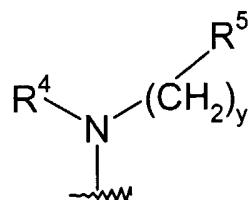
15 b, c, e, f and g are each independently 0 or 1;
d is 0, 1, 2, or 3;
X is $S(O)_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or $-C(=N\text{-cyano})-$;
Y is $S(O)_n$ wherein n is 0, 1 or 2; or carbonyl; and
Z is carbonyl, $C(O)O^-$, $C(O)NR^-$ or $S(O)_n$ wherein n is 0, 1 or 2;

20 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group consisting of hydrogen or $(C_1\text{-}C_6)$ alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, $(C_1\text{-}C_6)$ acyloxy, $(C_1\text{-}C_6)$ acylamino, $(C_1\text{-}C_6)$ alkylamino, $((C_1\text{-}C_6)$ alkyl) $_2$ amino, cyano, cyano $(C_1\text{-}C_6)$ alkyl, trifluoromethyl $(C_1\text{-}C_6)$ alkyl, nitro, nitro $(C_1\text{-}C_6)$ alkyl or $(C_1\text{-}C_6)$ acylamino;


25 R^{12} is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, $(C_1\text{-}C_6)$ alkyl, trifluoromethyl $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, halo, $(C_1\text{-}C_6)$ acyl, $(C_1\text{-}C_6)$ alkylamino, $((C_1\text{-}C_6)$ alkyl) $_2$ amino, amino $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy-CO-NH, $(C_1\text{-}C_6)$ alkylamino-CO-, $(C_2\text{-}C_6)$ alkenyl, $(C_2\text{-}C_6)$ alkynyl, $(C_1\text{-}C_6)$ alkylamino, hydroxy $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ acyloxy $(C_1\text{-}C_6)$ alkyl, nitro, cyano $(C_1\text{-}C_6)$ alkyl, halo $(C_1\text{-}C_6)$ alkyl, nitro $(C_1\text{-}C_6)$ alkyl, trifluoromethyl, trifluoromethyl $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ acylamino, $(C_1\text{-}C_6)$ acylamino $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy $(C_1\text{-}C_6)$ acylamino, amino $(C_1\text{-}C_6)$ acyl, amino $(C_1\text{-}C_6)$ acyl $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkylamino $(C_1\text{-}C_6)$

5 C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl, R¹⁵C(O)NH, R¹⁵OC(O)NH, R¹⁵NHC(O)NH, (C₁-C₆)alkyl-S(O)_m, (C₁-C₆)alkyl-S(O)_m-(C₁-C₆)alkyl, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m-(C₁-C₆)alkyl, R¹⁵S(O)_m R¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl;

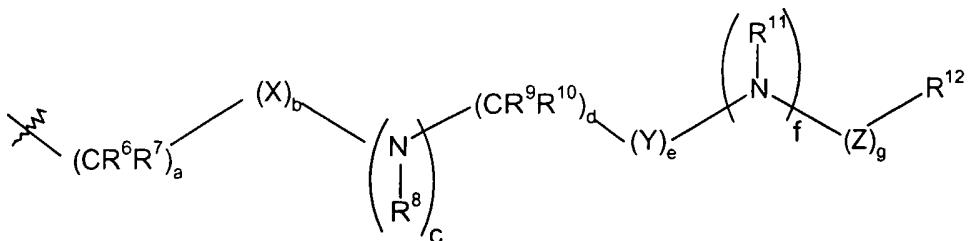
10 R² and R³ are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl, (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₆-C₁₀)arylamino, (C₁-C₆)alkylthio, (C₆-C₁₀)arylthio, (C₁-C₆)alkylsulfinyl, (C₆-C₁₀)arylsulfinyl, (C₁-C₆)alkylsulfonyl, (C₆-C₁₀)arylsulfonyl, (C₁-C₆)acyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkylamino-CO-, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-(C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkoxy, benzyloxycarbonyl(C₁-C₆)alkoxy, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkoxy, (C₆-C₁₀)aryl, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonylamino, (C₆-C₁₀)aryl(C₁-C₆)alkoxycarbonylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₁-C₆)alkylamino(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)alkyl, hydroxy, (C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)arylamino-CO-NH-, (C₅-C₉)heteroarylarnino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino-CO-NH-(C₁-C₆)alkyl, (C₆-C₁₀)arylamino-CO-NH-(C₁-C₆)alkyl, (C₅-C₉)heteroarylarnino-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₆-C₁₀)arylsulfonyl, (C₆-C₁₀)arylsulfonylamino, (C₆-C₁₀)arylsulfonylamino(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₅-C₉)heteroaryl or (C₂-C₉)heterocycloalkyl;


5 effective in treating such a condition.

The present invention also relates to a pharmaceutical composition for treating or preventing chronic organ transplant rejection in a mammal, including a human, comprising an amount of a compound of the formula

10 or the pharmaceutically acceptable salt thereof; wherein

R^1 is a group of the formula .



wherein y is 0, 1 or 2;

15 R^4 is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, nitro, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl or (C_1-C_6) acylamino; or R^4 is (C_3-C_{10}) cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_6) acyloxy, (C_1-C_6) acylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, nitro (C_1-C_6) alkyl or (C_1-C_6) acylamino;

20 R^5 is (C_2-C_9) heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo, (C_1-C_6) acyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-NH, (C_1-C_6) alkylamino-CO-, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkylamino, amino (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alkyl, (C_1-C_6) acyloxy (C_1-C_6) alkyl, nitro, cyano (C_1-C_6) alkyl, halo (C_1-C_6) alkyl, nitro (C_1-C_6) alkyl, trifluoromethyl, trifluoromethyl (C_1-C_6) alkyl, (C_1-C_6) acylamino, (C_1-C_6) acylamino (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) acylamino, amino (C_1-C_6) acyl, amino (C_1-C_6) acyl (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) acyl, $((C_1-C_6)$ alkyl)₂amino (C_1-C_6) acyl, $R^{15}R^{16}N-CO-O-$, $R^{15}R^{16}N-$

5 CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_mR¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl; or a group of the formula

II

wherein a is 0, 1, 2, 3 or 4;

10 b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

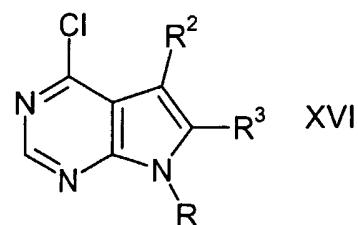
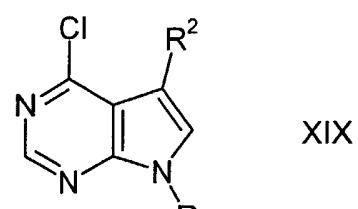
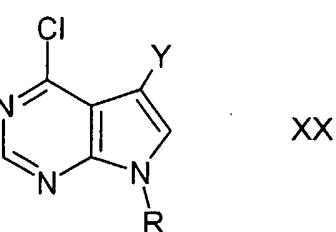
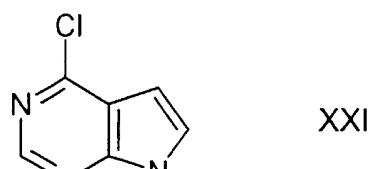
X is S(O)_n wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;

Y is S(O)_n wherein n is 0, 1 or 2; or carbonyl; and

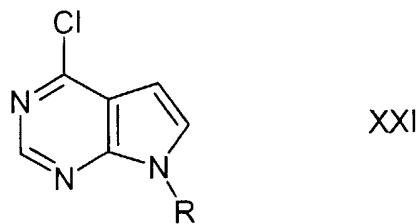
Z is carbonyl, C(O)O-, C(O)NR- or S(O)_n wherein n is 0, 1 or 2;

15 R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen or (C₁-C₆)alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

20 R¹² is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl, R¹⁵C(O)NH, R¹⁵OC(O)NH, R¹⁵NHC(O)NH, (C₁-C₆)alkyl-S(O)_m, (C₁-C₆)alkyl-S(O)_m-(C₁-C₆)alkyl, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_mR¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl;

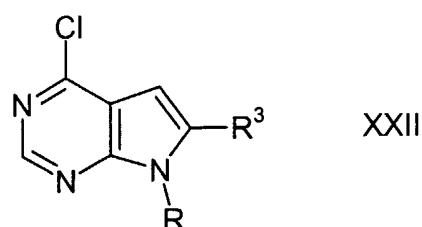




5 R^2 and R^3 are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, trifluoromethyl, trifluoromethoxy, (C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, (C_3 - C_{10})cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C_1 - C_6)alkylthio, (C_1 - C_6)alkylamino, $((C_1$ - $C_6)$ alkyl $)_2$ amino, (C_5 - C_9)heteroaryl, (C_2 - C_9)heterocycloalkyl, (C_3 - C_9)cycloalkyl or (C_6 - C_{10})aryl; or R^2 and R^3 are each independently (C_3 - C_{10})cycloalkyl, (C_3 - C_{10})cycloalkoxy, (C_1 - C_6)alkylamino, $((C_1$ - $C_6)$ alkyl $)_2$ amino, (C_6 - C_{10})aryl amino, (C_1 - C_6)alkylthio, (C_6 - C_{10})arylthio, (C_1 - C_6)alkylsulfinyl, (C_6 - C_{10})aryl sulfinyl, (C_1 - C_6)alkylsulfonyl, (C_6 - C_{10})aryl sulfonyl, (C_1 - C_6)acyl, (C_1 - C_6)alkoxy-
10 CO-NH-, (C_1 - C_6)alkylamino-CO-, (C_5 - C_9)heteroaryl, (C_2 - C_9)heterocycloalkyl or (C_6 - C_{10})aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C_1 - C_6)alkyl, (C_1 - C_6)alkyl-CO-NH-, (C_1 - C_6)alkoxy-CO-NH-, (C_1 - C_6)alkyl-CO-NH-(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy-CO-NH-(C_1 - C_6)alkoxy, carboxy, carboxy(C_1 - C_6)alkyl, carboxy(C_1 - C_6)alkoxy,
15 20 benzyloxycarbonyl(C_1 - C_6)alkoxy, (C_1 - C_6)alkoxycarbonyl(C_1 - C_6)alkoxy, (C_6 - C_{10})aryl, amino, amino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxycarbonylamino, (C_6 - C_{10})aryl(C_1 - C_6)alkoxycarbonylamino, (C_1 - C_6)alkylamino, $((C_1$ - $C_6)$ alkyl $)_2$ amino, (C_1 - C_6)alkylamino(C_1 - C_6)alkyl, $((C_1$ - $C_6)$ alkyl $)_2$ amino(C_1 - C_6)alkyl, hydroxy, (C_1 - C_6)alkoxy, carboxy, carboxy(C_1 - C_6)alkyl, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkoxycarbonyl(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy-CO-NH-, (C_1 - C_6)alkyl-CO-NH-, cyano, (C_5 - C_9)heterocycloalkyl, amino-CO-NH-, (C_1 - C_6)alkylamino-CO-NH-, $((C_1$ - $C_6)$ alkyl $)_2$ amino-CO-NH-, (C_6 - C_{10})aryl amino-CO-NH-, (C_5 - C_9)heteroaryl amino-CO-NH-, (C_1 - C_6)alkylamino-CO-NH-(C_1 - C_6)alkyl, $((C_1$ - $C_6)$ alkyl $)_2$ amino-CO-NH-(C_1 - C_6)alkyl, (C_6 - C_{10})aryl amino-CO-NH-(C_1 - C_6)alkyl, (C_5 - C_9)heteroaryl amino-CO-NH-(C_1 - C_6)alkyl, (C_6 - C_{10})aryl sulfonylamino(C_1 - C_6)alkyl, (C_6 - C_{10})aryl sulfonyl, (C_6 - C_{10})aryl sulfonylamino, (C_6 - C_{10})aryl sulfonylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkyl sulfonylamino, (C_1 - C_6)alkyl sulfonyl, (C_5 - C_9)heteroaryl or (C_2 - C_9)heterocycloalkyl, effective in such disorders or conditions and a pharmaceutically acceptable carrier.

5


Detailed Description of the Invention

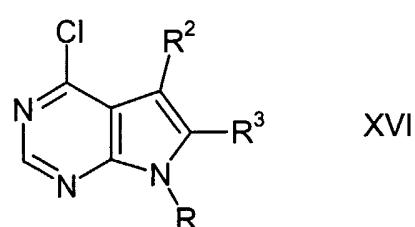
The following reaction Schemes illustrate the preparation of the compounds of the present invention. Unless otherwise indicated R^2 , R^3 , R^4 and R^5 in the reaction Schemes and the discussion that follow are defined as above.

5

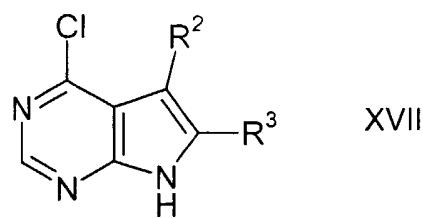

PREPARATION A

5

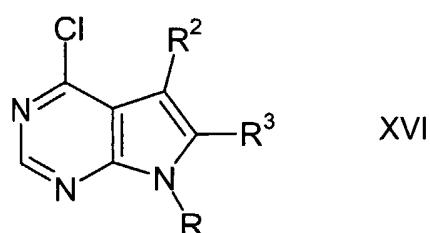
PREPARATION B


XXI

1

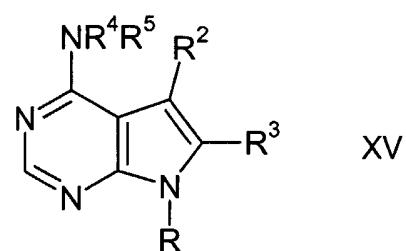

XXII

2

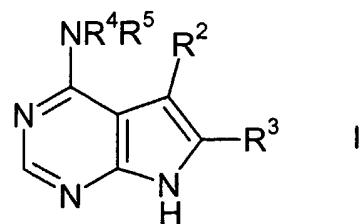

XVI

5

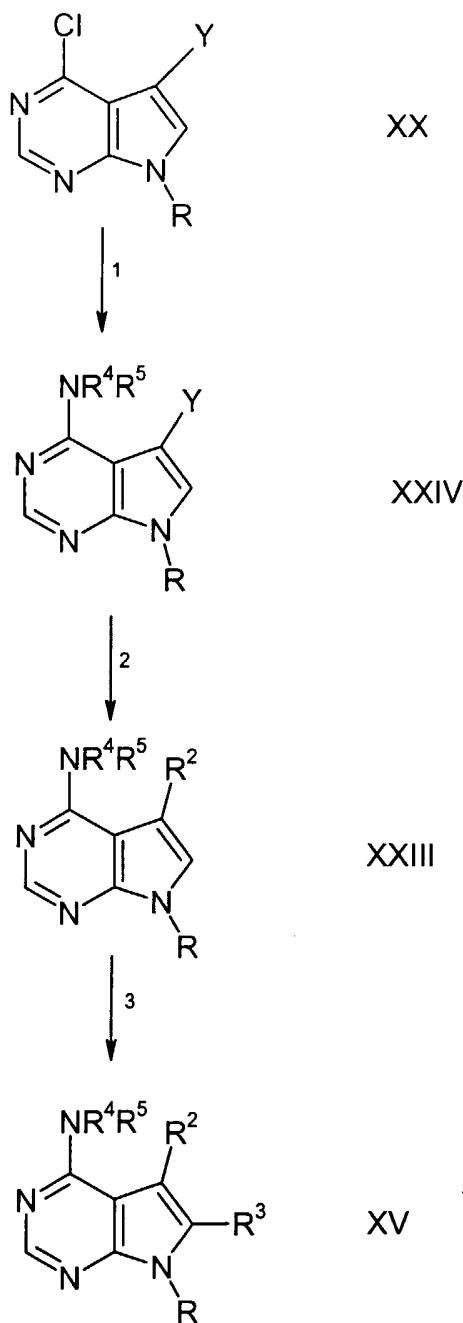
SCHEME 1


XVII

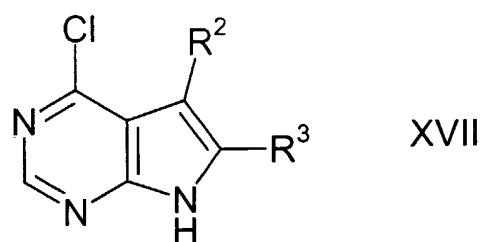
1


XVI

2

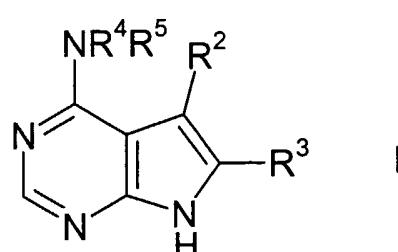

XV

3



I

5


SCHEME 2

5

SCHEME 3

XVII

1

I

10

5 In reaction 1 of Preparation A, the 4-chloropyrrolo[2,3-d]pyrimidine compound of formula **XXI**, wherein R is hydrogen or a protecting group such as benzenesulfonyl or benzyl, is converted to the 4-chloro-5-halopyrrolo[2,3-d]pyrimidine compound of formula **XX**, wherein Y is chloro, bromo or iodo, by reacting **XXI** with N-chlorosuccinimide, N-bromosuccinimide or N-iodosuccinimide. The reaction mixture
10 is heated to reflux, in chloroform, for a time period between about 1 hour to about 3 hours, preferably about 1 hour. Alternatively, in reaction 1 of Preparation A, the 4-chloropyrrolo[2,3-d]pyrimidine of formula **XXI**, wherein R is hydrogen, is converted to the corresponding 4-chloro-5-nitropyrrolo[2,3-d]pyrimidine of formula **XX**, wherein Y is nitro, by reacting **XXI** with nitric acid in sulfuric acid at a temperature between
15 about -10°C to about 10°C, preferably about 0°C, for a time period between about 5 minutes to about 15 minutes, preferably about 10 minutes. The compound of formula **XXI**, wherein Y is nitro, is converted to the corresponding 4-chloro-5-aminopyrrolo[2,3-d]pyrimidine of the formula **XX**, wherein Y is amino, by reacting **XXI** under a variety of conditions known to one skilled in the art such as palladium
20 hydrogenolysis or tin(IV)chloride and hydrochloric acid.

 In reaction 2 of Preparation A, the 4-chloro-5-halopyrrolo[2,3-d]pyrimidine compound of formula **XX**, wherein R is hydrogen, is converted to the corresponding compound of formula **XIX**, wherein R² is (C₁-C₆)alkyl or benzyl, by treating **XX** with N-butyllithium, at a temperature of about -78°C, and reacting the dianion
25 intermediate so formed with an alkylhalide or benzylhalide at a temperature between about -78°C to room temperature, preferably room temperature. Alternatively, the dianion so formed is reacted with molecular oxygen to form the corresponding 4-chloro-5-hydroxypyrrrolo[2,3-d]pyrimidine compound of formula **XIX**, wherein R² is hydroxy. The compound of formula **XX**, wherein Y is bromine or iodine and R is
30 benzenesulfonate, is converted to the compound of formula **XIX**, wherein R² is (C₆-C₁₂)aryl or vinyl, by treating **XX** with N-butyllithium, at a temperature of about -78°C, followed by the addition of zinc chloride, at a temperature of about -78°C. The corresponding organo zinc intermediate so formed is then reacted with aryl iodide or vinyl iodide in the presence of a catalytic quantity of palladium. The reaction mixture
35 is stirred at a temperature between about 50°C to about 80°C, preferably about 70°C, for a time period between about 1 hour to about 3 hours, preferably about 1 hour.

5 In reaction 3 of Preparation A, the compound of formula **XIX** is converted to the corresponding compound of formula **XVI** by treating **XIX** with N-butyllithium, lithium diisopropylamine or sodium hydride, at a temperature of about -78°C, in the presence of a polar aprotic solvent, such as tetrahydrofuran. The anionic intermediate so formed is further reacted with (a) alkylhalide or benzylhalide, at a
10 temperature between about -78°C to room temperature, preferably -78 °C, when R³ is alkyl or benzyl; (b) an aldehyde or ketone, at a temperature between about -78°C to room temperature, preferably -78°C, when R³ is alkoxy; and (c) zinc chloride, at a temperature between about -78°C to room temperature, preferably -78°C, and the corresponding organozinc intermediate so formed is then reacted with aryliodide or
15 vinyl iodide in the presence of a catalytic quantity of palladium. The resulting reaction mixture is stirred at a temperature between about 50°C to about 80°C, preferably about 70°C, for a time period between about 1 hour to about 3 hours, preferably about 1 hour. Alternatively, the anion so formed is reacted with molecular oxygen to form the corresponding 4-chloro-6-hydroxypyrrolo[2,3-d]pyrimidine
20 compound of formula **XVI**, wherein R³ is hydroxy.

 In reaction 1 of Preparation B, the 4-chloropyrrolo[2,3-d]pyrimidine compound of formula **XXI** is converted to the corresponding compound of formula **XXII**, according to the procedure described above in reaction 3 of Preparation A.

25 In reaction 2 of Preparation B, the compound of formula **XXII** is converted to the corresponding compound of formula **XVI**, according to the procedures described above in reactions 1 and 2 of Preparation A.

 In reaction 1 of Scheme 1, the 4-chloropyrrolo[2,3-d]pyrimidine compound of formula **XVII** is converted to the corresponding compound of formula **XVI**, wherein R is benzenesulfonyl or benzyl, by treating **XVII** with benzenesulfonyl chloride, 30 benzylchloride or benzylbromide in the presence of a base, such as sodium hydride or potassium carbonate, and a polar aprotic solvent, such as dimethylformamide or tetrahydrofuran. The reaction mixture is stirred at a temperature between about 0°C to about 70°C, preferably about 30°C, for a time period between about 1 hour to about 3 hours, preferably about 2 hours.

35 In reaction 2 of Scheme 1, the 4-chloropyrrolo[2,3-d]pyrimidine compound of formula **XVI** is converted to the corresponding 4-aminopyrrolo[2,3-d]pyrimidine compound of formula **XV** by coupling **XVI** with an amine of the formula HNR⁴R⁵. The

5 reaction is carried out in an alcohol solvent, such as tert-butanol, methanol or ethanol, or other high boiling organic solvents, such as dimethylformamide, triethylamine, 1,4-dioxane or 1,2-dichloroethane, at a temperature between about 60°C to about 120°C, preferably about 80°C. Typical reaction times are between about 2 hours to about 48 hours, preferably about 16 hours. When R⁵ is a nitrogen 10 containing heterocycloalkyl group, each nitrogen must be protected by a protecting group, such a benzyl. Removal of the R⁵ protecting group is carried out under conditions appropriate for that particular protecting group in use which will not affect the R protecting group on the pyrrolo[2,3-d]pyrimidine ring. Removal of the R⁵ protecting group, when benzyl, is carried out in an alcohol solvent, such as ethanol, 15 in the present of hydrogen and a catalyst, such as palladium hydroxide on carbon. The R⁵ nitrogen containing heterocycloalkyl group so formed may be further reacted with a variety of different electrophiles of formula II. For urea formation, electrophiles of formula II such as isocyanates, carbamates and carbamoyl chlorides are reacted with the R⁵ nitrogen of the heteroalkyl group in a solvent, such as acetonitrile or 20 dimethylformamide, in the presence of a base, such as sodium or potassium carbonate, at a temperature between about 20°C to about 100 °C for a time period between about 24 hours to about 72 hours. For amide and sulfonamide formation, electrophiles of formula II, such as acylchlorides and sulfonyl chlorides, are reacted with the R⁵ nitrogen of the heteroalkyl group in a solvent such as methylene chloride 25 in the presence of a base such as pyridine at ambient temperatures for a time period between about 12 hours to about 24 hours. Amide formation may also be carried out by reacting a carboxylic acid with the heteroalkyl group in the presence of a carbodiimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide in a solvent such as methylene chloride at ambient temperatures for 12-24 hours. For alkyl 30 formation, electrophiles of formula II, such as α,β-unsaturated amides, acids, nitriles, esters, and α-halo amides, are reacted with the R⁵ nitrogen of the heteroalkyl group in a solvent such as methanol at ambient temperatures for a time period between about 12 hours to about 18 hours. Alkyl formation may also be carried out by reacting aldehydes with the heteroalkyl group in the presence of a reducing agent, 35 such as sodium cyanoborohydride, in a solvent, such as methanol, at ambient temperature for a time period between about 12 hours to about 18 hours.

5 In reaction 3 of Scheme 1, removal of the protecting group from the compound of formula **XV**, wherein R is benzenesulfonyl, to give the corresponding compound of formula **I**, is carried out by treating **XV** with an alkali base, such as sodium hydroxide or potassium hydroxide, in an alcohol solvent, such as methanol or ethanol, or mixed solvents, such as alcohol/tetrahydrofuran or alcohol/water. The 10 reaction is carried out at room temperature for a time period between about 15 minutes to about 1 hour, preferably 30 minutes. Removal of the protecting group from the compound of formula **XV**, wherein R is benzyl, is conducted by treating **XV** with sodium in ammonia at a temperature of about -78°C for a time period between about 15 minutes to about 1 hour.

15 In reaction 1 of Scheme 2, the 4-chloropyrrolo[2,3-d]pyrimidine compound of formula **XX** is converted to the corresponding 4-aminopyrrolo[2,3-d]pyrimidine compound of formula **XXIV**, according to the procedure described above in reaction 2 of Scheme 1.

20 In reaction 2 of Scheme 2, the 4-amino-5-halopyrrolo[2,3-d]pyrimidine compound of formula **XXIV**, wherein R is benzenesulfonate and Z is bromine or iodine, is converted to the corresponding compound of formula **XXIII** by reacting **XXIV** with (a) arylboronic acid, when R² is aryl, in an aprotic solvent, such tetrahydrofuran or dioxane, in the presence of a catalytic quantity of palladium (0) at a temperature between about 50°C to about 100°C, preferably about 70°C, for a time 25 period between about 2 hours to about 48 hours, preferably about 12 hours; (b) alkynes, when R² is alkynyl, in the presence of a catalytic quantity of copper (I) iodide and palladium (0), and a polar solvent, such as dimethylformamide, at room temperature, for a time period between about 1 hour to about 5 hours, preferably about 3 hours; and (c) alkenes or styrenes, when R² is vinyl or styrenyl, in the 30 presence of a catalytic quantity of palladium in dimethylformamide, dioxane or tetrahydrofuran, at a temperature between about 80°C to about 100°C, preferably about 100°C, for a time period between about 2 hours to about 48 hours, preferably about 48 hours.

35 In reaction 3 of Scheme 2, the compound of formula **XXIII** is converted to the corresponding compound of formula **XV**, according to the procedure described above in reaction 3 of Preparation A.

5 In reaction 1 of Scheme 3, the compound of formula **XVII** is converted to the corresponding compound of formula **I**, according to the procedure described above in reaction 2 of Scheme 1.

The compounds of the present invention that are basic in nature are capable of forming a wide variety of different salts with various inorganic and organic acids.

10 Although such salts must be pharmaceutically acceptable for administration to animals, it is often desirable in practice to initially isolate the compound of the present invention from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by treatment with an alkaline reagent and subsequently convert the latter free base to a

15 pharmaceutically acceptable acid addition salt. The acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily

20 obtained. The desired acid salt can also be precipitated from a solution of the free base in an organic solvent by adding to the solution an appropriate mineral or organic acid.

Those compounds of the present invention that are acidic in nature, are capable of forming base salts with various pharmacologically acceptable cations.

25 Examples of such salts include the alkali metal or alkaline-earth metal salts and particularly, the sodium and potassium salts. These salts are all prepared by conventional techniques. The chemical bases which are used as reagents to prepare the pharmaceutically acceptable base salts of this invention are those which form non-toxic base salts with the acidic compounds of the present invention. Such non-toxic base salts include those derived from such pharmacologically acceptable cations as sodium, potassium calcium and magnesium, etc. These salts can easily be prepared by treating the corresponding acidic compounds with an aqueous solution containing the desired pharmacologically acceptable cations, and then evaporating the resulting solution to dryness, preferably under reduced pressure. Alternatively, they may also

30 be prepared by mixing lower alkanolic solutions of the acidic compounds and the desired alkali metal alkoxide together, and then evaporating the resulting solution to dryness in the same manner as before. In either case, stoichiometric quantities of

35

5 reagents are preferably employed in order to ensure completeness of reaction and maximum yields of the desired final product.

The compositions of the present invention may be formulated in a conventional manner using one or more pharmaceutically acceptable carriers. Thus, the active compounds of the invention may be formulated for oral, buccal, intranasal, 10 parenteral (e.g., intravenous, intramuscular or subcutaneous) or rectal administration or in a form suitable for administration by inhalation or insufflation. The active compounds of the invention may also be formulated for sustained delivery.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with 15 pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may 20 be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending 25 agents (e.g., sorbitol syrup, methyl cellulose or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters or ethyl alcohol); and preservatives (e.g., methyl or propyl p-hydroxybenzoates or sorbic acid).

For buccal administration, the composition may take the form of tablets or 30 lozenges formulated in conventional manner.

The active compounds of the invention may be formulated for parenteral administration by injection, including using conventional catheterization techniques or infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions 35 may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulating agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for reconstitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

5 The active compounds of the invention may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

10 For intranasal administration or administration by inhalation, the active compounds of the invention are conveniently delivered in the form of a solution or suspension from a pump spray container that is squeezed or pumped by the patient or as an aerosol spray presentation from a pressurized container or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by 15 providing a valve to deliver a metered amount. The pressurized container or nebulizer may contain a solution or suspension of the active compound. Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated containing a powder mix of a compound of the invention and a suitable powder base such as lactose or starch.

20 A proposed dose of the active compounds of the invention for oral, parenteral or buccal administration to the average adult human for the treatment of the conditions referred to above (e.g., rheumatoid arthritis) is 0.1 to 1000 mg of the active ingredient per unit dose which could be administered, for example, 1 to 4 times per day.

25 Aerosol formulations for treatment of the conditions referred to above (e.g., asthma) in the average adult human are preferably arranged so that each metered dose or "puff" of aerosol contains 20 μ g to 1000 μ g of the compound of the invention. The overall daily dose with an aerosol will be within the range 0.1 mg to 1000 mg. Administration may be several times daily, for example 2, 3, 4 or 8 times, giving for 30 example, 1, 2 or 3 doses each time.

35 A compound of formula (I) administered in a pharmaceutically acceptable form either alone or in combination with one or more additional agents which modulate a mammalian immune system or with antiinflammatory agents, agents which may include but are not limited to cyclosporin A (e.g. Sandimmune® or Neoral®, rapamycin, FK-506 (tacrolimus), leflunomide, deoxyspergualin, mycophenolate (e.g. Cellcept®, azathioprine (e.g. Imuran®), daclizumab (e.g. Zenapax®), OKT3 (e.g. Orthocolone®), AtGam, aspirin, acetaminophen, ibuprofen, naproxen, piroxicam, and antiinflammatory steroids (e.g. prednisolone or dexamethasone); and such agents may be administered

5 as part of the same or separate dosage forms, via the same or different routes of administration, and on the same or different administration schedules according to standard pharmaceutical practice.

10 FK506 (Tacrolimus) is given orally at 0.10-0.15 mg/kg body weight, every 12 hours, within first 48 hours postoperative. Dose is monitored by serum Tacrolimus trough levels.

Cyclosporin A (Sandimmune oral or intravenous formulation, or Neoral®, oral solution or capsules) is given orally at 5 mg/kg body weight, every 12 hours within 48 hours postoperative. Dose is monitored by blood Cyclosporin A trough levels.

15 The active agents can be formulated for sustained delivery according to methods well known to those of ordinary skill in the art. Examples of such formulations can be found in United States Patents 3,538,214, 4,060,598, 4,173,626, 3,119,742, and 3,492,397.

20 The ability of the compounds of formula I or their pharmaceutically acceptable salts to inhibit Janus Kinase 3 and, consequently, demonstrate their effectiveness for treating disorders or conditions characterized by Janus Kinase 3 is shown by the following in vitro assay tests.

Biological Assay

JAK3 (JH1:GST) Enzymatic Assay

25 The JAK3 kinase assay utilizes a protein expressed in baculovirus-infected SF9 cells (a fusion protein of GST and the catalytic domain of human JAK3) purified by affinity chromatography on glutathione-Sepharose. The substrate for the reaction is poly-Glutamic acid-Tyrosine (PGT (4:1), Sigma catalog # P0275), coated onto Nunc Maxi Sorp plates at 100 µg/ml overnight at 37°C. The morning after coating, the plates are washed three times and JAK3 is added to the wells containing 30 100 µl of kinase buffer (50 mM HEPES, pH 7.3, 125 mM NaCl, 24 mM MgCl₂)+ 0.2 µM ATP + 1 mM Na orthovanadate.) The reaction proceeds for 30 minutes at room temperature and the plates are washed three more times. The level of phosphorylated tyrosine in a given well is quantitated by standard ELISA assay utilizing an anti-phosphotyrosine antibody (ICN PY20, cat. #69-151-1).

35 Inhibition of Human IL-2 Dependent T-Cell Blast Proliferation

This screen measures the inhibitory effect of compounds on IL-2 dependent T-Cell blast proliferation *in vitro*. Since signaling through the IL-2 receptor requires

5 JAK-3, cell active inhibitors of JAK-3 should inhibit IL-2 dependent T-Cell blast proliferation.

The cells for this assay are isolated from fresh human blood. After separation of the mononuclear cells using Accuspin System-Histopaque-1077 (Sigma # A7054), primary human T-Cells are isolated by negative selection using 10 Lympho-Kwik T (One Lambda, Inc., Cat # LK-50T). T-Cells are cultured at 1-2 x 10⁶/ml in Media (RPMI + 10% heat-inactivated fetal calf serum (Hyclone Cat # A-1111-L) + 1% Penicillin/Streptomycin (Gibco)) and induce to proliferate by the addition of 10ug/ml PHA (Murex Diagnostics, Cat # HA 16). After 3 days at 37°C in 5% CO₂, cells are washed 3 times in Media, resuspended to a density of 1-2 x 10⁶ 15 cells/ml in Media plus 100 Units/ml of human recombinant IL-2 (R&D Systems, Cat # 202-IL). After 1 week the cells are IL-2 dependent and can be maintained for up to 3 weeks by feeding twice weekly with equal volumes of Media + 100 Units/ml of IL-2.

To assay for a test compounds ability to inhibit IL-2 dependent T-Cell proliferation, IL-2 dependent cells are washed 3 times, resuspended in media and 20 then plated (50,000 cells/well/0.1ml) in a Flat-bottom 96-well microtiter plate (Falcon # 353075). From a 10 mM stock of test compound in DMSO, serial 2-fold dilutions of compound are added in triplicate wells starting at 10 uM. After one hour, 10 Units/ml of IL-2 is added to each test well. Plates are then incubated at 37°C, 5% CO₂ for 72 hours. Plates are then pulsed with ³H-thymidine (0.5 uCi/well) (NEN Cat # NET-25 027A), and incubated an additional 18 hours. Culture plates are then harvested with a 96-well plate harvester and the amount of ³H-thymidine incorporated into proliferating cells is determined by counting on a Packard Top Count scintillation counter. Data is analyzed by plotting the % inhibition of proliferation verses the concentration of test compound. An IC₅₀ value (uM) is determined from this plot.

30 The following Examples illustrate the preparation of the compounds of the present invention but it is not limited to the details thereof. Melting points are uncorrected. NMR data are reported in parts per million (δ) and are referenced to the deuterium lock signal from the sample solvent (deuteriochloroform unless otherwise specified). Commercial reagents were utilized without further purification. 35 THF refers to tetrahydrofuran. DMF refers to N,N-dimethylformamide. Low Resolution Mass Spectra (LRMS) were recorded on either a Hewlett Packard 5989®, utilizing chemical ionization (ammonium), or a Fisons (or Micro Mass) Atmospheric Pressure Chemical Ionization (APCI) platform which uses a 50/50

5 mixture of acetonitrile/water with 0.1% formic acid as the ionizing agent. Room or ambient temperature refers to 20-25°C.

Example 1

1-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-ethanone

10

Method A

(1-Benzyl-4-methyl-piperidin-3-yl)-methyl-amine

To a stirred solution of 1-benzyl-4-methyl-piperidin-3-one (2.3 grams, 11.5 mmol), prepared by the methods of Iorio, M.A. and Damia, G., *Tetrahedron*, **26**, 5519 (1970) and Grieco *et al.*, *Journal of the American Chemical Society*, **107**, 1768 (1985), (modified using 5% methanol as a co-solvent), both references are incorporated by reference in their entirety, dissolved in 23 mL of 2 M methylamine in tetrahydrofuran was added 1.4 mL (23 mmol) of acetic acid and the resulting mixture stirred in a sealed tube for 16 hours at room temperature. Triacetoxy sodium borohydride (4.9 grams, 23 mmol) was added and the new mixture stirred at room temperature in a sealed tube for 24 h, at which time, the reaction was quenched upon addition of 1 N sodium hydroxide (50 mL). The reaction mixture was then extracted 3 x 80 mL with ether, the combined ether layers dried over sodium sulfate (Na_2SO_4) and concentrated to dryness in vacuo affording 1.7 grams (69%) of the title compound as a white solid. LRMS: 219.1 (M+1).

25

Method B

(1-Benzyl-4-methyl-piperidin-3-yl)-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

A solution of 4-chloropyrrolo[2,3-d]pyrimidine (2.4 grams, 15.9 mmol), prepared by the method of Davoll, J. Am. Chem. Soc., **82**, 131 (1960), which is incorporated by reference in its entirety, and the product from Method A (1.7 grams, 7.95 mmol) dissolved in 2 equivalents of triethylamine was heated in a sealed tube at 100 °C for 3 days. Following cooling to room temperature and concentration under reduced pressure, the residue was purified by flash chromatography (silica; 3% methanol in dichloromethane) affording 1.3 grams (50%) of the title compound as a colorless oil. LRMS: 336.1 (M+1).

5

Method CMethyl-(4-methyl-piperidin-3-yl)-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

To the product from Method B (0.7 grams, 2.19 mmol) dissolved in 15 mL of ethanol was added 1.5 mL of 2 N hydrochloric acid and the reaction mixture degassed by nitrogen purge. To the reaction mixture was then added 0.5 grams of 10 20% palladium hydroxide on carbon (50% water) (Aldrich) and the resulting mixture shaken (Parr-Shaker) under a 50 psi atmosphere of hydrogen at room temperature for 2 days. The Celite filtered reaction mixture was concentrated to dryness in vacuo and the residue purified by flash chromatography (silica; 5% methanol in dichloromethane) affording 0.48 grams (90%) of the title compound. LRMS: 246.1 15 (M+1).

Method D1-[4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-ethanone

To a stirred solution of the product from Method C (0.03 grams, 0.114 mmol) 20 dissolved in 5 mL of 10:1 dichloromethane/pyridine was added (0.018 grams, 0.228 mmol) of acetylchloride and the resulting mixture stirred at room temperature for 18 hours. The reaction mixture was then partitioned between dichloromethane and saturated sodium bicarbonate (NaHCO₃). The organic layer was washed again with saturated NaHCO₃, dried over sodium sulfate and concentrated to dryness in vacuo. 25 The residue was purified by preparative thin layer chromatography (PTLC) (silica; 4% methanol in dichloromethane) affording 0.005 mg (15%) of the title compound as a colorless oil. LRMS: 288.1 (M+1).

The title compounds for examples 2-26 were prepared by a method analogous to that described in Example 1.

30

Example 2[1-(2-Amino-ethanesulfonyl)-4-methyl-piperidin-3-yl]-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

[1-(2-Amino-ethanesulfonyl)-4-methyl-piperidin-3-yl]-methyl-amine. LRMS: 353.

35

5

Example 3(1-Ethanesulfonyl-4-methyl-piperidin-3-yl)-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

(1-Ethanesulfonyl-4-methyl-piperidin-3-yl)-methyl-amine. LRMS: 338.

Example 410 [1-(Butane-1-sulfonyl)-4-methyl-piperidin-3-yl]-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

[1-(Butane-1-sulfonyl)-4-methyl-piperidin-3-yl]-methyl-amine. LRMS: 366.

Example 515 4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid isobutyl ester

4-Methyl-3-methylamino-piperidine-1-carboxylic acid isobutyl ester. LRMS: 346.

Example 620 N-(2-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-sulfonyl}-ethyl)-propionamide

N-[2-(4-Methyl-3-methylamino-piperidine-1-sulfonyl)-ethyl]-propionamide. LRMS: 409.

Example 725 (2-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-sulfonyl}-ethyl)-carbamic acid methyl ester

[2-(4-Methyl-3-methylamino-piperidine-1-sulfonyl)-ethyl]-carbamic acid methyl ester. LRMS: 411.

Example 830 N-(2-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-sulfonyl}-ethyl)-isobutyramide

N-[2-(4-Methyl-3-methylamino-piperidine-1-sulfonyl)-ethyl]-isobutyramide. LRMS: 423.

Example 935 (1-Methanesulfonyl-piperidin-3-yl)-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

(1-Methanesulfonyl-piperidin-3-yl)-methyl-amine. LRMS: 310.

5

Example 10(1-Ethanesulfonyl-piperidin-3-yl)-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

(1-Ethanesulfonyl-piperidin-3-yl)-methyl-amine. LRMS: 324.

Example 1110 Methyl-[1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

(1-Propylsulfonyl-piperidin-3-yl)-methyl-amine. LRMS: 338.

Example 1215 [1-(Butane-1-sulfonyl)-piperidin-3-yl]-methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

(1-Butylsulfonyl-piperidin-3-yl)-methyl-amine. LRMS: 352.

Example 1320 2,2-Dimethyl-N-(2-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-sulfonyl}-ethyl)-propionamide

2,2-Dimethyl-N-[2-(4-methyl-3-methylamino-piperidine-1-sulfonyl)-ethyl]-propionamide. LRMS: 437.

Example 1425 3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]-piperidin-1-yl}-3-oxo-propionitrile

3-(4-Methyl-3-methylamino-piperidin-1-yl)-3-oxo-propionitrile. LRMS: 313.

Example 1530 (3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propyl)-carbamic acid tert-butyl ester

[3-(4-Methyl-3-methylamino-piperidin-1-yl)-3-oxo-propyl]-carbamic acid tert-butyl ester. LRMS: 417.

Example 16Methyl-[4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine

Methyl-[4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-amine. LRMS: 352.

5

Example 173-Amino-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one

3-Amino-1-(4-methyl-3-methylamino-piperidin-1-yl)-propan-1-one. LRMS: 317.

10

Example 182-Methoxy-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-ethanone

2-Methoxy-1-(4-methyl-3-methylamino-piperidin-1-yl)-ethanone. LRMS: 318.

15

Example 192-Dimethylamino-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-ethanone

2-Dimethylamino-1-(4-methyl-3-methylamino-piperidin-1-yl)-ethanone.

LRMS: 331.

20

Example 20(3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propyl)-carbamic acid tert-butyl ester

[3-(4-Methyl-3-methylamino-piperidin-1-yl)-3-oxo-propyl]-carbamic acid tert-butyl ester. LRMS: 417.

25

Example 213,3,3-Trifluoro-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one

3,3,3-Trifluoro-1-(4-methyl-3-methylamino-piperidin-1-yl)-propan-1-one.

30

Example 22N-(2-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-2-oxo-ethyl)-acetamide

N-[2-(4-Methyl-3-methylamino-piperidin-1-yl)-2-oxo-ethyl]-acetamide. LRMS: 345.

35

Example 233-Ethoxy-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one

3-Ethoxy-1-(4-methyl-3-methylamino-piperidin-1-yl)-propan-1-one. LRMS: 346.

5

Example 244-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid methylamide

4-Methyl-3-methylamino-piperidine-1-carboxylic acid methylamide. LRMS: 303.

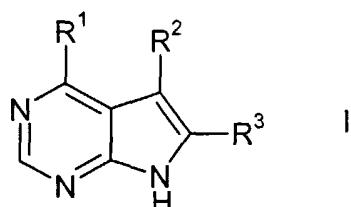
10

Example 254-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid diethylamide

4-Methyl-3-methylamino-piperidine-1-carboxylic acid diethylamide. LRMS: 345.

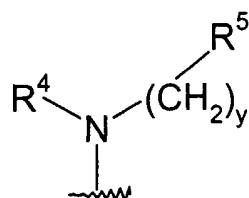
15

Example 26Methyl-[4-methyl-1-(2-methylamino-ethanesulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine


Methyl-[4-methyl-1-(2-methylamino-ethanesulfonyl)-piperidin-3-yl]-amine.
LRMS: 367.

20

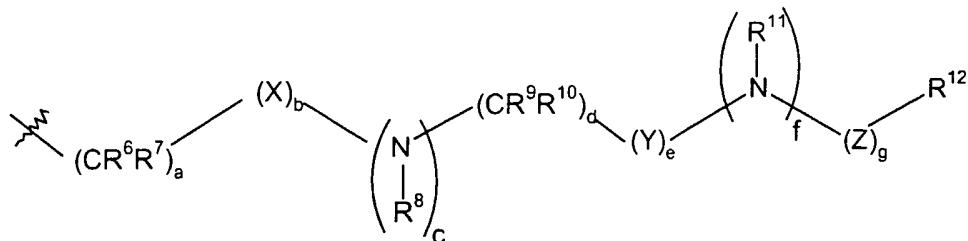
5


CLAIMS

1. A method of treating or preventing chronic organ transplant rejection in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

10 or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula



wherein y is 0, 1 or 2;

15 R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

20 R⁵ is (C₂-C₉)heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-

5 CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_mR¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl; or a group of the formula

II

wherein a is 0, 1, 2, 3 or 4;

10 b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

X is S(O)_n wherein n is 0, 1 or 2; oxygen, carbonyl or -C(=N-cyano)-;

Y is S(O)_n wherein n is 0, 1 or 2; or carbonyl; and

Z is carbonyl, C(O)O-, C(O)NR- or S(O)_n wherein n is 0, 1 or 2;

15 R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are each independently selected from the group consisting of hydrogen or (C₁-C₆)alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

20 R¹² is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl, R¹⁵C(O)NH, R¹⁵OC(O)NH, R¹⁵NHC(O)NH, (C₁-C₆)alkyl-S(O)_m, (C₁-C₆)alkyl-S(O)_m-

25 (C₁-C₆)alkyl, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl, R¹⁵S(O)_m R¹⁶N, R¹⁵S(O)_mR¹⁶N(C₁-C₆)alkyl wherein m is 0, 1 or 2 and R¹⁵ and R¹⁶ are each independently selected from hydrogen or (C₁-C₆)alkyl;

30

5 R^2 and R^3 are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl, trifluoromethoxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, (C_3-C_{10}) cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C_1-C_6) alkylthio, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_5-C_9) heteroaryl, (C_2-C_9) heterocycloalkyl, (C_3-C_9) cycloalkyl or (C_6-C_{10}) aryl; or R^2 and R^3 are each independently (C_3-C_{10}) cycloalkyl, (C_3-C_{10}) cycloalkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_6-C_{10}) aryl amino, (C_1-C_6) alkylthio, (C_6-C_{10}) arylthio, (C_1-C_6) alkylsulfinyl, (C_6-C_{10}) aryl sulfinyl, (C_1-C_6) alkylsulfonyl, (C_6-C_{10}) aryl sulfonyl, (C_1-C_6) acyl, (C_1-C_6) alkoxy-
10 15 20 25 30 CO-NH-, (C_1-C_6) alkylamino-CO-, (C_5-C_9) heteroaryl, (C_2-C_9) heterocycloalkyl or (C_6-C_{10}) aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C_1-C_6) alkyl, (C_1-C_6) alkyl-CO-NH-, (C_1-C_6) alkoxy-CO-NH-, (C_1-C_6) alkyl-CO-NH-(C_1-C_6)alkyl, (C_1-C_6) alkoxy-CO-NH-(C_1-C_6)alkoxy, carboxy, carboxy(C_1-C_6)alkyl, carboxy(C_1-C_6)alkoxy, benzyloxycarbonyl(C_1-C_6)alkoxy, (C_1-C_6) alkoxycarbonyl(C_1-C_6)alkoxy, (C_6-C_{10}) aryl, amino, amino(C_1-C_6)alkyl, (C_1-C_6) alkoxycarbonylamino, (C_6-C_{10}) aryl(C_1-C_6)alkoxycarbonylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_1-C_6) alkylamino(C_1-C_6)alkyl, $((C_1-C_6)$ alkyl)₂amino(C_1-C_6)alkyl, hydroxy, (C_1-C_6) alkoxy, carboxy, carboxy(C_1-C_6)alkyl, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkoxycarbonyl(C_1-C_6)alkyl, (C_1-C_6) alkoxy-CO-NH-, (C_1-C_6) alkyl-CO-NH-, cyano, (C_5-C_9) heterocycloalkyl, amino-CO-NH-, (C_1-C_6) alkylamino-CO-NH-, $((C_1-C_6)$ alkyl)₂amino-CO-NH-, (C_6-C_{10}) aryl amino-CO-NH-, (C_5-C_9) heteroaryl amino-CO-NH-, (C_1-C_6) alkylamino-CO-NH-(C_1-C_6)alkyl, $((C_1-C_6)$ alkyl)₂amino-CO-NH-(C_1-C_6)alkyl, (C_6-C_{10}) aryl amino-CO-NH-(C_1-C_6)alkyl, (C_5-C_9) heteroaryl amino-CO-NH-(C_1-C_6)alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkylsulfonyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino(C_1-C_6)alkyl, (C_6-C_{10}) aryl sulfonyl, (C_6-C_{10}) aryl sulfonylamino, (C_6-C_{10}) aryl sulfonylamino(C_1-C_6)alkyl, (C_1-C_6) alkylsulfonylamino, (C_1-C_6) alkylsulfonylamino(C_1-C_6)alkyl, (C_5-C_9) heteroaryl or (C_2-C_9) heterocycloalkyl;
35 40 45 50 55 effective in treating such a condition.

2. A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 0; d is 0; e is 0; f is 0; and g is 0.

3. A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 0; d is 1; e is 0; f is 0, and g is 0.

5 4. A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 0; f is 0; and g is 0.

5 5. A method according to claim 1, wherein a is 0; b is 1; X is $-C(=N=cyano)-$; c is 1; d is 0; e is 0; f is 0; and g is 0.

10 6. A method according to claim 1, wherein a is 0; b is 0; c is 0; d is 0; e is 0; f is 0; g is 1; and Z is $-C(O)-O-$.

7. A method according to claim 1, wherein a is 0; b is 1; X is $S(O)_n$; n is 2; c is 0; d is 0; e is 0; f is 0; and g is 0.

8. A method according to claim 1, wherein a is 0; b is 1; X is $S(O)_n$; n is 2; c is 0; d is 2; e is 0; f is 1; g is 1; and Z is carbonyl.

15 9. A method according to claim 1, wherein a is 0; b is 1; X is $S(O)_n$; n is 2; c is 0; d is 2; e is 0; f is 1; and g is 0.

10 10. A method according to claim 1, wherein a is 0; b is 1; X is carbonyl; c is 1; d is 0; e is 1; Y is $S(O)_n$; n is 2; f is 0; and g is 0.

20 11. A method according to claim 1, wherein a is 0; b is 1; X is $S(O)_n$; n is 2; c is 1; d is 0; e is 0; f is 0; and g is 0.

12. A method according to claim 1, wherein R^{12} is cyano, trifluoromethyl, (C_1-C_6) alkyl, trifluoromethyl(C_1-C_6)alkyl, (C_1-C_6) alkylamino, $((C_1-C_6)alkyl)_2amino$, $(C_2-C_6)alkynyl$, cyano(C_1-C_6)alkyl, $(C_1-C_6)alkyl-S(O)_m$ wherein m is 0, 1 or 2.

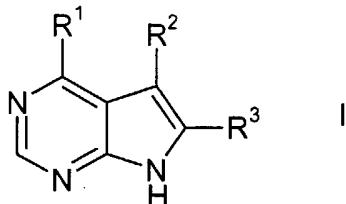
25 13. A method according to claim 1, wherein said compound is selected from the group consisting of:

Methyl-[4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amine;

4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid methyl ester;

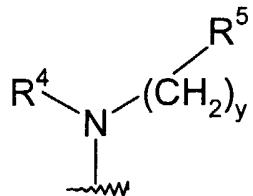
30 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;

4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxylic acid dimethylamide;


35 ({4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-carbonyl}-amino)-acetic acid ethyl ester;

3-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-3-oxo-propionitrile;

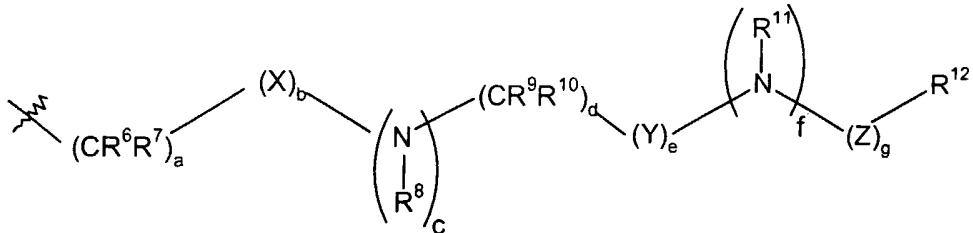
5 3,3,3-Trifluoro-1-{4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
1-{4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-but-3-yn-1-one;
1-{3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-
10 piperidin-1-yl}-propan-1-one;
1-{3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-methyl-
piperidin-1-yl}-propan-1-one;
N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-N'-
propyl-piperidine-1-carboxamidine;
15 N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
piperidine-1-carboxamidine;
Methyl-[(3R,4R)-4-methyl-1-(propane-1-sulfonyl)-piperidin-3-yl]-(7H-
pyrrolo[2,3-d]pyrimidin-4-yl)-amine;
(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
20 piperidine-1-carboxylic acid methyl ester;
3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)-amino]-piperidin-1-yl}-propan-1-one;
(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
piperidine-1-carboxylic acid dimethylamide;
25 {(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-
1-carbonyl}-amino)-acetic acid ethyl ester;
3-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
piperidin-1-yl}-3-oxo-propionitrile;
3,3,3-Trifluoro-1-{(3R,4R)-4-methyl-3-[methyl-(5-methyl-7H-pyrrolo[2,3-
30 d]pyrimidin-4-yl)-amino]-piperidin-1-yl}-propan-1-one;
1-{(3R,4R)-4-Methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
piperidin-1-yl}-but-3-yn-1-one;
1-{(3R,4R)-3-[(5-Chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-
methyl-piperidin-1-yl}-propan-1-one;
35 1-{(3R,4R)-3-[(5-Fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-methyl-amino]-4-
methyl-piperidin-1-yl}-propan-1-one;
(3R,4R)-N-cyano-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-
N'-propyl-piperidine-1-carboxamidine; and


5 (3R,4R)-N-cyano-4,N',N'-Trimethyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-amino]-piperidine-1-carboxamidine.

14. A method of treating or preventing acute organ transplant rejection in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula

or the pharmaceutically acceptable salt thereof; wherein

R¹ is a group of the formula



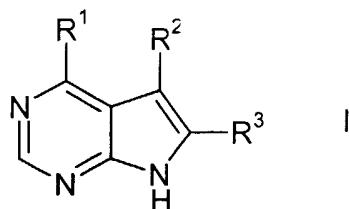
wherein y is 0, 1 or 2;

15 R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the 20 cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

25 R⁵ is (C₂-C₉)heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl,

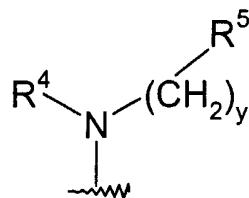
5 C_6)alkylamino(C_1 - C_6)acyl, $((\text{C}_1$ - $\text{C}_6)$ alkyl) $_2$ amino(C_1 - C_6)acyl, $\text{R}^{15}\text{R}^{16}\text{N}-\text{CO}-\text{O}-$, $\text{R}^{15}\text{R}^{16}\text{N}-$
 $\text{CO}-(\text{C}_1$ - $\text{C}_6)$ alkyl, $(\text{C}_1$ - $\text{C}_6)$ alkyl- $\text{S}(\text{O})_m$, $\text{R}^{15}\text{R}^{16}\text{NS}(\text{O})_m$, $\text{R}^{15}\text{R}^{16}\text{NS}(\text{O})_m$ (C_1 - C_6)alkyl,
 $\text{R}^{15}\text{S}(\text{O})_m\text{R}^{16}\text{N}$, $\text{R}^{15}\text{S}(\text{O})_m\text{R}^{16}\text{N}(\text{C}_1$ - $\text{C}_6)$ alkyl wherein m is 0, 1 or 2 and R^{15} and R^{16} are
each independently selected from hydrogen or (C_1 - C_6)alkyl; or a group of the formula

II


10 wherein a is 0, 1, 2, 3 or 4;
b, c, e, f and g are each independently 0 or 1;
d is 0, 1, 2, or 3;
X is $\text{S}(\text{O})_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or $-\text{C}(\text{=N-cyano})-$;
Y is $\text{S}(\text{O})_n$ wherein n is 0, 1 or 2; or carbonyl; and
15 Z is carbonyl, $\text{C}(\text{O})\text{O}-$, $\text{C}(\text{O})\text{NR}-$ or $\text{S}(\text{O})_n$ wherein n is 0, 1 or 2;
 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group
consisting of hydrogen or (C_1 - C_6)alkyl optionally substituted by deuterium, hydroxy,
amino, trifluoromethyl, (C_1 - C_6)acyloxy, (C_1 - C_6)acylamino, (C_1 - C_6)alkylamino, $((\text{C}_1$ - $\text{C}_6)$ alkyl) $_2$ amino, cyano, cyano(C_1 - C_6)alkyl, trifluoromethyl(C_1 - $\text{C}_6)$ alkyl, nitro, nitro(C_1 - 20 C_6)alkyl or (C_1 - C_6)acylamino;
 R^{12} is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C_1 - C_6)alkyl, trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, halo, (C_1 - C_6)acyl, (C_1 - C_6)alkylamino, $((\text{C}_1$ - $\text{C}_6)$ alkyl) $_2$ amino, amino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy-CO-NH, (C_1 - C_6)alkylamino-CO-, (C_2 - C_6)alkenyl, (C_2 - C_6) alkynyl, (C_1 - C_6)alkylamino, hydroxy(C_1 - 25 C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)acyloxy(C_1 - C_6)alkyl, nitro, cyano(C_1 - C_6)alkyl, halo(C_1 - C_6)alkyl, nitro(C_1 - C_6)alkyl, trifluoromethyl, trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)acylamino, (C_1 - C_6)acylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)acylamino, amino(C_1 - C_6)acyl, amino(C_1 - C_6)acyl(C_1 - C_6)alkyl, (C_1 - C_6)alkylamino(C_1 - C_6)acyl, $((\text{C}_1$ - $\text{C}_6)$ alkyl) $_2$ amino(C_1 - C_6)acyl, $\text{R}^{15}\text{R}^{16}\text{N}-\text{CO}-\text{O}-$, $\text{R}^{15}\text{R}^{16}\text{N}-\text{CO}-(\text{C}_1$ - $\text{C}_6)$ alkyl,
30 $\text{R}^{15}\text{C}(\text{O})\text{NH}$, $\text{R}^{15}\text{OC}(\text{O})\text{NH}$, $\text{R}^{15}\text{NHC}(\text{O})\text{NH}$, (C_1 - C_6)alkyl- $\text{S}(\text{O})_m$, (C_1 - C_6)alkyl- $\text{S}(\text{O})_m$ -
(C_1 - C_6)alkyl, $\text{R}^{15}\text{R}^{16}\text{NS}(\text{O})_m$, $\text{R}^{15}\text{R}^{16}\text{NS}(\text{O})_m$ (C_1 - C_6)alkyl, $\text{R}^{15}\text{S}(\text{O})_m$ R^{16}N ,

5 $R^{15}S(O)_mR^{16}N(C_1-C_6)alkyl$ wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or $(C_1-C_6)alkyl$;

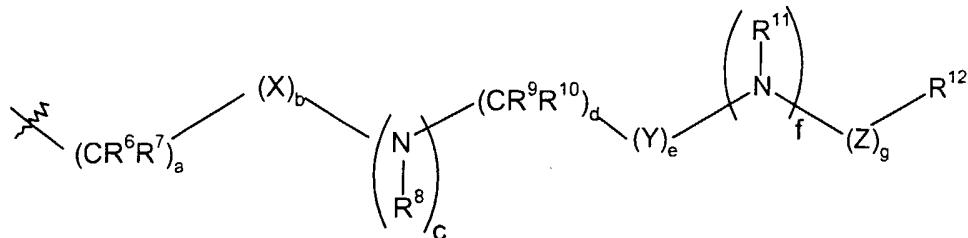
10 R^2 and R^3 are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, trifluoromethyl, trifluoromethoxy, $(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy$, $(C_3-C_{10})cycloalkyl$ wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino $(C_1-C_6)alkylthio$, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2amino$, $(C_5-C_9)heteroaryl$, $(C_2-C_9)heterocycloalkyl$, $(C_3-C_9)cycloalkyl$ or $(C_6-C_{10})aryl$; or R^2 and R^3 are each independently $(C_3-C_{10})cycloalkyl$, $(C_3-C_{10})cycloalkoxy$, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2amino$, $(C_6-C_{10})arylamino$, $(C_1-C_6)alkylthio$, $(C_6-C_{10})arylthio$, $(C_1-C_6)alkylsulfinyl$, $(C_6-C_{10})arylsulfinyl$, $(C_1-C_6)alkylsulfonyl$, $(C_6-C_{10})arylsulfonyl$, $(C_1-C_6)acyl$, $(C_1-C_6)alkoxy-CO-NH-$, $(C_1-C_6)alkylamino-CO-$, $(C_5-C_9)heteroaryl$, $(C_2-C_9)heterocycloalkyl$ or $(C_6-C_{10})aryl$ wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, $(C_1-C_6)alkyl$, $(C_1-C_6)alkyl-CO-NH-$, $(C_1-C_6)alkoxy-CO-NH-$, $(C_1-C_6)alkyl-CO-NH-(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy-CO-NH-(C_1-C_6)alkoxy$, carboxy, carboxy($C_1-C_6)alkyl$, carboxy($C_1-C_6)alkoxy$, benzyloxycarbonyl($C_1-C_6)alkoxy$, $(C_1-C_6)alkoxycarbonyl(C_1-C_6)alkoxy$, $(C_6-C_{10})aryl$, amino, amino($C_1-C_6)alkyl$, $(C_1-C_6)alkoxycarbonylamino$, $(C_6-C_{10})aryl(C_1-C_6)alkoxycarbonylamino$, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2amino$, $(C_1-C_6)alkylamino(C_1-C_6)alkyl$, $((C_1-C_6)alkyl)_2amino(C_1-C_6)alkyl$, hydroxy, $(C_1-C_6)alkoxy$, carboxy, carboxy($C_1-C_6)alkyl$, $(C_1-C_6)alkoxycarbonyl$, $(C_1-C_6)alkoxycarbonyl(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy-CO-NH-$, $(C_1-C_6)alkyl-CO-NH-$, cyano, $(C_5-C_9)heterocycloalkyl$, amino-CO-NH-, $(C_1-C_6)alkylamino-CO-NH-$, $((C_1-C_6)alkyl)_2amino-CO-NH-$, $(C_6-C_{10})arylamino-CO-NH-$, $(C_5-C_9)heteroarylamino-CO-NH-$, $(C_1-C_6)alkylamino-CO-NH-(C_1-C_6)alkyl$, $((C_1-C_6)alkyl)_2amino-CO-NH-(C_1-C_6)alkyl$, $(C_6-C_{10})arylamino-CO-NH-(C_1-C_6)alkyl$, $(C_5-C_9)heteroarylamino-CO-NH-(C_1-C_6)alkyl$, $(C_1-C_6)alkylsulfonyl$, $(C_1-C_6)alkylsulfonylamino$, $(C_1-C_6)alkylsulfonylamino(C_1-C_6)alkyl$, $(C_6-C_{10})arylsulfonyl$, $(C_6-C_{10})arylsulfonylamino$, $(C_6-C_{10})arylsulfonylamino(C_1-C_6)alkyl$, $(C_1-C_6)alkylsulfonylamino$, $(C_1-C_6)alkylsulfonylamino(C_1-C_6)alkyl$, $(C_5-C_9)heteroaryl$ or $(C_2-C_9)heterocycloalkyl$;


35 effective in treating such a condition.

5 15. A pharmaceutical composition for treating or preventing chronic organ transplant rejection in a mammal, including a human, comprising an amount of a compound of the formula

or the pharmaceutically acceptable salt thereof; wherein

10 R¹ is a group of the formula



wherein y is 0, 1 or 2;

15 R⁴ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R⁴ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

20 R⁵ is (C₂-C₉)heterocycloalkyl wherein the heterocycloalkyl groups must be substituted by one to five carboxy, cyano, amino, deuterium, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)acyloxy(C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, halo(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R¹⁵R¹⁶N-CO-O-, R¹⁵R¹⁶N-CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R¹⁵R¹⁶NS(O)_m, R¹⁵R¹⁶NS(O)_m (C₁-C₆)alkyl,

5 $R^{15}S(O)_mR^{16}N$, $R^{15}S(O)_mR^{16}N(C_1-C_6)alkyl$ wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or $(C_1-C_6)alkyl$; or a group of the formula

II

wherein a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

10 d is 0, 1, 2, or 3;

X is $S(O)_n$ wherein n is 0, 1 or 2; oxygen, carbonyl or $-C(=N\text{-cyano})-$;

Y is $S(O)_n$ wherein n is 0, 1 or 2; or carbonyl; and

Z is carbonyl, $C(O)O-$, $C(O)NR-$ or $S(O)_n$ wherein n is 0, 1 or 2;

R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are each independently selected from the group

15 consisting of hydrogen or $(C_1-C_6)alkyl$ optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, $(C_1-C_6)acyloxy$, $(C_1-C_6)acylamino$, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2amino$, cyano, cyano $(C_1-C_6)alkyl$, trifluoromethyl $(C_1-C_6)alkyl$, nitro, nitro $(C_1-C_6)alkyl$ or $(C_1-C_6)acylamino$;

R^{12} is carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, $(C_1-C_6)alkyl$, trifluoromethyl $(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy$, halo, $(C_1-C_6)acyl$, $(C_1-C_6)alkylamino$, $((C_1-C_6)alkyl)_2amino$, amino $(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy-CO-NH$, $(C_1-C_6)alkylamino-CO-$, $(C_2-C_6)alkenyl$, $(C_2-C_6)alkynyl$, $(C_1-C_6)alkylamino$, hydroxy $(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy(C_1-C_6)alkyl$, $(C_1-C_6)acyloxy(C_1-C_6)alkyl$, nitro, cyano $(C_1-C_6)alkyl$, halo $(C_1-C_6)alkyl$, nitro $(C_1-C_6)alkyl$, trifluoromethyl, trifluoromethyl $(C_1-C_6)alkyl$, $(C_1-C_6)acylamino$, $(C_1-C_6)acylamino(C_1-C_6)alkyl$, $(C_1-C_6)alkoxy(C_1-C_6)acylamino$, amino $(C_1-C_6)acyl$, amino $(C_1-C_6)acyl(C_1-C_6)alkyl$, $(C_1-C_6)alkylamino(C_1-C_6)acyl$, $((C_1-C_6)alkyl)_2amino(C_1-C_6)acyl$, $R^{15}R^{16}N-CO-O-$, $R^{15}R^{16}N-CO-(C_1-C_6)alkyl$, $R^{15}C(O)NH$, $R^{15}OC(O)NH$, $R^{15}NHC(O)NH$, $(C_1-C_6)alkyl-S(O)_m$, $(C_1-C_6)alkyl-S(O)_m-(C_1-C_6)alkyl$, $R^{15}R^{16}NS(O)_m$, $R^{15}R^{16}NS(O)_m-(C_1-C_6)alkyl$, $R^{15}S(O)_mR^{16}N$,

30 $R^{15}S(O)_mR^{16}N(C_1-C_6)alkyl$ wherein m is 0, 1 or 2 and R^{15} and R^{16} are each independently selected from hydrogen or $(C_1-C_6)alkyl$;

5 R² and R³ are each independently selected from the group consisting of hydrogen, deuterium, amino, halo, hydroxy, nitro, carboxy, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, trifluoromethyl, trifluoromethoxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₁₀)cycloalkyl wherein the alkyl, alkoxy or cycloalkyl groups are optionally substituted by one to three groups selected from halo, hydroxy, carboxy, amino (C₁-C₆)alkylthio,

10 (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl, (C₃-C₉)cycloalkyl or (C₆-C₁₀)aryl; or R² and R³ are each independently (C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkoxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₆-C₁₀)aryl amino, (C₁-C₆)alkylthio, (C₆-C₁₀)arylthio, (C₁-C₆)alkylsulfinyl, (C₆-C₁₀)aryl sulfinyl, (C₁-C₆)alkylsulfonyl, (C₆-C₁₀)aryl sulfonyl, (C₁-C₆)acyl, (C₁-C₆)alkoxy-

15 CO-NH-, (C₁-C₆)alkylamino-CO-, (C₅-C₉)heteroaryl, (C₂-C₉)heterocycloalkyl or (C₆-C₁₀)aryl wherein the heteroaryl, heterocycloalkyl and aryl groups are optionally substituted by one to three halo, (C₁-C₆)alkyl, (C₁-C₆)alkyl-CO-NH-, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-(C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, carboxy(C₁-C₆)alkoxy,

20 benzyloxycarbonyl(C₁-C₆)alkoxy, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkoxy, (C₆-C₁₀)aryl, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonylamino, (C₆-C₁₀)aryl(C₁-C₆)alkoxycarbonylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, (C₁-C₆)alkylamino(C₁-C₆)alkyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)alkyl, hydroxy, (C₁-C₆)alkoxy, carboxy, carboxy(C₁-C₆)alkyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH-, (C₁-C₆)alkyl-CO-NH-, cyano, (C₅-C₉)heterocycloalkyl, amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-, ((C₁-C₆)alkyl)₂amino-CO-NH-, (C₆-C₁₀)aryl amino-CO-NH-, (C₅-C₉)heteroaryl amino-CO-NH-, (C₁-C₆)alkylamino-CO-NH-(C₁-C₆)alkyl, (C₆-C₁₀)aryl amino-CO-NH-(C₁-C₆)alkyl, (C₅-C₉)heteroaryl amino-CO-NH-(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₁-C₆)alkylsulfonylamino, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₆-C₁₀)aryl sulfonyl, (C₆-C₁₀)aryl sulfonylamino, (C₆-C₁₀)aryl sulfonylamino(C₁-C₆)alkyl, (C₁-C₆)alkylsulfonylamino(C₁-C₆)alkyl, (C₅-C₉)heteroaryl or (C₂-C₉)heterocycloalkyl, effective in such disorders or conditions and a pharmaceutically acceptable carrier.

INTERNATIONAL SEARCH REPORT

PCT/IB 03/05229

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/519

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2002/019526 A1 (BLUMENKOPF TODD A ET AL) 14 February 2002 (2002-02-14) claims 1,7,8,10,12 ---	1-12,14, 15
X	US 2001/053782 A1 (BLUMENKOPF TODD A ET AL) 20 December 2001 (2001-12-20) claims ---	1-15
X	US 2002/068746 A1 (BLUMENKOPF TODD A ET AL) 6 June 2002 (2002-06-06) claims 1,22-27 -----	1-12,14, 15

 Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 February 2004

23/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Beyss, E

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-12, 14, 15 relate to an extremely large number of possible compoundss. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compoundss claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds disclosed in claim 13.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

PCT/IB 03/05229

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 1-14 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound.
2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

PCT/IB 03/05229

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2002019526	A1	14-02-2002	US 2003212273 A1 AP 1021 A AU 3951899 A BG 105129 A BR 9911365 A CA 2335492 A1 CN 1128800 B CZ 20004727 A3 EP 1087970 A1 HR 20000885 A1 HU 0102574 A2 WO 9965908 A1 ID 26698 A JP 2002518393 T NO 20006453 A PL 345123 A1 SK 18982000 A3 TR 200003719 T2 TW 505646 B ZA 9904004 A		13-11-2003 09-11-2001 05-01-2000 30-11-2001 13-03-2001 23-12-1999 26-11-2003 13-03-2002 04-04-2001 31-10-2001 28-11-2001 23-12-1999 01-02-2001 25-06-2002 05-02-2001 03-12-2001 06-08-2002 21-03-2001 11-10-2002 18-12-2000
US 2001053782	A1	20-12-2001	AT 257157 T AU 1295001 A BG 106855 A BR 0016263 A CA 2393640 A1 CN 1409712 T CZ 20021846 A3 DE 60007552 D1 EE 200200304 A EP 1235830 A2 EP 1382339 A1 HU 0203503 A2 WO 0142246 A2 JP 2003516405 T NO 20022738 A SK 7562002 A3 TR 200201498 T2		15-01-2004 18-06-2001 29-12-2002 13-08-2002 14-06-2001 09-04-2003 18-06-2003 05-02-2004 16-06-2003 04-09-2002 21-01-2004 28-02-2003 14-06-2001 13-05-2003 07-06-2002 05-08-2003 21-01-2003
US 2002068746	A1	06-06-2002	US 2003220353 A1 AU 6053801 A BG 107236 A BR 0111561 A CA 2412560 A1 CN 1439010 T EP 1294724 A1 HU 0301114 A2 WO 0200661 A1 NO 20026030 A		27-11-2003 08-01-2002 30-09-2003 09-09-2003 03-01-2002 27-08-2003 26-03-2003 28-08-2003 03-01-2002 16-12-2002