(12) (19) (CA) Dem ande-Application

R RN,
OFFICE DE LA PROPRIETE AN S ORI CANADIAN INTELLECTUAL
INTELLECTUELLE DU CANADA } PrROPERTY OFFICE 2 280 284
\ (21) (Al) g ’

22) 1999/08/12

43) 2001/02/12
(72) STOODLEY, KEVIN ALEXANDER, CA

(71) IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

51 Int.C1.° GO6F 17/30, G11B 23/00

54) FRONTIERE D’ ACCES POUR CHARGEMENT DE LA
DEMANDE DANS DES BASES DE DONNEES ORIENTEES
OBJET

54) ACCESS FRONTIER FOR DEMAND LOADING IN
OBJECT-ORIENTED DATABASES

400
Root Page 410

/
402 Object 1 Pointer '

Object 1 Page

404 Object 2 Pointer

420

406 Object 3 Pointer 422 Object 1 Pointer —

Object 2 Page

440

432 Object 4 Pointer

434 Object 2 Pointer

Object 3 Page

Cbject 4 Page

(57) A method, system and article of manufacture for providing access frontier page(s) around all accessible memory
pages loaded from an object-oriented database to prevent simultaneous access by multiple threads to an nitializing
page. On mitializing the root pages from an object-oriented database including bringing them into memory and
swizzling pointers 1n the pages, access frontier pages corresponding to each swizzled pointer are initialized and marked

I*I Industrie Canada Industry Canada

N RRRAR
b 3 .
“;‘\:l L) : l:--l‘ -

‘.: ":._’:.:. .‘: . : n:-‘ . ..‘;: *\‘ “
R AR S, ”E'\"
T R e N A S . S N
R Oy c,,,,"o.h' b\\\&&‘\\b\h\\‘

OPIC CIPO

OFFICE DE LA PROPRIETE B AN CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA 1"1}\ PROPERTY OFFICE (21) (A1) 2,280,284

22y 1999/08/12
43) 2001/02/12

as maccessible. All pointers contained 1n these access frontier pages that do not point to either an mitialized and
accessible page such as a root page or another access frontier page have page table entries created for them and are
marked 1naccessible. Any dereference of a pointer that causes a fault must be an access to an object on an access
frontier page. A page fault interrupt handling routine proceeds, for each of the uninitialized pages pointed to by
pointers on the faulted access frontier page, to convert 1t into an access frontier page by initializing a corresponding
page from the object-oriented database, including bringing 1n the page and swizzling pointers 1n the page, and setting
up maccessible page table entries for pointers that do not point to other frontier pages or accessible and initialized
pages, and marking the page inaccessible. The faulted page 1s marked accessible thereafter and surrounded by access
frontier pages.

I*I Industrie Canada Industry Canada

CA 02280284 1999-08-12

ABSTRACT

A method, system and article of manufacture for providing access frontier page(s) around
all accessible memory pages loaded from an object-oriented database to prevent simultaneous
access by multiple threads to an initializing page. On initializing the root pages from an
object-oriented database including bringing them into memory and swizzling pointers in the
pages, access frontier pages corresponding to each swizzled pointer are initialized and marked as
inaccessible. All pointers contained in these access frontier pages that do not point to either an
initialized and accessible page such as a root page or another access frontier page have page table
entries created for them and are marked inaccessible. Any dereference of a pointer that causes a

fault must be an access to an object on an access frontier page. A page fault interrupt handling
routine proceeds, for each of the uninitialized pages pointed to by pointers on the faulted access
frontier page, to convert it into an access frontier page by initializing a corresponding page from
the object-oriented database, including bringing in the page and swizzling pointers in the page,
and setting up 1naccessible page table entries for pointers that do not point to other frontier pages
or accessible and 1initialized pages, and marking the page inaccessible. The faulted page is

marked accessible thereafter and surrounded by access frontier pages.

CA9-98-020

CA 02280284 1999-08-12

ACCESS FRONTIER FOR DEMAND LOADING PAGES

IN OBJECT-ORIENTED DATABASES

FIELD OF THE INVENTION
This invention relates to loading of pages from object-oriented databases. More
particularly, this invention relates to providing access frontier page(s) around all accessible

memory pages loaded from an object-oriented database.

BACKGROUND OF THE INVENTION

Some computer programs typically create, delete, modify and access a'large number of
data objects ("objects") using one or more computer systems, which systems may be stand-alone
or connected 1nto a network. Such programs often use persistent object systems to maintain these
objects and make them available for creation, deletion, modification and access on all or any of
the computer systems. Persistent object systems, such as object-oriented databases, ensure the
continuing availability of persistent objects by storing them in a non-volatile manner in an object
server, such as a database or a file system, while allowing persistent objects to be moved into a
computer system's main memory to be accessed and manipulated by programs executing on the

computer system.

When a program uses the persistent object system to access or modify an object stored on

an object server, the persistent object system transfers the object from the object server to the
main memory of the computer system (“the loaded object”) on which the program is executing.

A conventional technique for loading such an object is to use the page protection systems of an

CA9-98-020 1

CA 02280284 1999-08-12

existing virtual memory management system found in most operating systems to bring 1n the

page containing the object into main memory.

Moreover, 1t 1s common for an object to contain references to other objects which
references are typically represented in persistent object systems by persistent pointers in the
object. The conventional persistent object system usually facilitates management of these
pointers and referred objects. To this end, the page containing the loaded object is initialized
typically by bringing that page into memory and replacing the persistent pointers in the page,
which pointers cannot generally be used by the program to access and modify the referenced
objects referred to by the persistent pointers, with main memory pointers that the program can
use to access and modify the referenced objects in the virtual address space of the program’s
process. Replacing a persistent pointer with a main memory pointer in this manner is called
"swizzling" the persistent pointer.

Thus, each persistent pointer in the page containing the loaded object is replaced with a
main memory pointer and a page, marked as inaccessible (paged out), corresponding to each
swizzled pointer is allocated by the page protection system. Virtual memory managers divide a
main memory address space that is larger than actual main memory into pages of a fixed length.

Thus, some of the pages in the main memory space are actually represented in the main memory,
while others usually are "paged out."

When a program attempts to dereference a main memory pointer to such an inaccessible
page (or in other words attempt to access a referenced object on an inaccessible page), a page
fault 1s generated and caught by a page fault interrupt handling routine of the persistent object

system (€.g. a object-oriented database runtime). The page fault interrupt handling routine marks

CA9-98-020 2

CA 02280284 1999-08-12
]

the faulted page as accessible (read/write) and loads (pages in) the faulted (inaccessible) page
containing the referenced object from the object server into main memory using its persistent
pointer. After loading, the page is further initialized as described earlier by swizzling of all
pointers contained in the page and allocating any new pages, marked as inaccessible,
corresponding to the swizzled pointers. After initialization is complete, the dereferencing
operation is allowed to proceed. Subsequent attempts to dereference that main memory pointer
proceed without further delay. Accordingly, persistent objects are advantageously loaded
(1nstantiated in memory) as they are accessed by the program (i.e. on demand), rather than all at
once at start-up time (i.e. eager swizzling).

A disadvantage and problem with this scheme results from the page fault interrupt
handling routine running in the same process as the program. Once the routine has set a page to
be accessible so that it can initialise the page (including swizzling pointers and allocating
inaccessible pages), any other thread in that process can also access that page without causing a
fault to be generated. If a thread does so before initialization is complete, the thread may get data
In an incorrect state from that page because another thread has made changes to the data on the
page. Similarly, any changes (writes) the thread makes may be overwritten by the page fault
interrupt handling routine’s initialisation activities resulting in an incorrect state for later
accessing threads.

A possible solution to this problem on some systems is to stop all threads while a fault is

handled. Obviously, such a solution could severely degrade performance of a program as it waits
for the fault to be handled. On multiprocessor systems, significant system resources might be left

1dle while a fault is being handled according to this solution.

CA9-98-020 3

CA 02280284 1999-08-12

Another possible solution to this problem on some systems is to provide multi-process
capabilities to the program and other applications, transferring the pages from the database into
shared memory and having the page fault interrupt handling routine communicate through some
interprocess communication (IPC) mechanism with a second process (with 1ts own set of page
access rights) that does all the swizzling and initializing before making the pages accessible in
the program's address space. This solution however suffers from IPC “overhead” as well some
systems limit the amount of shared address space that can be allocated thus possibly limiting the
maximum size of program supported.

Another possible solution to this problem on some systems is to lessen the window of
erroneous accessibility by raising the priority of the page fault interrupt handling routine as high
as possible so that other threads have little chance of doing any work while the page fault
interrupt handling routine is active. Clearly, this does not completely solve the problem; there is
still a possibility of an incorrect state. Also, since the page fault interrupt handling routine will
likely perform disk input/output (I/0) operations, it is inevitable that the routine will lose control
of the central processing unit (CPU) regardless of its priority. Indeed, on multiprocessor systems,
this solution would likely provide no additional protection from an incorrect state.

Accordingly, new and improved systems, methods, articles of manufacture tangibly
embodying a program of instructions for loading pages from object-oriented databases is needed

to overcome these and other disadvantages.

CA9-98-020 4

CA 02280284 1999-08-12

SUMMARY OF THE INVENTION

This invention provides new and improved systems, methods and articles of manufacture
tangibly embodying a program of instructions for loading of pages from object-oriented
databases.

A method, system and article of manufacture for providing access frontier page(s) around
all accessible memory pages loaded from an object-oriented database to prevent simultaneous
access by multiple threads to an initializing page. On initializing the root pages from an
object-oriented database including bringing them into memory and swizzling the pointers in
those pages, access frontier pages corresponding to each swizzled pointer are initialized and
marked as 1naccessible. All pointers contained in these access frontier pages that do not point to
either an initialized and accessible page such as a root page or another access frontier page have
page table entries created for them and are marked inaccessible. Any dereference of a pointer that
causes a fault must be an access to an object on an access frontier page. A page fault interrupt
handling routine proceeds, for each of the uninitialized pages pointed to by pointers on the
faulted access frontier page, to convert it into an access frontier page by initializing a
corresponding page from the object-oriented database, including bringing in the page and
swizzling pointers in the page, setting up inaccessible page table entries for pointers that do not
point to other frontier pages or accessible and initialized pages, and marking the page
inaccessible. The faulted page is marked accessible thereafter and surrounded by access frontier
pages.

In accordance with the invention, there is provided a method for loading pages from a

persistent object system comprising the steps of, for each pointer in a page; initializing a

CA9-98-020 D

CA 02280284 1999-08-12

corresponding page; for each corresponding page pointer not pointing to an initialized page,
creating a page table entry for the corresponding page pointer and marking the page pointed to by
the corresponding page pointer as inaccessible; and marking the corresponding page as
inaccessible. The above method may also be provided wherein the step of initializing comprises
bringing in the corresponding page from the persistent object system and if the corresponding
page contains one or more pointers, swizzling one or more pointers in the corresponding page.
Also, the page may be a root page of a program brought in from the persistent object system
before execution of the program. And, the step of creating a page table entry may further
comprise 1nitializing the page pointed to by the corresponding page pointer. Also, the above
method may further comprise the steps of, on dereferencing a pointer in the page that causes a
fault; for each pointer not pointing to an initialized page in the page pointed to by the
dereterencing pointer; initializing a corresponding page; for each corresponding page pointer not
pointing to an initialized page; creating a page table entry for the corresponding page pointer and
marking the page pointed by the corresponding page pointer as inaccessible; and marking the
page pointed to by the dereferencing pointer as accessible. And it may further comprise the step
of managing two or more dereferencing operations arising concurrently on two or more threads
through a lock and synchronization mechanism.

There is also provided a method for protecting an accessible and initialized page having

one or more pointers comprising the step of providing an access frontier page corresponding to

each pointer in the initialized and accessible page. This method may further comprise the steps
of, on dereferencing a pointer in the accessible and initialized page, providing an access frontier

page corresponding to each pointer in a page corresponding to the dereferenced pointer; and

CA9-98-020 6

CA 02280284 1999-08-12

marking the page corresponding to the dereferenced pointer as accessible. Additionally there may
be provided the step of, if an access frontier page has one or more pointers not pointing to an
access frontier page or an initialized and accessible page, creating a page table entry for each
such access frontier page pointer and marking the page pointed by each such access frontier page
as 1naccessible.

Additionally, there 1s provided a method for dereferencing a pointer to an initialized and
Inaccessible page having one or more pointers, comprising the steps of, on dereferencing a
pointer 1n the initialized and inaccessible page that causes a fault; for each pointer pointing to an
uninitialized page in the page pointed to by the dereferenced pointer; initializing a corresponding
page; for each corresponding page pointer not pointing to an initialized page; creating an
uninitialized page and marking the uninitialized page inaccessible; and marking the page pointed
to by the dereferencing pointer accessible.

There 1s also provided an article of manufacture comprising a computer usable medium
having computer readable program code means therein for loading pages from a persistent object
system, the computer readable program code means in said computer program product
comprising computer readable code means for causing a computer to perform the above methods.

And, there is provided a computer system for loading pages from a persistent object
system comprising means for initializing a corresponding page for each pointer in a page; means
for creating a page table entry for the corresponding page pointer and marking the page pointed

to by the corresponding page pointer as inaccessible for each corresponding page pointer not
pointing to an initialized page; and means for marking the corresponding page as inaccessible.

T'he above computer system may also be provided wherein the step of initializing comprises

CA9-98-020 7

CA 02280284 1999-08-12

bringing in the corresponding page from the persistent object system and if the corresponding
page contains one or more pointers, swizzling one or more pointers in the corresponding page.
Also, the page may be a root page of a program brought in from the persistent object system
betore execution of the program. And in the above system the means for creating a page table

entry may further comprise initializing the page pointed to by the corresponding page pointer.

The above computer system may also comprise means for, on dereferencing a pointer in the page
that causes a fault, initializing a corresponding page for each pointer not pointing to an initialized
page in the page pointed to by the dereferencing pointer; means for creating a page table entry for
the corresponding page pointer and marking the page pointed by the corresponding page pointer
as inaccessible for each corresponding page pointer not pointing to an initialized page; and
means for marking the page pointed to by the dereferencing pointer as accessible. The computer
system may further comprise means for managing two or more dereferencing operations arising
concurrently on two or more threads through a lock and synchronization mechanism.

Also, a computer system for protecting an accessible and initialized page having one or
more pointers 1s provided comprising means for providing an access frontier page corresponding
to each pointer in the initialized and accessible page. The above computer system may further
comprise means for, on dereferencing a pointer in the accessible and initialized page, providing
an access frontier page corresponding to each pointer in a page corresponding to the dereferenced
pointer; and means for marking the page corresponding to the dereferenced pointer as accessible.

The above computer system may further comprise means for, if an access frontier page has one

or more pointers not pointing to an access frontier page or an initialized and accessible page,

CA9-98-020 8

CA 02280284 1999-08-12

creating a page table entry for each such access frontier page pointer and marking the page
pointed by each such access frontier page as inaccessible.

There 1s also provided a computer system for dereferencing a pointer to an initialized and
Inaccessible page having one or more pointers, comprising means for, on dereferencing a pointer
in the 1nitialized and inaccessible page that causes a fault, initializing a corresponding page, and
for each pointer pointing to an uninitialized page in the page pointed to by the dereferenced
pointer; means for creating an uninitialized page and marking the uninitialized page inaccessible

for each corresponding page pointer not pointing to an initialized page; and means for marking

the page pointed to by the dereferencing pointer accessible.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a high-level block diagram of a persistent object system in which the preferred
embodiment of the present invention operates;

Figure 2 is a diagram depicting the root page loading and initialization of the present
Invention;

Figure 3 is a diagram depicting the faulted page loading and initialization of the present
Invention; and

Figures 4A to 4D is a flow chart describing the steps of page loading and initialization in

accordance with the present invention.

CA9-98-020 9

CA 02280284 1999-08-12

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 1s a high-level block diagram of a persistent object system (e.g. object-oriented
database) in which the preferred embodiment of the invention operates. The persistent object
system comprises a program client 100 (and, optionally, program clients 300) and an object
database server 200 - each client and server in the preferred embodiment being embodied in
separate computer systems but may optionally be integrated into one computer system. The
program client 100 contains a central processing unit (CPU) 110, input/output and storage
devices 120, a network connection 130 and a main memory 140. In the preferred embodiment,
program client 100 and object database server 200 are conventional general purpose computers
such as personal computers or mainframes although it should be apparent to those skilled in the
art that other general purpose or specially constructed devices could be used. The input/output
and storage devices 120 can include a storage device, such as a hard disk drive, for persisting
program information; a removable media storage device, such as a CD-ROM drive, for persisting
program 1nformation and/or installing programs which are provided on a computer-readable
medium such as a CD-ROM; and/or such input/output devices such as a computer monitor,
keyboard, a mouse and the like. The network connection 130 enables the program client to
exchange data with other systems such as the object database server 200. The main memory 140
contains a client persistent object system 142 that operates in conjunction with the object
database server 200 for creating and maintaining a set of objects of an application program 150
persistently. The client persistent object system contains a page protection system 144 used by
the client persistent object system to bring the object(s) of a program 150 into main memory 140.

In the preferred embodiment, the page protection system 144 brings a page into the program

CA9-98-020 10

CA 02280284 1999-08-12

client 100 from the object database server 200 containing the object. The program 150 includes a

retferencing object 146 and a referenced object 148 as well as other referenced objects (not
shown); all such objects being initialized in main memory by the client persistent object system
142. While a program may contain only one object, a typical program comprises two or more
objects in which at least two are interrelated by an object reference such as referencing object
146 and referenced object 148. CPU 110 is used by and makes use of the input/output and
storage devices 120, the network connection 130, the main memory 140, the client persistent
object system 142, the page protection system 144, the program 150 and other resources and
programs of the program client 100 (not shown).

Figure 1 also shows an object database server 200 that includes a central processing unit
(CPU) 210, an object server 220, and a network connection 230. Object database server 200 is
shown connected via network connection 230 of the object database server to program client 100
via 1ts network connection 130. Optionally, object database server 200 may be connected to other
program clients 300. Object server 220 maintains a set of persistent objects corresponding to the
objects of the program 150 by storing them in a non-volatile manner in, for example, one or more

hard disk drives (not shown). In the preferred embodiment, the object server is an object-oriented
database that stores persistent objects to the object database server hard disk(s). The object server

220 responds to requests from other parts of the persistent object system, such as client persistent

object system 142, to transfer persistent objects in and out of the object server to the requesting

program client, such as program client 100. CPU 210 is used by and makes use of the object

server 220, network connection 230 and other resources and programs of the object database

server 200 (not shown).

CA9-98-020 11

CA 02280284 1999-08-12

While the present invention is preferably implemented on one or more computer systems
configured as described above, those skilled in the art will recognize that it may also be
implemented on one or more computer systems having different configurations. The computer

systems may not contain all of the features shown in Figure 1, or may contain features not shown

in Figure 1. For example, it should be apparent to those skilled in the art that not all of the
input/output and storage devices described above are required, that the above list of input/output
and storage devices 1s not exhaustive and other types of such devices can be equally used with or
substituted for the above listed devices, and that different combinations of these or unlisted
devices may be used in accordance with this invention. As another example, certain features of
the object database server 200, such as the object server 220, may be found instead in the
program client 100.

Referring to Figure 2 in conjunction with Figure 1, the preferred embodiment of the
present invention for loading pages from object-oriented databases is described. Additionally,
referring to Figures 4A to 4B, the method steps of the present invention as described hereafter
will be generally corresponded to Figures 4A to 4B’s flowchart element(s) by placing the
relevant figure element number in square brackets e.g. “The program is allowed to proceed
execution [600]”.

According to the present invention, before the program 150 is permitted to begin

execution on the CPU 110 [500], the database root page(s) for the program’s objects is brought
in from the object server 220 and initialized by the page protection system 144 [510]. The

database root page(s) is the page(s) in the object database containing the root object(s) of the

program, which object(s) in Figure 1 corresponds to the referencing object 146. A root page or

CA9-98-020 12

CA 02280284 1999-08-12

any other page brought in from the object database may contain one or more program objects
including at least a root object in the case of a root page or a referenced object in the case of
other pages brought in from the object database. Furthermore, the pages may include one or more
object references (pointers) to one or more referenced object(s). In Figure 1, referencing object
146 contains an object reference (pointer) to referenced object 148 (not shown).

Initializing a root page (or any other page from the object database) typically involves
finding a free page frame in main memory (taken from a free page frame list maintained by the
page protection system 144 or “paging” out an occupied page to storage to make a free page
frame available in main memory 140), transferring (bringing in) the page from the object server
220 1nto the page frame in main memory 140 via the persistent object system, modifying a page
table (not shown) in the page protection system 144 to reflect that the page is now in memory
and “swizzling” the object references (pointers) in that page. The preceding was not an exclusive
or exhaustive list of initialization steps and in some systems all the aforementioned initialization

steps may not be required or may be done in differing order. As described above, “swizzling” by

the client persistent object system 142 involves replacing the persistent pointers in the page,
which pointers cannot generally be used by the program to access and modify the referenced

objects referred to by the persistent pointers, with main memory pointers that the program can
use to access and modify the referenced objects in the virtual address space of the program’s

process.

Further as part of the swizzling operation of the present invention, the page corresponding
to each swizzled pointer in a root page [520, 590] is initialized by the page protection system 144

[530] and marked as inaccessible (paged out) [540]. All such pages (i.e. pages initialized but

CA9-98-020 13

CA 02280284 1999-08-12

marked as inaccessible) form the "access frontier" for the root page. That is, a collection of
Inaccessible pages that “surround” a root page. All pointers contained in these access frontier
pages [550, 580] that do not point to either a root page or an access frontier page [560] have
pages created for them during initialization [570]. These pages are made inaccessible and are not
initialized [570]. In fact, only page table entries would exist for these pages so that their virtual
addresses would be known but no backing real memory would be created for these pages. So
when the process of initializing the access frontier pages is complete, the access frontier pages
are fully initialized, including complete swizzling of all pointers contained in them. A deference
operation that makes access to an object contained in one of the access frontier pages, requires
simply marking that page as accessible subject to the completion of access frontier page
processing of the present invention.

Reterring to Figure 2, there is depicted an example of a program’s root page and
assoclated pages initialized in main memory 140 according to the present invention. Root page
400, containing a root object of the program 150 (not shown), includes a number of object
references (pointers). In particular, the root page contains an object 1 pointer 402 to object 1, an
object 2 pointer 404 to object 2, and an object 3 pointer 406 to object 3. As the root page is
initialized, the object pointers are swizzled and pages corresponding to the object pointers are
initialized. Accordingly, object 1 page 410 containing object 1 pointed to by object 1 pointer 402
1s brought in from the object server 220 and initialized. Similarly, object 2 page 420 containing

object 2 pointed to by object 2 pointer 404 and object 3 page 430 containing object 3 pointed to

by object 3 pointer 406 are brought in from object server 220 and initialized. In each case, the

CA9-98-020 14

CA 02280284 1999-08-12

page 1s made inaccessible (unlike the root page which is accessible). These pages make up the
access frontier pages for the root page.

Furthermore, according to the present invention, the pointers in such access frontier pages
are swizzled and for any pointers not pointing to either a root page or another access frontier
page, a page, marked as inaccessible, 1s created but not initialized. Thus, neither object 1 pointer
422 1n object 2 page 420 nor object 2 pointer 434 in object 3 page 430 required the creation of a
page since they pointed to pre-existing access frontier pages. However, object 4 pointer 432 in
object 3 page 430 required the creation of an inaccessible, but not initialized, page - object 4 page
440,

Once the root page is initialized and the associated pages are initialized and/or created,
the program is allowed to proceed with execution [600]. When the program dereferences a
pointer in the root page and causes a fault [610, 690], then that must be an access to an access
frontier page since all access frontier pages are marked as inaccessible (which marking causes
fault). Deferencing pointers without a fault in the present invention means an access to an
initialized and accessible page. Upon occurrence of the fault, the page fault interrupt handling
routine of the present invention proceeds, for each of the uninitialized pages pointed to by
pointers on the faulted page [620], to find a free page frame in main memory (taken from a free
page frame list maintained by the page protection system 144 or “paging” out an occupied page
to storage to make a free page frame available in main memory 140) for the page table entry
previously allocated to that uninitialized page (note that all pointers in access frontier pages not
pointing to a root page or other access frontier pages were swizzled but no backing memory was

allocated to the pages corresponding to those pointers viz. object 4 page 440), transfer the

CA9-98-020 15

CA 02280284 1999-08-12

corresponding page from the object server 220 into the page frame allocated in main memory
140 via the persistent object system, modify a page table in the page protection system 144 to
reflect that the page is now in memory and swizzle the pointers in the page, all resulting in an
access frontier page [630]. Each of the uninitialized pages was originally marked inaccessible
when 1t was created and remains inaccessible after initialization into an access frontier page.
These pages in addition to the other pages previously initialized but marked inaccessible and
pointed to by pointers on the faulted page (i.e. access frontier pages for another accessible page
such as a root page) become the access frontier pages for the faulted page. That is, the soon to be
accessible faulted page 1s “surrounded” by inaccessible pages except for a properly initialized
and accessible root page(s). Furthermore, each pointer contained in these new access frontier
pages [640, 670] that does not point to either the faulted page, a root page (an initialized and
accessible page) or an access frontier page [650] has a page created for it [660]. As described
above 1n respect of a root page, each of these pages are made inaccessible but are not initialized
[660]. Only page table entries would exist for these pages and no backing memory is created for
them [660]. Finally, the faulted page is made accessible [680]. At this point, the faulted page has
been converted from an initialized but inaccessible access frontier page to an initialized and
accessible page.

In a similar manner, any dereferencing of a pointer in any initialized and accessible page
resulting in a fault is handled according to the above procedures of the present invention. The
result is that each faulted page has an access frontier of inaccessible pages partially surrounding
it with initialized, accessible pages occupying the remaining portion. For all pointers in the

access frontier pages that do not point to any of the other access frontier pages or the initialized

CA9-98-020 16

CA 02280284 1999-08-12

and accessible pages, a page marked as inaccessible is created but not brought in from the object
server nor initialized in any other way. No backing memory is allocated for these uninitialized,
1naccessible pages.

Optionally, all the pages in the present invention that are created but not brought in from
the object server nor otherwise initialized may instead be initialized including bringing in the
relevant page into memory. This may slow performance and require extra memory space but
would not impact the proper functioning of the invention.

Reterring to Figure 3, the example page layout of Figure 2 is expanded to depict the
dereferencing of a pointer and the page loading and initialization initiated by the fault handling
of the dereferenced pointer. In this example, the dereferenced pointer is object 3 pointer 406.
Object 3 pointer references object 3 page 430 which is an access frontier page (see above in
relation to Figure 2). Consequently, deferencing results in a fault handled by the page fault
interrupt handling routine of the present invention. The page fault interrupt handling routine
proceeds, for all uninitialized pages pointed to by pointers on the faulted page which in this case
1s only object 4 page 440, to initialize the page including bringing in that page into main memory
140 from the object server 220 and swizzling the pointers on object 4 page, namely object 2
pointer 442 and object 5 pointer 444. This page and other pages previously initialized but
Inaccessible pointed to by pointers on the faulted page, which in the case of the faulted object 3
page 430 1s only object 2 page 420 pointed to by object 2 pointer 434 of object 3 page 430,
become the access frontier pages for the faulted object 3 page 430. That is, the soon to be
accessible faulted object 3 page 430 is “surrounded” by inaccessible but initialized access

frontier pages except for the properly initialized and accessible root page 400. Furthermore, all

CA9-98-020 17

CA 02280284 1999-08-12

pointers contained in the new access frontier page, namely object 4 page 440, that do not point to
either the faulted object 3 page 430, the root page 400 or access frontier pages such as object 2
page 420 pointed to by object 2 pointer 434 have pages created for them. In this case, object 5
pointer 444 of access frontier page object 4 page 440 does not point to any of the foregoing types
of pages and accordingly a page is created for that pointer. This page is made inaccessible and is
not initialized. Only a page table entry would exist for this page and no backing memory is
created for i1t. Finally, the faulted object 3 page 430 1s made accessible which makes object 3
page 430 an 1nitialized and accessible page.

The result of the above described method of the present invention is that, from the
beginning of program execution [600] to the end of program execution [700], pages being
initialized are always protected by a frontier of inaccessible pages so that other threads within the
program process cannot (except via wild pointer, which 1s a programmer bug in any case) access
them. Other threads would take a fault when dereferencing a pointer to an access frontier page
betore they could get at the pointer to the page being initialized. The step of making an access
frontier page accessible only occurs after the access frontier page(s) for the newly accessible
page has been properly created and when made accessible, the access frontier page has already
been completely initialized. At no time is there an opportunity for a thread to legitimately get
access to a page before 1t has been completely initialized. Moreover, the pages of each thread
may be protected by the present invention meaning that separate “spurs’ of access frontiers may

occur in the memory space, each initializing page in each such spur protected by an access

frontier.

CA9-98-020 18

CA Q2280284 1999-08-12

Nested faults can be dealt with by standard mechanisms for keeping instances of the page
fault interrupt handling routine of the present invention from interfering with each other in a
multi-threaded system. A nested fault occurs when, during the handling of a fault by a thread,
another thread attempts to deference a pointer to an inaccessible page. Standard mechanisms
such as appropriate locking and synchronization routines can be used to allow for correct
operation of multiple instances of the page fault interrupt handling routine of the present
invention in the presence of multiple faults arising concurrently on multiple threads. In the
preferred embodiment, a serializing page fault interrupt handling routine first checks that the
faulted page is still inaccessible before starting initialization of the page. If it is no longer
inaccessible, that means another page fault interrupt handling routine is initializing or has
initialized that page during the period between when a fault was detected for that first page fault
interrupt handling routine and when the first page fault interrupt handling routine became active
and attempted to lock onto the page. Accordingly, when the page is accessible, the page fault
interrupt handling routine does not have to initialize the page as it is already being or has been
done. The deference would be simply allowed to proceed.

The detailed descriptions may have been presented in terms of program procedures
executed on a computer or network of computers. These procedural descriptions and
representations are the means used by those skilled in the art to most effectively convey the

substance of their work to others skilled in the art. They may be implemented in hardware or

software, or a combination of the two.

A procedure 1s here, and generally, conceived to be a self-consistent sequence of steps

leading to a desired result. These steps are those requiring physical manipulations of physical

CA9-98-020 19

CA 02280284 1999-08-12

quantities. Usually, though not necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. It proves convenient at times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters, terms, numbers, objects, attributes or
the like. It should be noted, however, that all of these and similar terms are to be associated with
the appropriate physical quantities and are merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred to in terms, such as adding or
comparing, which are commonly associated with mental operations performed by a human
operator. No such capability of a human operator is necessary, or desirable in most cases, in any
of the operations described herein which form part of the present invention; the operations are
machine operations. Useful machines for performing the operations of the present invention
include general purpose digital computers or similar devices.

The present invention also relates to apparatus for performing these operations. This
apparatus may be specially constructed for the required purposes or it may comprise a general
purpose computer as selectively activated or reconfigured by a computer program stored in the
computer. The procedures presented herein are not inherently related to a particular computer or
other apparatus. Various general purpose machines may be used with programs written in
accordance with the teachings herein, or it may prove more convenient to construct more
specialized apparatus to perform the required method steps. The required structure for a variety
of these machines will appear from the description given.

In the case of flow diagrams depicted herein, they are provided by way of example. There

may be variations to these diagrams or the steps (or operations) described herein without

CA9-98-020 20

CA 02280284 1999-08-12

departing from the spirit of the invention. For instance, in certain cases, the steps may be
performed in differing order, or steps may be added, deleted or modified. All of these variations
are considered to comprise part of the present invention as recited in the appended claims.

The invention 1s preferably implemented in a high level procedural or object-oriented
programming language to communicate with a computer. However, the invention can be

implemented in assembly or machine language, if desired. In any case, the language may be a

compiled or interpreted language.

The invention may be implemented as an article of manufacture comprising a computer
usable medium having computer readable program code means therein for executing the method
steps of the invention or an article of manufacture comprising a computer usable medium having
computer readable program code means therein, the computer readable program code means in
said computer program product comprising computer rcadable code means for causing a
computer to execute the steps of the invention. Such an article of manufacture may include, but is
not limited to, CD-ROMs, diskettes, tapes, hard drives, and computer RAM or ROM. Indeed, the
article of manufacture may be any solid or fluid transmission medium, magnetic or optical, or the

like, for storing signals readable by a machine for controlling the operation of a general of special
purpose programmable computer according to the method of the invention. Also, the invention

may be implemented in a computer system. A computer system may comprise a computer that

includes a processor and a memory device and optionally, a storage device, an output device such

as a video display and/or an input device such as a keyboard or computer mouse. Moreover, a

computer system may comprise an interconnected network of computers. Computers may

CA9-98-020 21

CA 02280284 1999-08-12

equally be in stand-alone form (such as the traditional desktop personal computer) or integrated
into another apparatus (such a cellular telephone).

While this invention has been described in relation to preferred embodiments, it will be
understood by those skilled in the art that changes in the details of processes and structures may
be made without departing from the spirit and scope of this invention. Many modifications and
variations are possible in light of the above teaching. Thus, it should be understood that the
above described embodiments have been provided by way of example rather than as a limitation

and that the specification and drawing are, accordingly, to be regarded in an illustrative rather

than a restrictive sense.

CA9-98-020 22

- A . A = A a0t s e e s

CA 02280284 1999-08-12

The embodiments of the invention in which an exclusive property or privilege is claimed are

defined as follows:

L. A method for loading pages from a persistent object system comprising the steps of’
for each pointer in a page;
initializing a corresponding page;
for each corresponding page pointer not pointing to an initialized page;
creating a page table entry for the corresponding page pointer and marking the
page pointed to by the corresponding page pointer as inaccessible; and

marking the corresponding page as inaccessible.

2. The method of claim 1, wherein the step of initializing comprises bringing in the
corresponding page from the persistent object system and if the corresponding page contains one

or more pointers, swizzling one or more pointers in the corresponding page.

3. The method of claim 1 or claim 2, wherein the page is a root page of a program brought

in from the persistent object system before execution of the program.

4. The method of any one of claims 1 to 3, wherein the step of creating a page table entry

turther comprises initializing the page pointed to by the corresponding page pointer.

CA9-98-020 23

CA 02280284 1999-08-12

5. The method of any one of claims 1 to 4, further comprising the steps of*

on dereferencing a pointer in the page that causes a fault;

for each pointer not pointing to an initialized page in the page pointed to by the
dereferencing pointer;
initializing a corresponding page;
for each corresponding page pointer not pointing to an initialized page:
creating a page table entry for the corresponding page pointer and marking the
page pointed by the corresponding page pointer as inaccessible; and

marking the page pointed to by the dereferencing pointer as accessible.

6. The method of claim 5, further comprising the step of managing two or more
dereterencing operations arising concurrently on two or more threads through a lock and

synchronization mechanism.

7. A method for protecting an accessible and initialized page having one or more pointers

comprising the step of providing an access frontier page corresponding to each pointer in the

initialized and accessible page.

CA9-98-020 24

CA 02280284 1999-08-12

8. The method of claim 7 further comprising the steps of:

on dereferencing a pointer in the accessible and initialized page, providing an access
frontier page corresponding to each pointer in a page corresponding to the dereferenced pointer;
and

marking the page corresponding to the dereferenced pointer as accessible.

9. The method of claim 7 or claim 8 further comprising the step of, if an access frontier page
has one or more pointers not pointing to an access frontier page or an initialized and accessible
page, creating a page table entry for each such access frontier page pointer and marking the page

pointed by each such access frontier page as inaccessible.

10. A method for dereterencing a pointer to an initialized and inaccessible page having one or
more pointers, comprising the steps of:
on dereferencing a pointer in the initialized and inaccessible page that causes a fault;
for each pointer pointing to an uninitialized page in the page pointed to by the
dereterenced pointer;
initializing a corresponding page;
tfor each corresponding page pointer not pointing to an initialized page;
creating an uninitialized page and marking the uninitialized page

1naccessible; and

marking the page pointed to by the dereferencing pointer accessible.

CA9-98-020 25

CA 02280284 1999-08-12

11. An article of manufacture comprising a computer usable medium having computer
readable program code means therein for loading pages from a persistent object system, the
computer readable program code means in said computer program product comprising:

computer readable code means for causing a computer to, for each pointer in a page,
initialize a corresponding page;

computer readable code means for causing a computer to, for each corresponding page
pointer not pointing to an initialized page, create a page table entry for the corresponding page
pointer and marking the page pointed to by the corresponding page pointer as inaccessible; and

computer readable code means for causing a computer to mark the corresponding page as

inaccessible.

12. The article of manufacture of claim 11, wherein the computer readable code means for

causing a computer to initialize a corresponding page comprises computer readable code means
for causing a computer to bring in the corresponding page from the persistent object system and

it the corresponding page contains one or more pointers, swizzle one or more pointers in the

corresponding page.

13. The article of manufacture of claim 11 or claim 12, wherein the page is a root page of a

program brought in from the persistent object system before execution of the program.

CA9-98-020 26

CA 02280284 1999-08-12

14. The article of manufacture of any one of claims 11 to 13, wherein the computer readable

code means for causing a computer to create a page table entry further comprises computer
readable code means for causing a computer to initialize the page pointed to by the

corresponding page pointer.

15. The article of manufacture of any one of claims 11 to 14, further comprising:

computer readable code means for causing a computer to, on dereferencing a pointer in
the page that causes a fault and for each pointer not pointing to an initialized page in the page
pointed to by the dereferencing pointer, initialize a corresponding page;

computer readable code means for causing a computer to, for each corresponding page
pointer not pointing to an initialized page, create a page table entry for the corresponding page
pointer and marking the page pointed by the corresponding page pointer as inaccessible; and

computer readable code means for causing a computer to mark the page pointed to by the

dereferencing pointer as accessible.

16. The article of manufacture of claim 135, further comprising computer readable code means

for causing a computer to manage two or more dereferencing operations arising concurrently on

two or more threads through a lock and synchronization mechanism.

CA9-98-020 27

CA 02280284 1999-08-12

17. An article of manufacture comprising a computer usable medium having computer
readable program code means therein for protecting an accessible and initialized page having one
or more pointers, the computer readable program code means in said computer program product

comprising computer readable code means for causing a computer to provide an access frontier

page corresponding to each pointer in the initialized and accessible page.

18. The article of manufacture of claim 17 further comprising:

computer readable code means for causing a computer to, on dereferencing a pointer in

the accessible and initialized page, provide an access frontier page corresponding to each pointer
in a page corresponding to the dereferenced pointer; and

computer readable code means for causing a computer to mark the page corresponding to

the dereferenced pointer as accessible.

19. The article of manufacture of claim 17 further comprising computer readable code means

for causing a computer to, if an access frontier page has one or more pointers not pointing to an
access frontier page or an initialized and accessible page, create a page table entry for each such

access frontier page pointer and marking the page pointed by each such access frontier page as

1naccessible.

CA9-98-020 28

CA 02280284 1999-08-12

20. An article of manufacture comprising a computer usable medium having computer

readable program code means therein for dereferencing a pointer to an initialized and
Inaccessible page having one or more pointers, the computer readable program code means in
sald computer program product comprising:

computer readable code means for causing a computer to, on dereferencing a pointer in
the mnitialized and inaccessible page that causes a fault and for each pointer pointing to an
uninitialized page in the page pointed to by the dereferenced pointer, initialize a corresponding
page;

computer readable code means for causing a computer to, for each corresponding page
pointer not pointing to an initialized page, create an uninitialized page and marking the
uninitialized page inaccessible; and

computer readable code means for causing a computer to mark the page pointed to by the

dereferencing pointer accessible.

21. A computer system tfor loading pages from a persistent object system comprising:
means for initializing a corresponding page for each pointer in a page;

means for creating a page table entry for the corresponding page pointer and marking the
page pointed to by the corresponding page pointer as inaccessible for each corresponding page
pointer not pointing to an initialized page; and

means for marking the corresponding page as inaccessible.

CA9-98-020 29

CA 02280284 1999-08-12

22. The computer system of claim 21, wherein the step of initializing comprises bringing in
the corresponding page from the persistent object system and if the corresponding page contains

one or more pointers, swizzling one or more pointers in the corresponding page.

23. The computer system of claim 21 or claim 22, wherein the page is a root page of a

program brought in from the persistent object system before execution of the program.

24, The computer system of any one of claims 21 to 23, wherein the means for creating a
page table entry further comprises initializing the page pointed to by the corresponding page

pointer.

25. 'The computer system of any one of claims 21 to 24, further comprising:

means for, on dereferencing a pointer in the page that causes a fault, initializing a
corresponding page for each pointer not pointing to an initialized page in the page pointed to by
the dereferencing pointer;

means for creating a page table entry for the corresponding page pointer and marking the
page pointed by the corresponding page pointer as inaccessible for each corresponding page
pointer not pointing to an initialized page; and

means for marking the page pointed to by the dereferencing pointer as accessible.

CA9-98-020 30

CA 02280284 1999-08-12

26. The computer system of claim 25, further comprising means for managing two or more
dereferencing operations arising concurrently on two or more threads through a lock and
synchronization mechanism.

27. A computer system for protecting an accessible and initialized page having one or more
pointers comprising means for providing an access frontier page corresponding to each pointer in

the initialized and accessible page.

28. The computer system of claim 27 further comprising:

means for, on dereferencing a pointer in the accessible and initialized page, providing an
access frontier page corresponding to each pointer in a page corresponding to the dereferenced
pointer; and

means for marking the page corresponding to the dereferenced pointer as accessible.

29. The computer system of claim 27 or claim 28 further comprising means for, if an access

frontier page has one or more pointers not pointing to an access frontier page or an initialized and

accessible page, creating a page table entry for each such access frontier page pointer and

marking the page pointed by each such access frontier page as inaccessible.

30. A computer system for dereferencing a pointer to an initialized and inaccessible page

having one or more pointers, comprising:

CA9-98-020 31

CA 02280284 1999-08-12

means for, on dereferencing a pointer in the initialized and inaccessible page that causes a
fault, initializing a corresponding page, and for each pointer pointing to an uninitialized page in
the page pointed to by the dereferenced pointer;

means for creating an uninitialized page and marking the uninitialized page inaccessible
tfor each corresponding page pointer not pointing to an initialized page; and

means for marking the page pointed to by the dereferencing pointer accessible.

CA9-98-020 32

CA 02280284 1999-08-12

100
Program Client

140
Main Memory

144
Page Protection System

150 Client Persistent Object System
Prog ram ..
146 148

Referenced Object

'..
"

L J

..
.‘
........
D. .’
lllll
........
........
.........
.......
OOOOOO
.......
............
...................
..............................

120
110 130 Input/Output
CPU Network and Storage
Connection Device(s)
200
Object Database f
Server
| 230
@ Network @.

‘1 Connection

220

Object
Server

210
CPU

lll

lll

4

Figure 2

400
Root Page
402 Object 1 Pointer
404 Object 2 Pointer
406 Object 3 Pointer
430

432 Object 4 Pointer

434 Object 2 Pointer

Object 3 Page

CA 02280284 1999-08-12

440

410

Object 1 Page

420

[_

422

Object 1 Pointer

Object 2 Page

Object 4 Page

fL

CA 02280284 1999-08-12

Figure 3

400
Root Page 410
Y —————————————————————————————————— I—_
402 Object 1 Pointer
I
Object 1 Page

404 Object 2 Pointer

420
406 Object 3 Pointer

422 QObject 1 Pointer
Object 2 Page

430

432 Object 4 Pointer

440

434 Object 2 Pointer

442 Object 2 Pointer
Object 3 Page

444 Object 5 Pointer

450
Object 4 Page

t

. 00000000
Object 5 Page

P oie e e s —

CA 02280284 1999-08-12

!

Figure 4A

510
Initialize Program Root Page and Initialize

520

For Each Pointer in a Program Root Page
.

———_._—'—._—

530

Initialize Access Frontier Page Pointed to
by Pointer

————_——'___—

540

Mark Access Frontier Page
INACCESSIBLE

i 550

For Each Pointer in the Access Frontier
Page

560

Pointer in the Access Frontier
Page Points to Another Access
Frontier Page or a Program Root
Page?

No

Yes : :

CA 02280284 1999-08-12

Figure 4B

570

Create Page Table Entry for Access
Frontier Page Pointer, No |nitialization and

| Mark INACCESSIBLE

680
Next Pointer of the Access Frontier Page ’—©

590
Next Pointer in the Program Root Page

600
Program Execution Start

r 610
For Each Pointer Dereferenced in an
Initialized and Accessible Page (e.g.

Program Root Page) That Causes a Fault

620

Pointer on Fauited Page
Pointing to an Uninitialized
Page?

Yes

. CA 02280284 1999-08-12

Figure 4C

630
Initialize Access Frontier Page Pointed to

by the Pointer I

640

For Each Pointer in the Access Frontier
Page

650

Pointer in the Access Frontier
Page Points to Another
Access Frontier Page or an
Accessible Initialized Page?

Yes

NO

660

Create Page Table Entry for Access
Frontier Page Pointer, No Initialization and
Mark INACCESSIBLE

e

670
Next Pointer of the Access Frontier Page

680
Mark Faulted Page ACCESSIBLE @

CA 02280284 1999-08-12

Figure 4D

690

Next Dereferenced Pointer In Initialized and
Accessible Page That Causes a Fault

T~

700
Program Execution End

Y

400

Root Page 410
402 Object 1 Pointer
o Object 1 Page
404 Object 2 Pointer
420
406 Object 3 Pointer 422 Object 1 Pointer
Object 2 Page
430

440

432 Object 4 Pointer

434 Object 2 Pointer

Object 3 Page e
Cbject 4 Page

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - abstract drawing

