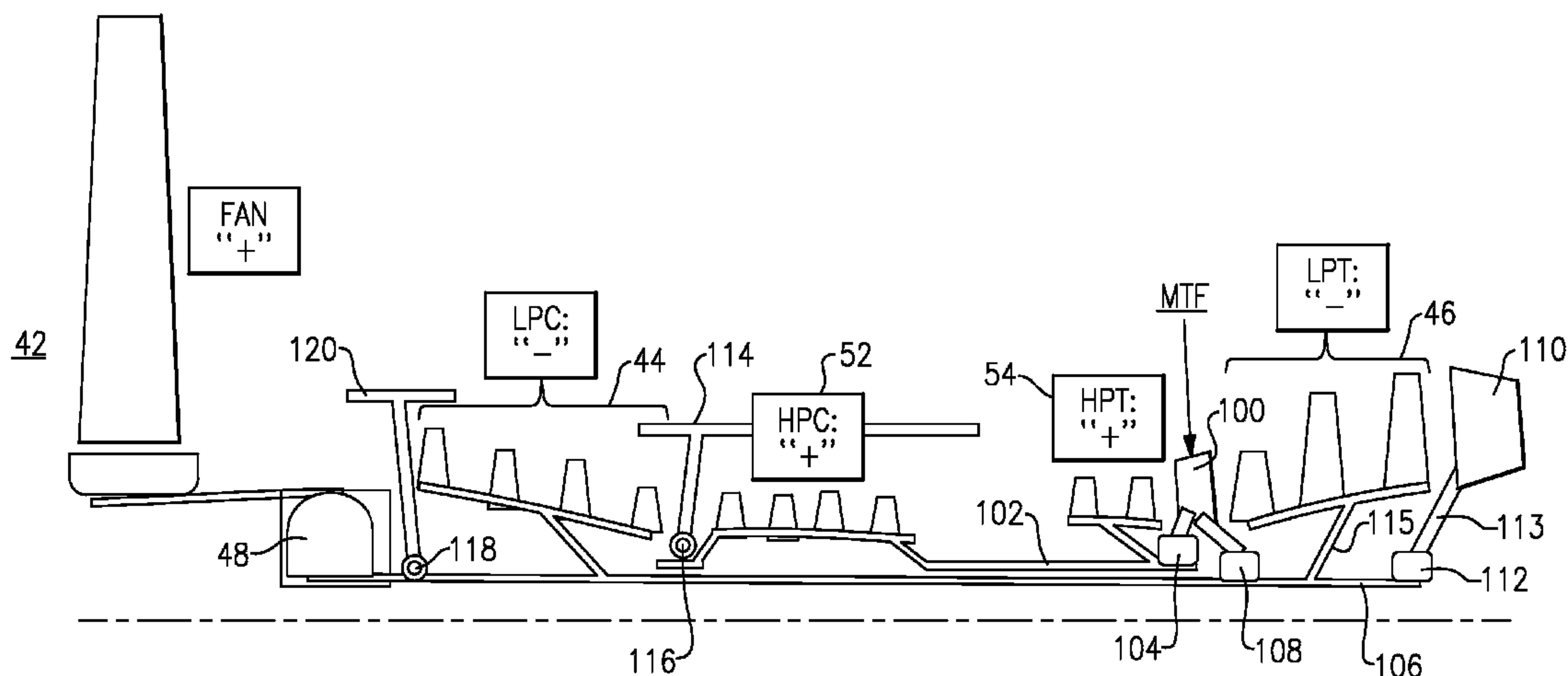


(86) Date de dépôt PCT/PCT Filing Date: 2013/11/07
(87) Date publication PCT/PCT Publication Date: 2014/05/22
(45) Date de délivrance/Issue Date: 2018/03/06
(85) Entrée phase nationale/National Entry: 2015/04/24
(86) N° demande PCT/PCT Application No.: US 2013/068838
(87) N° publication PCT/PCT Publication No.: 2014/078157
(30) Priorités/Priorities: 2012/11/14 (US61/726,211);
2012/12/19 (US13/719,620)


(51) Cl.Int./Int.Cl. *F02C 7/20*(2006.01),
F01D 25/24(2006.01), *F02K 3/072*(2006.01)

(72) Inventeurs/Inventors:
SCHWARZ, FREDERICK M., US;
GLAHN, JORN A., US

(73) Propriétaire/Owner:
UNITED TECHNOLOGIES CORPORATION, US

(74) Agent: NORTON ROSE FULBRIGHT CANADA
LLP/S.E.N.C.R.L., S.R.L.

(54) Titre : MOTEUR A TURBINE A GAZ DOTE D'UNE MONTURE POUR SECTION DE TURBINE BASSE-PRESSION
(54) Title: GAS TURBINE ENGINE WITH MOUNT FOR LOW PRESSURE TURBINE SECTION

(57) Abrégé/Abstract:

A gas turbine engine includes a very high speed low-pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for a higher pressure turbine is at a ratio between about 0.5 and about 1.5. In addition, the lower pressure turbine is mounted with a first bearing mounted in a mid-turbine frame, and a second bearing mounted within a turbine exhaust case.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 May 2014 (22.05.2014)

(10) International Publication Number
WO 2014/078157 A1

(51) International Patent Classification:
F02C 7/20 (2006.01) **F02K 3/072** (2006.01)
F01D 25/24 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2013/068838

(22) International Filing Date:
7 November 2013 (07.11.2013)

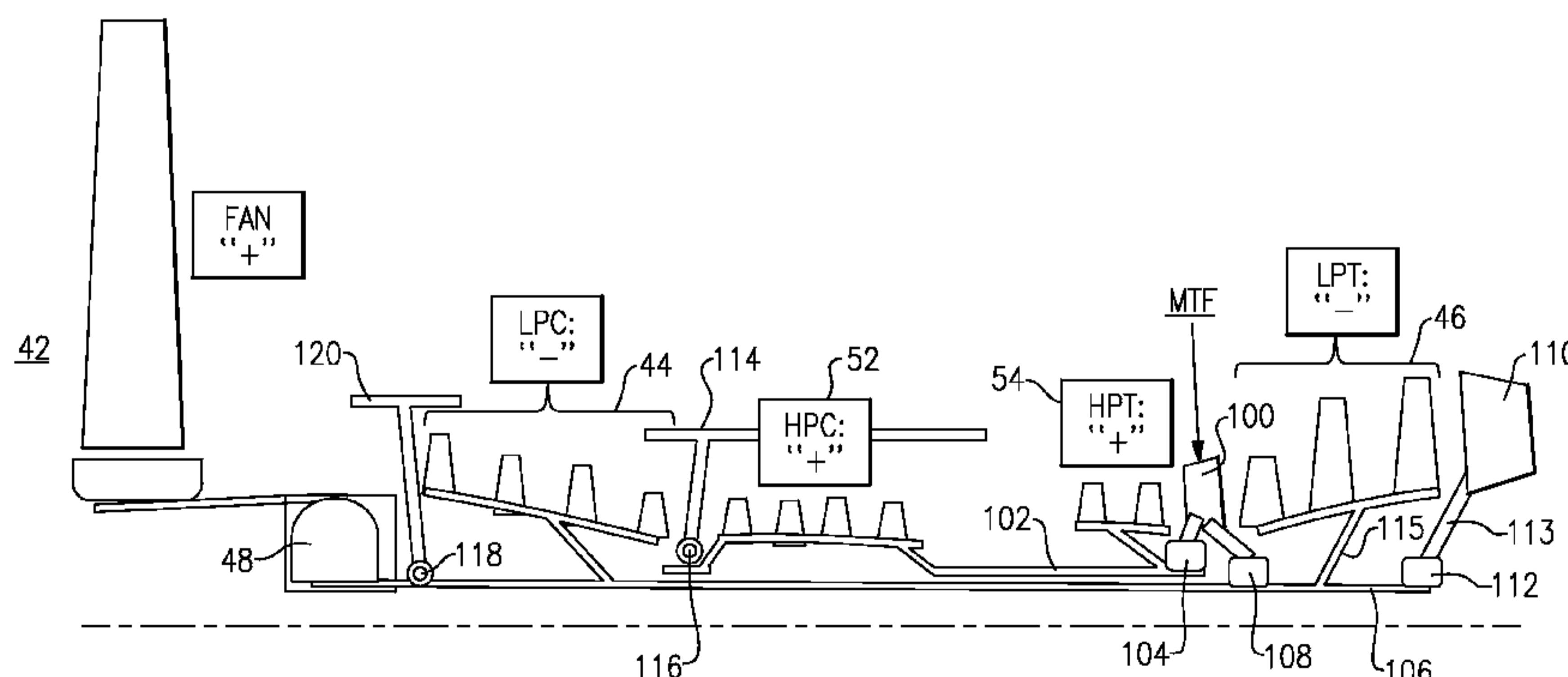
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/726,211 14 November 2012 (14.11.2012) US
13/719,620 19 December 2012 (19.12.2012) US

(71) Applicant: **UNITED TECHNOLOGIES CORPORATION** [US/US]; One Financial Plaza, Hartford, Connecticut 06101 (US).

(72) Inventors: **SCHWARZ, Frederick, M.**; 121 Steep Hollow Drive, Glastonbury, Connecticut 06033 (US). **GLAHN, Jorn, A.**; 379 Meadowbrook Drive, Manchester, Connecticut 06042 (US).


(74) Agent: **OLDS, Theodore, W.**; Carlson, Gaskey & Olds/Pratt & Whitney, c/o CPA Global, P.O. Box 52050, Minneapolis, Minnesota 55402 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: GAS TURBINE ENGINE WITH MOUNT FOR LOW PRESSURE TURBINE SECTION

FIG.3

(57) Abstract: A gas turbine engine includes a very high speed low-pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for a higher pressure turbine is at a ratio between about 0.5 and about 1.5. In addition, the lower pressure turbine is mounted with a first bearing mounted in a mid-turbine frame, and a second bearing mounted within a turbine exhaust case.

WO 2014/078157 A1

GAS TURBINE ENGINE WITH MOUNT FOR LOW PRESSURE TURBINE SECTION

BACKGROUND OF THE INVENTION

[0002] This application relates to a gas turbine engine wherein the low pressure turbine section is rotating at a higher speed and centrifugal pull stress relative to the high pressure turbine section speed and centrifugal pull stress than prior art engines.

[0003] Gas turbine engines are known, and typically include a fan delivering air into a low pressure compressor section. The air is compressed in the low pressure compressor section, and passed into a high pressure compressor section. From the high pressure compressor section the air is introduced into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over a high pressure turbine section, and then a low pressure turbine section.

[0004] Traditionally, on many prior art engines the low pressure turbine section has driven both the low pressure compressor section and a fan directly. As fuel consumption improves with larger fan diameters relative to core diameters it has been the trend in the industry to increase fan diameters. However, as the fan diameter is increased, high fan blade tip speeds may result in a decrease in efficiency due to compressibility effects. Accordingly, the fan speed, and thus the speed of the low pressure compressor section and low pressure turbine section (both of which historically have been coupled to the fan via the low pressure spool), have been a design constraint. More recently, gear reductions have been proposed between the low pressure spool (low pressure compressor section and low pressure turbine section) and the fan.

SUMMARY

[0005] In a featured embodiment, a turbine section of a gas turbine engine has a first and a second turbine section. The first turbine section has a first exit area and rotates at a

first speed. The second turbine section has a second exit area and rotates at a second speed, which is faster than the first speed. A first performance quantity is defined as the product of the first speed squared and the first area. A second performance quantity is defined as the product of the second speed squared and the second area. A ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5. The first turbine section is supported on two bearings, with a first bearing mounted in a mid-turbine frame that is positioned intermediate the first turbine section and the second turbine section, and a second bearing mounting the first turbine section, with the second bearing having a support extending downstream of the first turbine section.

[0006] In another embodiment according to the previous embodiment, the ratio is above or equal to about 0.8.

[0007] In another embodiment according to any of the previous embodiments, the first turbine section has at least three stages.

[0008] In another embodiment according to any of the previous embodiments, the first turbine section has up to six stages.

[0009] In another embodiment according to any of the previous embodiments, the second turbine section has two or fewer stages.

[0010] In another embodiment according to any of the previous embodiments, a pressure ratio across the first turbine section is greater than about 5:1.

[0011] In another featured embodiment, a gas turbine engine has a fan, and a compressor section in fluid communication with the fan. A combustion section is in fluid communication with the compressor section. A turbine section is in fluid communication with the combustion section. The turbine section includes a first turbine section and a second turbine section. The first turbine section has a first exit area at a first exit point and rotates at a first speed. The second turbine section has a second exit area at a second exit point and rotates at a second speed, which is higher than the first speed. A first performance quantity is defined as the product of the first speed squared and the first area. A second performance quantity is defined as the product of the second speed squared and the second area. A ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5. The first turbine section is supported on two bearings, with a first bearing mounted in a mid-turbine frame that is positioned intermediate the first turbine section and

the second turbine section, and a second bearing mounting the first turbine section, with the second bearing supported in an exhaust case downstream of the first turbine section.

[0012] In another embodiment according to the previous embodiment, the ratio is above or equal to about 0.8.

[0013] In another embodiment according to any of the previous embodiments, the compressor section includes a first compressor section and a second compressor section. The first turbine section and the first compressor section rotate in a first direction. The second turbine section and the second compressor section rotate in a second opposed direction.

[0014] In another embodiment according to any of the previous embodiments, a gear reduction is included between the fan and a low spool driven by the first turbine section such that the fan rotates at a lower speed than the first turbine section.

[0015] In another embodiment according to any of the previous embodiments, the fan rotates in the second opposed direction.

[0016] In another embodiment according to any of the previous embodiments, a gear ratio of the gear reduction is greater than about 2.3.

[0017] In another embodiment according to any of the previous embodiments, the gear ratio is greater than about 2.5.

[0018] In another embodiment according to any of the previous embodiments, the ratio is above or equal to about 1.0.

[0019] In another embodiment according to any of the previous embodiments, the fan delivers a portion of air into a bypass duct. A bypass ratio is defined as the portion of air delivered into the bypass duct divided by the amount of air delivered into the compressor section, with the bypass ratio being greater than about 6.0.

[0020] In another embodiment according to any of the previous embodiments, the bypass ratio is greater than about 10.0.

[0021] In another embodiment according to any of the previous embodiments, the fan has 26 or fewer blades.

[0022] In another embodiment according to any of the previous embodiments, the first turbine section has at least three stages.

[0023] In another embodiment according to any of the previous embodiments, the first turbine section has up to six stages.

[0024] In another embodiment according to any of the previous embodiments, a pressure ratio across the first turbine section is greater than about 5:1.

[0025] These and other features can be best understood from the following specification and drawings, the following which is a brief description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] Figure 1 shows a gas turbine engine.

[0002] Figure 2 schematically shows the arrangement of the low and high spool, along with the fan drive.

[0003] Figure 3 shows a mounting feature.

DETAILED DESCRIPTION

[0004] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

[0005] The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

[0006] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure (or first) compressor section 44 and a low pressure (or first) turbine section 46. The inner shaft 40 is connected to the fan 42 through a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and high pressure (or second) turbine section 54. A combustor 56 is

arranged between the high pressure compressor section 52 and the high pressure turbine section 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine section 54 and the low pressure turbine section 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. As used herein, the high pressure turbine section experiences higher pressures than the low pressure turbine section. A low pressure turbine section is a section that powers a fan 42. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes. the high and low spools can be either co-rotating or counter-rotating.

[0007] The core airflow C is compressed by the low pressure compressor section 44 then the high pressure compressor section 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine section 54 and low pressure turbine section 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbine sections 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

[0008] The engine 20 in one example is a high-bypass geared aircraft engine. The bypass ratio is the amount of air delivered into bypass path B divided by the amount of air into core path C. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine section 46 has a pressure ratio that is greater than about 5. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor section 44, and the low pressure turbine section 46 has a pressure ratio that is greater than about 5:1. In some embodiments, the high pressure turbine section may have two or fewer stages. In contrast, the low pressure turbine section 46, in some embodiments, has between 3 and 6 stages. Further the low pressure turbine section 46 pressure ratio is total pressure measured prior to inlet of low pressure turbine section 46 as related to the total pressure at the outlet of the low pressure turbine section 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one

embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

[0009] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ("TSFC"). TSFC is the industry standard parameter of the rate of lbm of fuel being burned per hour divided by lbf of thrust the engine produces at that flight condition. "Low fan pressure ratio" is the ratio of total pressure across the fan blade alone, before the fan exit guide vanes. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of $[(\text{Tram } ^\circ\text{R}) / (518.7 ^\circ\text{R})]^{0.5}$. The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second. Further, the fan 42 may have 26 or fewer blades.

[0010] An exit area 400 is shown, in Figure 1 and Figure 2, at the exit location for the high pressure turbine section 54. An exit area for the low pressure turbine section is defined at exit 401 for the low pressure turbine section. As shown in Figure 2, the turbine engine 20 may be counter-rotating. This means that the low pressure turbine section 46 and low pressure compressor section 44 rotate in one direction, while the high pressure spool 32, including high pressure turbine section 54 and high pressure compressor section 52 rotate in an opposed direction. The gear reduction 48, which may be, for example, an epicyclic transmission (e.g., with a sun, ring, and star gears), is selected such that the fan 42 rotates in the same direction as the high spool 32. With this arrangement, and with the other structure as set forth above, including the various quantities and operational ranges, a very high speed can be provided to the low pressure spool. Low pressure turbine section and high pressure turbine section operation are often evaluated looking at a performance quantity which is the exit area for the turbine section multiplied by its respective speed squared. This performance quantity ("PQ") is defined as:

$$\text{Equation 1: } PQ_{\text{lpt}} = (A_{\text{lpt}} \times V_{\text{lpt}}^2)$$

$$\text{Equation 2: } PQ_{\text{hpt}} = (A_{\text{hpt}} \times V_{\text{hpt}}^2)$$

where A_{lpt} is the area of the low pressure turbine section at the exit thereof (e.g., at 401), where V_{lpt} is the speed of the low pressure turbine section, where A_{hpt} is the area of the high pressure turbine section at the exit thereof (e.g., at 400), and where V_{hpt} is the speed of the low pressure turbine section.

[0011] Thus, a ratio of the performance quantity for the low pressure turbine section compared to the performance quantity for the high pressure turbine section is:

$$Equation\ 3: (A_{lpt} \times V_{lpt}^2) / (A_{hpt} \times V_{hpt}^2) = PQ_{ltp} / PQ_{hpt}$$

In one turbine embodiment made according to the above design, the areas of the low and high pressure turbine sections are 557.9 in² and 90.67 in², respectively. Further, the speeds of the low and high pressure turbine sections are 10179 rpm and 24346 rpm, respectively. Thus, using Equations 1 and 2 above, the performance quantities for the low and high pressure turbine sections are:

$$Equation\ 1: PQ_{ltp} = (A_{lpt} \times V_{lpt}^2) = (557.9\ in^2)(10179\ rpm)^2 = 57805157673.9\ in^2\ rpm^2$$

$$Equation\ 2: PQ_{hpt} = (A_{hpt} \times V_{hpt}^2) = (90.67\ in^2)(24346\ rpm)^2 = 53742622009.72\ in^2\ rpm^2$$

and using Equation 3 above, the ratio for the low pressure turbine section to the high pressure turbine section is:

$$Ratio = PQ_{ltp} / PQ_{hpt} = 57805157673.9\ in^2\ rpm^2 / 53742622009.72\ in^2\ rpm^2 = 1.075$$

[0012] In another embodiment, the ratio was about 0.5 and in another embodiment the ratio was about 1.5. With PQ_{ltp} / PQ_{hpt} ratios in the 0.5 to 1.5 range, a very efficient overall gas turbine engine is achieved. More narrowly, PQ_{ltp} / PQ_{hpt} ratios of above or equal to about 0.8 are more efficient. Even more narrowly, PQ_{ltp} / PQ_{hpt} ratios above or equal to 1.0 are even more efficient. As a result of these PQ_{ltp} / PQ_{hpt} ratios, in particular, the turbine section can be made much smaller than in the prior art, both in diameter and axial length. In addition, the efficiency of the overall engine is greatly increased.

[0013] The low pressure compressor section is also improved with this arrangement, and behaves more like a high pressure compressor section than a traditional low pressure compressor section. It is more efficient than the prior art, and can provide more work in fewer stages. The low pressure compressor section may be made smaller in radius and shorter in length while contributing more toward achieving the overall pressure ratio design target of the engine.

[0014] Figure 3 shows a mounting arrangement for an engine having the features as set forth above. With developments to the turbine sections, the shaft for driving the fan from the lowest pressure turbine has become increasingly thin and long.

[0015] In Figure 3, a higher pressure shaft 102 is shown supported by a forward bearing 116 mounted in some manner at 114. The shaft 102 is also mounted by a bearing 104 at a downstream location, and preferably through a mid-turbine frame 100. Mid-turbine frame 100 is shown to be intermediate a downstream end of the high pressure turbine 54, and an upstream end of the low pressure turbine 46. The mid-turbine frame 100 also mounts a bearing 108 supporting the lower pressure or fan driveshaft 106. A downstream end of the fan drive shaft 106 is supported in a bearing 112 that is mounted 113 within a turbine exhaust case 110. That is, the bearing mount 113 extends downstream of the low pressure turbine 46. A bearing 118 mounts the opposed end of the shaft 106.

[0016] In known engines, the fan drive shaft 106 has been supported by two bearings mounted within the turbine exhaust case. With such an arrangement, a hub 115 limits the distance along the axis of the shaft 106 by which the two bearings may be spaced. In the prior art, these bearings must resist a critical speed of the fan drive or low pressure turbine section 46. The two bearings have not always been spaced by sufficient distance with such a mount.

[0017] By mounting the bearing 108 in the mid-turbine frame, and the downstream bearing 112 in the turbine exhaust case, a much wider "wheel base" is provided between the two bearings 108 and 112, and there is much better support to resist critical speed issues.

[0018] While Figure 3 shows this arrangement in an engine having two turbine sections, the features would apply equally to an engine having three turbine sections. In a three-turbine section engine, the mid-turbine frame would be between an intermediate turbine, and the lower pressure turbine. Further, in such an engine, the area and speed ratios as described above would also be true relative to the intermediate turbine section and the lowest pressure turbine section.

[0019] Although an embodiment has been disclosed, a worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

CLAIMS

1. A turbine section of a gas turbine engine comprising:
 - a first turbine section; and
 - a second turbine section,
wherein said first turbine section has a first exit area and rotates at a first speed,
wherein said second turbine section has a second exit area and rotates at a second speed,
which is faster than the first speed,
wherein a first performance quantity is defined as the product of the first speed squared and the first exit area,
wherein a second performance quantity is defined as the product of the second speed squared and the second exit area,
wherein a ratio of the first performance quantity to the second performance quantity is between about 0.8 and about 1.5; and
wherein said first turbine section is supported on two bearings, with a first bearing mounted in a mid-turbine frame that is positioned intermediate said first turbine section and said second turbine section, and a second bearing mounting said first turbine section, with said second bearing having a support extending downstream of said first turbine section.
2. The turbine section as set forth in claim 1, wherein said ratio is above or equal to about 1.0.
3. The turbine section as set forth in claim 1, wherein said first turbine section has at least 3 stages.
4. The turbine section as set forth in claim 1, wherein said first turbine section has up to 6 stages.
5. The turbine section as set forth in claim 1, wherein said second turbine section has one or two stages.

6. The turbine section as set forth in claim 1, wherein a pressure ratio across the first turbine section is greater than about 5:1.

7. A gas turbine engine comprising:

a fan;

a compressor section in fluid communication with the fan;

a combustion section in fluid communication with the compressor section;

a turbine section in fluid communication with the combustion section,

wherein the turbine section includes a first turbine section and a second turbine section,

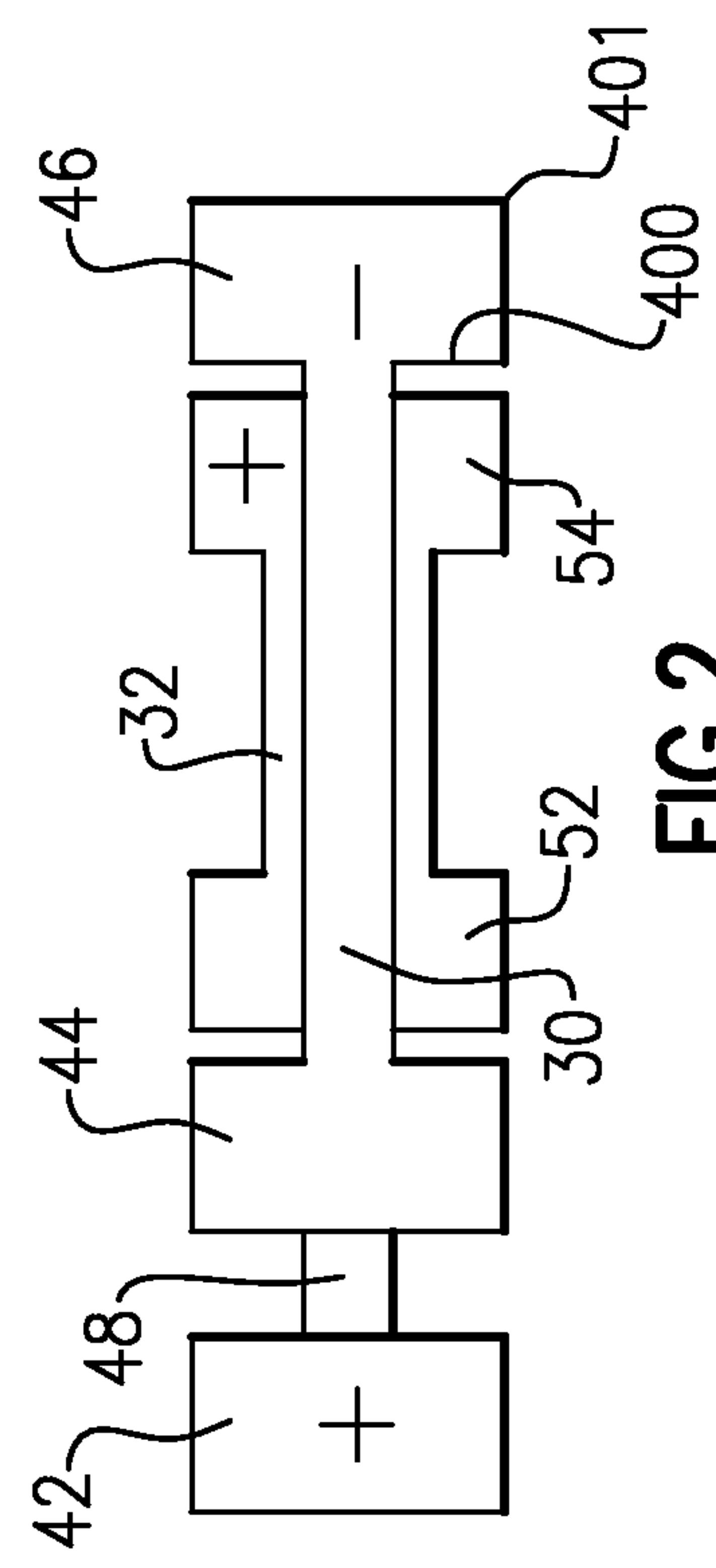
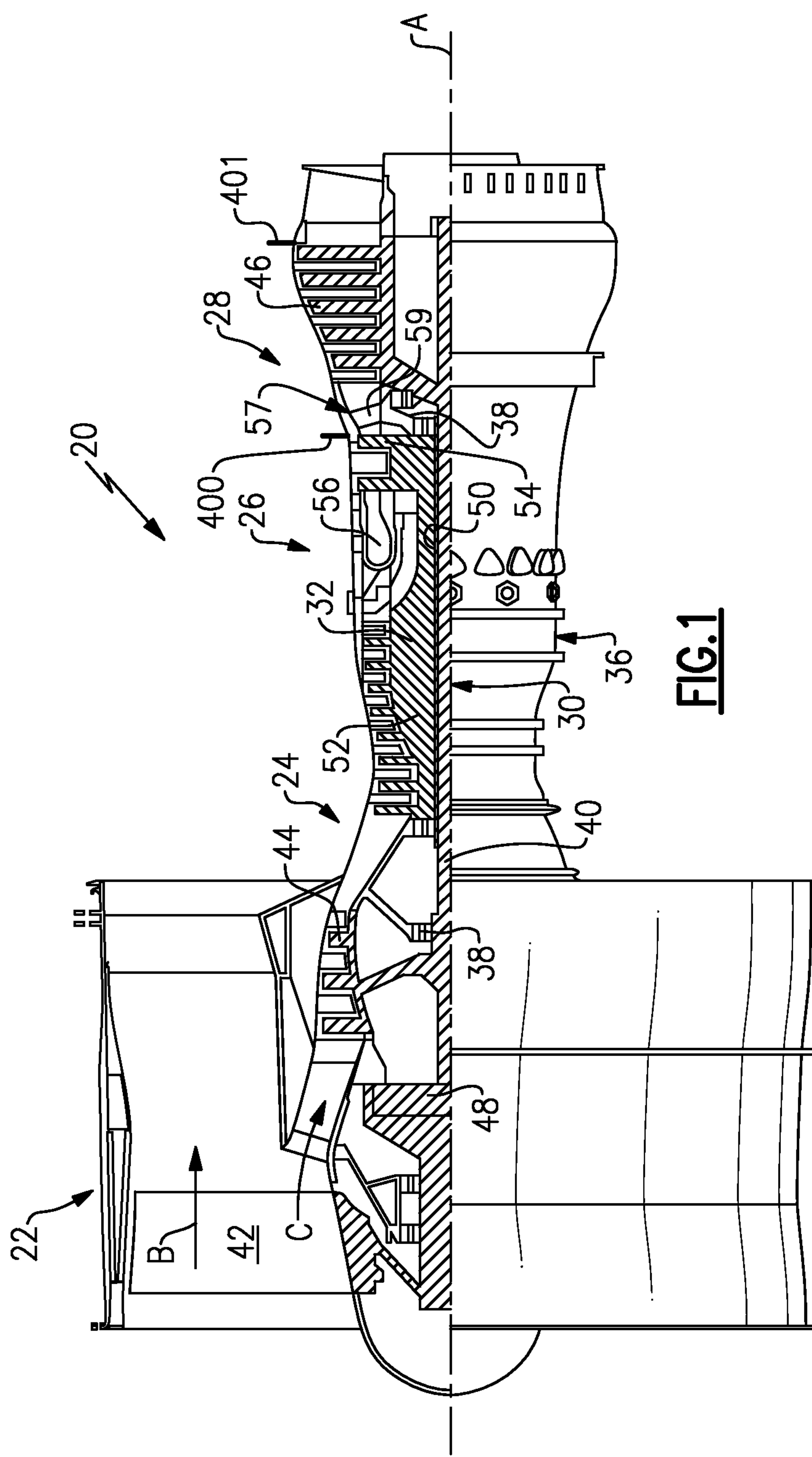
wherein said first turbine section has a first exit area at a first exit point and rotates at a first speed,

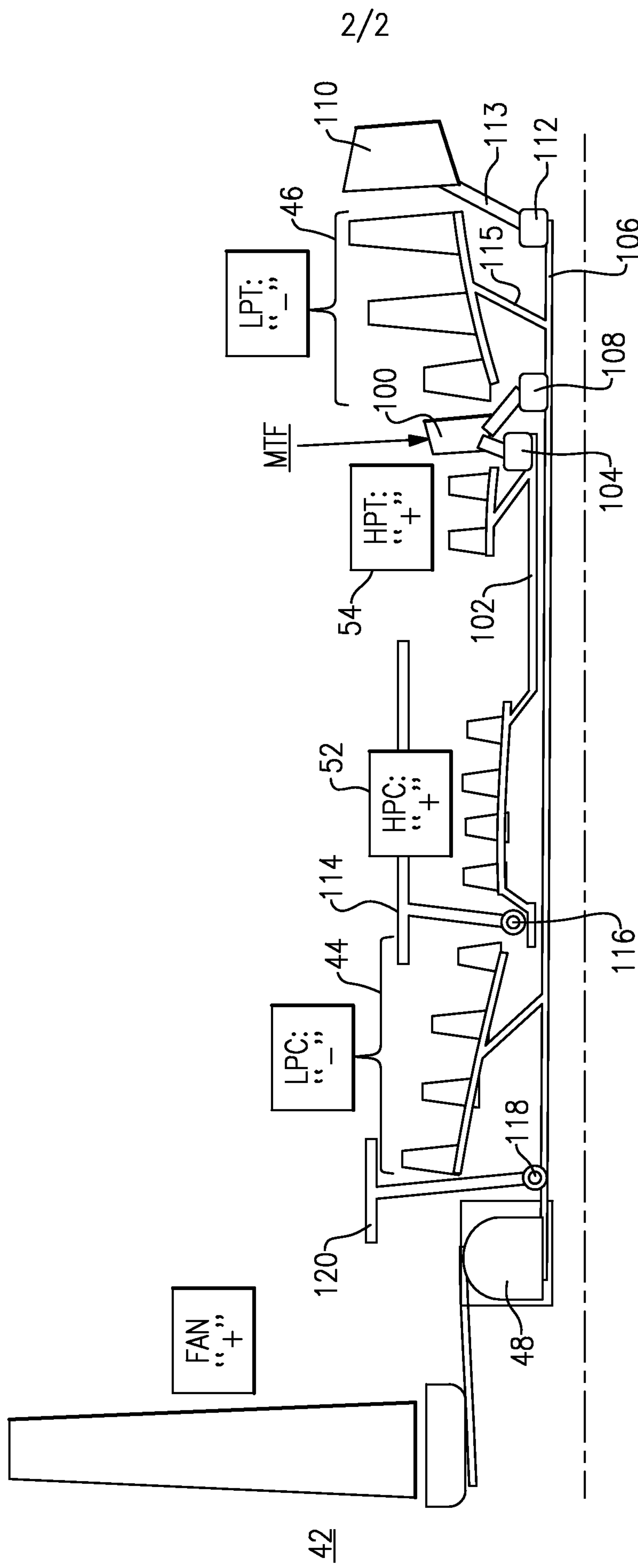
wherein said second turbine section has a second exit area at a second exit point and rotates at a second speed, which is higher than the first speed,

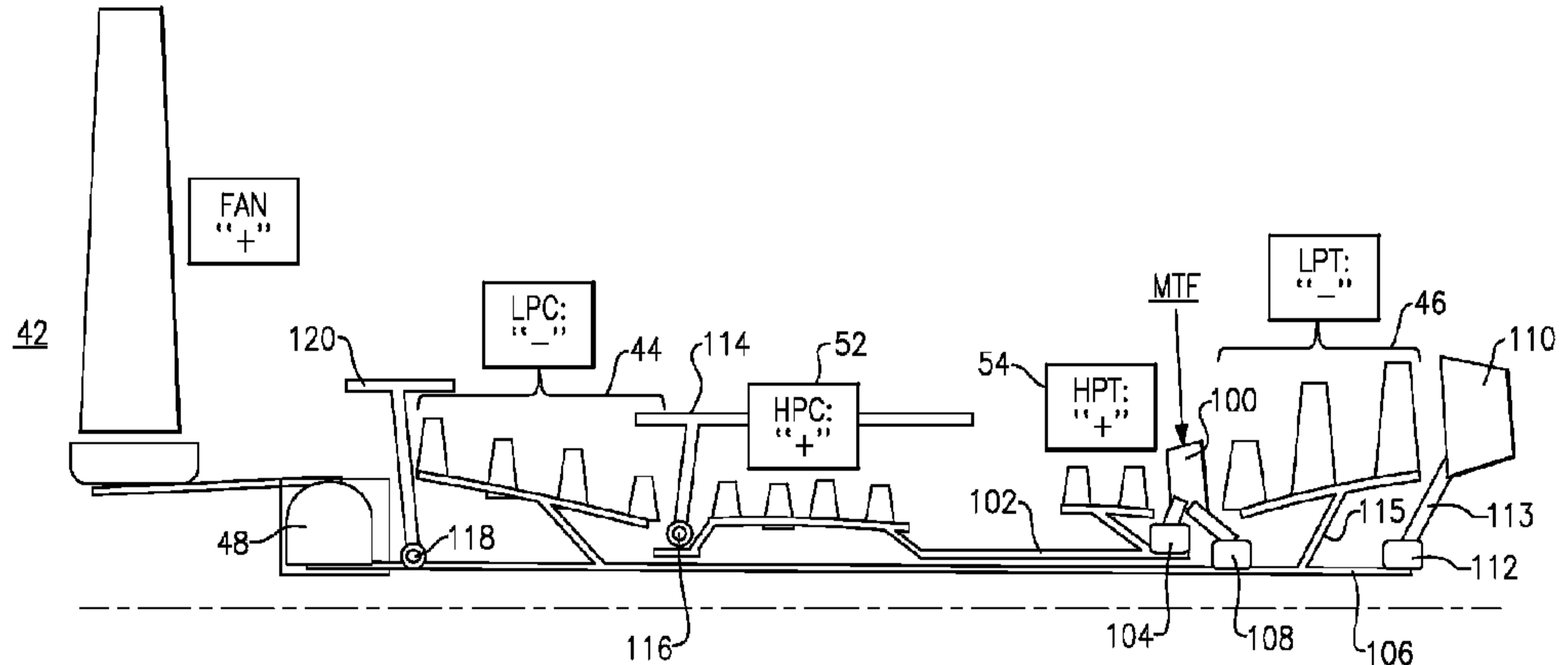
wherein a first performance quantity is defined as the product of the first speed squared and the first exit area,

wherein a second performance quantity is defined as the product of the second speed squared and the second exit area,

wherein a ratio of the first performance quantity to the second performance quantity is between about 0.5 and about 1.5; and



wherein said first turbine section is supported on two bearings, with a first bearing mounted in a mid-turbine frame that is positioned intermediate said first turbine section and said second turbine section, and a second bearing mounting said first turbine section, with said second bearing supported in an exhaust case downstream of said first turbine section.


8. The engine as set forth in claim 7, wherein said ratio is above or equal to about 0.8.


9. The engine as set forth in claim 7, wherein the compressor section includes a first compressor section and a second compressor section, wherein the first turbine section and the first compressor section rotate in a first direction, and wherein the second turbine section and the second compressor section rotate in a second opposed direction.

10. The engine as set forth in claim 9, wherein a gear reduction is included between said fan and a low spool driven by the first turbine section such that the fan rotates at a lower speed than the first turbine section.
11. The engine as set forth in claim 10, wherein said fan rotates in the second opposed direction.
12. The engine as set forth in claim 10, wherein a gear ratio of said gear reduction is greater than about 2.3.
13. The engine as set forth in claim 12, wherein said gear ratio is greater than about 2.5.
14. The engine as set forth in claim 7, wherein said ratio is above or equal to about 1.0.
15. The engine as set forth in claim 9, wherein said fan delivers a portion of air into a bypass duct, and a bypass ratio being defined as the portion of air delivered into the bypass duct divided by the amount of air delivered into the compressor section, with the bypass ratio being greater than about 6.0.
16. The engine as set forth in claim 15, wherein said bypass ratio is greater than about 10.0.
17. The engine as set forth in claim 7, wherein said fan has 26 or fewer blades.
18. The engine as set forth in claim 7, wherein said first turbine section has at least 3 stages.
19. The engine as set forth in claim 7, wherein said first turbine section has up to 6 stages.
20. The engine as set forth in claim 7, wherein a pressure ratio across the first turbine section is greater than about 5:1.

1/2

FIG.3

