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SINGULARITY ESCAPE/AVOIDANCE STEERING LOGIC FOR CONTROL
MOMENT GYRO SYSTEMS

Cross Reference to Related Application

This application claims priority from U.S. provisional patent applications Serial Nos.
60/407,334 filed August 28, 2002 and 60/493,923 filed August 8, 2003 in the name of Bong
Wie entitled "Singularity Escape/Avoidance Steering Logic for Control Moment Gyro

System," both of which are incorporated herein by reference.
Field of the Invention

This invention relates to control moment gyro (CMG) steering logic and more

particularly to such logic that improves the escape from and/or avoids singularities. .
Background

Control moment gyros (CMGs), as applied to spacecraft attitude control and
momentum management, have been extensively studied during the past three decades, Refs. 1
- 8, and more recently in Refs. 9 - 17. They have been successfully employed for a variety of
space missions, such as the Skylab, the MIR station, and the International Space Station
(ISS). However, CMGs have never been used in commercial communications and imaging
satellites because their higher torque capabilities have not been needed by most commercial
and imaging satellites and also because CMGs are much more expensive and mechanically
complex than reaction wheels.

A CMG contains a spinning rotor with large, constant angular momentum, but whose
angular momentum vector direction can be changed with respect to the spacecraft by
gimballing the spinning rotor. Such a CMG is the Astrium/Teldix DMG 15-45S. The
spinning rotor is mounted on a gimbal (or a set of gimbals), and torquing the gimbal results in
a precessional, gyroscopic reaction torque orthogonal to both the rotor spin and gimbal axes.
The CMB is a torque amplification device because small gimbal torque input produces large
control torque output on the spacecraft. Because the CMGs are capable of generating large
control torques and storing large angular momentum over long periods of time, they have
been employed for attitude control and momentum ﬁlanagement of large space vehicles, such
as the International Space Station (ISS). Four parallel mounted double-gimbal CMGs with a
total weight of about 2400 LB and with a design life of 10 years are employed on the ISS. In
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particular, Kennel's steering law (Ref. 4) has been implemented on the double-gimbaled
CMG system of the ISS.

Most of the next-generation commercial imaging satellites may be equipped with
CMGs because such satellites will require rapid rotational maneuverability for high-
resolution images (Refs. 18 - 22). In the interest of higher resolution images, a narrower field
of vision will be required. To be able to image points of interest more widely distributed than
points within the narrow angle of vision of the satellite, rapid slewing movement will be
needed. Rather than sweeping the imaging system from side-to-side, the whole spacecraft
body will turn rapidly. Pointing the entire spacecraft allows the body-fixed imaging system
with a narrow field of view to achieve a higher definition and improves the resolution for its
images. The overall cost and effectiveness of such agile spacecraft is greatly affected by the
average retargeting time. Thus, the development of a low-cost attitude control system
employing smaller and inexpensive CMGs, called mini-CMGs, is of current practical
importance for developing future agile imaging spacecraft (Refs. 19 - 21) as well as small
agile satellites (Ref. 22).

The use of CMGs necessitates the development of CMG steering logic which
generates the CMG gimbal rate commands in response to the CMG torque commands. One
of the pﬁﬂcipal difficulties in using CMGs for spacecraft attitude control and momentum
management is the geometric singularity problem in which no control torque is generated for
the commanded control torques along a particular direction. At such a singularity, CMG
torque is available in all but one direction. The problem of overcoming singularities in CMG
systems has previously been addressed. Approaches to the problem have been largely, but
not entirely, successful.

The CMG singularity problem, studied previously by Margulies and Aubrun (Ref. 2)
and Bedrossian et al. (Refs. 5 and 6), has been further examined recently in Ref. 23,
incorporated herein by reference, to characterize and visualize the physical as well as
mathematical nature of the singularities, singular momentum surfaces, and other singularity
related problems. The steering logic that may be considered "baseline" steering logic for
CMGs is pseudoinverse steering logic, discussed below. It is not free of siﬁgularities.

A simple yet effective way of passing through, and also escaping from, any internal
singularities, as applied to agile spacecraft pointing control, has been developed in Refs. 13 -
16, incorporated herein by reference. The CMG steering logic developed and patented by
Wie, Bailey and Heiberg of Refs. 13 and 14 is mainly intended for typical reorientation

maneuvers in which precision pointing or tracking is not required during reorientation
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maneuvers, and it fully utilizes the available CMG momentum space in the presence of any
singularities. Although there are special missions in which prescribed attitude trajectories are
to be "exactly" tracked in the presence of internal singularities, most practical cases will
require a tradeoff between robust singularity transit/escape and the resulting, transient
pointing errors.

Because the singularity-robust steering logic developed in Refs. 13 and 14 is based on
the minimum two-norm, pseudoinverse solution, it does not explicitly avoid singularity
encounters. Rather it approaches and rapidly transits unavoidable singularities whenever
needed. It effectively generates deterministic dither signals when the system becomes near
singular. Any internal singularities can be escaped for any nonzero constant torque
commands using the singularity-robust steering logic.

However, the patented CMG steering logic of Refs. 13 and 14 is unable to escape the
saturation singularities of certain CMG configurations, which can be problematic if CMG
momentum desaturation is desired. Consequently, a new steering logic is desirable to
overcome such a deficiency of the singularity-robust CMG steering logic. Furthermore, the
new steering logic should provide an effective means of explicitly avoiding, instead of
passing through, the internal elliptic singularities that are commonly encountered by most

other pseudoinverse-based steering logic.
Control Moment Gyro Systems

There follows a summary of several representative CMG systems. Detailed
descriptions of these systems can be found in Ref. 23. These CMG systems will be used in
connection with a description of specific exemplary embodiments to demonstrate the

simplicity and effectiveness of the new steering logic.
Pyramid Array of Four Single-Gimbal CMGs

For a typical pyramid mount of four single-gimbal CMGs with skew angle of £,
shown in Fig. 1, the total CMG momentum vector is represented by

H=h (x1)+ ]12(x2)+h3(x3)+h4(x4)

—cfsinx, —COS X, cfsinx, Cos X,
=| cosx, [|+|—cBsinx, |+| —cosx, |+|cfsinx, [1]
sfsinx, sfsinx, sBsinx, | |sPBsinx,

where x; is the ith gimbal angle, ¢ =cos 8, and sf =sin . Then we obtain

3
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H = Ax 2]
where % = (x,,x,,%;,%,) and A is the Jacobian matrix defined as
—cfcosx, sinx, cfcosx, —sinx,
A =|-sinx, —cflcosx, sinx, cfeoxy, [3]
sfcosx, sPcosx, sPcosx, sPcosx,
Equation (2) represents a linear mapping from x = (x1 2 Xp5 X5 ,x4) to H= (Hx, Hy,Hz).

Two different types of the internal singularity for the pyramid array of four CMGs are
illustrated in Figs. 1(a) and (b). The well known, troublesome elliptic singularity at (-90, 0,
90, 0) deg, which cannot be escaped by null motion, is illustrated in Fig. 1(a). The hyperbolic
singularity at (-90, 0, 90, 180) deg, which can be escaped by null motion, is shown in Fig.
1(b). Detailed analyses and discussions of CMG singularities can be found in Refs. 5 and 23.

When S =90 deg. Fig. 1 is a 4-CMG configuration with two orthogonal pairs of
scissored CMGs. The Jacobian [3] becomes:

0 sinx, 0 —sinx,
—sinx, 0 sin x, 0

A=
COSX  COSX, COSX; COSX,

This special configuration is also of practical importance, as studied extensively in
Refs. 1 and 23. Many other CMG configurations are some variants of this basic arrangement

of two orthogonal pairs of two parallel CMGs.
Two and Three Parallel Single-Gimbal CMG Configurations

- Two and three single-gimbal CMGs with parallel gimbal axes have been investigated
in Refs. 1, 2 and 23 for two-axis control of a spacecraft. For a system of two CMGs without
redundancy, the momentum vectors, H, and H, move in the (x, y) plane normal to the

gimbal axis as shown in Fig. 2. For such "scissored" single-gimbal CMGs, the total CMG
momentum vector is simply represented as
cos X, +Cosx,
H= [4]

sinx, +sinx,

where a constant unit momentum for each CMG is assumed.

Defining a new set of gimbal angles, & and £, as follows:
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x,+x2 Xy — X
o = ,ﬂz

5 > [5]

where « is called the "rotation" angle and f the "scissor" angle (Ref. 1), one obtains

He 2|:Cf)SO€ cos ,B] 6]
sin cos B
and
H=Ax [7]

where H = (Hx, Hy),fc =(c, ), and A is the Jacobian matrix defined as

A=2[—sinacosﬂ, —cosasinﬂi| (8]

cosacos B, -—sinasinf

For a system of three single-gimbal CMGs with parallel gimbal axes, the total CMG

angular momentum vector is:

COS X, +COS X, + COS X,
sinx, +sinx, +sinx,

and the Jacobian matrix for x = (x,,x,,x, ) becomes

—sinx, -—sinx, -—sinx,

A=| cosx, cosx, COSX,

The singular momentum surfaces of this systems of three parallel single-gimbal
CMGs are described by two circles as shown in Fig. 4. The internal hyperbolic singularity is
shown in Fig. 4(a) and the external (saturation) elliptic singularity in Fig. 4(b). Detailed
singularity analysis of this system can be found in Refs. 2 and 23.

Four Parallel Double-Gimbal CMGs

For a double-gimbal control moment gyro (DGCMG), the rotor is suspended inside
two gimbals and consequently the rotor momentum can be oriented on a sphere along any

direction provided no restrictive gimbal stops. For the different purposes of redundancy

5
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management and failure accommodation, several different arrangements of DGCMGs have
been developed, such as three orthogonally mounted DGCMGs used in the Skylab and four
parallel mounted DGCMGs employed for the International Space Station.

As shown by Kennel (Ref. 4), mounting of DGCMGs of unlimited outer gimbal angle
freedom with all their outer gimbal axes parallel allows drastic simplification of the CMG
steering law development in the redundancy management and failure accommodation and in
the mounting hardware.

Such a parallel mounting arrangement of four double-gimbal CMGs with the inner |
and outer gimbal angles, «;and f; of the ith CMG, is shown diagrammatically in Fig. 3.
The total CMG momentum vector H = (Hx, Hy, Hz) is expressed in the (x, y,z) axes as

Tsing;
H=|Zcosa,; cos B, [9]
2cosq; sin f3;
where a constant unit momentum is assumed for each CMG. The time derivative of H
becomes
zcosa;a;
H =| Z|-sina, cos B,d, - cosa, sin B, 3, [10]

2(-sina, sin B,a, +cosa; cos B,
Note that the x-axis torque component is not a function of the outer gimbal £, motions.

Consequently, in Kennel's CMG steering law implemented on the International Space

Station, the inner gimbal rate commands, ¢;, are determined first for the commanded x-axis

torque, then the outer gimbal rate commands, ,Bi , for the commanded y- and z-axis torques.

Typical singularities of a system of four parallel double-gimbal CMGs are illustrated
in Figs. 4(a) - (d). The 4H saturation singularity is an elliptic singularity which cannot be
escaped by null motion. The 2H and OH singularities, shown in Fig. 4(b) and (c)
respectively, are hyperbolic singularities which can be escaped by null motion. A
nonsingular configuration but with a zero momentum is also shown in Fig. 4(d).

The various CMG systems described in this section are used below to demonstrate the
simplicity and effectiveness of the new singularity escape/avoidance logic according to this

invention.
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Pseudoinverse Steering Logic

Ignoring the effect of spacecraft angular motion, the instantaneous torque vector, 7,

generated by CMG gimbal motion X, can be defined as

n

f’:ﬁ: )y %xl [11]
dt dx;
i=1
or, in matrix form, as
dH i dh
T=—= % —Llx, =Ak [12]
AL

where A is a 3 x n Jacobian matrix and % = (%,,...%, ).

For the given control torque command 7 , the gimbal rate command %, often referred

to as the pseudoinverse steering logic, is then obtained as

x=A'r [13]
where

A* =AT(AAT) [14]
This pseudoinverse is the minimum two-norm solution of the following constrained

minimization problem:

m.in | subject to At =7 15
P j [15]

where ||x“2 = %" %. Most CMG steering laws determine the gimbal rate commands with some

variant of the pseudoinverse of the form of the above expression [14].

The pseudoinverse is a special case of the weighted minimum two-norm solution

i=A'z where A* = Q"' A”[AQ7AT]" [16]
of the following constrained minimization problem:
in, .2
m' |%]  subject to Ax =7 [17]
x 0

2
where “x”Q =x"0x and Q= Q" > 0. Below, the significance of choosing Q =1, where I

is an identify matrix, is demonstrated.
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If rank (A) <m for certain sets of gimbal angles, or equivalently rank (AAT) < m,
when A is an m x n matrix, the pseudoinverse does not exist, and it is said that the
pseudoinverse steering logic encounters singular states. This singular situation occurs when
all individual CMG torque output vectors are perpendicular to the commanded torque
direction. Equivalently, the singular situation occurs when all individual CMG momentum

vectors have extremal projections onto the commanded torque 7 .

Since the pseudoinverse, A* = A” (AAT )_1 , is the minimum two-norm solution of
gimbal rates subject to the constraint Ax =7, the pseudpinverse steering logic and all other
pseudoinverse-based steering logic tend to leave inefficiently positioned CMGs alone causing
the gimbal angles to eventually "hang-up" in anti-parallel singular arrangements. That is,
they tend to steer the gimbals toward anti-parallel singular states. Despite this deficiency, the
psuedoinverse steering logic, or some variant of pseudoinverse, is commonly employed for
most CMG systems because of its simplicity for onboard, real-time implementation.

Nakamura, Y. and Hanafusa, H., in Ref. 24, describe a singularity rpbust steering

logic in which:
A*=AT[AAT + a1]" [18]
The singularity robust inverse steering logic, % = A*u, does not become singular; i.e.,

det [AAT + Al l # 0. This solves the large majority of singularity problems in CMG steering

logic. However, X becomes zero if det (AAT ) = 0 and if a control torque is commanded along

the singular direction. The CMG system with the singularity robust inverse steering logic can

then become trapped in the singular state.
Singularity Escape/Avoidance Steering Logic

A simple yet effective way of passing through and escaping any internal singularities
was developed by Wie, Bailey and Heiberg (Refs. 13 - 16). Such a singularity-robust CMG
steering logic was mainly intended for typical reorientation maneuvers in which precision
pointing or tracking is not required during reorientation maneuvers, and it fully utilizes the
available CMG momentum space in the presence of any singularities.

The singularity-robust steering logic of Refs. 13 - 14 has the following form:

x=A"r [19]

where
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A*=[ATP4+ uI[' ATP

o [20]
= AT[AAT + 2E]
and
1 & ¢
P'=E=lg 1 ¢ |>0. [21]
1
& & 1

The positive scalar 4 and the off-diagonal elements &, are to be properly selected such that

A 7% 0 for any nonzero constant 7 .
Note that there exists always a null vector of A* since rank (A# ) <3 forany A and

&; when the Jacobian matrix A is singular. Consequently, a simple way of guaranteeing that

A*z # 0 for any nonzero constant 7 command is to continuously modulate ¢,, for example,
as follows:
& = &, sin(wt +¢,) [22]

where the amplitude &,, the modulation frequency @, and the phases ¢; need to be
appropriately selected. The scalar A may be adjusted as:

A=Ay exp(- pdet(AAT)) [23]

where A, and u are constants to be properly selected.

It is emphasized that the singularity-robust inverse of the form (20) is based on the
mixed, two-norm and weighted least-squares minimization although the resulting effect is
somewhat similar to that of artificially misaligning the commanded control torque vector
from the singular vector directions. Because the singularity robust steering logic is based on
the minimum two-norm, pseudoinverse solution, it does not explicitly avoid singularity
encounters but it rather approaches and rapidly transits unavoidable singularities whenever
needed. The steering logic effectively generates deterministic dither signals when the system
becomes near singular. Any internal singularities can be escaped for any nonzero constant
torque commands using the singularity robust steering logic.

However, a certain type of external saturation singularity cannot be escaped for any

choice of 4 and &,, as shown below and therefore a need exists for further improvement in

CMG steering logic to escape and/or avoid all singularities, internal and external.
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Summary of the Invention

With this invention, there is provided CMG steering logic with improved singularity
robustness. Particularly, improved CMG steering logic that eliminates or avoids singularities
such as occur in even the most robust prior CMG control is provided.

The CMG steering logic of this invention is based on the well-known mixed weighted
two-norm and least-squares optimization solution with weighting matrices W and V. The
proper use of W, in conjunction with the deterministic dither signals in V, eliminates a
deficiency of the patented steering logic of Refs. 13 and 14. Either W (i.e. the weighted
pseudoinverse solution) or V alone do not completely eliminate the deficiency; i.e. both W
and V are required for completely resolving the singularity escape/avoidance problem.

Some internal elliptic singularities can be explicitly avoided or skirted by a proper
selection of the weighting matrix W. However, the steering logic of the invention rather
tends to approach and rapidly transit unavoidable singularities whenever necessary.

A trial-and-error, intuitive approach is used for choosing proper W's in several
embodiments of the invention. The steering logic of the invention is simple to implement
compared to many other explicit singularity-avoidance algorithms employing, for example,
gradient methods, global search, optimization and/or null motion.

The transient torque errors inherent to the steering logic of the invention during
singularity escapes or transits will be acceptable in most practical situations in which
precision pointing or tracking is not required during CMG momentum desaturation, CMG
reconfiguration or spacecraft reorientation maneuvers.

It will be seen that a new steering logic utilizing a mixed weighted two-norm and least
squares optimization solution has been developed to overcome a deficiency of the previously
patented steering logic. It can also be employed to explicitly avoid singularity encounters for
which most other pseudoinverse-based steering logic either fail or must transit through. The l
practicality, effectiveness and simplicity of the new singularity escape/avoidance logic, even
in the presence of gimbal-rate limit, are demonstrated for various CMG systems.

The above and further objects and advantages of the invention will be better
understood from the following detailed description of preferred embodiments taken in

consideration with the accompanying drawings.
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Brief Description of the Drawings

Fig. 1 is a diagrammatic illustration of a CMG platform having a "pyramid"
mounting arrangement of four single-gimbal CMGs;

Fig. 1(a) and (b) are vector diagrams of a 2H internal elliptical singularity (a) and 9H
internal hyperbolic singularity (b) with the CMG arrangement of Fig. 1;

Fig. 2 is a diagrammatic illustration of the characteristics of two single gimbal CMGs
with parallel gimbal axes; ‘

Fig. 2(a) is a diagrammatic illustration of a OH anti-parallel singularity of the CMG
arrangement of Fig. 2;

Fig. 2(b) is a diagrammatic illustration of a 2H parallel singularity of a CMG
arrangement of Fig 2;

Fig. 3 is a diagrammatic illustration of the characteristics of four parallel-mounted |
double-gimbal CMGs;

Figs. 4(a) - (d) are diagrammatic representations of a four parallel-gimbal CMG
attitude control in three singularity causing relationships (a) - (c) and in one relationship (d)
not a singularity; 4

Fig. 5 is a series of plots vs. time of characteristics of a momentum desaturation
singularity escape simulation for a two parallel single-gimbal CMG attitude control using the
steering logic of the present invention;

Fig. 6 is a series of plots vs. time of characteristics of a momentum desaturation
singularity escape simulation for a three parallel single-gimbal CMG attitude control using
the steering logic of the present invention with W = diag{1,2,3};

Fig. 7 is a series of plots vs. time of characteristics of a momentum desaturation

singularity escape simulation for a four single-gimbal CMG (ﬂ = 7r/2) attitude control using
the steering logic of the present invention with W = diag{1,2,3,4};

Fig. 8 is a series of plots vs. time of characteristics of a singularity transit simulation
for a four single-gimbal CMG (ﬂ =53.13 deg.) attitude control using the steering logic of the
present invention with W = diag{1,1,1,1};

Fig. 9 is a series of plots vs. time of characteristics of a singularity avoidance

simulation for a four parallel single-gimbal CMG ( # = 53.13deg. ) attitude control using the
steering logic of the present invention with W = diag{10,1,1,1};

11
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Fig. 10 is a series of plots vs. time of gimbal rate for singularity avoidance simulation
with a gimbal rate limit of + 2 rad/sec.;

Fig. 11 is a series of plots vs. time of characteristics of a 4H saturation singularity
escape passing through the OH singularity of a four parallel double-gimbal CMG attitude
control using the steering lo gic‘of the invention with W = diag{1,1,2,2,1,1,2,2};

Fig. 12 is a series of plots vs. time of characteristics of a momentum desaturation
singularity escape simulation for a four parallel double-gimbal CMG attitude control
escaping the saturation singularity and also avoiding OH singularity using the steering logic
of the present invention with W = diag{1,2,3,4,1,2,3,4};

Fig. 13 is a diagrammatic illustration of a three single-gimbal CMG array with
parallel axes and Figs. 13(a) and (b) represent 1H anti-parallel and 3H parallel singularities,
respectively; and

Fig. 14 is a functional block diagram showing a control efnbodying the present

invention to rotate a satellite in response to commanded rotation signal .
Detailed Description

In accordance with this invention, a new steering logic which is capable of escaping

all types of singularities, is of substantially the form
¥=A"r [24]
where
A* =[ATPA+Q["ATP
=0"'AT[AQ AT +P'] [25]
= WA [AWAT +7
where W = Q7' and V =P, For a3 x n Jacobian matrix A,[A”PA + QJ is an 7 X » matrix

and |[AWAT +7 | is 2 3 x 3 matrix.

The singularity-robust inverse of the form [25] is the solution of the well-known,
mixed two-norm and least-squares minimization problem:

M7 pe 457 0%) [26]

where e = A% —7 is the torque error vector. Because P and Q are positive definite matrices,

[AT P4 = QJ and lA WA" + VJ are always nonsingular.

12
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The weighting matrices, P and Q (equivalently, W and V), must be properly chosen:
(i) to obtain acceptable levels of torque errors and gimbal rates, (ii) to escape any internal as
well as external singularities, and (iii) to pass through singularities or avoid singularity
encounters.

- For example, P is chosen such that A” Pz = 0 for any torque command 7, as follows:

1 & s
P'=V=24e 1 g |>0 [27]
g & 1
and
A=2, exp(— H det( T )) [28]
&= &, sin(wt + ¢,) [29]

where the constant parameters, 4,, 4, &,,®, and ¢ ;, need to be appropriately selected.

Because the condition A" Pr # 0, which is a necessary condition, is not sufficient for

escaping and/or avoiding singularities, the matrix Q also needs to be properly chosen, as

follows:

>0. [30]

NN
o 3
s> S>>
RERYES

Different values of W; and/or nonzero off-diagonal elements are needed to be able to escape
all types of singularities, including the external saturation singularities when CMG
momentum desaturation is requested. Furthermore, a proper choice of W # I provides an
effective means for "explicitly” avoiding singularity encounters (to be demonstrated in the
next section).

Several examples of demonstrating the significance of W # I for escaping a certain
type of external saturation singularities for which the previous singularity-robust steering
logic of Wie, Bailey and Heiberg (Refs. 13 and 14) fails are presented in the discussion
entitled "Exemplary Embodiments," below. Examples of avoiding an internal elliptic
singularity for which the previous singularity-robust steering logic had to pass through are

also presented.

13
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Exemplary Embodiments

In the following exemplary embodiments, the simplicity and effectiveness of the new
steering logic will be demonstrated using various CMG systems, such as two and three
parallel single-gimbal CMG configurations, a pyramid array of four single-gimbal CMGs and
four parallel double-gimbal CMGs of the International Space Station. "

Two Parallel Single-Gimbal CMGs

For a system of two parallel single-gimbal CMGs illustrated in Fig. 2 we have the

CMG momentum vector H as

sz-c?sacosﬂ] 31]
| sinazcos B
and the Jacobian matrix A as
[—sinacos B —cosasin
A=g| Snecosf —cosasing } [32]
| cosacos 8 —sinasin B

where o is called the "rotation" angle and S the "scissor" angle.
For the internal anti-parallel singularity at x = (a, p ) = (0,7: / 2), shown in Fig. 3(a),

the Jacobian matrix becomes

7]
0 O
with its singular vector u = (0,1); i.e., A”u-0. A null space vector of A such that Ax =0 is:
x =null(A) = (1,0).

Although null motion does exist from this singularity, this hyperbolic singularity
cannot be escaped by null motion because the singular configuration ((,B = 72'/2) remains
undisturbed during this null motion along the null manifold (or a degenerate trajectory).
Although null motion can be generated at this hyperbolic singularity, this example
demonstrates that the mere existence of null motion does not guarantee escape from a
singularity (Refs. 5 and 23). However, this type of internal singularity can be easily escaped
by the singularity-robust steering logic of Refs. 13 and 14.

For the saturation singularity at x = (a, ,B) = (0,0), shown in Fig. 3(b), the Jacobian

matrix becomes
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0 0
A=
2 0
with its singular vector u = (-1,0) and its null space vector x =null(A)=(0,1). This external
elliptic singularity cannot be escaped by null motion because null motion does not exist in the

vicinity of this momentum saturation singularity, as discussed in Refs. 5 and 23.

The singularity-robust inverse of Refs. 13 and 14 with 4 =0.1 and & = 0.1 becomes

—0.0488 0.4879]

A* = AT[AAT +0.1B]" = {
0 0

L o x| 1] _[00488
X = =
0 0

Note that % = (o'c, ﬂ)¢ 0, but B = 0; i.e., the system remains singular while ¢ changes. In
fact, B = 0 for any torque command vector 7 and any &;. Consequently, the singularity-

robust steering logic of Refs. 13 and 14 is unable to command a non-zero 4 for this special

case.

However, this external singularity can be escaped by the new singularity escape/avoidance

steering logic, proposed in this paper, of the form: % = A*r where
A* =wAT[AWAT + 7], [33]

As can be seen in Fig. 5, the momentum saturation singularity is escaped using the new

1 ¢ 1 A
V=}LL J,W=L 1} [34]

g =0.1cost
2= 0.01exp(~10det(AAT ))

steering logic with

where

In Fig. 5, (ux U y) represent the actual torques generated by the CMG system for the
commanded torques of (7,,7,) = (-1,0) for 0 <¢ <3 sec. The CMG momentum is

completely desaturated at =2 sec, but the desaturation torque is commanded until = 3 sec
to further explore any problem of encountering an internal singularity. (For all of the
simulation results presented in this paper, the commanded torque level as well as the CMG
momentum is normalized as one without loss of generality. Thus it should be appropriately
adjusted depending on the actual values of gimbal rate limit and CMG momentum

magnitude.) As can be seen in Fig. 5, the new steering logic also provides a simple yet
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effective way of passing through the OH internal hyperbolic singularity, but with a small
transient torque error in .
As discussed in Ref. 1, a steering logic based on the direct inverse of A can be
obtained for this simple 2 x 2 problem, as follows:
i=A"7 [35]

where

A_le 1 [—sinacosf —cosasinf
" 2/A]| cosarcosf -sinasin g
k [36]
_1|-sima/cosf cosa/cos 8
" 2| —cosa/sin B —sina/sin S
Then we obtain
. —sinar, +cosar,
O =— [37]
2cos S+ 4,
_ —cosar, —sinar, [38]
2sin B+ 4,)
where
Ay = 2y exp(— u det(AAT))sin B [39a]
A, =4, exp(— Y7, det(AAT))cos B [39D]

which are included in the steering law to avoid dividing by zero when the system becomes

singular.
Three Parallel Single-Gimbal CMGs

For a system of three single-gimbal CMGs with parallel gimbal axes, W should be
selected as W, # W, # W, to escape the 3H saturation singularity at (x,,x,,x, ) = (0,0,0) with
(z,,7,)=(-1,0). Simulation results of (7,,7,)=((-1,0) for 0 <z <3 sec with W =
diag {1,2,3} are shown in Fig. 6. Detailed singularity analyses of such a system of three
parallel single-gimbal CMGs can be found in Ref. 23.

Pyramid Array of Four Single-Gimbal CMGs

First consider a special case (,B =/ 2) of the pyramid array of four single-gimbal

CMGs. Such two orthogonal pairs of two parallel single-gimbal CMGs is of practical
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importance due to its simple arrangement of four single-gimbal CMGs for three-axis control
applications (Refs. 1 and 23).

Similar to the case of three parallel single-gimbal CMGs, W= I is also needed to
escape the saturation singularity, as shown in Fig. 8. For this simulation, W = diag {1,2,3,4}
was used to escape the saturation singularity at (z /2,7 /2,7/2,7/2) with (7,57,,7,) =
(0,0,-1) for 0 <z < 4 sec. It can be seen in Fig. 7 that an internal singularity is encountered at
t =2 sec, but it is rapidly passed through.

In Fig. 8, simulation results are shown for a typical pyramid array of four single-
gimbal CMGs (,B = 53.13deg) with initial gimbal angles of (0,0,0,0) and a torque command
of (z'x, T, ,rz) = (1,0,0). For this simulation, W = diag {1,1,1,1} was used, i.e. the singularity
robust steering logic of Refs. 13 and 14 was used for this simulation. It can be seen that the
well-known internal elliptic singularity at (- 7!2,0,7/ 2,0) is encountered but it is

successfully passed through. The inevitable transient torque errors during the singularity

transit can be seen in Fig, 8.

In Fig. 9, simulation results with W = diag {1 0'4,1,1,1} are shown for the previous case
of a typical pyramid array of four single-gimbal CMGs (ﬂ =53.13 deg) with initial gimbal
angl\\es of (0,0,0,0) and a torque command of (z'x 3Ty Tz) =(1,0,0). It can be seen that the well
known internal elliptic singularity at (— n/2,0,7/ 2,0) is not encountered. However, the

inevitable transient torque errors caused by skirting such a troublesome, impassable elliptic
singularity can also be seen in Fig. 9.

For the simulations shown in Figs. 8 and 9, the maximum gimbal rate of each CMG
was explicitly imposed as =2 rad/sec. Such a gimbal rate saturation limit did not affect the
singularity-avoidance performance of the proposed steering logic. The gimbal-rate time

histories associated with the simulation shown in Fig. 9 are provided in Fig. 10.
Four Parallel Double-Gimbal CMGs

The new steering logic can also be employed for a system of four parallel double-

gimbal CMGs described by Ax =7 wherex =  (a,,a,,0,,0,, 8;, 855 Bs» B4 )
r=(z,,7,, 7,) and A is a 3 x 8 Jacobian matrix which can be easily constructed from

equation [10].
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The saturation singularity escape capability of the new steering logic is demonstrated
in Fig. 11 The simulation conditions for this case are:

Initial gimbal angles: o, = B, =0 for all i

Commanded torque: (rx 3Ty T, )= (0,1,0)

W =diag {1,1,2,2,1,1,2,2,}

2 =0.01exp(- det(AAT )

g =0.1cost
InFig. 11 wehave ¢, =a, #a, =a,andf, =, # B, = B,. For this case with W =
diag{1,1,2,2,1,1,2,2} it escapes the saturation singularity but it passes through the 0H
singularity, as can be seen in Fig. 11. However, for W =1, this system remains singular at its
singular momentum envelope, i.e. the patented steering logic of Refs. 13 and 14 is unable to
escape the saturation singularity of this system of four double-gimbal CMGs even when
CMG momentum desaturation is requested.

Furthermore, when we choose W = diag{1,2,3,4,1,2,3,4}, it can be seen in Fig. 12 that
it escapes the saturation singularity and that the OH singularity is completely avoided with no
transient torque errors. The CMG momentum is completely desaturated at ¢ =4 sec to
further explore any problem of encountering an internal singularity.

This example of a system of four double-gimbal CMGs demonstrates that it is feasible
to completely avoid singularity encounters (with no transient torque errors) with a proper
selection of W in conjunction with the deterministic dither signals generated in V.

For the parallel mounting arrangement of four double-gimbal CMGs, the x -axis torque

component is not a function of the outer gimbal £; motions as can be seen in equation [10].

Consequently the inner gimbal rate commands can be determined first for the commanded

torque 7, then the outer gimbal rate commands for (7,,7,). In particular Kennel's CMG

steering law distributes the CMG angular momentum vectors such that all inner gimbal

angles are equal, which reduces the rate requirements on the outer gimbals as follows:
0 =—2—tka ~a,) [40]
Z cosa;

where £ is called the inner gimbal angle distribution gain and «" is the desired inner gimbal

angle for all CMGs chosen as

o =" [41]
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The new steering logic can then be incorporated with Kennel's steering law to generate the
outer gimbal rate commands [3,. using a reduced 2 x 4 Jacobian matrix without requiring

Kennel's virtual CMG for avoiding 2H-singularity encounters.

Simulation results also show that the new steering logic rapidly transits through the
2H singularity shown in Fig. 4(b).

In Fig. 14, an exemplary embodiment, like that of the incorporated-by-reference
patent of Ref. 14, applied to satellite attitude control, the desired satellite attitude qc at input
10 is presented as Euler angles, quaternions, Gibbs parameters, or some other convenient way
of describing the attitude of a satellite. At 14 it is compared with actual attitude q, at input 12
generated by the Inertial Measurement Unit (IMU) 56 or some other method for determining
satellite attitude. The attitude error 16 is used by the attitude control 18 to generate a desired

body acceleration @, at output 20. The torque command, ﬁc at output 24 is calculated at 22

from the spacecraft inertial matrix, J;, 4, =J; 6,. The modified pseudo inverse 36 is used to

calculate the close loop gimbal rates &, at 42, according to the following:

5, = AT[PAAT + Q[ P, [42]
Q and P being as defined above.
The time varying off diagonal terms in P provide the escape of a control trajectory
even when it is started a Moore-Penrose elliptical singularity. The CMG array 48 responds to

the gimbal rate command 42. The new gimbal angles & at 46 are used to generate at 44 the

Jacobean A=— [43]
20

used in the pseudo inverse. The CMG array 48 movement produces torque % 50 on the
satellite 52. The satellite motion @ 54 is detected by the attitude sensors 56.

It will be appreciated that Fig. 14 shows function blocks that may be implemented
through hardware or software, preferably the latter in a computer based satellite control
containing one or more signal processors programmed to produce output signals to control
CMGs on the satellite as explained. Fundamentally the process is shown for a single signal
path between two points, but it should be understood that single lines represent vector data
which is 3 dimensional for the satellite attitude, attitude rate and torque, and a dimensional
for the signals related to the # CMGs.

As used herein the terms "controller," "control" and "control system" shall mean the

calculating, signal producing and processing, and force, thrust or torque producing

19
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arrangements that control spacecraft, 'robot or other object attitude in cooperation with a
CMG array. Such controllers are known in the art and may include a dedicated control
system computer or other data processing facility that calculates the control signals produced,
the mechanical force, thrust or torque to be imparted using the steering logic programmed
therein.

Although preferred embodiments of the invention have been described in detail, it
will be readily appreciated by those skilled in the art that further modifications, alterations
and additions to the invention embodiments disclosed may be made without departure from

the spirit and scope of the invention as set forth in the appended claims.
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I claim:

1. In a control moment gyro (CMG) attitude control of the kind comprising an
angular rate signal generator for each gyro in a CMG array using pseudoinverse control law
that uses a torque command signal and a Jacobian value for the angle of the gyro; the

improvement characterized by a controller having:

(2)  programming to calculate the Jacobian A* from weighting matrices W
and V,

(b)  programming enabling selection of terms of the matrix W, and

() programming to compute a gimbal rate command x from a control

torque command 7 and the Jacobian developed from the matrices W and V.

2. The attitude control according to claim 1, further characterized by V being

substantially of the form:

1 & ¢
V=A4¢ 1 &[>0,
g & 1
wherein A = Ay sin(wt +¢,), and

Aos 1,8y, and ¢,  are selected constant parameters.

3. The attitude control according to claim 1, further characterized by:
1 & ¢
Pl=V=|lg 1 g |>0
g ¢ 1
and wherein

A=A, exp(— U det(AAT )), and
& =6, sin(a)t + ¢,.),

where 4, u,¢€,,w,and ¢,,are selected parameters.
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4. The attitude control according to any one of claims 1, 2 or 3, further
characterized by:
o A A1 A
A w, A A
T=w= : >0,
0 A A o, A
A A A o,

and different values of @, and/or nonzero off-diagonal elements chosen to escape all types of

singularities, including external saturation singularities.

5. The attitude control according to claim 4, further characterized by W= I, I

being an identity matrix.

6. The attitude control according to claim 1, further characterized by the CMG

array comprising two parallel single-gimbal CMGs and wherein:

1

V=/1l: 8],and
g 1
)

W—.—-l: :l,where
A1

€ =0.1 cost, and
A =0.01 exp (-10 det(AAT)).

7. The attitude control according to claim 1, further characterized by the CMG
array comprising three single-gimbal GMBs with parallel axes and W is selected as

Wi zW, =W,.

8. The attitude control according to claim 1, further characterized by the CMG

array comprising four single gimbal CMGs in a pyramid array and:

W1,

an identity matrice.

9. The attitude control according to claim 8, further characterized by

substantially:

W = diag{1,2,3,4}.
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10.  The attitude control according to claim 8, further characterized by

substantially:
W =diag{1,1,1,1}.

11. The attitude control according to claim 8, further characterized by

substantially:
W = diag{10%,1,1,1}.

12. The attitude control according to claim 1, further characterized by the CMG

array comprising four double-gimbal CMGs and wherein:

x=(al’az’a3’a4’lﬁl’ﬂ23ﬂ3aﬂ4):
T= (’Z‘x 3Ty T, ), and substantially
W =diag{1,1,2,2,1,1,2,2}.

13. The attitude control according to claim 1, further characterized by the CMG

array comprising four double-gimbal CMGs and wherein:

X = (al’a23a3’a4=ﬂ15ﬂ2:ﬁ39ﬂ4):
T= (rx,ry,rz ), and substantially

W = diag{1,2,3,4,1,2,3,4}.

14.  In an attitude control system of the kind that includes an array of a plurality of

CMGs, means for generating an angular rate signal for each of the CMGs using
pseudoinverse control law that uses a torque command signal and a Jacobian value for the

angle of each gyro, the improvement characterized by:

(a) a singularity escaping and avoiding attitude controller developing

commands based upon a control logic and having;
(i)  means for calculating % = A"z,

where % = (x,,....x, ), the Jacobian A* =
[aTPA+Qf'ATP

= A" [AmA™ |
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where W = Q' and V = P, ’

1 ¢ ¢,
Pl=V=2¢e 1 ¢/|>0,
g & 1

A=2, exp(—— )7 det( T))>

& =&, sin(wt +¢,), and

o, A 1 A
A w, A A

T=w= 2 > 0.
¢ A A o, A
A A A w

15.  Inamethod of control moment gyro (CMG) attitude control using steering

logic to develop steering inputs to the array and in which the steering logic is substantially of

the form

x=Ar,

where X is the gimbal rate command, A is the Jacobian of CMG array angular momentum

with respect to gimbal angle, 7 is the control torque command; the improvement
characterized by computing % = A*z, where

A* =[A"P4+ Q' ATP

= WA"[AWAT +v]"
where ' =Q™ and V = P™', and W and P are weighting matrices chosen to avoid

singularities.

16.  The method of CMG attitude control according to claim 15, further
characterized by V being substantially of the form

1 & ¢ '
V=A4Qe 1 ¢ |[>0,
g & 1
wherein A =2, sin(wx + ¢, ), and

Aos 56,0 and @,  are selected constant parameters.
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17. The method of CMG attitude control according to claim 15, further
characterized by V being substantially of the form:

1 & g
V=Me 1 ¢ (>0
g & 1
wherein A=24 exp(— U det( ‘ )), and

& =&, sin(owr +¢,)

18.  The method of CMG attitude control according to any one of claims 15, 16 and 17,
further characterized by W being substantially of the form:

o, A A A
A o, A A4
W= >0
A A o A
A A A o,

and values of @ and/or nonzero off-diagonal elements being chosen to escape singularities.

19. The method of CMG attitude control according to claim 15, further
characterized by W1, I being an identify matrix.

20.  The method of CMG attitude control according to claim 15, wherein the CMG
array comprising two parallel single-gimbal CMGs and further characterized by substantially:

1
V= /1[ 8}, and
¢ 1

2/ 1 ’ e

£ =0.1 cost, and

A =0.01 exp (-10 det(AAT)).

21.  The method of CMG attitude control according to claim 15, further
characterized by the CMG array comprising three single-gimbal GMBs with parallel axes and
W is selected as W, = W, = W,.
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22.  The method of CMG attitude control according to claim 15, further
characterized by the CMG array comprising four single gimbal CMGs in a pyramid array

and:

W1,

an identity matrice.

23. The method of CMG attitude control according to claim 22, further

characterized by substantially:
W =diag{1,2,3,4}.

24, The method of CMG attitude control according to claim 22, further

characterized by substantially:
W =diag{1,1,1,1}.

25.  The method of CMG attitude control according to claim 22, further

characterized by substantially:
W = diag{10%,1,1,1}.

26.  The method of CMG attitude control according to claim 15, further
characterized by the CMG array comprising four double-gimbal CMGs and wherein

substantially:

X = (alsapasa“uﬂpﬁz:ﬂs:ﬂzx):
T= (Tx,Ty,Tz ), and substantially
W =diag{1,1,2,2,1,1,2,2}.
27.  The method of CMG attitude control according to.claim 15, further

characterized by the CMG array comprising four double-gimbal CMGs and wherein

substantially:

x:(al’aZ’a3’a4’IBl’ﬂ2’lB3’ﬂ4)’
T= (rx,ry,rz), and substantially

W = diag{1,2,3,4,1,2,3,4}.
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28.  Inamethod of attitude control system of the kind that includes providing an
array of a plurality of CMGs, means for generating an angular rate signal for each of the
CMGs using pseudoinverse control law that uses a torque command signal and a Jacobian
value for the angle of each gyro, the improvement characterized by:

() developing singularity escaping and avoiding attitude commands based
upon a control logic including;
@) calculating x = A*z,

where % = (x,,...x, ), the Jacobian A” =

[A7PA+Qf'ATP

= WA [AWAT + 7]
where W = Q' and V = P,
1 ¢ ¢
Pl=V=%¢e 1 g|>0,
& & 1

A=1, exp(— )7 det(AAT ))

£ =&, sin(a)t +¢,), and

o A A A

O = = A w, A A 0.
A A w A
A A 1 o

30



WO 2004/032392 PCT/US2003/027312

Spacecraft A k
Refmnca z

114



WO 2004/032392 PCT/US2003/027312

Fig. 2(a) Fig. 2(b)

214



WO 2004/032392

& x
Crater Gimbal Axis

nidy,

PCT/US2003/027312

ith CMG
Momentum

A e e KA S 66 A WS R R§ G KA % M EA W% e vm Br g ey

Fig. 3

314

Inner Gimbal Axis
(—ax axis » B=0)

#
-



WO 2004/032392 PCT/US2003/027312

¥y ¥
4H Saturation Singularity 2H Internal Singularity

Fig. 4(a) Fig. 4(b)

¥ »
OH Internal Singularity Na singularity

Fig.4(c) Fig. 4(d)

4114



WO 2004/032392 PCT/US2003/027312

0.0

~D.05

0.1 /




WO 2004/032392 PCT/US2003/027312

20 : 50
P ) 4 ) o
£ i
S o
-‘mﬂ"
Wy 3
Tieries {mews) Time {sec)
150 a0
12.008
100
g 0006
= -
N7 wy 0.004
0,002
o :
o 1z 3 4 O~ 2 3 4
Tima (pac) Thne {2ue)
Gp 048
0.5 01
-l =20 005]
1
0
«£.05 0 i 3 ‘
Therse: [pas
3
Ez
g 1
B
Gﬂ i 2 3 4
Time (pac)




WO 2004/032392 PCT/US2003/027312

2z 4 2 4
T (asc) Tiroas (wac)

2 4
Tl (s}

T ] P
“Yhme {sac) Thvies (s}
016 — 015~
ot 0.1
005
CA 5™ 0.05)
o} . ~
05 V C g
. ’Mﬂ 2 4 [ w &
Time {pec)
0
05
oM !
A
18 2 4 ] P
“Fo {96

7114



WO 2004/032392 PCT/US2003/027312

4 50
0
g £
0o {2
00
e T T B T 4
T (wac) T [moc)
100,

x, {deg)
522

EN 7
%, (gl

o 38"y &

i 2 3 1 2 5.
Tivo [ e {sac}
2 25
15 2
’:ﬁ-.
E, ' \ ‘ 1.5
3 1
| . go,a
i
0
0 1 g a3 4 % 4 2 3
Time {sac) Tiervds {0}
1.5 0%
015
. o1
e § -
005
Ol
-85 ;
041
1.1 - o008
, ' o008
=102 |
0.004
03 002
Ay 4 P 3 4 %
Tiroa {wac)




WO 2004/032392

4] o
Q 1 z 3 ] F) 3
Tiena (sac) Theowes (s}

1.5 0.0&¢
3 D}
=* ™0
0.5 ;
0 i

O 002 ¢
o s

o3

02 ~2
o i

Gn ;“1

1 P 3
T (sacc)

914

PCT/US2003/027312



WO 2004/032392 PCT/US2003/027312

0
%ﬂfs
%
.g‘ -
v‘LSn
4 4
:g 3 t
S
\* 4 [
Gl
-‘ﬂ 1 2 3 4 40 1 2 3 4
Time {sex) Tl (ses)
Fig. 10

10/14



WO 2004/032392 PCT/US2003/027312

1 ’

£ o i
g 4
5 :
-10(]0 s

CME Momenium
P R =

del{AA)

t = 3

o

z 4 S S
Tima {sec} Time (sec)

2,3\
o5
% 2 4
Times {sec)
«"0.05 |
0.1
0,18
0 2 4 8§ 2 & 8
Time {sac) Time {sec)

Fig. 11
11114



WO 2004/032392 PCT/US2003/027312

T00
. S
LIET
B T T
Tirma {seec) T (gec)
4 is

il

CMG Momenhim
» [ 5]
dotiAAT)

b s - obe ; !
Time {se<) Time (s6c)
01,06 e 1.5
u‘ 1
<08 b
DA 05
015 L.
0 2 i r! % ) A
Thws {mescr) T (B
0,06~
001
o 0,006
) o 08
o 000
3 0002
. 1
015 P 4 B % 2 4 5
Time {aex) Thwe {sec)
Fig. 12

12114



WO 2004/032392 PCT/US2003/027312

Fig. 13(a) Fig. 13(b)

13/14



PCT/US2003/027312

WO 2004/032392

9g

/

T~
Y

Josuag epniny

’b

¢l

\ [oJu0D

R joqoy
" 1o eyeres
0S ¢
oy 9e
\ oy \ 74
[
Aely
s d,V |0+Vd,V e«
) 9 Vil ] Y
- A \
\
of g oz /ﬁN YAA
oz v

@ Spniny

/

8l

Fig. 14

14/14



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

