wo 2012/092224 A2 |11 N0F V0 0O R 0 0 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/092224 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

5 July 2012 (05.07.2012) WIPOIPCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2011/067307

International Filing Date:
24 December 2011 (24.12.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/979,467 28 December 2010 (28.12.2010) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: NICE, Nir; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). SITTON, Daniel; ¢/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
KREMER, Dror; c¢/o Microsoft Corporation, LCA - Inter-
national Patents, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). FELDMAN, Michael; c¢/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(34

Title: FILTERING QUERIED DATA ON DATA STORES

Gﬂj

62

64

EXECUTE ON PROCESSOR INSTRUCTIONS CONFIGURED TO:

66

| UPON RECEIVING A DATA ITEM, STORE DATA ITEM IN DATA SET

v

UPON RECEIVING REQUEST
SPECIFYING AT LEAST ONE FILTER CRITERION:

1)

68

RETRIEVE DATA ITEMS OF DATA SET
SATISFYING AT LEAST ONE FILTER CRITERION
TO GENERATE FILTERED DATA SUBSET

— 70

v

SEND FILTERED DATA SUBSET IN RESPONSE TO
REQUEST

—

END

FIG. 4

74

(57) Abstract: A data set may be distributed over many data stores, and a query may be distributively evaluated by several data
stores with the results combined to form a query result (e.g., utilizing a MapReduce framework). However, such architectures may
violate security principles by performing sophisticated processing, including the execution of arbitrary code, on the same machines
that store the data. Instead of processing queries, a data store may be configured only to receive requests specifying one or more fil -
tering criteria, and to provide the data items satisfying the filtering criteria. A compute node may apply a query by generating a re-
quest including one o more filter criteria, providing the request to a data node, and applying the remainder of the query (including
sophisticated processing, and potentially the execution of arbitrary code) to the data items provided by the data node, thereby im-
proving the security and etficiency of query processing.

WO 2012/092224 PCT/US2011/067307

FILTERING QUERIED DATA ON DATA STORES
BACKGROUND

[0001] Within the field of computing, many scenarios involve a query to be
applied to a data set stored by one or more data stores. For example, a user or a
data-driven process may request a particular subset of data by requesting from
the data store a query specified in a query language, such as the Structured
Query Language (SQL). The data store may receive the query, process it using a
query processing engine (e.g., a software pipeline comprising components that
perform various parsing operations on the query, such as associating names in
the query with the named objects of the database and identifying the operations
specified by various operators), apply the operations specified by the parsed
query to the stored data, and return the query result that has been specified by the
qguery. The query result may comprise a set of records specified by the query, a
set of attributes of such records, or a result calculated from the data (e.g., a count
of records matching certain query criteria). The result may also comprise a report
of an action taken with respect to the stored data, such as a creation or
modification of a table or an insertion, update, or deletion of records in a table.
[0002] In many such scenarios, the database may be distributed over several,
and potentially a large number of, data stores. For example, in a distributed
database, different portions of the stored data may be stored in one or more data
stores in a server farm. When a query is received to be applied to the data set, a
machine receiving the query may identify which data stores are likely to contain
the data targeted by the query, and may send the query to one or more of those
data stores. Each such data store may apply the query to the data stored therein,
and may send back a query result. If the query was applied by two or more data
stores, the query results may be combined to generate an aggregated query
result. In some scenarios, one machine may coordinate the process of
distributing the query to the involved data stores and aggregating the query
results. Techniques such as the MapReduce framework have been devised to
achieve such distribution and aggregation in an efficient manner.
[0003] The data engines utilized by such data stores may be quite
sophisticated, and may be capable of applying many complicated computational
processes to such data stores, such as database transactions, journaling, the

execution of stored procedures, and the acceptance and execution of agents.

WO 2012/092224 PCT/US2011/067307

The query language itself may promote the complexity of queries to be handled by
the data store, including nesting, computationally intensive similarity comparisons
of strings and other data types, and modifications to the structure of the database.
Additionally, the logical processes applied by the query processing engine of a
data store may be able to answer complicated queries in an efficient manner, and
may even improve the query by using techniques such as query optimization. As
a result of these and other processes, the evaluation of a query by a data store
may consume a large amount of computational resources.

SUMMARY
[0004] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key factors or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.
[0005] While it may be advantageous to equip a data store with a sophisticated
qguery processing engine that is capable of processing sophisticated transactions,
some disadvantages may also arise. In particular, it may be disadvantageous or
inefficient to configure a data store to execute a complex query on locally stored
data. For example, a data store happens to store data that is in particularly high
demand, but the query processing engine may be taxed by the application of a
complex query applied to the stored data while other queries (some of which may
be very simple) remain pending. A complex query may therefore create a
bottleneck that reduces the capacity and throughput of query evaluation.
[0006] As a second example, a distributed database architecture wherein a
data store also executes sophisticated queries may compromise some security
principles, since the machines that are storing the data are also permitted to
execute potentially hazardous or malicious operations on the data. Additionally,
the query processing engines may even permit the execution of arbitrary code on
the stored data (e.g., an agent scenario wherein an executable module is received
from a third party and executed against the stored data). A security principle that
separates the storage of the data (on a first set of machines) and the execution of
complex computation, including arbitrary code, on the data (allocated to a second
set of machines) may present several security advantages, such as a data item

partition between stored data and a compromised machine.

WO 2012/092224 PCT/US2011/067307

[0007] These and other advantages may arise from removing complex
processing of data from the data stores (e.g., the machines of a server farm that
are configured to store the data of a distributed database). However, it may also
be disadvantageous to configure the data stores with no processing capabilities,
e.g., as data stores functioning purely as data storage devices, which is capable
only of providing a requested data object (e.g., an entire table) or make specified
alterations thereto. For example, another machine may request from the data
store only a subset of data, such as a subset of records from a table that satisfy a
particular filter criterion. However, if the request specifies only a small number of
records in a table containing many records, sending the entire table may be
unduly inefficient, particularly given a bandwidth constraint between the machine
and the data store in a networked environment.

[0008] Presented herein are techniques for configuring a data store to fulfill a
request for data stored therein. In accordance with these techniques, the data
store does not utilize a query processing engine that might impose significant
computational costs, reduce performance in fulfilling requests, and/or permit the
execution of arbitrary code on the stored data. However, the data store is also
capable of providing only a subset of data stored therein. The data store achieves
this result by accepting requests specifying one or more filter criteria, each of
which reduces the requested amount of data in a particular manner. For example,
the request may include a filter criterion specifying a particular filter criterion value,
and may request only records having that filter criterion value for a particular filter
criterion (e.g., in a data store configured to store data representing events, the
filter criterion may identity a type of event or a time when the event occurred).
The request therefore specifies only various filter criteria, and the data store is
capable of providing the data that satisfy the filter criteria, but is not configured to
process queries that may specify complex operations. This configuration may
therefore promote the partitioning of a distributed database into a set of data
nodes configured to store and provide data, and a set of compute nodes capable
of applying complex queries (including arbitrary code).

[0009] To the accomplishment of the foregoing and related ends, the following
description and annexed drawings set forth certain illustrative aspects and
implementations. These are indicative of but a few of the various ways in which

one or more aspects may be employed. Other aspects, advantages, and novel

WO 2012/092224 PCT/US2011/067307

features of the disclosure will become apparent from the following detailed
description when considered in conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS
[0010] Fig. 1 is an illustration of an exemplary scenario featuring an application
of a query to a data set distributed over several data stores.
[0011] Fig. 2 is an illustration of an exemplary scenario featuring an application
of a request for data from a data set stored by a data store.
[0012] Fig. 3 is an illustration of an exemplary scenario featuring an application
of a request featuring at least one filter criterion for data from a data set stored by
a data store in accordance with the techniques presented herein.
[0013] Fig. 4 is a flow chart illustrating an exemplary method of fulfilling
requests targeting a data set of a data set.
[0014] Fig. 5 is a flow chart illustrating an exemplary method of fulfilling
requests targeting a data set of a data set.
[0015] Fig. 6 is an illustration of an exemplary computer-readable medium
comprising processor-executable instructions configured to embody one or more
of the provisions set forth herein.
[0016] Fig. 7 is an illustration of an exemplary scenario featuring an indexing of
data items stored by a data set.
[0017] Fig. 8 is an illustration of an exemplary scenario featuring a partitioning
of data items stored by a data set.
[0018] Fig. 9 is an illustration of an exemplary scenario featuring a data item
processor set comprising data item processors configured to filter data items in
response to a request featuring at least one filter criterion.
[0019] Fig. 10 illustrates an exemplary computing environment wherein one or
more of the provisions set forth herein may be implemented.

DETAILED DESCRIPTION

[0020] The claimed subject matter is now described with reference to the
drawings, wherein like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
claimed subject matter. It may be evident, however, that the claimed subject

matter may be practiced without these specific details. In other instances,

WO 2012/092224 PCT/US2011/067307

structures and devices are shown in block diagram form in order to facilitate
describing the claimed subject matter.

[0021] Within the field of computing, many scenarios involve a data set, such
as a database stored by a data store. The data store may comprise a computer
equipped with a storage component (e.g., a memory circuit, a hard disk drive, a
solid-state storage device, or a magnetic or optical storage disc) whereupon a set
of data is stored, and may be configured to execute software that satisfies
requests to access the data that may be received from various users and/or
processes. In many such scenarios, the stored data may be voluminous,
potentially scaling to millions or billions of records stored in one table and/or a
large number of tables, and/or complex, such as a large number of
interrelationships among records and tables and sophisticated constraints serving
as constraints upon the types of data that may be stored therein.

[0022] In some such scenarios, the data set may be stored on a plurality of
data stores. As a first example, two or more data stores may store identical
copies of the data set. This configuration may be advantageous for promoting
availability (e.g., one data store may respond to a request for data when another
data store is occupied or offline). As a second example, the data set may be
distributed over the data stores, such that each data store stores a portion of the
data set. This configuration may be advantageous for promoting efficiency (e.g., a
distribution of the computational burden of satisfying a request for a particular set
of data, such as a particular record, may be limited to the data store that is storing
the requested data). In many such examples, dozens or hundreds of data stores
may be provided, such as in a server farm comprising a very large number of data
stores that together store and provide access to a very large data set.

[0023] Fig. 1 presents an exemplary scenario 10 featuring a first architecture
for applying a query 14 submitted by a user 12 to a data set 20, comprising a set
of data tables 22 each storing a set of records 26 having particular attributes 24.
In this exemplary scenario 10, the data set 20 has been distributed across many
data stores 18 in various ways. As a first example, the data set 20 may be
vertically distributed; e.g., the data set 20 may comprise several data tables 22
storing different types of records 26, and a first data store 18 may store the
records 26 of a first data table 22 while a second data store 18 may store the

records 26 of a second data table 22. As a second example, the data set 20 may

WO 2012/092224 PCT/US2011/067307

be horizontally distributed; e.g., for a particular data table 22, a first data store 18
may store a first set of records 26, while a second data store 18 may store a
second set of records 26. This distribution may be arbitrary, or may be based on
a particular attribute 24 of the data table 22 (e.g., for an attribute 24 specifying an
alphabetic string, a first data store 18 may store records 26 beginning with the
letters ‘A’ through ‘L’, while a second data store 18 may store records 26
beginning with the letters ‘M’ to ‘Z’). Other ways of distributing the data tables 22
and data records 26 may also be devised; e.g., for a particular data table 22, a
first data store 18 may store a first set of attributes 24 for the records 26 and a
second data store 18 may store a second set of attributes 24 for the records 26, or
two data stores 18 may redundantly store the same records 26 in order to
promote the availability of the records 26 and the rapid evaluation of queries
involving the records 26.

[0024] In many such scenarios, a user or process may submit a query to be
applied to the data set 20. For example, a Structured Query Language (SQL)
query may comprise one or more operations to be applied to the data set 20, such
as selecting records 26 from one or more data tables 22 having particular values
for particular attributes 24, projecting particular attributes 24 of such records 26,
joining attributes 24 of different records 26 to create composite records 26, and
applying various other operations to the selected data (e.g., sorting, grouping, or
counting the records) before presenting a query result. The query may also
specify various alterations of the data set 20, such as inserting new records 26,
setting various attributes 24 of one or more records 26, deleting records 26,
establishing or terminating relationships between semantically related records 26,
and altering the layout of the data set 20, such as by inserting, modifying, or
deleting one or more data tables 22. These operations may also be chained
together into a set, sequence, or conditional hierarchy of such operations.
Variants of the Structured Query Language also support more complex
operations, such as sophisticated data searching (e.g., support for identifying
records matching a regular expression), journaling (e.g., recording the application
of operations that may later be reversed), and transactions (e.g., two or more
operations where either are operations are performed successfully or none are
applied). Still other variants of the Structured Query Language may support the

execution of code on the data store; e.g., a query may specify or invoke a stored

WO 2012/092224 PCT/US2011/067307

procedure that is to be executed by the data store on the stored data, or may
include an agent, such as an interpretable script or executable binary that is
provided to the data store for local execution. In order to evaluate and fulfill such
queries, the data store 18 may comprise a query processing engine, such as a
software pipeline comprising components that perform various parsing operations
on the query, such as associating names in the query with the named objects of
the database and identifying the operations specified by various operators. By
lexically parsing the language of a query (e.g., identifying various components of
the query according to the syntax rules of the query language), identifying the
operations specified by each component of the query and the logical structure and
sequence of the operations, and invoking a component that is capable of fulfilling
the operation, the data store 18 may achieve the evaluation and fulfillment of the
query.

[0025] In these and other scenarios, the task of applying a complex query to a
data set distributed across many data stores may present many implementation
challenges. Many techniques and architectural frameworks have been proposed
to enable such application in an efficient and automated manner.

[0026] The exemplary scenario 10 of Fig. 1 further presents one technique that
is often utilized to apply a query 14 to a data set 20 distributed across many data
stores 18. In this exemplary scenario 10, a user 12 may submit a query 14
comprising a set of operations 16 that may be applied against the data set 20.
Moreover, the operations 16 may be chained together in a logical sequence, e.g.,
using Boolean operators to specify that the results of particular operations 16 are
to be utilized together. The query 14 may be delivered to a MapReduce server
28, comprising a computer configured to apply a “MapReduce” technique to
distribute the query 14 across the data stores 18 that are storing various portions
of the data set 20. For example, the MapReduce server 28 may identify that
various operations 16 within the query 14 target various portions of the data set 20
that are respectively stored by particular data stores 18. For example, a first
operation 16 may target the data stored by a first data store 18 (e.g., a Select
operation applied to a data table 22 and/or set of records 26 stored by the first
data store 18), while a second operation 16 may target the data stored by a
second data store 18. Accordingly, the MapReduce server may decompose the

query 14 into various query portions 30, each comprising one or more operations

WO 2012/092224 PCT/US2011/067307

to be performed by a particular data store 18. The data store 18 may receive the
query portion 30, apply the operations 16 specified therein, and generate a query
result 32 that may be delivered to the MapReduce server 28 (or to another data
store 18 for further processing). The MapReduce server 28 may then compose
the query results 32 provided by the data stores 18 to generate a query result 34
that may be provided to the user 12 in response to the query 14. In this manner,
the data stores 18 and the MapReduce server 28 may interoperate to achieve the
fulfillment of the query 14.

[0027] The exemplary scenario 10 of Fig. 1 may present some advantages
(e.g., an automated parceling out of the query 14 to multiple data stores 18, which
may enable a concurrent evaluation of various query portions 30 that may
expedite the evaluation of the query 14). However, the exemplary scenario 10
may also present some disadvantages. In particular, it may be desirable to devise
an architecture for a distributed data set, such as a distributed database, wherein
the storage and accessing of data is performed on a first set of devices, while
complex computational processes are performed on a second set of devices.
Such a partitioning may be advantageous, e.g., for improving the security of the
data set 20. For example, queries 14 to be applied to the data set 20 may be
computationally expensive (e.g., involving a large amount of memory), paradoxical
(e.g., a recursive query that does not end or that cannot logically be evaluated), or
malicious (e.g., overly or covertly involving an unauthorized disclosure or
modification of the data set 20). In some scenarios, the computation may involve
the execution of code, such as a query 14 that invokes a stored procedure that
has been implemented on a data store 18, or mobile agent scenarios, wherein a
third party may provide an “agent” (e.g., an interpretable script or partially or
wholly compiled executable) that may be applied to the data set 20. Therefore,
the security of the data set 20 may be improved by restricting complex
computation to a particular set of computers that may be carefully monitored, and
that may be suspended, taken offline, or replaced if such computers appear to be
operating in ways that may damage the data set 20. However, the exemplary
scenario 10 of Fig. 1 does not involve such partitioning. Rather, the data stores
18 that store various portions of the data set 20 also execute query portions 30
upon such data, and therefore fail to separate the accessing of the data set 20

from computation performed thereupon.

WO 2012/092224 PCT/US2011/067307

[0028] A second disadvantage that may arise in the exemplary scenario 10 of
Fig. 1 involves the performance of the data set 20. For example, a particular data
store 18 may be configured to store a query portion 30 that, temporarily or
chronically, is frequently accessed, such that the data store 18 receives and
handles many queries 14 involving the portion of the data set 20 in a short period
of time. However, if the data store 18 is also configured to perform complex
computational processing of the stored data, a query 14 involving complex
operations may consume computing resources of the data store 18 (e.g., memory,
processor capacity, and bandwidth) that may not be available to fulfill other
qgueries 14. Therefore, a single complex query 14 may forestall the evaluation and
fulfillment of other queries 14 involving the same data stored by the data store 18.
By contrast, if complex computation involving this data were partitioned from the
storage of such data, many computers may be configured to handle the queries
14 in parallel, and a complex query 14 that ties up the resources of one computer
may not affect the evaluation or fulfillment of other queries 14 handled by other
computers.

[0029] In view of these and other disadvantages that may arise from the
architecture presented in the exemplary scenario 10 of Fig. 1, it may be desirable
to separate the storage and accessing of data in a data set 20 from complex
computational queries that may be applied to such data. However, a rigid
partitioning, where the data store 18 only provides low-level access and a
compute node provides all computation, may also be inefficient.

[0030] Fig. 2 presents an exemplary scenario 40 wherein a data store 18 is
configured to store a data set 20 comprising a large number of record 26 (e.qg.,
50,000 records). A user 12 may submit a query 14, which may be received and
wholly evaluated by a compute node 42. The compute node 42 may comprise,
e.g., a query processing engine, which may lexically parse the query 14, identify
the operations 16 specified therein, and invoke various components to perform
such operations 16, including retrieving data from the data store 18. For example,
instead of sending a query 14 or a query portion 30 to the data store 18, the
compute node 42 may simply send a request 44 for a particular set of records 26,
such as the records 26 comprising a data table 22 of the data set 20. The data
store 18 may respond with a request result 48, comprising the requested records

26, to which the compute node 42 may apply some complex computation (e.qg.,

WO 2012/092224 PCT/US2011/067307

the operations 16 specified in the query 14) and may return a query result 34 to
the user 12. However, this exemplary scenario 40 illustrates an inefficiency in this
rigid partitioning of responsibilities between the compute node 42 and the data
store 18. For example, the query 14 may request the retrieval of a single record
26 (e.g., a record 26 of an employee associated with a particular identifier), but
the data table 22 stored by the data store 18 may include many such records 26.
Accordingly, the data store 18 may provide a request result 48 comprising 50,000
records 26 to the compute node 42, even though only one such record 26 is
included in the query result 34. Moreover, it may be easy to identify this record 26
from the scope of the query 14 (e.g., if the query 14 identifies the requested
record 26 according to an indexed field having unique identifiers for respective
records 26), but because the data store 18 cannot perform computations involved
in the evaluation of the query 14, this comparatively simple filtering is not
performed by the data store 18. This inefficiency may become particularly
evident, e.g., if the request result 48 is sent to the compute node 42 over a
network 46, which may have limited capacity. The sending of many records 26
over the network 46 may impose a rate-limiting factor on the completion of the
query 14, thereby imposing a significant delay in the fulfillment of a comparatively
simple query 14 involving a small query result 34. These and other disadvantages
may arise from a hard partitioning of the responsibilities of data stores 18 and
compute nodes 42 comprising a data set 20.

[0031] Presented herein are techniques for configuring a data set 20 to
evaluate queries 14. These techniques may be devised, e.g., in view of the
advantages and disadvantages in the exemplary scenario 10 of Fig. 2 and the
exemplary scenario 40 of Fig. 2. In accordance with these techniques, a data
store 18 may be configured to store one or more data items of a data set 20 (e.g.,
various tables 22, attributes 24, and/or records 26 of the data set 20), and to
participate in the evaluation of a query 14 against such data items. As compared
with the exemplary scenario 10 of Fig. 1, the data store 18 is not configured to
evaluate a query 14; e.g., the data store 18 may not include a query processing
engine, and may refuse to accept or evaluate queries 14 formulated in a query
language, such as a Structured Query Language (SQL) query. Conversely, the
data store 18 is not limited to providing one or more portions of the data store 20

in response to a request 44, which may cause inefficiencies arising from a rigid

10

WO 2012/092224 PCT/US2011/067307

partitioning, such as illustrated in the exemplary scenario 40 of Fig. 2. Rather, in
accordance with these techniques, the data store 18 is configured to accept
requests 44 including one or more filtering criteria that define a filtered data
subset. For example, the data store 18 may store one or more data tables 22
comprising various records 26, but a small number of attributes 24 for the records
26 may be indexed. The filtering may involve identifying, retrieving, and providing
a data subset of the data set 20, comprising the records 26 having a particular
value for one of the indexed attributes 24. Because the application of the filtering
criterion to the data set 20 may result in a significant reduction of data to be sent
in the filtered data subset 58 while consuming a small fraction of the
computational resources involved in the evaluation of a query 14, the data store
18 may be configured to perform this filtering in response to the request 44.
However, the data store 18 may be configured to refrain from performing more
complex computational processes; e.g., the data store 18 may wholly omit a query
processing engine, may refuse to accept queries 14 specified in a query
language, or may reject requests 44 specifying non-indexed attributes 26. In this
manner, the techniques presented herein may achieve greater efficiency and
security than in the exemplary scenario 10 of Fig. 1, while also avoiding the
disadvantages presented in the exemplary scenario 40 of Fig. 2.

[0032] Fig. 3 presents an illustration of an exemplary scenario 50 featuring an
application of the techniques presented herein to apply a query 14 submitted by a
user 12 to a data set 20 storing various data items 52 in order to generate and
provide a query result 34. In this exemplary scenario 50, access to the data set
20 may be achieved through a data store 18, which, in turn, may be accessed
through a compute node 42. However, if the user 12 or the compute node 42
were to submit the query 14 to the data store 18, the data store 18 may refuse to
accept the query 14, or may be incapable of evaluating the query 14.
(Alternatively, the data store 18 may accept and evaluate a query 14 only in
particular circumstances, e.g., where the query 14 is submitted by an
administrator.) Instead, the user 12 (or an automated process) may submit the
query 14 to the compute node 42, which may endeavor to interact with the data
store 18 to evaluate the query and provide a query result 34. In particular, the
compute node 42 may examine the query 14 to identify a request 44 comprising

one or more filter criteria 54 that may specify a retrieval of particular data items 52

11

WO 2012/092224 PCT/US2011/067307

from the data store 18. (e.g., identifying one or more operations 16 of the query 14
that may be expressed as a request 44 for data items 52 satisfying one or more
filter criteria 54). The data store 18 is configured to receive data items 52 and
store received data items 52 in a storage component (e.g., a memory circuit, a
hard disk drive, a solid-state storage device, or a magnetic or optical disc) as part
of the data set 20. Additionally, the data store 18 is configured to receive requests
44 comprising one or more filter criteria 54. Upon receiving a request 44, the data
store 18 may perform a filtering 56 to identify the data items 52 that satisfy the
filter criteria 54, and generate a filtered data subset 58 to be returned to the
compute node 42. The compute node 42 may receive the filtered data subset 58
and may apply the remainder of the query 14 (e.g., performing complex
computations specified by the operations 16 of the query 14 that were not
expressed in the request 44). In some such scenarios, the compute node 42 may
send a second or further request 44 to the data set 20 specifying other filter
criteria 54, and may utilize the second or further filtered data subsets 58 in the
computation. Eventually, the compute node 42 may generate a query result 34,
which may be presented to the user 12 (or an automated process) in response to
the query 14. In this manner, the configuration of the data store 18, and optionally
the compute node 42, may enable the fulfillment of queries 14 in a more efficient
and secure manner than presented in the exemplary scenario 10 of Fig. 1 and/or
the exemplary scenario 40 of Fig. 2.

[0033] Fig. 4 presents a first embodiment of these techniques, illustrated as an
exemplary method 60 of fulfilling requests 44 targeting a data set 20. The
exemplary method 60 may be performed, e.g., by a data store 18 configured to
store or having access to part or all of the data set 20. Additionally, the exemplary
method 60 may be implemented, e.g., as a set of software instructions stored in a
memory component (e.g., a system memory circuit, a platter of a hard disk drive,
a solid state storage device, or a magnetic or optical disc) of the data store 18,
that, when executed by the processor of the data store 18, cause the processor to
perform the techniques presented herein. The exemplary method 60 begins at 62
and involves executing 64 the instructions on the processor. More specifically, the
instructions are configured to, upon receiving a data item 52, store 66 the data
item 52 in the data set 20. The instructions are also configured to, upon receiving

68 a request 44 specifying at least one filter criterion 54, retrieve 70 the data items

12

WO 2012/092224 PCT/US2011/067307

52 of the data set 20 satisfying the at least one filter criterion to generate a filtered
data subset 58, and to send 72 the filtered data subset 58 in response to the
request 44. In this manner, the exemplary method 60 achieves the fulfillment of
the request 44 to access the data set 20 without exposing the data store 18 to the
security risks, inefficiencies, and consumption of computational resources
involved in evaluating a query 14, and so ends at 74.

[0034] Fig. 5 presents a second embodiment of these techniques, illustrated as
an exemplary method 80 of applying a query 14 to a data set 20 stored by a data
store 18. The exemplary method 80 may be performed, e.g., on a device, such as
a compute node 42, having a processor. Additionally, the exemplary method 80
may be implemented, e.qg., as a set of software instructions stored in a memory
component (e.g., a system memory circuit, a platter of a hard disk drive, a solid
state storage device, or a magnetic or optical disc) of the compute node 42 or
other device, that, when executed by the processor, cause the processor to
perform the techniques presented herein. The exemplary method 80 begins at 82
and involves executing 84 the instructions on the processor. More specifically, the
instructions are configured to, from the query 14, generate 86 a request 44
specifying at least one filter criterion 54. The instructions are also configured to
send 88 the request 44 to the data store 18, and, upon receiving from the data
store 18 a filtered data subset 58 in response to the request 44, apply 90 the
query 14 to the filtered data subset 56. In this manner, the exemplary method 80
achieves the fulfillment of a query 14 to the data set 20 without exposing the data
store 18 to the security risks, inefficiencies, and consumption of computational
resources involved in evaluating the query 14, and so ends at 92.

[0035] Still another embodiment involves a computer-readable medium
comprising processor-executable instructions configured to apply the techniques
presented herein. Such computer-readable media may include, e.g., computer-
readable storage media involving a tangible device, such as a memory
semiconductor (e.g., a semiconductor utilizing static random access memory
(SRAM), dynamic random access memory (DRAM), and/or synchronous dynamic
random access memory (SDRAM) technologies), a platter of a hard disk drive, a
flash memory device, or a magnetic or optical disc (such as a CD-R, DVD-R, or
floppy disc), encoding a set of computer-readable instructions that, when

executed by a processor of a device, cause the device to implement the

13

WO 2012/092224 PCT/US2011/067307

techniques presented herein. Such computer-readable media may also include
(as a class of technologies that are distinct from computer-readable storage
media) various types of communications media, such as a signal that may be
propagated through various physical phenomena (e.g., an electromagnetic signal,
a sound wave signal, or an optical signal) and in various wired scenarios (e.g., via
an Ethernet or fiber optic cable) and/or wireless scenarios (e.g., a wireless local
area network (WLAN) such as WiFi, a personal area network (PAN) such as
Bluetooth, or a cellular or radio network), and which encodes a set of computer-
readable instructions that, when executed by a processor of a device, cause the
device to implement the techniques presented herein.

[0036] An exemplary computer-readable medium that may be devised in these
ways is illustrated in Fig. 6, wherein the implementation 100 comprises a
computer-readable medium 102 (e.g., a CD-R, DVD-R, or a platter of a hard disk
drive), on which is encoded computer-readable data 104. This computer-readable
data 104 in turn comprises a set of computer instructions 106 configured to
operate according to the principles set forth herein. In one such embodiment, the
processor-executable instructions 106 may be configured to perform a method of
fulfilling requests targeting a data set of a data set, such as the exemplary method
60 of Fig. 4. In another such embodiment, the processor-executable instructions
106 may be configured to implement a method of applying a query to a data set
stored by a data store, such as the exemplary method 80 of Fig. 5. Some
embodiments of this computer-readable medium may comprise a nontransitory
computer-readable storage medium (e.g., a hard disk drive, an optical disc, or a
flash memory device) that is configured to store processor-executable instructions
configured in this manner. Many such computer-readable media may be devised
by those of ordinary skill in the art that are configured to operate in accordance
with the techniques presented herein.

[0037] The techniques discussed herein may be devised with variations in
many aspects, and some variations may present additional advantages and/or
reduce disadvantages with respect to other variations of these and other
techniques. Moreover, some variations may be implemented in combination, and
some combinations may feature additional advantages and/or reduced
disadvantages through synergistic cooperation. The variations may be

incorporated in various embodiments (e.g., the exemplary method 60 of Fig. 4 and

14

WO 2012/092224 PCT/US2011/067307

the exemplary method 80 of Fig. 5) to confer individual and/or synergistic
advantages upon such embodiments.

[0038] A first aspect that may vary among embodiments of these techniques
relates to the scenarios wherein such techniques may be utilized. As a first
variation, many types of data stores 18 (and/or compute nodes 42) may be utilized
to apply the queries 14 and requests 44 to a data set 20. As one such example,
the data stores 18 and/or compute nodes 42 may comprise distinct hardware
devices (e.g., different machines or computers), distinct circuits (e.g., field-
programmable gate arrays (FPGAs)) operating within a particular hardware
device, or software processes (e.g., separate threads) executing within one or
more computing environments on one or more processors of a particular
hardware device. The data stores 18 and/or compute nodes 42 may also
comprise virtual processes, such as distributed processes that may be
incrementally executed on various devices of a device set. Additionally,
respective data stores 18 may internally store the data items 52 comprising the
data set 20, or may have access to other data stores 18 that internally store the
data items 52 (e.g., a data access layer or device interfacing with a data storage
layer or device). As a second variation, many types of data sets 20 may be
accessed using the techniques presented herein, such as a database, a file
system, a media library, an email mailbox, an object set in an object system, or a
combination of such data sets 20. Similarly, many types of data items 52 may be
stored in the data set 20. As a third variation, the queries 14 and/or requests 44
evaluated using the techniques presented herein may be specified in many ways.
For example, a query 14 may be specified according to a Structured Query
Language (SQL) variant, as a language-integrated query (e.g., a LINQ query), or
an interpretable script or executable object configured to perform various
manipulations of the data items 52 within the data set 20. The request 44 may
also be specified in various ways, e.g., simply specifying an indexed attribute 24
and one or more values of such attributes 24 of data items 52 to be included in the
filtered data subset 58. While the request 44 is limited to one or more filter criteria
54 specifying the data items 52 to be included in the filtered data subset 58, the
language, syntax, and/or protocol whereby the query 14 and request 44 are
formatted may not significantly affect the application or implementation of the

techniques presented herein.

15

WO 2012/092224 PCT/US2011/067307

[0039] A second aspect that may vary among embodiments of these
techniques relates to the storing of data items 52 in the data set 20 by the data
store 18. As a first variation, a data store 18 may comprise at least one index,
which may correspond to one or more filter criteria 54 (e.qg., a particular attribute
24, such that records 26 containing one or more values for the attribute 24 are to
be included in the filtered data subset 58). A data store 18 may be configured to,
upon receiving a data item 52, index the data item in the index according to the
filter criterion 54 (e.g., according to the value of the data item 52 for one or more
attributes 24 that may be targeted by a filter criterion 54). The data store 18 may
then be capable of fulfilling a request 44 by identifying the data items 52 satisfying
the filter criteria 54 of the request 44 by using an index corresponding to the filter
criterion 54. It may be advantageous to choose attributes 24 of the data items 52
for indexing that are likely to be targeted by filter criteria 54 of requests 44, and to
refrain from indexing the other attributes 24 of the data items 52 (e.g., indices
have to be maintained as data items 52 change, and it may be disadvantageous
to undertake the computational burden of such maintenance in order to index an
attribute 24 that is not likely to be frequently included as a filter criterion 54). For
example, in a database configured to track events performed by various users at
various times, it may be desirable to configure a data store 18 to generate and
maintain indices for an index set comprising an event index specifying an
represented by respective data items 52; a time index specifying a time of an
event represented by respective data items 52; and a user index specifying at
least one user associated with an event represented by respective data items 52.
However, it may not be desirable to generate and maintain indices for other
attributes 24 of this data set 20, such as a uniform resource identifier (URI) of a
digital resource involved in the request, a comment field whereupon textual
comments regarding particular events may be entered by various users and
administrators, or a “blob” field involving a large data set involved in the event
(e.g., a system log or a captured image that depicts the event).

[0040] As a further variation of this second aspect, the index may identify data
items 52 associated with one or more particular filter criterion values for a
particular filter criterion 54 in various ways. As one such example, an index may
specify, for a filter criterion value of a filter criterion 54 corresponding to the index,

a data item set that identifies the data items having the filter criterion value for the

16

WO 2012/092224 PCT/US2011/067307

filter criterion 54. For example, the index may store, for each filter criterion value
of the filter criterion 54, a set of references to the data items 52 associated with
the filter criterion value. Additionally, the data item set stored in the index may be
accessible in various ways. For example, the index may permit incremental
writing to the data item set (e.g., indexing a new data item 52 by adding the data
item 52 to the data item set of data items having the filter criterion value for the
filter criterion), but may permit only atomic reading of the data item set (e.g., for a
request 44 specifying a particular filter criterion value for a particular filter criterion
54, the index may read and present the entire data item set, comprising the entire
set of references to such data items 52). As a further variation, the data store 18
may, upon receipt of respective data items 52, store the data items 52 in a data
item buffer, such that, when the data item buffer exceeds a data item buffer size
threshold (e.g., the capacity of the data item buffer), the data store 18 may add
the data items to respective data item sets and empty the data item buffer.

[0041] Fig. 7 presents an illustration of an exemplary scenario 110 featuring an
indexing of data items 52 in one or more data item sets 118 indexed according to
an index 112. In this exemplary scenario 110, the data store 18 may receive
various data items 52 (e.g., a set of reported events) and may store such data
items 52 in a data set 20. In particular, the data store 18 may generate an index
112, comprising a set of index entries 114 including references 116 to one or
more data items 52 of one or more data item sets 118, each corresponding to a
different filter criterion value for a filter criterion 54 (e.g., the month and year of a
date when an event occurred). Upon receiving a data item 52, the data store 18
may identify one or more filter criterion values of the data item 52, and may store
a reference to the data item 52 stored in an index entry 114 of the index 112
corresponding to the filter criterion value. The data store 18 may then store the
data item 52 in the data set 20 (e.g., by appending the data item 52 to a list of
records 26). When a user 12 submits a request 44 to a data store 18 (either
directly or indirectly, e.g., by submitting a query 14 to a compute node 42 that is
configured to generate from the query 14 a request 44 specifying one or more
filter criteria 54), the data store 18 may fulfill the request 44 by retrieving a data
item set 118 associated with the filter criterion value, and in particular may do so
by identifying the index entry 114 of the index 112 identifying the data items 52 of

the data item set 118 corresponding to the filter criterion value. The data store 18

17

WO 2012/092224 PCT/US2011/067307

may then use the references 116 stored in the index entry 114 to retrieve the data
items 52 of the data item set 118, and may send such data items 52 as the filtered
data subset 58. In this manner, even if the data items 52 are stored together in an
arbitrary manner, the data store 18 may fulfill the request 44 in an efficient manner
by using the index 112 corresponding to the filter criterion 54 of the request 44.
For example, respective index entries 114 of an index 112 may store, for a first
filter criterion value of a filter criterion 54, references to data item partitions
corresponding to respective second filter criterion values of a second filter criterion
54. Data items 52 may be stored and/or retrieved using this two-tier indexing
technique. For example, storing a data item 52 may involve using the index 112
to identify the index entry 114 associated with a first filter criterion value of a first
filter criterion 54 for the data item 52, examining the data item partitions
referenced by the index entry 114 to identify the data item partition associated
with a second filter criterion value of a second filter criterion 54 for the data item
52, and storing the data item 52 in the data item partition. Conversely, retrieving
data items 52 having a particular first filter criterion value of a first filter criterion 54
and a particular second filter criterion value of a second filter criterion 54 may
involve using the index 112 to identify the index entry 114 associated with the first
filter criterion value; examining the data item partitions referenced in the index
entry 114 to identify the data item partition associated with the second filter
criterion value; and retrieving and sending the data item partition in response to
the request 44.

[0042] As a further variation of this second aspect, a data store 18 may
configure an index as a set of partitions, each including the data items 52 (or
references thereto, e.g., a memory reference or URI where the data item 52 may
be accessed, or a distinctive identifier of the data item 52, such as a key value of
a key field of a data table 22) satisfying a particular filter criterion 54. For
example, the data store 18 may generate various partitions, such as small
sections of memory allocated to store data items 52 having a particular filter
criterion value of a particular filter criterion 54. Upon receiving a data item 52, the
data store 18 may store the data item 52 in the corresponding partition; and upon
receiving a request 44 specifying a filter criterion value of a particular filter criterion
54, the data store 18 may the data item partition storing the data items 52 having

the filter criterion value for the filter criterion, and send the data item partition as

18

WO 2012/092224 PCT/US2011/067307

the filtered data subset 58. As a still further variation, two or more indices may be
utilized to group data items according to two or more filter criteria 54.

[0043] Fig. 8 presents an illustration of an exemplary scenario 120 featuring a
partitioning of data items 52 into respective data item partitions 122. In this
exemplary scenario 120, the data store 18 may receive various data items 52
(e.g., a set of reported events) and may store such data items 52 in a data set 20.
The data store 18 may again generate an index 112 (not shown), comprising a set
of index entries 114 including references 116 to one or more data items 52 of one
or more data item sets 118, each corresponding to a different filter criterion value
for a filter criterion 54 (e.g., the month and year of a date when an event
occurred). However, in contrast with the exemplary scenario 110 of Fig. 7, in this
exemplary scenario 120 the data items 52 are stored in a manner that is
partitioned according to the filter criterion value. Upon receiving a data item 52,
the data store 18 may identify one or more filter criterion values of the data item
52, and may identify a data item partition 122 associated with the filter criterion
value. The data store 18 may then store the data item 52 in the data item partition
122 corresponding to the filter criterion value. When a user 12 submits a request
44 to a data store 18 (either directly or indirectly, e.g., by submitting a query 14 to
a compute node 42 that is configured to generate from the query 14 a request 44
specifying one or more filter criteria 54), the data store 18 may fulfill the request
44 by retrieving a data item set 118 associated with the filter criterion value, and in
particular may do so by identifying the data item partition 122 associated with the
filter criterion value. The data store 18 may then retrieve the entire data item
partition 122, and may send the entire data item partition 122 to the user 12.
Additional data item partitions 122 may be retrieved and send in response to other
filter criteria 54 (e.g., two or more filter criterion values for a particular filter
criterion 54, or a filter criterion value specified in the alternative for each of two or
more different filter criteria 54). In this manner, the data store 18 may identify and
provide the data items 52 satisfying the filter criterion 54 in an efficient manner by
using the data item indices 122 corresponding to one or more filter criteria 54
specified in the request 44. Those of ordinary skill in the art may devise many
ways of storing data items 52 of a data set 20 in accordance with the techniques

presented herein.

19

WO 2012/092224 PCT/US2011/067307

[0044] A third aspect that may vary among embodiments of these techniques
involves the configuration of a data store 18 and/or a compute node 42 to retrieve
data items 52 satisfying the filter criteria 54 of a request 44. As a first variation,
the request 44 may comprise many types of filter criteria 54. In particular, the
request 44 may specify a first filtered data subset 58 that may relate to the data
items 52 comprising a second filtered data subset 58, and the data store 18 may
utilize the first filtered data subset 58 while generating the second filtered data
subset 58. For example, a query 14 may involve a request 44 specifying another
filtered data subset 58 (e.g., in the query 14 “select username from users where
user.id in (10, 22, 53, 67)", a request 44 is filtered according to a set of numeric
user IDs presented as a filtered data subset 58). As a further variation, a query 14
may involve a first request 44 specifying a first filtered data subset 58, which may
be referenced in a second request 44 specifying a second filtered data subset 58.
For example, in the query 14 “select username from users where user.id in (select
users from events where event.type = 12”), a first filtered data subset 58 is
generated from the events data table (using a first request 44, e.g., “SET_1 =
event.type = 12”), and the first filtered data subset 58 is referenced by a second
request 44 (e.g., “user.id in SET_1"), resulting in a second filtered data subset 58.
In this manner, a request 44 may reference a filtered data subset 58 generated by
another request 44, including an earlier request 44 provided and processed while
evaluate the same query 14.

[0045] As a second variation of this third aspect, when presented with a
request 44 including at least one filter criterion 54, a data store 18 may be
configured to retrieve from the data set 20 the content items 52 satisfying
respective filter criteria 54 of the request 44 (e.g., by utilizing an index 112 to
identify a data set 118 and/or data item partition 122, as in the exemplary scenario
110 of Fig. 7 and the exemplary scenario 120 of Fig. 8). Alternatively, rather than
utilizing an index, the data store 18 may retrieve all of the data items 52 of the
data set 20, and may send (e.g., to a compute node 42 or user 12 submitting the
request 44 to the data store 18) only the data items 52 satisfying the at least one
filter criterion. In the former example, the filter of data items 52 is achieved during
the indexing of the data items 52 upon receipt; but in the latter example, the
filtering of data items 52 is achieved during the sending of the data items 52. It

may be difficult to filter all of the data items 52 in realtime, e.g., in order to fulfill a

20

WO 2012/092224 PCT/US2011/067307

request 44. However, some techniques may be utilized to expedite the realtime
filtering of the data items 52, alternatively or in combination with the use of indices
112 and/or partitions 122.

[0046] Fig. 9 presents an illustration of an exemplary scenario 130 featuring
one technique for implementing a realtime filtering of data items 52. In this
exemplary scenario 130, a data store 18 receives from a user 12 a request 44
specifying at least one filter criterion 54, and endeavors to fulfill the request 44 by
providing a filtered data subset 58 comprising only the data items 52 satisfying the
filter criteria 54 of the request 44. However, in this exemplary scenario 130, the
data store 18 retrieves all of the data items 52 from the data set 20, and then
applies a data item processor set 132 to the entire set of data items 52 in order to
identify and provide only the data items 52 satisfying the filter criteria 54. The
data item processor set 132 may comprise, e.g., a set of data item processors
134, each having a state 136 and at least one filtering condition (e.g., a logical
evaluation of any particular data item 52 to identify whether or not a filtering
criterion 54 is satisfied). The data item processors 134 may be individually
configured to, upon receiving a data item 52, update the state 136 of the data item
processor 134; and when the state 136 of the data item processor 134 satisfies
the at least one filtering condition, the data item processor 134 may authorize the
data item 52 to be sent (e.g., by including the data item 52 in the filtered data
subset 58, or by sending the data item 52 to a different data item processor 134
for further evaluation). The data item processors 134 may therefore be
interconnected and may interoperate, e.g., as a realtime processing system that
evaluates data items 52 using a state machine. Accordingly, the data store 18
may invoke the data item processor set 132 upon the data items 52 retrieved from
the data set 20, and may send only the data items 52 that have been authorized
to be sent by the data item processor set 132. In this manner, the data store 18
may achieve an ad hoc, realtime evaluation of all data items 52 of the data set 20
to identify and deliver the data items 52 satisfying the filter criteria 54 of the
request 44 without having to generate, maintain, or utilize indices 112 or partitions
122.

21

WO 2012/092224 PCT/US2011/067307

[0047] As a third variation of this third aspect, the data store 18 may, before
providing a filtered data subset 58 in response to a request 44 (and optionally
before retrieving the data items 18 matching the filter criteria 54 of the request 44),
estimate the size of the filtered data subset 58. For example, a request 44
received by the data store 18 may involve a comparatively large filtered data
subset 58 that may take a significant amount of computing resources to retrieve
and send in response to the request 44. Therefore, for requests 44 received from
a requester (e.g., a particular user 12 or automated process), an embodiment may
first estimate a filtered data subset size of the filtered data subset 58 (e.g., a total
estimated number of records 26 or data items 52 to be included in the filtered data
subset 58), and may endeavor to verify that the retrieval of the filtered data subset
58 of this size is acceptable to the requester. Accordingly, an embodiment may
be configured to, before sending a filtered data subset 58 in response to a request
44, estimate the filtered data subset size of the filtered data subset 58 and send
the filtered subset data size to the requester, and may only proceed with the
retrieval and sending of the filtered data subset 58 upon receiving a filtered data
subset authorization from the requester. Conversely, a compute node 42 may be
configured to, after sending a request 44 specifying at least one filter criterion 54
and before receiving a filtered data subset 58 in response to the request 44,
receive from the data store 18 an estimate of a filtered data subset size of the
filtered data subset 58, and may verify the filtered data subset size (e.g., by
presenting the filtered data subset size to a user 12, or by comparing the filtered
data subset size with an acceptable filtered data subset size threshold, defining an
acceptable utilization of computing resources of the data store 18 and/or network
46). If the estimated filtered data subset size is acceptable, the compute node 42
may generate and send to the data store 18 a filtered data subset authorization,
and may subsequently receive the filtered data subset 58. Those of ordinary skill
in the art may devise many ways of configuring a data store 18 and/or a compute
node 42 to retrieve data items 52 from the data set 20 in accordance with the
techniques presented herein.

[0048] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the

subject matter defined in the appended claims is not necessarily limited to the

22

WO 2012/092224 PCT/US2011/067307

specific features or acts described above. Rather, the specific features and acts
described above are disclosed as example forms of implementing the claims.

[0049] As used in this application, the terms "component,” "module,” "system”,
"interface", and the like are generally intended to refer to a computer-related
entity, either hardware, a combination of hardware and software, software, or
software in execution. For example, a component may be, but is not limited to
being, a process running on a processor, a processor, an object, an executable, a
thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a controller and the controller can be a component. One or
more components may reside within a process and/or thread of execution and a
component may be localized on one computer and/or distributed between two or
more computers.

[0050] Furthermore, the claimed subject matter may be implemented as a
method, apparatus, or article of manufacture using standard programming and/or
engineering techniques to produce software, firmware, hardware, or any
combination thereof to control a computer to implement the disclosed subject
matter. The term "article of manufacture” as used herein is intended to
encompass a computer program accessible from any computer-readable device,
carrier, or media. Of course, those skilled in the art will recognize many
modifications may be made to this configuration without departing from the scope
or spirit of the claimed subject matter.

[0051] Fig. 10 and the following discussion provide a brief, general description
of a suitable computing environment to implement embodiments of one or more of
the provisions set forth herein. The operating environment of Fig. 10 is only one
example of a suitable operating environment and is not intended to suggest any
limitation as to the scope of use or functionality of the operating environment.
Example computing devices include, but are not limited to, personal computers,
server computers, hand-held or laptop devices, mobile devices (such as mobile
phones, Personal Digital Assistants (PDAs), media players, and the like),
multiprocessor systems, consumer electronics, mini computers, mainframe
computers, distributed computing environments that include any of the above

systems or devices, and the like.

23

WO 2012/092224 PCT/US2011/067307

[0052] Although not required, embodiments are described in the general
context of “computer readable instructions” being executed by one or more
computing devices. Computer readable instructions may be distributed via
computer readable media (discussed below). Computer readable instructions
may be implemented as program modules, such as functions, objects, Application
Programming Interfaces (APIs), data structures, and the like, that perform
particular tasks or implement particular abstract data types. Typically, the
functionality of the computer readable instructions may be combined or distributed
as desired in various environments.

[0053] Fig. 10 illustrates an example of a system 140 comprising a computing
device 142 configured to implement one or more embodiments provided herein.
In one configuration, computing device 142 includes at least one processing unit
146 and memory 148. Depending on the exact configuration and type of
computing device, memory 148 may be volatile (such as RAM, for example), non-
volatile (such as ROM, flash memory, etc., for example) or some combination of
the two. This configuration is illustrated in Fig. 10 by dashed line 144.

[0054] In other embodiments, device 142 may include additional features
and/or functionality. For example, device 142 may also include additional storage
(e.g., removable and/or non-removable) including, but not limited to, magnetic
storage, optical storage, and the like. Such additional storage is illustrated in Fig.
10 by storage 150. In one embodiment, computer readable instructions to
implement one or more embodiments provided herein may be in storage 150.
Storage 150 may also store other computer readable instructions to implement an
operating system, an application program, and the like. Computer readable
instructions may be loaded in memory 148 for execution by processing unit 146,
for example.

[0055] The term “computer readable media” as used herein includes computer
storage media. Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology
for storage of information such as computer readable instructions or other data.
Memory 148 and storage 150 are examples of computer storage media.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, Digital Versatile Disks

(DVDs) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk

24

WO 2012/092224 PCT/US2011/067307

storage or other magnetic storage devices, or any other medium which can be
used to store the desired information and which can be accessed by device 142.
Any such computer storage media may be part of device 142.

[0056] Device 142 may also include communication connection(s) 156 that
allows device 142 to communicate with other devices. Communication
connection(s) 156 may include, but is not limited to, a modem, a Network Interface
Card (NIC), an integrated network interface, a radio frequency
transmitter/receiver, an infrared port, a USB connection, or other interfaces for
connecting computing device 142 to other computing devices. Communication
connection(s) 156 may include a wired connection or a wireless connection.
Communication connection(s) 156 may transmit and/or receive communication
media.

[0057] The term “computer readable media” may include communication
media. Communication media typically embodies computer readable instructions
or other data in a “modulated data signal” such as a carrier wave or other
transport mechanism and includes any information delivery media. The term
“‘modulated data signal” may include a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the
signal.

[0058] Device 142 may include input device(s) 154 such as keyboard, mouse,
pen, voice input device, touch input device, infrared cameras, video input devices,
and/or any other input device. Output device(s) 152 such as one or more
displays, speakers, printers, and/or any other output device may also be included
in device 142. Input device(s) 154 and output device(s) 152 may be connected to
device 142 via a wired connection, wireless connection, or any combination
thereof. In one embodiment, an input device or an output device from another
computing device may be used as input device(s) 154 or output device(s) 152 for
computing device 142.

[0059] Components of computing device 142 may be connected by various
interconnects, such as a bus. Such interconnects may include a Peripheral
Component Interconnect (PCI), such as PCI Express, a Universal Serial Bus
(USB), firewire (IEEE 1394), an optical bus structure, and the like. In another

embodiment, components of computing device 142 may be interconnected by a

25

WO 2012/092224 PCT/US2011/067307

network. For example, memory 148 may be comprised of multiple physical
memory units located in different physical locations interconnected by a network.
[0060] Those skilled in the art will realize that storage devices utilized to store
computer readable instructions may be distributed across a network. For
example, a computing device 160 accessible via network 158 may store computer
readable instructions to implement one or more embodiments provided herein.
Computing device 142 may access computing device 160 and download a part or
all of the computer readable instructions for execution. Alternatively, computing
device 142 may download pieces of the computer readable instructions, as
needed, or some instructions may be executed at computing device 142 and
some at computing device 160.

[0061] Various operations of embodiments are provided herein. In one
embodiment, one or more of the operations described may constitute computer
readable instructions stored on one or more computer readable media, which if
executed by a computing device, will cause the computing device to perform the
operations described. The order in which some or all of the operations are
described should not be construed as to imply that these operations are
necessarily order dependent. Alternative ordering will be appreciated by one
skilled in the art having the benefit of this description. Further, it will be
understood that not all operations are necessarily present in each embodiment
provided herein.

[0062] Moreover, the word "exemplary” is used herein to mean serving as an
example, instance, or illustration. Any aspect or design described herein as
"exemplary" is not necessarily to be construed as advantageous over other
aspects or designs. Rather, use of the word exemplary is intended to present
concepts in a concrete fashion. As used in this application, the term "or" is
intended to mean an inclusive "or" rather than an exclusive "or". That is, unless
specified otherwise, or clear from context, "X employs A or B" is intended to mean
any of the natural inclusive permutations. That is, if X employs A; X employs B; or
X employs both A and B, then "X employs A or B" is satisfied under any of the
foregoing instances. In addition, the articles "a" and "an" as used in this
application and the appended claims may generally be construed to mean "one or
more" unless specified otherwise or clear from context to be directed to a singular

form.

26

WO 2012/092224 PCT/US2011/067307

[0063] Also, although the disclosure has been shown and described with
respect to one or more implementations, equivalent alterations and modifications
will occur to others skilled in the art based upon a reading and understanding of
this specification and the annexed drawings. The disclosure includes all such
modifications and alterations and is limited only by the scope of the following
claims. In particular regard to the various functions performed by the above
described components (e.g., elements, resources, etc.), the terms used to
describe such components are intended to correspond, unless otherwise
indicated, to any component which performs the specified function of the
described component (e.g., that is functionally equivalent), even though not
structurally equivalent to the disclosed structure which performs the function in the
herein illustrated exemplary implementations of the disclosure. In addition, while
a particular feature of the disclosure may have been disclosed with respect to only
one of several implementations, such feature may be combined with one or more
other features of the other implementations as may be desired and advantageous
for any given or particular application. Furthermore, to the extent that the terms
"includes"”, "having", "has", "with", or variants thereof are used in either the
detailed description or the claims, such terms are intended to be inclusive in a

manner similar to the term "comprising.”

27

WO 2012/092224 PCT/US2011/067307

What is claimed is:

1. A method of fulfilling requests targeting a data set on a data store having a
processor, the method comprising:
executing on the processor instructions configured to:
upon receiving a data item, store the data item in the data set; and
upon receiving a request specifying at least one filter criterion:
retrieve the data items of the data set satisfying the at least
one filter criterion to generate a filtered data subset, and

send the filtered data subset in response to the request.

2. The method of claim 1:

the data store comprising at least one index for at least one filter criterion;

the instructions configured to, upon receiving the data item, index the data
item in at least one index according to at least one filter criterion; and

retrieving the data items of the data set satisfying the at least one filter
criterion comprising: for respective filter criteria, using an index corresponding to

the filter criterion, identifying the data items satisfying the filter criterion.

3. The method of claim 2, the index specifying, for a filter criterion value of a
filter criterion corresponding to the index, a data item set identifying the data items

having the filter criterion value for the filter criterion.

4. The method of claim 3:

indexing a data item in the at least one index comprising: for respective
filter criteria, adding the data item to the data item set of data items having the
filter criterion value for the filter criterion; and

identifying the data items satisfying a filter criterion having a filter criterion
value comprising: retrieving the data item set of data items having the filter

criterion value for the filter criterion.

28

WO 2012/092224 PCT/US2011/067307

5. The method of claim 4:

the data store having a data item buffer configured to store received data
items; and

storing the data item comprising: when the data items stored in the data
item buffer exceeds a data item buffer size threshold:
adding respective data items of the data item buffer in the data item set, and

emptying the data item buffer.

6. The method of claim 3:

the data store comprising at least one data item partition configured to
store data items having a filter criterion value for a filter criterion; and

retrieving the data items of the data set satisfying the at least one filter
criterion comprising: for at least one filter criterion value for respective filter
criteria, retrieving the data items stored in the data item partition storing data items

having the filter criterion value for the filter criterion.

7. The method of claim 6, the instructions configured to, upon receiving a data
item:

identify at least one filter criterion value for at least one filter criterion
corresponding to the index;

identify a data item partition storing data items having the filter criterion
value for the filter criterion; and

store the data item in the data item partition.

8. The method of claim 6:
the data store comprising:

at least one data item partition configured to store data items having
a first filter criterion value for a first filter criterion and a second filter criterion value
for a second filter criterion; and

at least one index configured to identify, for data items having a first
filter criterion value for the first filter criterion, the respective data item partitions
storing data items also having respective second filter criterion values for the

second filter criterion.

29

WO 2012/092224 PCT/US2011/067307

9. The method of claim 1:

the request specifying a first filtered data subset to be used to generate the
filtered data subset; and

retrieving the data items of the data set comprising: retrieve the data items
of the data set satisfying the at least one filter criterion and using the first filtered

data subset to generate a filtered data subset.

10. The method of claim 1, retrieving the data items comprising:
retrieving all of the data items of the data set; and

sending only the data items satisfying the at least one filter criterion.

11. The method of claim 10:
the data store comprising a data item processor set comprising at least one
data item processor having a state and at least one filtering condition and
configured to:
upon receiving a data item, update the state of the data item
processor; and
upon the state of the data item processor satisfying the at least one
filtering condition, authorize the data item to be sent; and
sending only the data items satisfying the at least one filter criterion
comprising:
providing respective data items to the data item processor set, and
sending the data items authorized to be sent by the data item

processor set.

12. The method of claim 1:
the request received from a requester; and
the instructions configured to, before sending the filtered data subset:
estimate a filtered data subset size of the filtered data subset;
send the filtered subset data size to the requester; and
upon receiving from the requester a filtered data subset

authorization, send the filtered data subset in response to the request.

30

WO 2012/092224 PCT/US2011/067307

13. A method of applying a query to a data set stored by a data store, the
method performed by a device having a processor and comprising:
executing on the processor instructions configured to:
from the query, generate a request specifying at least one filter
criterion;
send the request to the data store; and
upon receiving from the data store a filtered data subset in response

to the request, apply the query to the filtered data subset.

14. The method of claim 13:
the query comprising:
a first filter criterion generating a first filtered data subset, and
a second filter criterion generating a second filtered data subset
using the first filtered data subset;
generating the request comprising: generating a first request specifying the
first data subset filtered according to the first filter criterion;
sending the request to the data store comprising: sending the first request
to the data store; and
applying the query comprising:
upon receiving from the data store the first filtered data subset in
response to the first request:
generating a second request specifying the second data
subset filtered according to the second filter criterion and using the first filtered
data subset; and
sending the second request to the data store; and
upon receiving from the data store the second filtered data subset in
response to the second request, apply the query to the second filtered data

subset.

31

WO 2012/092224 PCT/US2011/067307

15. The method of claim 13, the instructions configured to, before receiving the
filtered data subset from the data store:

receive from the data store a filtered data subset size of the filtered data

subset;
verify the filtered data subset size to generate a filtered data subset

authorization; and
upon generating a filtered data subset authorization, send the filtered data

subset authorization to the data store.

32

WO 2012/092224 PCT/US2011/067307
1/9
20 — p—10
22 — DATA SET — 22
users events
24 7N\ Username 22 type date
26 —N'Sam Baker users 12 #01/01/2011#
:2 _\:JZ)En:DZ)EZ il events ==
26 _|-Susan lvy || Mark Smith y— o m
N Jane Liu Jim Torres
14 #10/26/2009#

DATA STORE 1
users (a-)

DATA STORE 2

30

users (m-z)

events
(last week)

QUERY
PORTION

QUERY
PORTION

QUERY
PORTION

— 32

\
RESULT

QUERY

DATA STORE 3

— 32

QUERY
RESULT

MAPREDUCE

DATA STORE 4
events
(earlier)

QUERY
PORTION

DATA STORE 5

permission

/— 32

QUERY
RESULT

SERVER
14 — 34 —
16 — QUERY QUERY RESULT
16— select username username permission
left join permissions on user.id = permission.user —
from user, event, event_type, 16 = ﬂo_h Q 9%_ | éd_m_ln_lst_ra_tq_
16 where user.id = event.user 16 John Doe User

and event.type = event_type.id__ 44

and event_type.name = ‘get’

.) 16
and event.target = ‘server.com*/

and event.date = #01/01/2011#/
sort by username ascy” 16

16

12

FIG.

1

WO 2012/092224 PCT/US2011/067307

2/9

40w

20 —~

DATA SET:
50,000 RECORDS

18
DATA
STORE
46 —
REQUEST: NETWORK REQUEST RESULT:
USERS 50,000 RECORDS
A
42
COMPUTE
> NODE COMPUTATION
QUERY RESULT:
QUERY 1 RECORD

FIG. 2

WO 2012/092224 PCT/US2011/067307
3/9
50 w
20 —
DATA SET:
50,000 DATA ITEMS
52 —
DATA ITEM
52 —
DATA ITEM
— 56
XK FILTERING
46 —
44 —
REQUEST: v 58
54 USERS FILTERED DATA
SLTER NETWORK SUBSET.
CRITERION 3,000 DATA ITEMS
A
42
B COMPUTE
—>
NODE COMPUTATION
14— l ,— 34
QUERY QUERY RESULT:

1 DATA ITEM

FIG. 3

WO 2012/092224 PCT/US2011/067307

4/9

62
START
64
—

EXECUTE ON PROCESSOR INSTRUCTIONS CONFIGURED TO:

GOﬂ

—— 66
UPON RECEIVING A DATA ITEM, STORE DATA ITEM IN DATA SET

v

68
UPON RECEIVING REQUEST (
SPECIFYING AT LEAST ONE FILTER CRITERION:

RETRIEVE DATA ITEMS OF DATA SET [70
SATISFYING AT LEAST ONE FILTER CRITERION
TO GENERATE FILTERED DATA SUBSET

* — 72
SEND FILTERED DATA SUBSET IN RESPONSE TO
REQUEST
74
END

FIG. 4

SOW

82

|

EXECUTE ON PROCESSOR INSTRUCTIONS CONFIGURED TO:

FROM QUERY, GENERATE REQUEST SPECIFYING A DATA 86
SUBSET FILTERED ACCORDING TO A FILTER CRITERION

SEND REQUEST TO DATA STORE

— 90
UPON RECEIVING FROM DATA STORE A FILTERED DATA
SUBSET IN RESPONSE TO REQUEST, APPLY QUERY TO
FILTERED DATA SUBSET

92
END

FIG. 5

WO 2012/092224 PCT/US2011/067307

5/9

100\

—_—_— e e e e — — — o — — — —

|
|
|
|
|
106 4

COMPUTER
INSTRUCTIONS

I
|
|
|
104 v

01011010001010
10101011010101
101101011100...

102 hld

COMPUTER READABLE MEDIUM

FIG. 6

WO 2012/092224 PCT/US2011/067307

6/9

110j 20

"2 — DATA SET
14 — INDEX
EVENTS: #01/2011# |, 116
I 114 = 116
EVENTS: #10/2010#
52 —
EVENT: #01/01/2011# [— =
' EVENTS: #09/2010#
52 —
EVENT: #10/25/2010# 18
118 DATAITEMSETS
52 — [-
CVENT 10720720107 — : EVENT: #01/01/2011# @
STORE M"Ms — 0T T
52 \ / r— A — —-i
EVENT: #09/19/2010# : EVENT: #10/25/2010# [&H—
|
|
52 |
- I | EVENT: #10/22/2010# |«
EVENT: #09/18/2010# |— pf L |
118
I__:_ ___________ -
| | EVENT: #09/19/2010# (!
| |
| | EVENT: #09/18/2010# (@
I)
44 —
54 _REQUEST FILTERED |
FILTER DATA [
CRITERION SUBSET

12

FIG. 7

WO 2012/092224 PCT/US2011/067307

7/9
120 N\
— 20
DATA SET
— 122
PARTITION 1 (#01/2011#)
52 —
EVENT: #01/01/2011# EVENT: #01/01/2011#
52 122
PARTITION 2 (#10/2010#
EVENT: #10/25/2010¢ |- | 18 ()
a |" EVENT: #10/25/2010#
52 —
EVENT: #10/22/2010# DATA < EVENT: #10/22/2010#
STORE
52 —
EVENT: #09/19/2010¢ H 122
' PARTITION 3 (#09/2010%#)
52
it EVENT: #09/19/2010#
EVENT: #09/18/2010#
EVENT: #09/18/2010#
44—~ REQUEST PARTITION |~ 122
\4

FIG. 8

WO 2012/092224

130W

PCT/US2011/067307
8/9
18
> o B
DATA ITEMS
DATA — (50,000) DATA SET
STORE

DATA ITEM PROCESSOR SET

134 —

136

DATA ITEM
PROCESSOR

134 —~ l

— 132

136

6

134 — 134 —
DATA ITEM DATA ITEM DATA ITEM
PROCESSOR PROCESSOR PROCESSOR
—{ 13 136

m

[\

7— 134

DATA ITEM
PROCESSOR

136

136

DATA ITEM
PROCESSOR

T

— 52

REQUEST

DATA ITEMS
(3,000)

B!

FIG. 9

WO 2012/092224 PCT/US2011/067307

9/9

140
X

/—144
=== ': _—150
|
: 146 | STORAGE
| |

| 152
: PROCESSING | —
| UNIT : OUTPUT DEVICE(S)
| |
| ! _—154
|
! l INPUT DEVICE(S)
! MEMORY :
i ! _—156
| | COMMUNICATION
| 148 | CONNECTION(S)
L ;

158

COMPUTING | ~—160
DEVICE

FIG. 10

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings

