This invention relates to metal lockers.
Among the objects of the present invention is to provide a new hinged door construction for the metal locker and also to provide a new type of locking device for the door, which includes a substantially flush type handle and associated locking means of simple construction, economical in manufacture and efficient in operation.

Another object of the invention resides in a new construction of handle for a locker adapted centrally to receive a locker number plate.

Yet another object of the invention resides in providing a locking device for a metallic locker which is of a construction to permit the door to be snap locked on closing and yet which lock can be released by a shifting movement of the handle construction and which construction also includes a permanent locking feature so as to preclude the unlocking of the door when once intentionally locked.

Another object of the invention is to provide a flush type locker handle for a locker which has the following objects in its construction; It is less hazardous than a projecting type of handle; the flush type handle laps the face of the door, thereby concealing the slot in the face of the door in which the handle is mounted; the handle cover plate forms a recess at the side of the handle to accommodate the fingers for raising the handle to unlatch the door; the inside of the handle is smooth and the entire handle, including the handle cover plate, moves in operation, thereby eliminating possible injury to the operator; the handle cover plate is embossed detachably to receive the number plate and the embossing is so constructed that the number plate is held in place in a manner that prevents its inadvertent removal; the handle rides on small embossments formed on the face of the door, whereby to eliminate friction; the handle is symmetrical about its vertical center line and thereby can be used on either right- or left-handed swinging doors; so also the cover can be made either right-handed or left-handed; the resilient bumpers on the top and bottom of the handle opening formed in the door provide the silent operation of the handle; steel pins welded to the handle cover plate actuate the locking bar; these pins floating horizontally in the apertures provided in the locking bar allow the handle to operate freely.

These and other objects of the invention will be apparent from a perusal of the following specification when taken in connection with the accompanying drawings, wherein:

Figure 1 is a perspective view of an assembled locker;
Figure 2 shows a similar view with the door open;
Figure 3 shows the various parts of the sheet metal members making up the locker;
Figure 4 is a side sectional view taken on the line 4—4 of Figure 1;
Figure 5 is a section taken on the line 5—5 of Figure 4;
Figure 6 is a view, partly broken away, of the handle and locking mechanism thereof;
Figure 7 is a sectional view taken on the line 7—7 of Figure 6;
Figure 8 is a sectional view taken on the line 8—8 of Figure 6;
Figure 9 is a perspective view of the various parts of the handle and locking mechanism;
Figure 10 is a section taken on the line 10—10 of Figure 1;
Figure 11 is a perspective view of the hinge of the locker door;
Figure 12 is a perspective view of the double locker door;
Figure 13 is a sectional view on line 13—13 of Figure 12;
Figure 14 is a plan section taken on line 14—14 of Figure 13;
Figure 15 is a perspective view of the shelf supporting member;
Figure 16 is a perspective view showing a sloping top attachment for the cabinet;
Figure 17 is a sectional view taken on the line 17—17 of Figure 16;
Figure 18 is a section on line 18—18 of Figure 16;
Figure 19 is a perspective view of a modified form of sloping top construction and
Figure 20 is a section taken on the line 20—20 of Figure 19.

Referring now to the drawings in detail, and particularly with reference to Figure 1, it will be noted that the locker comprises a front frame member of integral construction which includes the two vertical angle iron side pieces 2 and 4, the integral bottom cross angle 6 and the top cross angle 8. The cross bars 6 and 8 are preferably united by welding. The two side angles 2 and 4 extend downwardly at their lower ends to provide the integrally formed feet 10 and 12. Suitably attached to the front standing vertical frame members 2 and 4 as at 14 and 16, as by rivets or self-tapping screws or by bolts and nuts, is a side panel 20 formed of sheet metal.

The marginal flange portion 18 of this panel 20...
underlies the angle portion 24 of the vertical angle iron 2. Similarly another side panel 26 has a forward flanged portion 28 which is to frame the flanges of a corresponding side flange of the vertical corner bar 4. A sheet metal back 34 has right angle flanges 30 and 35 which are fastened to the side panels 20 and 26, the side panels having flange portions 40 and 42 overlying the back panel 34. The flanges of the border flanges 46, 48, 50 and 52 which are fastened to the side and rear panels in any suitable manner, as by bolts and nuts 63. The top depending flange 45 is not bolted or fastened to the top cross bar 8 of the door frame. However, its bottom edge 43 rests upon an inwardly extending integral flange 9 of the top frame, as shown in Figure 4. The other side wall portions of the top are affixed to the side and back panels. In the same manner a sheet metal bottom 88 is provided with depending flanges 60, 62, and two similar flanges on the other side, not shown in Figure 4. The front depending flange 60 of this bottom 88 lies inwardly of the front face of the bottom cross angle 6 and its bottom edge lies upon an inwardly extending horizontal flange 7 of the bottom cross bar 8, as shown in Figure 4. The side flanges of the top are bolted as at 64 and 66 and 68 to the side and rear panels of the locker. The locker preferably includes an intermediate shelf 70 having depending flanges 72, 74, 76 and 78, a flange, not shown, opposite the flange 74. The front depending flange 72 has an inwardly and upwardly bent tongue 80 for finish and the side flange 74 and its opposite one terminate as at 82, short of the rear depending flange 78, so as to clear the two flange walls 26 and 30 of the rear panel 34. The shelf 70 is bolted as at 58 and 56 to the two side panels 20 and 26. If desired, hooks 90, 92 and 94 may be attached to the back walls at 95 and 96 or to the side panels or to the depending side flanges 74 of the shelf 70. Thus there is provided a rectangular structure formed of the panels and the front rigid frame members 2, 4, 6, 8 and 10.

The front frame member comprises legs 10 and 12 while the rear legs are formed by a pair of relatively short corner angle uprights 109 which are adequately bolted to the corners of the side and back panels 20, 26 and 34, as shown in Figures 4 and 5. Preferably the bottoms of the legs 10, 12 and 100 are provided with adjustable legs comprising the slotted, angularly shaped corner pieces which pass through the slots thereof and through registering perforations in one of the flanges of the legs to provide adjustment, see Figures 4 and 5.

Cooperating with the integral door frame member 2, 4, 6, 8 and 10 of the locker, and which member is shown in Figure 5, is a door member 102 of sheet metal, also shown in Figure 5. The door member has an upper, inwardly extending horizontal flange 104 and a bottom inwardly extending horizontal flange 106, see Figure 2. In addition, at its front right hand side it is provided with an elongated rectangular opening 108. It is likewise equipped with a front border flange 110 which in turn, as shown in Figure 2, is provided with an inwardly extending short flange 112 that parallels the plane of the door 102. This flange 112 is spaced from the plane of the door 102 by the relatively shorter flange 110, see Figure 10, which in turn has a right angled, relatively shorter flange 116 that preferably lies parallel to and substantially in the plane of the flange 112. A pair of hinged leaves 118 are spot welded as at 120 to the vertical flange 114. The end 125 of each of the leaves 118 is bent around the flange 116 and terminates in a short flange 126 that covers the vertical end of the flange 116. The hinge member 144 is provided as at Figure 11 and a pivot pin 130 passes through the spaced loops of the hinges and after they are assembled the pin is held in position by means of the indents 132 and 134 formed in portions of the barrels of the leaves 118 whereby to hold the hinges assembled. This is the type of hinged hinge that covers the raw edge of the flange 116 and lies flush with the front flange of angle 4 of the framework.

At the opening 108 of the door 102 the bottom wall is provided with an integral, inwardly extending tab or ear 136, see Figure 7. The upper wall is likewise provided with an inwardly extending ear 138. Both of these ears are perforated as at 140 to receive the shank of a rubber bumper 142 and 144, respectively, see Figures 8 and 9.

The upper portion of the vertical flange 112 of the door 102 is provided with a slot 146 which extends in a vertical direction with respect to the wall 112 and terminates in a right angled, horizontal portion 148. This slot is therefore in a manner like an inverted L-shaped slot. As shown in Figure 2, the bottom portion of the flange 112 likewise has a vertical slot 146 and a horizontal connecting slot 148 and if desired there may be still a third similar slot 149 intermediate the other two slots. These slots are adapted to engage keepers 152, 153 and 154 formed on the stationary door frame member 156. The door 102 has a horizontal slot 160 at the angles to the portion 160. This free tongue is formed in turn with a latching tongue 165 that overlies the top edge of the tongue 162 and is bevelled as at 166. It provides a locking device 195 opposing the benefit of the door.

Cooperating with the front of the door 102 and particularly with the flanges 110 and 112 thereof and forming a substantially open-faced rectangular vertical guideway, is a vertically extending, channel-shaped member or bar 118 of sheet metal which is provided with parallel, spaced apart sides 172 and 174, see Figure 9. This channel-shaped bar or member 118 moves vertically in the guideway formed by the rear face of the front of the door 102, by the normally disposed flange 110 thereof and the back flange 112 of the door which flange 112 is integral with flange 116 and disposed normally thereto. The channel bar 170 carries affixed to it and movable bodily with it a vertically disposed, rectangular, box-like housing of sheet metal comprising a vertically extending rear panel 172, cooperating with a lower bordering flange 180, a vertical side flange 182, a vertical parallel wall 183 on the opposite side, and a top flange 184. The vertical side flange 182 is provided with an outwardly extending vertical lip 186 and the opposite wall of this box-like member is attached to channel bar 170 by means of screws, or preferably steel pins 188 and 190 welded to the vertical wall 183 of the vertical
housing. If screws are used for attaching the housing, the latter is rigidly attached to the vertically movable channel member 170. On the other hand, if the pins 188 and 190 are welded to the vertical wall 183 of the housing, these pins then merely engage the vertical channel member through horizontally elongated slots 189 and 191, as shown in Figures 8 and 10. This pin and slot connection allows the pins to float horizontally in these slots but does not allow the pins to disengage the vertical channel member 170, due to the fact that the housing structure is held to the vertical channel member 170 by means of a handle, see Figure 1. The handle is attached to the housing structure by means of three screws so that the handle cannot move horizontally away from the vertical channel member 170 but can travel only vertically as it rides in the slot in the face of the door. This permits the handle to operate freely and permits ease of alignment and assembly. In addition, there is a horizontal portion 192 which is welded or otherwise suitably fixed to the rear wall 178. In addition, the rear wall 178 is depressed slightly outwardly to provide a rectangular shaped recess 184 and the upstanding portion of wall 178 is slotted all the way through as at 196 to form a channel for receiving a numeral ticket which slides down in position and carries the lock 198, as shown in Figure 6, thereby giving the lock a number.

A cast aluminum or other metal handle member, shown in Figure 9, is provided. This comprises a vertically extending front plate 200 provided with an elongated, central, preferably rectangular opening 204 and two side pillars 206 and 208. At the top and back, these side legs or pillars terminate in a horizontal, inwardly extending flange 210 which is perforated and threaded as at 212 and 214. In addition, the legs are joined at the bottom by means of a flange 232 having a centrally depending lug provided with a horizontal perforation which is threaded as at 216. The bottom front plate 200 extends downwardly as at 220 below the horizontal extending flange 216. The posts 206 and 208 at the junction of the flange 216 are slotted as at 222 and 234 so as to receive therein the cross flange 192 of the channel member 170 and the ends of the flange 192 are shouldered as at 193 so as to fit into these slots 222 and 224, whereby the handle plate 200 fits within the side wall 182 and the opposed side wall 183 of the box-like structure, and wherein the handle plate is held or secured to the housing by the cross flange 192 fitting in the slots 222 and 224 and three screws threaded into the handle flanges 210 and 216 through the box-like structure, so that when the hand of the user of the lock enters the opening of the handle and raises the latch, the box-like housing or structure 178 and the elongated channel member 170 will be carried thereby and will be raised relatively to its guide formed by the door 102, and the flanges 110 and 112.

As shown in Figure 9, the front wall of the channel bar 170 is provided with a lower cut-out horizontal leg 226 connected to the outer leg 220 of a locking slot and, in addition, there above there is another vertical slot 230 which merges into an enlarged horizontal leg 232. Suitably welded to the front wall of the channel bar 170, as at 234, 236 and 238, is a plate-like member 240 which is provided with a slot 242 which includes a relatively narrow neck portion 244 extending in a substantially circular head 246. The bottom portion of the slot 242 lies out wider at its bottom, as shown. A latch 266 of this slot lies in this slot and has a head 250 which lies in the circular portion 246 so that the pin lies flush with the inner surface of the plate 240. A struck-up tab 252 overlies the shank 248 of this pin and holds it firmly in its seat in the slotted plate. The bottom portion of this plate is bent laterally out of the plane of the remainder of the plate, such as at 254, so that it is clear of the pin. The bottom of the pin is free and lies in the broad portion 232 of the outer slot just described.

The bottom 237 of the pin 244 normally lies below the lip portion of the horizontal slot 148 in the flange portion 112 of the door. This corresponds to the downmost position of the bar 170 and its box-like structure and handle portion 200. In this position, when the door is closed, the tongue 164 on the stationary frame will enter the horizontal leg 148 of the notch and the bevel portion 166 of this tongue will contact the free bottom portion 235 of the vertical pin and will shift it to one side in such a manner that the pin will wipe over the beveled portion 160 and will move behind the beveling face 168 of the tongue whereby the door will be locked to the framework. This is the snap lock feature of the door. To release the same it is necessary then to push up on the handle portion, which means that the channel member 170 is likewise pushed upwardly, which then carries the plate 240 and the pin 248 mounted thereon vertically upwardly so that the bottom portion of the pin will be raised above the top edge of face of the tongue 164 to free the pin from locking engagement with the face 165 of the tongue. In this position the door is unlocked and may be swung to open position.

Means is provided for the lock body, see Figure 10, which comprises an inwardly struckout locking lug or tip 258 on the wall 112 of the guideway which engages the lower or retaining slot 226—230 on the face 170 of the shiftable bar, see Figure 10. The L-shaped slot 226—228 cooperates with this lug 258 in such a manner that when the vertical channel bar 170 is inserted into the guideway the horizontal portion 226 of the slot first registers with the locking lug 258 and then when the vertical portion 228 of the slot is aligned with the lug 258 the bar 170 is dropped so that the lug 258 thereafter engages only the vertical slot portion 228, whereby the bar 170 is then in assembled position. It will be noted that the horizontal portion 226 of the slot passes entirely through the metal of the front face of the bar 170 and also forms a cutout portion 285 in the side flange 172, thereby permitting the tip 258 to pass into the slot from the side of the bar.

Means is provided for opening the door which comprises a vertical slot 280 formed in wall 174 of the bar 170, the lower inner face of this wall 174 below the slot 28 having welded thereto a strip of metal 262, the upper end of which is bent outwardly through the bottom of the slot as at 264 to provide an outwardly extending horizontal ledge or stop on the vertical wall 174 of the vertically shiftable channel member 170. This stop member 264 cooperates with the tongue or latch 266 of a lock 268 fastened as at 270 and 272 on the inner face of the door 102, see Figure 9. A key operated member 274 will project the latch 266 of the lock outwardly to engage the slot 260 and the ledge 264, so that the channel member...
I cannot be raised to release the latch from the bottom 236 of the rod. It will be noted that the rubber stops 142 and 144 are provided above and below the receptacle handle plate 12 which is used to provide a sound-deadening and cushioning means for this handle. From the foregoing, it will be apparent that I have provided an improved construction wherein, as shown in Figures 7 and 8, the hereinbefore described construction provides a flush type of handle which is much less hazardous in use than a projecting type of handle. It will also be noticed that this flush type of handle overlies or overlaps the face of the door opening, thereby concealing the slot in the door which is necessary for the insertion of the handle. In addition, the handle cover plate 200 forms with the upper and lower flanges 210 and 216 to accommodate the fingers for raising the handle to unlatch the door, and the inside of the handle is smooth. The entire handle, including the handle cover plate, is of a part drawings of Figure 6, it will be noticed that the front wall of the door, just below and above the opening, as shown in Figure 3 and also in Figure 9 at 239, is provided with small embossments on its outer face upon which slidingly rides the inner wall of the handle cover plate whereby to eliminate friction and protect the finish. Furthermore, the handle cover plate is symmetrically formed about a vertical center line and thereby can be used on either right-handed or left-handed swinging doors. In addition, the bumper members 142 and 144 at the top and bottom of the handle opening of the door provide silent operation of the handle mechanism.

In Figures 12 to inclusive, a modification of the locker construction is shown. In this construction the locker is provided with a vertical section of compartment, each provided with its own door and each door having a locking construction identical with that previously described. In providing the multi-compartment lockers, a detachable support member 276, see Figure 15, is provided. This support member has the outwardly, rearwardly extending arms 271 and 278 which are suitably perforated to receive bolts. The forward portion of this partition member 276 is substantially flat and is cut away, as at 282 and 284, to avoid the front portions of the front frame 24 and 24'. In this construction these front frame members are provided with slotted portions 286 and 286', see Figure 14, which receive the corner portions of the support portion 276 formed by the cutouts 282 and 284 whereby the floor edge 290 is supported at 286 and 286' and whereby the rear edge of the member 276 is supported by the bolts 292 and 294 which engage the side panels 20 and 20. It will be noted that the side panels and the rear panel 34 in this construction extend the entire height of the multi-door locker. The support member 276, as shown in Figure 13, has an inwardly and downwardly extending interior flange 265. A horizontal partition member and shelf 298 having side depending flanges 290 and a front depending flange 294 and a rear depending flange 306, is provided. The side flanges 300 are held to the side panels 20 and 26 by means of the bolts 292 and 296. The front depending flange 294 of the horizontal partition member 298 forms a bottom for the upper compartment and a top for the next lower compartment. The upper part of flange 304 of this partition above the flange 292, and flange 295 of the front partition member 276 act as a stop for the bottom and top edges respectively of the upper and lower doors. In the multiple tier type locker, the doors are fitted with locks but not handles.

In Figures 16 to 20 I have shown modifications of the structure wherein a slanting or sloping top attachment 314 is provided. This sloping top is preferably designed as a separate unit that may be attached to any flat top locker of similar size, or if the locker is purchased with a sloping top and later the user prefers a flat top, the sloping top may be removed. As shown, this top member 314 has horizontal partitions 315 on opposite sides, and has a rear vertical wall 317 having two rear flanges 316, only one being shown, which are bolted to opposite triangular side pieces 320 as by means of the bolts 324 and 326. If desired, these may be spot welded. In addition, the bottom portions of these two side members 326 and the rear wall, are bolted as at 328 and 330 to the top edge of the side panels 20 and 26, and as at 337 to the top edge of the rear panel 34. The lower edges 332 of these side triangular members 320 are disposed inside of the top edges 344 of the side panels 20 and 26. The top frame member, see Figures 18 and 19, has a horizontal portion 9 disposed at right angles to the vertical portion 8 of the frame member and the lower end of a front flange 334 of top 314 rests upon this horizontal flange 9 and against the vertical portion 8. The rear lower corner of each of the triangular portions 320 is cut away as at 335, see Figure 21, to allow the sloping top to be easily inserted into the top of the locker. In addition, these triangular side members 320 are slotted and are provided with three perforated vertically bent ears 338, 340 and 342, which are bent slightly outwardly and overlie the upper edge 344 of the side panel 20, whereby these side panels 320 have portions straddling the upper edge of the side portion 20, see Figure 19.

In the construction shown in Figures 16, 17 and 18, which possibly is a preferred construction, instead of providing the sides of the top with slotted integral lugs 333, 343 and 342, I secure gauge clips 350 and 352, see Figure 16, to each of the opposite side members 320 of the rear member 317, as by welding or spot welding, see Figure 17. Preferably these clips are of 24-gauge sheet metal and are preferably spot welded to each of the side and rear members as by the spot welds 353 and 355. These clips have downwardly projecting portions 358 that are added to project outside of the top edge of the side portions 320 of the cabinet exactly in the manner shown in Figures 17 and 18, while the downwardly projecting portions of the clips secured to the rear member 317 project between the rear flange 50 of the top 44 and the rear panel 34 of the locker. The front flange or skirt 334 of the top, as shown in Figure 18, will rest on the hor-
of the top portion. The skirt 322 will lie inside of the top edge of the two side members 320. In short, except for the manner of forming the gauge clips separately and then welding them onto the side members of the top, the construction of Figures 16 to 18 are identical to the construction of Figures 19 and 20. In any instance it will be appreciated that by means of the foregoing construction a cabinet may be sold with either a flat top or with a sloping top.

It will thus be seen that I have provided a cabinet door having a substantially flush, unlatched door, the skirt 332 lying inside of the top portion. The construction being such that the door will snap to with a snap lock and will require a manual actuation of the door handle to release the door for opening, and yet will permit of the door being locked by a manually thrown bolt which will prevent the release of the snap locking mechanism. It will be seen that the foregoing provides a very simple type of door construction and locking mechanism therefore for accomplishing the foregoing objects and providing a door of the foregoing advantages.

Obviously the invention is not limited to the specific details of construction disclosed herein but is capable of other modifications and changes without departing from the spirit and scope of the appended claims.

Having thus described the invention, what is claimed as new and desired to be secured by Letters Patent is:

1. In a cabinet having a door and a locking mechanism shiftably mounted on the rear of the door, said door having an aperture therein, a handle having forward laterally extending plate-like marginal portions overlying the front face of the door about the edges of the aperture in the door and having rearwardly extending portions extending through the aperture in the door, said handle being connected with the locking mechanism, said handle being shiftable said aperture being accessible from the front, and anti-friction means associated with the inner wall of said handle and the outer wall of said door for maintaining the handle slightly spaced away from the front wall of the door prevent scratching of the outer finish of the door while permitting the handle to shift relatively to said door.

2. A handle assembly for use with a cabinet door having an aperture therein and locking mechanism shiftably mounted on the rear of the door; and comprising a shiftable handle mounted on the front of the door and having a portion projecting through the aperture in the door and connecting with the locking mechanism to shift the same upon movement of the handle, said handle having an opening therethrough, and a housing structure shiftable with said handle and closing the opening therethrough and the aperture at the rear face of the door and having the inner wall thereof provided with means adapted to receive and position indicia to be viewed through the opening in said handle.

3. A handle assembly for use with a cabinet door having a guideway along one edge thereof to shiftably receive locking mechanism therein and an opening therethrough adjacent the guideway; and comprising a handle mounted in the opening of the door and having a plate-like portion extending at the front of the door over the edges of the opening and a further portion extending through the opening in the door rearwardly thereof and connecting with the locking mechanism, said handle having a finger-receiving aperture registering with the opening in the door and means connected to the handle and extending substantially back of the rear face of the door for closing the rear of the aperture in said handle.

4. In a handle having a vertical marginal guideway to shiftably receive locking mechanism therein and an aperture adjacent the guideway, and comprising a handle having a plate-like portion extending over the front face of the door about the edges of the aperture therein and having a portion projecting through the front of the door and rearwardly of the door, said handle having an opening therethrough accessible from the front of the door, and a box-like housing closing the rear of said opening, said box-like housing being connected with the locking mechanism and shiftable with said handle on vertical movement of the same in the aperture through the door.

5. A handle assembly for use with a cabinet door having a vertical marginal guideway to shiftably receive locking mechanism therein and an aperture adjacent the guideway, and comprising a handle having a plate-like portion extending over the front face of said door for maintaining the handle slightly spaced away from the front wall of the door prevent scratching of the outer finish of the door while permitting the handle to shift relatively to said door.
of the door, a box-like housing closing the rear of said opening, said box-like housing being connected to the locking mechanism and shiftable with said handle on vertical movement of said handle in the aperture in the door, and cushioning means mounted on said door in the path of movement of said vertically shiftable handle for predetermining the limits of movement of the handle and cushioning the movement of said handle as it approaches said limits.

9. A handle assembly for use with a cabinet door having an aperture therein and locking mechanism shiftably mounted on the rear of the door; and comprising a handle having a face portion extending forwardly of the plane of the door and of larger cross section than the aperture in the door, said handle having a portion narrower than the aperture connecting with said face portion and passing inwardly through said aperture, said face portion having an opening therein and registering with the aperture of the door, a finger guarding means rigidly mounted on that portion of the handle that passes through the aperture of the door, said finger guarding means being of greater cross section than the opening in the handle, and means connecting said finger guarding means with said locking mechanism whereby on relative movement of said handle plate relatively to the aperture in said door said locking mechanism on the rear of the door will be actuated.

10. A handle assembly for use with a cabinet having a door with an aperture therein, and comprising a handle member mounted in the aperture in said door and having an opening therein to receive the fingers of the user, a housing associated with said handle member closing the rear of the opening therein, the rear wall of said housing having a recess therein with a slot adapted for insertion of an indicia-carrying member and forming a guideway adapted to position such indicia-carrying member at the rear wall of the housing to be observed through the opening in said handle member.

JOHN B. O'CONNOR.

REFERENCES CITED

The following references are of record in the file of this patent:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,187,828</td>
<td>Anderson</td>
<td>May 4, 1915</td>
</tr>
<tr>
<td>1,139,869</td>
<td>Howard</td>
<td>May 16, 1915</td>
</tr>
<tr>
<td>1,720,021</td>
<td>Vance</td>
<td>July 9, 1929</td>
</tr>
<tr>
<td>1,790,130</td>
<td>Austin</td>
<td>Jan. 27, 1931</td>
</tr>
<tr>
<td>1,970,267</td>
<td>Bales</td>
<td>Aug. 14, 1934</td>
</tr>
<tr>
<td>1,973,579</td>
<td>Ryan et al.</td>
<td>Sept. 11, 1934</td>
</tr>
<tr>
<td>2,033,006</td>
<td>Baker et al.</td>
<td>Mar. 10, 1936</td>
</tr>
<tr>
<td>2,064,429</td>
<td>McWhirter</td>
<td>Dec. 15, 1936</td>
</tr>
<tr>
<td>2,104,838</td>
<td>Leonard</td>
<td>Jan. 11, 1936</td>
</tr>
<tr>
<td>2,115,947</td>
<td>Ellison</td>
<td>May 3, 1938</td>
</tr>
<tr>
<td>2,348,065</td>
<td>George</td>
<td>May 2, 1944</td>
</tr>
<tr>
<td>2,424,217</td>
<td>Bales</td>
<td>July 22, 1947</td>
</tr>
<tr>
<td>2,478,921</td>
<td>Gander</td>
<td>Aug. 23, 1949</td>
</tr>
</tbody>
</table>