Office de la Propriete Canadian CA 2671722 A1 2010/01/15

Intellectuelle Intellectual Property
du Canada Office (21) 2 671 722
Un organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
13) A1
(22) Date de dépét/Filing Date: 2009/07/15 (51) CLInt./Int.Cl. G70L 15/00(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2010/01/15 GT10L 75/06(2006.01), GTOL 75/22(2006.01)
(30) Priorité/Priority: 2008/07/15 (US61/080,837) (71) Demandeur/Applicant:

NUE ECHO INC., CA

(72) Inventeurs/Inventors:
BOUCHER, DOMINIQUE, CA;
NORMANDIN, YVES, CA

(74) Agent: SMART & BIGGAR

(54) Titre : METHODES ET SYSTEMES DE PRESTATION DE SERVICES DE GRAMMAIRE
54) Title: METHODS AND SYSTEMS FOR PROVIDING GRAMMAR SERVICES

Grammar
— Grammar - :
Instantiated
Template Grammar Generated Binary
ntantiat M"g"e' GraTmar String
o Grammar Format g

Instantiation

Instantiation .

Context

(57) Abréegée/Abstract:

A computing system, comprising: an [/O platform for interfacing with a user; and a processing entity configured to implement a
dialog with the user via the /O platform. The processing entity Is further configured for: identifying a grammar template and an
Instantiation context associated with a current point in the dialog; causing creation of an Instantiated grammar model from the
grammar template and the instantiation context; storing the instantiated grammar model In a memory; and interpreting user input
recelived via the /O platform In accordance with the Instantiated grammar model. Also, a grammar authoring environment
supporting a variety of grammar development tools Is disclosed.

SoaoRRE f /[
TR - e St
R S N « w_® .-y
I ALY ""
[N

I*I) . Pen, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 7%% 110

- SRR RO S 2 A\-‘
OPIC - CIPO 191 s

CA 02671722 2009-07-15

ABSTRACT

A computing system, comprising: an |/O platform for interfacing with a
user; and a processing entity configured to implement a dialog with the user
via the I/0O platform. The processing entity is further configured for: identifying
a grammar template and an instantiation context associated with a current
point in the dialog; causing creation of an instantiated grammar model from
the grammar template and the instantiation context; storing the instantiated
grammar model in a memory; and interpreting user input received via the 1/0
platform in accordance with the instantiated grammar model. Also, a
grammar authoring environment supporting a variety of grammar

development tools is disclosed.

CA 02671722 2009-07-15

METHODS AND SYSTEMS FOR PROVIDING GRAMMAR SERVICES

BACKGROUND

The addition of speech recognition capabilities to a telephony
application necessarily requires the use of speech grammars. A speech
grammar is a text file written in a specific syntactical format that specifies all
possible sentences which can be recognized by an automatic speech
recognition (ASR) engine at a given point in a spoken dialog. In addition to
specifying all possible sentences that can be recognized by the ASR engine,
the grammar can include specific instructions (referred to as “semantic action
tags”) used to aid in computing the semantic interpretation (i.e., value or
meaning) corresponding to any of the allowed sentences. A standard for
grammars has been developed by the World Wide Web Consortium (W3C).
This standard specifies two different (but equivalent) syntactical formats for a
grammar, namely the “XML” (extended markup language) syntactical format
and the “ABNF” (advanced Backus-Naur form) syntactical format.

The grammar is then compiled by a compiler into a binary string which
is then loaded by the ASR engine prior to processing a spoken utterance.
The grammar compilation process, which can be performed offline or by the
ASR engine on-the-fly, usually adds phonetic pronunciations for words found
in the grammar (based on a system pronunciation lexicon and/or user-
provided pronunciation lexicons) and, based on these phonetic
pronunciations, also adds information regarding the acoustic models that will
be used by the grammar during recognition.

A typical application employing a speech grammar operates as follows.
Firstly, a prompt is issued, to which a speaker responds by uttering a
response. An ASR engine is provided with a grammar, which is used to
recognize the speaker’s utterances, i.e., to transform the received speech into
literal text (raw recognized text). In a simple “static” scenario, the grammar is
known ahead of time. In a more complex “dynamic” scenario, the grammar is
a function of various information available at run-time. The grammar is then
also used by the ASR for semantic interpretation, namely to determine the
meaning (or value) of what was recognized as having been spoken. The

semantic interpretation is then returned, together with the raw recognized text,

CA 02671722 2009-07-15

in the form of speech recognition results. In particular, speech recognition
results often contain a list of recognition hypotheses in decreasing confidence

order, each of which contains raw recognized text, a semantic interpretation

and other information, for instance word and sentence confidence scores.

It is apparent that the skill set required to create a dialog for a speech
application is different from the skill set required to develop a grammar. In
particular, implementing a dialog usually requires software development
(programming) skills, while grammar development is often done by linguists or
“voice user interface (VUI) developers”, who are often not programmers.
When a complex dynamic grammar is to be used in a speech application, this
requires the grammar developer to possess the additional skills of a software
programmer, which is not usually the case. Therefore, it would be beneficial
to provide a tool to assist grammar developers in creating both static and
dynamic grammars that have the requisite software structure so as to facilitate
their use in a speech application.

Also, the architecture of a conventional ASR engine may not be

satisfactory and further improvements in this area are also welcome.

SUMMARY OF THE INVENTION

According to a first broad aspect, the present invention seeks to
provide a computing system, comprising: an |/O platform for interfacing with a
user; and a processing entity configured to implement a dialog with the user
via the I/O platform. The processing entity is further configured for: identifying

a grammar template and an instantiation context associated with a current
point in the dialog; causing creation of an instantiated grammar model from
the grammar template and the instantiation context; storing the instantiated
grammar model in a memory; and interpreting user input received via the |/O

platform in accordance with the instantiated grammar model.

According to a second broad aspect, the present invention seeks to
provide a method, comprising: identifying a grammar template and an
instantiation context associated with a current point in a dialog with a user that
takes place via an |/O platform; causing creation of an instantiated grammar

model from the grammar template and the instantiation context data; storing

CA 02671722 2009-07-15

the instantiated grammar model in a memory; and interpreting user input

received via the |/O platform in accordance with the instantiated grammar

model.

According to a third broad aspect, the present invention seeks to
provide a computer-readable storage medium storing instructions for
execution by a computer, wherein the instructions, when executed by a
computer, cause the computer to implement a method, comprising: identifying
a grammar template and an instantiation context associated with a current
point in a dialog with a user that takes place via an /O platform; causing
creation of an instantiated grammar model from the grammar template and
the instantiation context data; storing the instantiated grammar model in a
memory; and interpreting user input received via the |/O platform in

accordance with the instantiated grammar model.

According to a fourth broad aspect, the present invention seeks to
provide an apparatus for sentence generation comprising: a memory; an
output; and a processing entity configured for: identifying a grammar template
and an instantiation context; causing creation an instantiated grammar model
from the grammar template and the instantiation context; storing the
instantiated grammar model in the memory; generating at least one sentence

constrained by the instantiated grammar model; and releasing the at least one

sentence via the output.

According to a fifth broad aspect, the present invention seeks to
provide a method, comprising: identifying a grammar template and an
instantiation context; causing creation of an instantiated grammar model from

the grammar template and the instantiation context data; storing the

instantiated grammar model in a memory; generating a sentence constrained

by the instantiated grammar model; and releasing the sentence via an output.

According to a sixth broad aspect, the present invention seeks to
provide a computer-readable storage medium storing instructions for
execution by a computer, wherein the instructions, when executed by a
computer, cause the computer to implement a method, comprising: identifying

a grammar template and an instantiation context; causing creation an

IR B2 Tl e 2 X, P L N e A ST L

CA 02671722 2009-07-15

instantiated grammar model from the grammar template and the instantiation

context data; storing the instantiated grammar model in a memory; generating

a sentence constrained by the instantiated grammar model; and releasing the

sentence via an output.

According to a seventh broad aspect, the present invention seeks to
provide a computing device comprising a memory, a user interface and a
processing unit, the memory storing instructions for execution by the
processing unit, the memory further storing a grammar template, the memory
further storing rules associated with a grammar template language, wherein
the instructions, when executed by the processing unit, cause the processing
entity to interpret the grammar template in accordance with the rules
associated with the grammar language such that wherein when the grammar
template includes dynamic fragments written in accordance with the grammar
template language, the processing entity is responsive to identify the dynamic
fragments and to control the user interface so as to render the dynamic

fragments distinguishable from non-dynamic fragments.

According to an eighth broad aspect, the present invention seeks to
provide a computer-readable storage medium storing instructions for
execution by a computer, wherein the instructions, when executed by a
computer, cause the computer to implement a plurality of grammar
development tools and a graphical user interface, wherein the graphical user
interface allows a user of the computer to invoke at least one of the grammar
development tools, wherein at least one of the grammar development toois (i)

allows a user to edit a grammar template via the graphical user interface; (ii)
recognizes dynamic fragments in the grammar template; and (iii) identifies the

dynamic fragments to the user via the graphical user interface.

According to a ninth broad aspect, the present invention seeks to
provide a computer-readable storage medium storing instructions for
execution by a computer, wherein the instructions, when executed by a
computer, cause the computer to implement a plurality of grammar
development tools and a graphical user interface, wherein the graphical user
interface allows a user of the computer to invoke at least one of the grammar

development tools, wherein at least one the grammar development tools

CA 02671722 2009-07-15

allows a user to (i) edit a grammar template via the graphical user interface
and (ii) specify an instantiation context for use with the grammar template,

wherein the instructions, when executed by the computer, further cause the
computer to (i) instantiate the grammar template with the instantiation context
to produce an instantiated grammar model and (ii) convey the instantiated
grammar model to the user via the graphical user interface in a selected

grammar format.

These and other aspects and features of the present invention will now
become apparent to those of ordinary skill in the art upon review of the
following description of specific embodiments of the invention in conjunction

with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:

Fig. 1 is a block diagram illustrating the process of grammar
instantiation using a grammar template and an instantiation context, in

accordance with a specific non-limiting embodiment of the present invention ;

Fig. 2 is a block diagram illustrating various components of a speech
platform that utilizes grammar instantiation as depicted in Fig. 1, in

accordance with a specific non-limiting embodiment of the present invention;

Fig. 3 is a signal flow diagram illustrating possible signal flow in a
scenario involving speech recognition and semantic interpretation based on

speech input provided by a user;

Fig. 4 is a block diagram depicting a grammar server that
encompasses various functional entities depicted in Fig. 2, including a
functional entity for grammar generation, a functional entity for grammar

instantiation and a functional entity for semantic interpretation;

FFig. 5 is a block diagram depicting a variant in which there is no

application server explicitly indicated;

CA 02671722 2009-07-15

Fig. 6 is a block diagram depicting a variant in which the application
server is responsible for grammar generation, grammar instantiation and

semantic interpretation;

Fig. 7 is a block diagram illustrating a variant of Fig. 2, in which a
messaging platform | provided for exchanging textual messages with the user,
in accordance with a specific non-limiting embodiment of the present

invention;

Fig. 8 is a signal flow diagram illustrating possible signal flow in a
scenario involving semantic interpretation based on textual input provided by

the user:

Fig. 9 is a block diagram illustrating a variant of Fig. 2, in which a
Voice XML emulator is used to exchange text with the user, in accordance with

a specific non-limiting embodiment of the present invention;

Fig. 10 is a block diagram illustrating a computer that supports a
grammar authoring environment, including the making available of grammar

development tools to a user;

Figs. 11-15 are screen shots illustrating various grammar development
tools, in accordance with specific non-limiting embodiments of the present

invention.

It is to be expressly understood that the description and drawings are
only for the purpose of illustration of certain embodiments of the invention and
are an aid for understanding. They are not intended to be a definition of the

limits of the invention.

DETAILED DESCRIPTION

In a dynamic scenario, the grammar used by an ASR engine at a given
point in the dialog with a speaker is a function of input data whose value is not
known until the dialog takes place, i.e., until run-time. Such data can include
the response to a previous prompt, the date/time at which the call takes place,
the CLID (calling line identification) or DNIS (dialed number identification

service) associated with the call, data found in a repository (a list of names or

CA 02671722 2009-07-15

companies), and so on. Yet, while the grammar itself (i.e., the text file having
a specific syntactical format such as ABNF or XML) is not known until run-

time, its structure — including the identification of variables whose values are
unknown a priori — can be encoded using a grammar template written in a
specialized “grammar template language”. Specifically, when written in the
grammar template language, a grammar template specifies variables whose
values will become fixed at run-time by instantiating the grammar template

with an “instantiation context” referred to in the grammar template.

Instantiation of the grammar template with the instantiation context thus
results in an “instantiated grammar model”, which is an internal, in-memory
model of the grammar resulting from the instantiation process. The
instantiated grammar model can be in the form of an abstract syntax tree
(AST), for example. The instantiated grammar model can then be

transformed into a generated grammar in any given format (e.g., XML, ABNF,

etc.).

The instantiation context can be a data object (e.g., a file) written in a
specific format such as JSON (JavaScript Object Notation), for example. The
instantiation context can contain data that is matched to the grammar
template so that proper instantiation can occur. In particular, with reference to
Fig. 1, instantiation occurs by invoking a grammar template at run-time and
specifying an instantiation context for use with the grammar template. This
amounts to “calling” the grammar template with the instantiation context. The
instantiation context can be created on-the-fly by the application, based on
data obtained at run-time. This data can be found in a database or elsewhere.

One exception is when “test instantiation contexts” are used during grammar

development and maintenance in order to test the grammar.

|dentification of the grammar template and the instantiation context is a
function of where the application server is currently located in the dialog. For
example, in a bill payment application, having identified that the user is John
Smith, then the next step in the dialog may be to identify which bill John Smith
wishes to pay. As such, the grammar template, which may pertain generally
to recognizing the names of individual utilities, may be invoked using the

“instantiation context” consisting of the list of potential bill payees for John

CA 02671722 2009-07-15

Smith. Each of these bill payees may in turn have one or more aliases or
alternatives (e.g., “AlG” or “American International Group”), in which case the
instantiation context will include the principal names and aliases for each of

these payees.

The instantiation context is structured in such a way that it is
compatible with the grammar template. The grammar template and the
instantiation context are then combined (instantiated) to form an instantiated
grammar model. Specifically, the grammar template is populated with the
data contained In the instantiation context, resulting in the instantiated
grammar model. In this example, the instantiated grammar model woulid
include the list of possible sentences that John Smith can be expected to utter
in respect of making a selection of which bill to pay. However, in order for the
instantiated grammar model to be of practical use to the speech recognition
engine, it must be converted into a binary string. This can be achieved by
formatting the instantiated grammar model into a generated grammar having
an acceptable syntactic format (e.g., ABNF, XML, etc.), following which a
grammar compiler may be used to create the binary string used by the speech

recognition engine.

One non-limiting implementation of a speech platform that utilizes the
aforementioned features of a grammar template and an instantiation context
iIs shown in Fig. 2, which illustrates an I/O platform 410, an application server
420, an ASR engine 430, a grammar generation functional entity 440, a

grammar instantiation functional entity 450 and a semantic interpretation

functional entity 460.

The 1/O platform 410 can be an Interactive Voice Response (IVR)
platform implementing, for example, a voice browser (such as a VoiceXML
browser) or a proprietary application development and runtime environment.

A voice browser is functionally similar to a web browser (e.g., Internet
Explorer'™, Firefox™), with the main difference that, whereas a web browser
fetches and renders HTML documents designed to provide a
display/keyboard/mouse type of interface, a voice browser fetches and
renders documents, such as VoiceXML documents, designed to provide a

spoken dialog interface (speech output, speech/DTMF input). Fetched

.......

CA 02671722 2009-07-15

Voice XML documents may include an identity of an instantiated grammar
model to be used by the ASR engine 430, as well as prompts to be issued to

a user 415 over a telephony interface (e.g., T1, VolIP, etc.). The identity of the
instantiated grammar model can be expressed as a URI (uniform resource
indicator), which is a unifying syntax for the expression of names and
addresses of objects on a network. The voice browser may also include

caching and expiration of fetched documents.

The I/O platform 410 interacts with other elements of the speech

platform by:
- fetching Voice XML documents from the application server 420;
- issuing prompts to the user 415 over the telephony interface;

- receiving speech input from the user 415 over the telephony

interface;

- identifying an instantiated grammar model to the ASR engine 430.
This can include, for example, sending a URI of the instantiated

grammar model;

- sending speech input received from the user 415 to the ASR engine
430;

- receiving speech recognition results from the ASR engine 430. This
could include one or more recognition hypotheses, each of which
contains raw recognized text, and possibly a semantic interpretation
and other information, for instance word and sentence confidence

SCOres,;

- sending received speech recognition results to the application server
420.

The application server 420 can be implemented in hardware, software,
control logic or a combination thereof. The application server 420 executes
instructions relating to a speech application calling for a dialog with the user
415. Based on semantic interpretation results, the application server 420
determines which Voice XML documents to send to the voice browser (it is to

be noted that the Voice XML documents can be dynamically generated), or

A i N SR AY S AT

CA 02671722 2009-07-15

may take other actions such as suspension or termination of the speech
application, setting an alarm or issuing a command to an external entity. The
application server 420 also controls instantiation of grammar templates, as
well as semantic interpretation, by invoking the appropriate functional entities

when needed.

The application server 420 interacts with other elements of the speech

platform by:

- sending VoiceXML documents to the voice browser in the 1/O
platform 410;

- receiving speech recognition results from the voice browser in the
/O platform 410;

- identifying a grammar tempiate and an instantiation context to the
grammar instantiation functional entity 450. The grammar template

can be identified by, for example, a URI;

- receiving an identity of an instantiated grammar model from the
grammar instantiation functional entity 450. This can include, for

example, receiving a URI of the instantiated grammar model;

- identifying an instantiated grammar model to the semantic
interpretation functional entity 460. This can include, for example,

sending a URI of the instantiated grammar model;

- sending textual sentences to the semantic interpretation functional
entity 460:; '

- receiving semantic interpretation results returned by the semantic

interpretation functional entity 460.

The grammar instantiation functional entity 450 operates on a grammar
template and an instantiation context to produce an instantiated grammar
model. The instantiated grammar model can ultimately be formatted by the
grammar generation functional entity 440 into a generated grammar (in a
format such as ABNF or XML, for example) so that the generated grammar,
when compiled, can be used by the ASR engine 430 for producing recognition

speech recognition results. In addition, the instantiated grammar model can

10

CA 02671722 2009-07-15

be used by the semantic interpretation functional entity 460 in order to extract
a meaning (or value) from textual sentences, whether or not they are

constructed from the recognized text. Note that the grammar instantiation
functional entity 450 can operate on different grammar templates and/or
instantiation contexts to produce different instantiated grammar models for

use by the grammar generation functional entity 440 and the semantic

interpretation functional entity 460.

The grammar instantiation functional entity 450 interacts with other

elements of the speech platform by:

- receiving an identity of a grammar template and an instantiation
context from the application server 420. This can include, for

example, receiving a URI of the grammar template and receiving an

Instantiation context:

- Identifying an instantiated grammar model to the application server
420. This can include, for example, sending a URI of the instantiated

grammar model;

The grammar generation functional entity 440 operates on an
instantiated grammar model and knowledge of a format desired by the ASR
engine 430 to produce a generated grammar. The format desired by the ASR
engine 430 is assumed to be known in advance, or can be accessed by

consulting a system variable, or can be identified by the ASR engine 130.

The grammar generation functional entity 440 interacts with other

elements of the speech platform by:

- receiving an identity of an instantiated grammar model from the ASR
engine 430. This can include, for example, receiving a URI of the

instantiated grammar model;

- receiving a request for a generated grammar from the ASR engine
430. This request may be in the form of an HT TP fetch request,
containing, in the form of a URI, the identity of the instantiated

grammar model.

- sending a generated grammar to the ASR engine 430.

11

CA 02671722 2009-07-15

The ASR engine 430 is used to recognize spoken input. The ASR
engine 430 utilizes a generated grammar to determine speech recognition
results corresponding to speech input received from the user 415 over the
telephony interface. The speech recognition results can include one or more
recognition hypotheses, each of which contains raw recognized text, and

possibly a semantic interpretation and other information, for instance word

and sentence confidence scores.

The ASR engine 430 interacts with other elements of the speech

platform by:

- receiving speech input from the /O platform 410;

- receiving an identity of an instantiated grammar model from the /O

platform 410;

- sending a request for a generated grammar containing the identity of
an instantiated grammar model to the grammar generation functional
entity 440. The instantiated grammar model can be identified by, for

example, a URI;

- receiving a generated grammar from the grammar generation

functional entity 440;

- sending speech recognition results to the 1/0 platform 410.

The semantic interpretation functional entity 460 (which may also
sometimes be referred to as a sentence interpretation functional entity)
operates on an instantiated grammar model and textual sentences to
formulate semantic interpretation results for use by the application server 420

in determining further actions to take during the dialog with the user 415.

The semantic interpretation functional entity 460 interacts with other

elements of the speech platform by:

- receiving textual sentences from the application server 420;

- receiving an identity of an instantiated grammar model from the

application server 420. This can include, for example, receiving a

URI of the instantiated grammar model;

12

CA 02671722 2009-07-15

- sending semantic interpretation results to the application server 420.

Operation of the non-limiting implementation of the speech platform in
Fig. 2 in accordance with a non-limiting call scenario is now described with
reference to the flow diagram in Fig. 3. Those skilled in the art will appreciate
that in what follows, certain steps can be performed in an order different from

the one in which they are described.

Step 501: The user 415 places a call to the 1/O platform 410 over the
telephony interface. For example, a connection can be established over the
Public Switched Telephone Network (PSTN), where the I/O platform 410 is
directly connected to a central office switch. Alternatively, the 1/O platform
410 can be connected to a private branch exchange (PBX), itself connected to
a central office switch. The /O platform makes a request 548 for a Voice XML
document from the application server 420.

Step 502a: The application server 420 knows where it is in the dialog
and determines a suitable grammar template and a suitable instantiation
context 552. The grammar template can be identified by a grammar template
URI. The instantiation context 552 may be built based on data available at
run-time. The grammar template URI 550 and the instantiation context 552
are provided to the grammar instantiation functional entity 450 in order to
trigger creation of an instantiated grammar model. The instantiated grammar
model is stored in a memory resource, which can be a shared memory
resource accessible to any entity requiring access to the instantiated grammar
models it stores. Various mechanisms to enable “sharing” of the instantiated
grammar model will be apparent to those skilled in the art as being within the
scope of the present invention.

Step 502b: The grammar instantiation functional entity 450 returns an
instantiated grammar model identity (e.g., in the form of a URI, hence the
simplified but non-limiting expression “grammar URI”) 554 to the application
server 420.

Step 503: The application server 420 responds to the request 548 with

a Voice XML document 556 for interpretation by the voice browser in the I/O
plattorm 410. The grammar URI 554 provided by the grammar instantiation

functional entity 450 can be included in the Voice XML document 556.

13

.......

CA 02671722 2009-07-15

Step 504: The I/O platform 410 sends the grammar URI 554 to the
ASR engine 430 and instructs it to load the corresponding generated
grammar.

Step 505a: The ASR engine 430 sends a request 558 (e.g., an HTTP
request) to the grammar generation functional entity 440 using the grammar
URI 554.

Step 505b: The I/0 platform 410 issues a voice prompt 560 to the user
415 based on the VoiceXML document 556. The voice prompt 560 requests
a response from the user 415.

Step 506a: Based on the grammar URI 554 received from the ASR
engine 430 at step 504, and based on prior or acquired knowledge of the
format desired by the ASR engine 430, the grammar generation functional
entity 440 produces a generated grammar 562, which is returned to the ASR
engine 430. The generated grammar 561 is compiled and stored by the ASR
engine 430 in a memory resource.

Step 506b: The user 415 provides speech input 564 in response to the
voice prompt 560 issued at step 505a.

Step 507: The /O platform 410 sends the speech input 564 to the ASR
engine 430 for recognition using the generated grammar 562 obtained by the
ASR engine 430 pursuant to step 506a.

Step 508: The ASR engine 430 carries out speech recognition of the
speech input 564. The speech recognition is constrained by the generated
grammar 562. The ASR engine 430 creates speech recognition results 566
and returns them to the |/O platform 410. The speech recognition results 566
can include one or more recognition hypotheses, each of which contains raw
recoghized text, and possibly a semantic interpretation and other information,
for instance word and sentence confidence scores.

Step 509: The /O platform 410 makes a request 568 (e.g., an HTTP
request) to the application server 420 to fetch a subsequent Voice XML
document. The request 568 can contain the speech recognition results 566
(or portions thereof) in order to assist the application server 420 to produce a
new VoiceXML document.

At least the following three embodiments are now possible. In a first

embodiment, not explicitly shown in Fig. 3, the application server 420 utilizes

14

.......................

CA 02671722 2009-07-15

the semantic interpretation included in the speech recognition results 566
received from the ASR engine 430. In this case, based on this semantic
interpretation, the application server 420 advances to a new point in the
dialog, determines a new grammar template and a new instantiation context
and skips to step 513 below.

In a second embodiment, shown in Fig. 3 as step 510, the speech
recognition results 566 include speech recognition hypotheses but do not
include a semantic interpretation. In this case, the application server 420
creates or extracts a textual sentence 567 from the speech recognition result
hypotheses 566. The application server 420 can send the textual sentence
567 and the grammar URI 554 (i.e., the URI of the instantiated grammar
model obtained from the grammar instantiation functional entity 450 at step
502b) to the semantic interpretation functional entity 460.

In a third embodiment, shown in Fig. 3 as a dashed outline including
steps 511a, 511b and 511c, the speech recognition results 566 include
speech recognition hypotheses but either do not include a semantic
interpretation or there is a semantic interpretation but it is ignored. In this
case, a different instantiated grammar model is used to constrain semantic
interpretation. In particular, at step 511a, the application server 420 identifies
an alternate grammar template (e.g., by way of an alternate grammar
template URI 580) and/or an alternate instantiation context 582. The alternate
grammar template URI| 580 and the alternate instantiation context 582 are
provided to the grammar instantiation functional entity 450, triggering the
creation of an alternate instantiated grammar model. At step 511b, the
alternate instantiated grammar model is identified to the application server
420 In the form of an alternate grammar URI 584. The application server 420
then sends the textual sentence 567 and the alternate grammar URI 584 (i.e.,
the URI of the alternate instantiated grammar model obtained from the
grammar instantiation functional entity 450 at step 511b) to the semantic
interpretation functional entity 460.

Step 512: The semantic interpretation functional entity 460 carries out
semantic interpretation, which is constrained by the grammar URI 554 (or by
the alternate grammar URI 584). The semantic interpretation functional entity

460 returns semantic interpretation results 586 to the application server 420.

15

CA 02671722 2009-07-15

Based on the semantic interpretation results 586, the application server 420
advances to a new point in the dialog and determines a new grammar
template and a new instantiation context.

Step 513: The application server 420 identifies the new grammar
template and the new instantiation context by way of a new grammar template
URI 590 and a new instantiation context 592, respectively. The new grammar
template URI 590 and the new instantiation context 592 are provided to the
grammar instantiation functional entity 45'0, triggering the creation of a new
iInstantiated grammar model.

Step 514. The grammar instantiation functional entity 450 returns a URI
of the new instantiated grammar model (or new grammar URI) 594 to the
application server 420.

Step 515: The application server 420 sends a new VoiceXML
document 596 (containing the new grammar URI| 594) to the 1/O platform 410,
and flow returns to step 504 described above.

It should be appreciated that the grammar generation functional entity
440, the grammar instantiation functional entity 450 and the semantic
interpretation functional entity 460 provide individual processing functions that
can be executed by a processing entity which may be distributed throughout

the speech platform or centralized within a “grammar server”.

It should be appreciated that a static grammar can also be used for
speech recognition (at step 506a) and/or semantic interpretation (at step 512),
In which case the instantiation context is empty, and therefore the grammar
template and the instantiated grammar model are identical.

Fig. 4 illustrates the case where a grammar server 610 is provided.
The grammar server 610 comprises a processing entity and a memory. The
grammar server 610 could be dedicated to grammar services and operated by
the operator of the application server 420. The availability of a locally
controlled grammar server enables VoiceXML-application-hosting companies
to add a grammar hosting service to their offering. Alternatively, the grammar
server 610 could be accessible over the Internet and shared among different
users requiring different grammar services. The availability of remotely

hosted grammar servers in this way enables applications to be tested without

16

CA 02671722 2009-07-15

having to set up any infrastructure whatsoever, thus enabling rapid

prototyping of speech applications using dynamic grammars.

It should be appreciated that in some embodiments, the functionality of
the application server 420 can be subsumed in the |/O platform 410.
Specifically, as shown in Fig. 5, there is provided an /O platform 710 which
has taken over all functionality of the application server 420 shown in Fig. 4.
This also covers the “static VoiceXML" scenario, where all application logic is
directly coded into static Voice XML documents, thereby eliminating the need
for a separate application server to dynamically generate Voice XML

documents.

It is noted that the grammar server 610 continues to be present in the
embodiments of Figs. 4 and 5. However, as shown in Fig. 6, an alternative to
having a grammar server is to provide the functional entities 440, 450, 460 as
“‘embedded services” 840, 850, 860 of an application server 820. The
embedded services 840, 850, 860 are made available to a voice application
830 through an application programming interface (API), which can be written
in Java,.NET or any other language. The voice application 830 and the
embedded services (i.e., the grammar generation embedded service 840, the
grammar instantiation embedded service 850 and the semantic interpretation
embedded service 86) can execute on the same application server 820, for

example.

It should be appreciated that additional functional entities could be
provided by the speech platform in the various embodiments of Figs. 4, 5 and

6. In particular, the following is a non-limiting list of functional entities that can
be provided:

Normalization functional entity: The instantiation context used to
populate a grammar template may require some form of normalization in
order to generate high-performance recognition grammars. For example, it
may be beneficial to replace acronyms and abbreviations by their full textual
form, to add aliases, to convert numbers into text in a language-dependent
way, and so on. The normalization functional entity allows application-

dependent normalization rules to be added.

17

CA 02671722 2009-07-15

Phonetic dictionary functional entity: To improve performance, it may
be beneficial to provide a specially tuned phonetic dictionary (or lexicon) for
use by the ASR engine 430 when performing speech recognition. The
phonetic dictionary functional entity selects the specific dictionary subset
corresponding to the vocabulary actually found in the generated grammar
provided to the ASR engine 430. This process can be made totally

transparent and can reduce compilation time.

Post-processing functional entity: A high-performance speech
application may require the use of advanced algorithms in order to modify
speech recognition results (for instance, to add, delete or reorder hypotheses)
or to compute specialized scores required by the speech application. A
simple example of this is the ability to compute grammar-specific scores that
can be significantly better than the generic confidence scores provided by a
standard ASR engine. The post-processing functional entity allows
application-specific post-processing routines to be integrated using a unified
interface.

Sentence generation functional entity: Testing of a speech application
may be achieved by submitting a variety of spoken responses to prompts
issued by the 1/O platform 410. However, this can be tedious to do. The
sentence generation functional entity can utilize an instantiated grammar
model at any given point in the dialog to produce, on command, a random
sentence that obeys the instantiated grammar model. This can facilitate as
well as add a layer of objectivity to the testing. Also, the generated sentences

can be supplied to a text-to-speech (TTS) device, which converts the text into
a speech signal, which can then be used to fully test the speech application.

It should be appreciated that the various functional entities described

above are separate processes and, as such, can be implemented by separate

machines or any combination of the functional entities can be implemented by
the same machine. Thus, a processing entity used to impiement the various
functional entities may be centralized or distributed. Consequently, one or
more of the aforementioned functional entities can be used in contexts not

necessarily involving speech recognition.

18

CA 02671722 2009-07-15

For example, Fig. 7 shows one non-limiting implementation of a text
platform scenario which requires access to the aforementioned grammar
instantiation functional entity 450 and semantic interpretation functional entity
460. In this scenario, there is no ASR engine and hence no need for a
grammar generation functional entity, since the data is already input as text.
More specifically, the user 415 dialogs with an automated text-based (instant
message, text message, HTML, etc.) application residing on an application
server 920 through an I/O platform that can be any one of a plurality of
available messaging interfaces 910.

The messaging platform 910 can be an instant messaging (IM)
gateway, a text message gateway or the like. In some embodiments, the
messaging platform 910 can be incorporated with the application server 920.
The messaging platform 910 can be reachable over a telephony or data
network. Accordingly, the messaging platform 910 interacts with other

elements of the text platform by:

- receiving from the application server 920 text output destined for the

user 415;

- Issuing text output to the user 415 over the telephony or data
network;

- receiving text input from the user 415 over the telephony or data

hetwork:

- sending text input received from the user 415 to the application

server 920;

The application server 920 can be implemented in hardware, software,
control logic or a combination thereof. The application server 920 executes
instructions relating to a text application calling for a text dialog with the user
415. Based on semantic interpretation results, the application server 920

determines which text output to send to the messaging platform 910, or may
take other actions such as suspension or termination of the text application,
setting an alarm or issuing a command to an external entity. The application
server 920 also controls instantiation of grammar templates and semantic

interpretation by invoking the appropriate functional entities when needed.

19

CA 02671722 2009-07-15

Accordingly, the application server 920 interacts with other elements of the

text platform by:
- sending text output to the messaging platform 910;

- receiving text input from the messaging platform 910;

- identifying a grammar template (e.g., by way of a URI) and an
instantiation context to the grammar instantiation functional entity
450;

- receiving an identity of an instantiated grammar model from the
grammar instantiation functional entity 450. This can include, for

example, receiving a URI of the instantiated grammar model,

- identifying an instantiated grammar model to the semantic
interpretation functional entity 460. This can include, for example,

sending a URI of the instantiated grammar model;

- sending received text input to the semantic interpretation functional
entity 460;

- receiving semantic interpretation results returned by the semantic

interpretation functional entity 460.

As previously described, the grammar instantiation functional entity 450
operates on a grammar template and an instantiation context to produce an
instantiated grammar model. An instantiated grammar model can also be
used by the semantic interpretation functional entity 460 in order to extract a
meaning (or value) from text input. Accordingly, the grammar instantiation

functional entity 450 interacts with other elements of the text platform by:

- receiving an identity of a grammar template and an instantiation
context from the application server 920. This can include, for
example, receiving a URI of the grammar template and receiving the

instantiation context;

- identifying an instantiated grammar model to the application server
920. This can include, for example, sending a URI of the instantiated

grammar model;

20

CA 02671722 2009-07-15

As previously described, the semantic interpretation functional entity 460
operates on an instantiated grammar model and text input to formulate

semantic interpretation results for use by the application server 920 in
determining further actions to take during the text dialog with the user 415.
Accordingly, the semantic interpretation functional entity 460 interacts with

other elements of the text platform by:
- receiving text input from the application server 920;

- receiving an identity of an instantiated grammar model from the
application server 920. This can include, for example, receiving a

URI of the instantiated grammar model;
- sending semantic interpretation resuits to the application server 920.

Operation of the non-limiting implementation of the text platform in Fig.
7 in accordance with a non-limiting text scenario is now described with
reference to the flow diagram in Fig. 8. Those skilled in the art will appreciate
that in what follows, certain steps can be performed in an order different from

the one in which they are described.

Step 1001: The application server 920 causes text output 1020 to be

sent to the user 415 via the messaging platform 910.

Step 1002: The application server 920 receives text input 1022 from
the user 415 via the messaging platform 910.

Step 1003: The application server 920 knows where it is in the text
dialog and determines a grammar template 1026 and an instantiation context.
The grammar template can be identified by a grammar template URI 1024.
The instantiation context 1026 may be built based on data available at run-
time. The grammar template URI 1024 and the instantiation context 1026 are
provided to the grammar instantiation functional entity 450 in order to trigger
creation of an instantiated grammar model. The instantiated grammar model
Is stored in a memory resource, which can be a shared memory resource
accessible to any entity requiring access to the instantiated grammar models
it stores. Various mechanisms to enable “sharing” of the instantiated
grammar model will be apparent to those skilled in the art as being within the

scope of the present invention.

21

CA 02671722 2009-07-15

Step 1004: The grammar instantiation functional entity 450 returns a
URI of the instantiated grammar model (or “grammar URI") 1028 to the
application server 420. It should be understood that steps 1003 and 1004 are
optional if the instantiated grammar model is known a priori to the application
server 920, that is to say, in a static grammar scenario .

Step 1005: The application server 920 sends the text input 1022 and
the grammar URI 1028 to the semantic interpretation functional entity 460.

Step 1006: The semantic interpretation functional entity 460 carries out
semantic interpretation, which is constrained by the grammar URI 1028. The
semantic interpretation functional entity 460 returns semantic interpretation
results 1030 to the application server 920. Based on the semantic
interpretation results 1030, the application server 920 advances to a new
point in the text dialog and returns to step 1001 described above.

Again, it should be appreciated that the grammar instantiation
functional entity 450 and the semantic interpretation functional entity 460
provide individual processing functions that can be distributed throughout the
text platform or centralized within a grammar server.

In another example that benefits from separating the grammar
instantiation functional entity 450 and the semantic interpretation functional
entity 460, Fig. 9 shows one non-limiting implementation of a Voice XML
emulation platform. In this scenario, the user 415 employs an Internet
browser 1105 to interact with a VoiceXML emulator 1110, which is an
interpreter for the VoiceXML language using only textual sentences as input,
instead of DTMF sequences or speech. Such an emulator could serve as a
means of testing a telephony application without having to deploy a
cumbersome telephony infrastructure. Additionally, it could serve as a means
of offering alternate interfaces to a phone-based system.

The VoiceXML emulator 1110 fetches a Voice XML document from a
server 1120 (such as an application server or a standard web-based server).
The VoiceXML Emulator 1110 presents the next interaction with the user 415
using HTML or any other applicable protocol in use by the Internet browser
1105. Specifically, the Voice XML emulator 1110 sends text to the user 415
instead of playing prompts, following which the VoiceXML emulator 1110

receives text input from the user 415 and interprets the received text input.

22

CA 02671722 2009-07-15

The received text input is interpreted based on the grammar specified
in the VoiceXML document instead of performing speech recognition. In order
to do this, the Voice XML emulator 1110 first invokes the grammar
instantiation functional entity 450 with a grammar template that calls for a
grammar URL and an instantiation context composed of the grammar URL
contained in the VoiceXML document. The resulting instantiated grammar
model is then supplied, along with the received text input, to the semantic

interpretation functional entity 460.

It should also be appreciated that a Voice XML document may specitfy
multiple grammars that need to be activated at the same time. To this end,
the grammar template may be provided to the grammar instantiation
functional entity 450 by the application server 420, the application server 720
or the VoiceXML emulator 1110 and thus may call for multiple alternative
grammar URLs and thus the corresponding instantiation context would be
composed of the multiple alternative grammar URLSs contained in the
grammar template. In this way, the grammar template provide an effective
way of simulating the simultaneous activation of multiple grammars, which is
equivalent to a single large grammar, itself the union of the multiple specified
gramamrs. If the VoiceXML document contains inlined grammars, then these
could also be provided in the instantiation context and integrated as individual
grammar rules.

Those skilled in the art will appreciate that still further applications are
made possible by the use of grammar templates and instantiation contexts to
create instantiated grammar models which can be used, separately and
independently, by the grammar generation functional entity 440 (where
applicable) and the semantic interpretation functional entity 460.

For example, when an ASR engine 430 is used, advanced semantic
interpretation technologies (e.g., robust parsing or topic spotting) can be
enabled in a way that is completely independent from the ASR engine 430.

Also, embodiments of the present invention facilitate the performance
of batch speech recognition tests in a dynamic grammar scenario.
Specifically, batch speech recognition tests are performed in order to

measure, analyze, and improve speech recognition accuracy (e.g., by tuning

23

CA 02671722 2009-07-15

grammar coverage, tuning phonetic pronunciations, etc.). In accordance with
an embodiment of the present invention, a batch recognition test can be
performed so that each one of possibly several thousand utterances (or
groups of utterances) he is recognized using a grammar resulting from
instantiation of a grammar template and an utterance-specific (or utterance
group-specific) instantiation context. A non-limiting example application of a
batch speech recognition test is a batch address recognition test, in which the
speec'h grammar that one desires to use to recognize each utterance
(expected to contain an address) is generated based on an instantiation
context containing address records associated with a list of postal codes
coming from the recognition of a previous postal code dialog interaction.

In principle, since a grammar template is a text file, it can be created
using any editor even as basic as Notepad'". There are, however, structural
and formatting requirements to be followed if instantiation of the grammar
template based on an instantiation context is to result in an instantiated
grammar model capable of being successfully compiled into a valid generated
grammar. To this end, it may be beneficial to provide a specific grammar
authoring environment, which assists a developer in the creation and testing
of grammar templates. The grammar authoring environment can be
implemented on a computer by a set of computer-readable instructions stored
in a memory of the computer. By way of specific nhon-limiting example, the
computer-readable instructions can be formulated as a plug-in to an Eclipse-

based authoring platform.

With reference to Fig. 10, a grammar authoring environment is
implemented on a computer 1220 with a memory 1225. The grammar
authoring environment provides a user (e.g., a grammar developer) 1230 with
a graphical user interface 1240 via which the user 1230 can invoke a plurality
of grammar development tools 1250. The grammar development tools 1250
can help the user 1230 to interactively explore and analyze grammar structure
at various stages of grammar development, as well as see resulting
sentences and their semantic interpretation. This can be of particularly high

value when dealing with complex grammars.

24

CA 02671722 2009-07-15

Fig. 11 shows an example screenshot of the grammar authoring
environment as may be presented to the user 1230 via the graphical user

interface 1240. From the screenshot are visible various windows providing

access to different ones of the grammar development tools 1250.

The various grammar development tools 1250, when invoked, require
the computer 1220 to access items in the memory 1225 and to interface
further with the user 1230 via the graphical user interface 1240. To this end,
the memory 1225 may store (i) one or more grammar templates; (ii) one or
more instantiation contexts; (iii) instantiated grammar models resulting from
instantiating given ones of the grammar templates with the corresponding
instantiatio'n contexts; (iv) generated grammars in one or more syntactic
formats. Other items can be stored in the memory 1225 without departing

from the scope of the present invention.

In addition, the grammar authoring environment renders available a set
of shared utilities 1260 that can be used by various ones of the grammar
development tools 1250. The shared utilities 1260 may include (i) a grammar
instantiation utility which, similarly to the grammar instantiation functional
entity 450, instantiates a grammar template with an instantiation context; (ii) a
grammar generation utility which, similarly to the grammar generation
functional entity 440, compiles an instantiated grammar model into a suitable
format; (iii) a semantic interpretation utility which, similarly to the semantic
interpretation functional entity 460, generates semantic interpretation results
based on an input sentence and an instantiated grammar model. Other
shared utilities are possible without departing from the scope of the present

invention.

Of course, it should be understood that the computer-readabile
instructions encoding the shared utilities 1260, the grammar development

tools 1250 and the graphical user interface 1240 may execute on a single
machine or on a combination of machines, which can be co-located or can be
distributed but interconnected via a data network such as the Internet, for

example.

25

CA 02671722 2009-07-15

The grammar development tools 1250 can include, without limitation,
one or more of a grammar editor, an instantiation debugger, a coverage test
editor, a coverage test runner, a sentence interpreter, a semantic stepper, a
sentence explorer and a sentence generator. Each of the aforementioned

grammar development tools 1250 is briefly described herein below.

Grammar Editor: The grammar editor allows creation of a grammar
template. The grammar editor receives input from the graphical user interface
1240 (e.g., via a keyboard, mouse, etc.) to allow the user 1230 to modify the
grammar template stored in the memory 1225. Also, the grammar editor
interprets the grammar template stored in the memory 1225 to provide
advanced editing features that can be visually observed by the user 1230 via
the graphical user interface 1240 (e.g., via a window presented on a display).
Examples of advanced editing features can include syntax coloring, code
folding, code assist (contextual completion, quick fixes, code templates) and
refactorings (renamings, extractions, etc.), to name a few non-limiting

possibilities.

The advanced editing features are made possible through the use of a
grammar template language. The grammar template language can be based
on a format used for generated grammars, such as ABNF or XML (for
example), with special extensions added to designate dynamic portions
requiring population by data obtained from an instantiation context. These
special extensions can be recognized by the grammar editor and interpreted

accordingly. Also, these special extensions are understood by the grammar

Instantiation process.

Specifically, with reference to Fig. 12A, there is shown a non-limiting
example grammar template constructed using an example grammar template
language. Here, the application is a bill payment voice application in which
callers are asked to provide the name of a bill payee from a list of “entries” for
that caller. Since different callers have different lists of bill payee “entries”, the
grammar to be used for recognizing the bill payee identified by a given caller
IS not known until the caller has been identified. This is an example of a
dynamic grammar scenario, where at a given point in the dialog, a grammar

template (e.g., the one listed in Fig. 12A) needs to be instantiated with an

26

CA 02671722 2009-07-15

instantiation context. It is noted that the instantiation context referred to in the
grammar template (namely, the data represented by “entries”, i.e., the list of

bill payees), is different for each caller and is not known until run-time.

To represent this dynamic aspect, a non-limiting example grammar
template language uses the “@" symbol to indicate dynamic content. In
particular, “@alt” indicates that several alternatives are possible. Next, “@for
(entry : entries)” signifies for each element of the instantiation context called
“entries”, do what follows, which is “@ call processEntry (entry)”. For its part,
“@ call processEntry (entry)” is defined lower on the page, as a set of entries
with alternatives of its own. That is to say, not only does “entries” include a
list of bill payees with a primary “name” (defined as “entry.name”), but each of
these bill payees possibly has a set of aliases found in a data file called

“entry.alias”, where “entry” is in fact variable.

Conveniently, the grammar editor indicates graphically that certain data
is dynamic in nature, in this case by placing in bold italics what follows the “@"
symbol. As can be appreciated, the grammar template language affords a
seamless evolution from static to dynamic grammars, and makes it possible to

have a unified grammar development environment that can transparently be

used for static and dynamic grammars.

In addition, the grammar editor continuously invokes the grammar
instantiation utility, which is also configured to recognize the grammar
template language. The grammar instantiation utility continuously instantiates
the grammar template using the instantiation context identified therein. This
results in an instantiated grammar model, which is stored in the memory
1225. The grammar instantiation utility can include a validation component,
which identifies syntactic and semantic errors in the instantiated grammar
model. Errors are returned to the grammar editor, which can re-present the
errors to the user 1230 via the graphical user interface 1240 in the form of
color, sound, etc. Similarly, the user 1230 can be alerted as to the

consistency of semantic action tags.

Instantiation Debugger: The instantiation debugger takes a grammar

template (e.g., one created using the grammar editor mentioned above) and

27

CA 02671722 2009-07-15

shows the resulting generated grammar. As shown in Fig. 12B, the
instantiation debugger receives input from the graphical user interface 1240

(e.g., via a keyboard, mouse, etc.) to allow the user 1230 to select a point in
the grammar template (previously shown in Fig. 12A). Additionally, the
instantiation debugger locates the corresponding point in the resulting
generated grammar and displays both in a side-by-side fashion via the
graphical user interface 1240 (e.g., via a window presented on a display).
Using the instantiation debugger, which is programmed to interpret the
grammar template in accordance with the rules of the grammar template
language, dynamic fragments are made distinguished from non-dynamic
fragments, thus allowing the user to retrace which parts of the resulting

generated grammar were produced by dynamic fragments,.

To this end, the instantiation debugger invokes the grammar
instantiation utility, by virtue of which the grammar template is instantiated
using the instantiation context identified in the grammar template.
Additionally, the instantiation debugger invokes the grammar generation

utility, by virtue of which the instantiated grammar model is compiled into a

selected format.

In this specific non-limiting example, the bill payee list, which is
dynamically defined for each user, includes “Videotron®, “Bell Canada”, “Bell
Mobility”, etc., and each of these has a set of zero or more generally accepted

alternatives or aliases (e.g., Bell Canada has “Bell”, Gaz Metropolitan has
‘Gaz Metro”).

It should be noted that the grammar template language can be based
on a standard language (e.g., XML, ABNF) with extensions to accommodate

dynamic fragments, while the generated grammar can be in the same
standard language or in a different language. For example, one window
could be used to edit the grammar template written in a language resembling
ABNF (with extensions to accommodate dynamic fragments), while another
window could be used to show the generated grammar in XML. Indeed, the
instantiation debugger can be enhanced with the functionality to convert a

generated grammar from one format to another when required.

28

CA 02671722 2009-07-15

Coverage Test Runner: When run, coverage tests results are
presented in a dedicated view that shows key metrics about the test (number
of tests that passed, number of tests that failed, percentage of grammar
words covered by the tests, etc.). Grammar coverage tests can be performed
interactively or as part of a build process to always make sure that no

grammar coverage or semantic interpretation problem has accidentally been

introduced.

Sentence Interpreter: With reference to Fig. 13, the Sentence
Interpreter is used to parse sentences interactively. The graphical parse tree
(how rules are combined o generate the sentence) is displayed and clicking
on any tree node automatically highlights the corresponding source element in

the appropriate grammar file. The interactive sentence interpreter graphically

shows the full parse tree.

Coverage Test Editor: Using this tool, a coverage test for an
instantiated grammar model can be devised. The coverage test includes
sentences that must be recognized by the eventual grammar, as well as
sentences that should not be covered. Each sentence can also specify an
expected semantic interpretation. In a more complicated scenario, sentences
can in fact be templates, indicative of where to find the data to be used in the

test.

Sentence Generator: With reference to Fig. 14, the Sentence
Generator is used o generate sentences interactively. The generation
algorithm is highly configurable and can be used for many different purposes

(random generation, full language generation, full grammar coverage, full

semantic tags coverage, etc.). An intelligent and highly customizable
sentence generation tool can be leveraged in many ways, for instance to help
detect over-generation problems, to generate sets of sentences that

exhaustively test all semantic tags in the grammar, or to produce coverage
tests that cover all necessary sentence patterns. The Coverage Test Editor
tool checks that the sentence can be parsed by the instantiated grammar

model.

29

CA 02671722 2009-07-15

It will be appreciated that the Sentence Generator can be used to
generate sentences for populating the coverage test, whereas the Coverage

Test Editor enables a grammar developer to manually add, remove, and edit
sentences in the coverage test, as well as changing certain properties for
sentences in the coverage test (e.g., the expected semantic interpretation or
the ING/OOG category).

Semantics Stepper: With reference to Fig. 15, the Semantics Stepper
Is useful when a parsed sentence does not generate the correct semantic
interpretation. It allows the developer to see the execution of each semantic
tag and the context in which the execution takes place. Semantic
interpretation can be debugged by single-stepping through the parsing and

execution of semantic interpretation tags for any sentence.

Sentence Explorer: Using this tool, the structure of a grammar can be

explored interactively. The user selects rules to be expanded one at a time

until complete sentences are produced.

Those skilled in the art will therefore appreciate that integration among
the various grammar development tools provided within the grammar
authoring environment can be advantageous to a grammar developer.

Also, those skilled in the art will appreciate that the various grammar
development tools available in the grammar authoring environment can be
useful to application developers as well as grammar developers. Specifically,
when implemented as a plug-in, the grammar authoring environment can
allow a service creation environment (SCE) to provide better consistency

checks between application code and the grammars used by the application,

for instance by validating that the semantic slots returned by a grammar
match those expected by the application and/or that the values expected by a
grammar template are compatible with those provided by the application when
instantiating the grammar template with a instantiation context. Carrying out
such validations at development time instead of run-time can help build more
reliable applications in a more cost-effective way.

Those skilled in the art will appreciate that in some embodiments, the
functional entities 440, 450, 460, the graphical user interface 1240, the

grammar development tools 1250 and the shared utilities 1260 may be

30

CA 02671722 2009-07-15

achieved using one or more computing apparatuses that have access to a
code memory (not shown) which stores computer-readable program code
(instructions) for operation of the one or more computing apparatuses. The
computer-readable program code could be stored on a medium which is fixed,
tangible and readable directly by the one or more computing apparatuses,
(e.qg., removable diskette, CD-ROM, ROM, fixed disk, USB drive), or the
computer-readable program code could be stored remotely but transmittable
to the one or more computing apparatuses via a modem or other interface
device (e.g., a communications adapter) connected to a network (including,
without limitation, the Internet) over a transmission medium, which may be
either a non-wireless medium (e.g., optical or analog communications lines) or
a wireless medium (e.g., microwave, infrared or other transmission schemes)
or a combination thereof. In other embodiments, the functional entities 440,
450, 460, the graphical user interface 1240, the grammar development tools
1250 and the shared utilities 1260 may be implemented using pre-
programmed hardware or firmware elements (e.g., application specific
integrated circuits (ASICs), electrically erasable programmable read-only
memories (EEPROMs), flash memory, etc.), or other related components
While specific embodiments of the present invention have been
described and illustrated, it will be apparent to those skilled in the art that
numerous modifications and variations can be made without departing from

the scope of the invention as defined in the appended claims.

31

CA 02671722 2009-07-15

WHAT IS CLAIMED IS:

1. A computing system comprisings:
- an |/O platform for interfacing with a user; and

- a processing entity configured to implement a dialog with the user via
the I/O platform, the processing entity being further configured for:

- identifying a grammar template and an instantiation context
associated with a current point in the dialog;

- causing creation of an instantiated grammar model from the

grammar template and the instantiation context;
- storing the instantiated grammar model in a memory; and

- Iinterpreting user input received via the |/O platform in

accordance with the instantiated grammar model.

2. The computing system defined in claim 1, wherein the user input

comprises speech and wherein the interpreting comprises:
- formatting the instantiated grammar model into a generated grammar;

- carrying out recognition of the speech, wherein the recognition of the

speech is constrained by the generated grammar.

3. The computing system defined in claim 2, wherein the interpreting further
comprises carrying out semantic interpretation of the recognized speech.

4. The computing system defined in claim 1, wherein the user input
comprises text.

5. The computing system defined in claim 4, wherein the interpreting
comprises carrying out semantic interpretation of the text, the semantic

interpretation being constrained by the instantiated grammar model.

6. The computing system defined in claim 5, wherein the text is obtained

from the user over a data network.

32

CA 02671722 2009-07-15

7. The computing system defined in claim 5, wherein the processing entity is
further configured for deriving the text by carrying out recognition of

speech received from the user.

8. The computing system defined in claim 7, wherein the recognition of the

speech is constrained by a generated grammar.

9. The computing system defined in claim 8, wherein the processing entity is
further configured for formatting the instantiated grammar model into the

generated grammar.

10. The computing system defined in claim 8, the instantiated grammar model
being a second instantiated grammar model, wherein the processing entity
is further configured for formatting a first instantiated grammar model into
the generated grammar, the first instantiated grammar model being stored
in the memory and being different from the second instantiated grammar

model.

11. The computing system defined in claim 10, the grammar template being a
second grammar template, the instantiation context being a second
instantiation context, wherein the processing entity is further configured

for:

- identifying a first grammar template and a first instantiation context
associated with the current point in the dialog;

- causing creation of the first instantiated grammar model from the first
grammar template data and the first instantiation context;

- wherein at least one of the first grammar template and the first
instantiation context is different from the second grammar template and
the second instantiation context, respectively.

12. The computing system defined in claim 1, wherein causing creation of the
instantiated grammar model from the grammar template and the

instantiation context comprises populating the grammar template with the

instantiation context.

33

......

CA 02671722 2009-07-15

13. The computing system defined in claim 12, wherein the instantiation
context comprises data stored in the memory, for populating the grammar

template at run-time.

14. The computing system defined in claim 1, wherein the processing entity is
further configured for determining a new current point in the dialog and
repeating the identifying, creating, storing and interpreting.

15. The computing system defined in claim 1, wherein the processing entity is
further configured for advancing the dialog responsive {o the interpreting.

16. The computing system defined in claim 1, wherein the l/O platform is
VoiceXML-based.

17.The computing system defined in claim 1, wherein the 1/O platform

comprises a messaging platform.

18.The computing system defined in claim 1, wherein the |/O platform
comprises a VoiceXML emulator.

19. The computing system defined in claim 1, wherein to cause creation of the
first instantiated grammar model from the first grammar template data, the
processing entity is configured to access a grammar instantiation

functional entity.

20. The computing server defined in claim 19, wherein the grammar
instantiation functional entity is implemented by the computing system.

21.The computing server defined in claim 19, wherein the grammar
instantiation functional entity is implemented by a remote grammar server

accessible over the Internet.
22.A method, comprising:

- Identifying a grammar template and an instantiation context associated
with a current point in a dialog with a user that takes place via an I/O
platform;

- causing creation of an instantiated grammar model from the grammar

template and the instantiation context data;

- storing the instantiated grammar model in a memory; and

34

CA 02671722 2009-07-15

- interpreting user input received via the 1/O platform in accordance with

the instantiated grammar model.

23. A computer-readable storage medium storing instructions for execution by
a computer, wherein the instructions, when executed by a computer,

cause the computer to implement a method, comprising:

- identifying a grammar template and an instantiation context associated

with a current point in a dialog with a user that takes place via an |/O

platform;

- causing creation of an instantiated grammar model from the grammar

template and the instantiation context data;
- storing the instantiated grammar model in a memory; and

- interpreting user input received via the |/O platform in accordance with

the instantiated grammar model.
24. Apparatus for sentence generation comprising:
- a memory;
- an output; and
- a processing entity configured for:
identifying a grammar template and an instantiation context;

causing creation an instantiated grammar model from the grammar

template and the instantiation context;

storing the instantiated grammar model in the memory;

generating at least one sentence constrained by the instantiated

grammar model; and

releasing the at least one sentence via the output.

25. The apparatus defined in claim 24, wherein the output comprises the
memory, and wherein to release the at least one sentence via the output,

the processing entity is configured for storing the at least one sentence in

the memory.

26. A method, comprising:

35

CA 02671722 2009-07-15

identifying a grammar template and an instantiation context;

causing creation of an instantiated grammar model from the grammar

template and the instantiation context data;
storing the instantiated grammar model in a memory;

generating a sentence constrained by the instantiated grammar model;

and

releasing the sentence via an output.

27.A computer-readable storage medium storing instructions for execution by

a computer, wherein the instructions, when executed by a computer,

cause the computer to implement a method, comprising:

identifying a grammar template and an instantiation context;

causing creation an instantiated grammar model from the grammar

template and the instantiation context data;
storing the instantiated grammar model in a memory;

generating a sentence constrained by the instantiated grammar model;

and

releasing the sentence via an output.

28. A computing device comprising a memory, a user interface and a

processing unit, the memory storing instructions for execution by the

processing unit, the memory further storing a grammar template, the

memory further storing rules associated with a grammar template

language, wherein the instructions, when executed by the processing unit,

cause the processing entity to interpret the grammar template in

accordance with the rules associated with the grammar language such

that wherein when the grammar template includes dynamic fragments

written in accordance with the grammar template language, the processing

entity is responsive to identify the dynamic fragments and to control the

user interface so as to render the dynamic fragments distinguishable from

non-dynamic fragments.

36

CA 02671722 2009-07-15

29.A computer-readable storage medium storing instructions for execution by

a computer, wherein the instructions, when executed by a computer,

cause the computer to implement a plurality of grammar development
tools and a graphical user interface, wherein the graphical user interface
allows a user of the computer to invoke at least one of the grammar
development tools, wherein at least one of the grammar deveiopment tools
(i) allows a user to edit a grammar template via the graphical user
interface; (ii) recognizes dynamic fragments in the grammar tempilate; and
(ili) identifies the dynamic fragments to the user via the graphical user
interface.

30. The computer-readable storage medium defined in claim 29, wherein a

31

further one the grammar development tools allows the user to (i) edit the
grammar template via the graphical user interface and (ii) specify an
instantiation context for use with the grammar template, wherein the
instructions, when executed by the computer, further cause the computer
to (i) instantiate the grammar template with the instantiation context to
produce an instantiated grammar model and (ii) convey the instantiated
grammar model to the user via the graphical user interface in a selected

grammar format.

. The computer-readable storage medium defined in claim 30, wherein

additional ones the grammar development tools include one or more of a
coverage test runner, a sentence interpreter a coverage test editor, a

sentence generator, a semantics stepper and a sentence explorer.

32.A computer-readable storage medium storing instructions for execution by

a computer, wherein the instructions, when executed by a computer,
cause the computer to implement a plurality of grammar development
tools and a graphical user interface, wherein the graphical user interface
allows a user of the computer to invoke at least one of the grammar
development tools, wherein at least one the grammar development tools
allows a user to (i) edit a grammar template via the graphical user
interface and (ii) specify an instantiation context for use with the grammar
template, wherein the instructions, when executed by the computer, further

cause the computer to (i) instantiate the grammar template with the

37

CA 02671722 2009-07-15

Instantiation context to produce an instantiated grammar model and (ii)

convey the instantiated grammar model to the user via the graphical user

interface in a selected grammar format.

33. The computer-readable storage medium defined in claim 32, wherein the
Instructions further cause the computer to implement a grammar

instantiation functional entity for instantiating the grammar template with

the instantiation context.

38

CA 02671722 2009-07-15

1/15

buins
Ajeulg

9|idwon

Jelwwe.s
pa)elauan

| K |

JeWWe D
alelue)su
— Jeljue)Su]
Jelwweln
pajeljue)suy

1X3)U07
uoj) el UR)SU]

g)ejdwa |
Jeuiweln

1X8]U07)
TIENHTEINT

JJ9[8S

ajejdwa |
Jewwels
]39|8S

CA 02671722 2009-07-15

2/15

¢ Old

09y 06t
uoljelaldiajug ucleljue)sug
JJUBWIAS Jewiwels
AJnuap] (A}1JU8p] |3poW Jewwels
s)Insay a0y lewurery - BOLEREL MBRU)

10
uonelaIdialu] pa)eljue)su] } d TINX 83I0A
MUEURS J1asmolg

1X8}U03 UOJIBIUR)SU] 1147 3910/
+ 9)ejdwa] Jewwe.s ==“w%h_m”%n< , —
e OL¥
o e
9Juajuas [enmyxa] ‘Ayjuapy |apo uoniufodey
Jewiwe o pajenue)su] 199308
$]iNsay
uoj}uboosy
THEETIS

V&%
TNENED!

Jewwe s

leliuieJs) pajenue}su]

IeWLWe o
palelauan

1157
Aiuapy japopy | duIbu3 HSY

Ayjuapy |apo
Jewiwe 19 pajenuelsug
‘1nduy yoaads

998} Ia)U]
Auoyda|a |

Jnduy yaaads

s1dwioid

CA 02671722 2009-07-15

1L

N 019 - - — —— - - 3]9]108

GLSG
1S
615

— 3
T e oo o G

786 14N lewwelb a)euss)je ‘/9G aauajuas |enixal

¢ Ol

_
m 0118!
“
GG 1HN Jewweld ‘/9G aJualuas |enixa] - 019
(/9G 80uUd)uag [en}xal Sapnjoul) 89G 1sanhay - 60%
\ g9G s)|nsal uoi}iubodal yaaads - 805
= v96 Indur 428ads - § mmwm
— 96 1ndui ydasads
296 Jewwelh pajesauay e909
—4404
~ (16 sasn) 866 1sanbay E_%ﬁmn_ £505
GG 14N Jewweln- 04
(/GG Sapnjoul) 9GG JUBWINIOPTX 30N~ m_%m
GG 14N Jewweg- 0700
ZGG 1X3Ju03 uoienue)su + 0Gs 14N ajejdwsa} Jewwely - 06
~ 814G 1sannhay \-1Ie)
097 Ov ¥ L : | g
Au3 Aniu3 0GY 0Ct 0¢v OlY GLY
leuoi)}aun4 |euol}aun4 A}11u3 jeuonaun auIbug YSy 19A19S uonjedddy wiojield O/ 18sn
uoijelaldiaug Uoi)elauay Uoljeljue)SUJ lewwelg
JNJURWdS lewwels

IAI

CA 02671722 2009-07-15

4/15

Grammar
quvﬂer
e ASR Engine “ —
430 Grammar
Generation

440

1/0 Platform

410 Grammar

Instantiation
450

Application

| Server |

420 Semantic

Interpretation
460

FIG. 4

Grammar
Server
610

Grammar
Generation
440

I/0 Platform
with Application
Server

Grammar
Instantiation
450

Functionality
/10

Semantic
Interpretation
460

FIG. 5

CA 02671722 2009-07-15

5/15

Application Server

Grammar
Generation
840

voice | Grammar
App. | Instantiation
830 830

Semantic
Interpretation
860

1/0 Platform

410

CA 02671722 2009-07-15

6/15

0StY
UOI)BIIUR)SU]

09t
uolje)aldiauj

21jUBWAS JRWwe o

All3uap]

S]1insay
uolje}aidiaju]
JjUBWaS

paleijuelsus

1X3]U0) uoljenue)su]
+ 9)e|dwa| Jewuweln

uoneaddy

jnduf }xa] ‘A)uap] |8po
IeWWRIY paleljue)su]

L OIA

18P0\ Jewiwe o

IndinQ
1Xa1
026

19A138

1nduf
1Xa1

0l6
Wiojieid

Buibessay

CA 02671722 2009-07-15

7/15

097
AYju3
[euol}aun4
Luone1aldialu]
JljuewWsas

|—|

0c0l sunsay uojjejaididyuf opuewss -~ 9001
8C0L 1dN lewwely ‘Zzzo| ndug)xa] . 5001
820l 14N Jewwelis 7001

£001

9¢01 1XajuoJ uolenuelsu] +

201 14N ajejdwa] rewwels

2201 UL 1Xa > ¢00l

0201 In@INQ w_xmt 1001
0GY¥ 06 016 Gl
A}iju3 Jeuonaun4 13A19S uoneayddy wiojle|d 138}
uoljelnuelsuy Jewweln buibessa

CA 02671722 2009-07-15

8/15

0S5t
Alu3
IeUOK auN4

loljeljue}su]
lewwe)

09v
AYju3
leuoljun4

uoije}aldia)u]
9/JUBWAS

6 "DIA

0ZL1
19A19S
S}Uawinao(
Aljuap]
|9[J0IA 1ewdllie JL) TNX3910A
pajenue)suy “ _

T A
10)e[nuu3
TAIX 8910 GIIL
1X8]U07 UOIBIJUB)SU] 18UIB) U]

+ 3)e|dwa] Jewweln

S}|NSay
uoijelaidia)ug
JlJuRWag

1ndug 1xa] ‘AMuapy |8po fewilels pajeijuelsu

GOLL
19SM0.9

18UI3JU]

CA 02671722 2009-07-15

9/15

Dg,’;?prpna;m Graphical User User
Tools Interface 1230
1240
1250 -

Shared Utilities
(Grammar Instantiation,
Grammar Generation,
Semantic Interpretation)
1260

Memory
1225 Computer
1220
FI1G. 10

CA 02671722 2009-07-15

: . s etean 0t tietane . "t 4 tiees ses T T o ' e e S e :) e T e . s s . . . M ' - Sae s . . ' D i x e RN i .nM;.r.g 2
e . T 2t et . . - LS R . . . LT L T . SR e A : . - Tt L e . - LTt T . s : . : 4 ot .
é(s%e%;\%g)}{gi\ ..v-.j.r R e e L (E}%n\:r{(/)})1).)5 ngbﬁgi.(‘ -rf(rrff)‘{({c«f.r)s\{{-. (J.r-n\c.\?-) ...r.(-'-l'fc.rf-. A" L LV AN L B AR AL LN, ST AL AL LY L A LA L, fv.c(.”...J (J{ v}(-i‘(){r- OO R SRR AR RE AN & SN an,..,-.{-..?/,.?.. \frifgr?-‘?t){ {-\5\..))3 e LU T XL T RERE CVR %%3\3\5 Jiff);).gf)?..ff.)i?ffrégnq). A A S LA UL A, .-}){J JJJJJJ)/JJJ.(J . 41.-.-\-(!?(#?:.))1);45{.3-);‘-)‘..‘.?snf?ff;l..r-;rfrﬁ(-p.?{f(...r(g)l..J.J-...J.r.-\...P.i..\.??-.?(f. ML, A b i, Y BT
5k s
. .
.. I
. -
... .
MUMH g]NnJaxy _\w_ : .
~ .
. A .
- s .- —
t . H
.. .
. .. &
‘. . hd .
-
v. 3 tuene .
v. . -
v .
M N
v ‘
v
T .
M
s ‘
M
v peee an e fenessprs ana 4 * bame PP A PRI TR A TARRARARRR I AT TR AR RRR R Y wsaasnnn SRRRARRRRR ALnan Avaaa - EF e T vrewsssnnédw sassns . sassese LY LIRS AAb oty s * " . 44 rr P~ tdndd drrablurssvasssssssssnnnnen ARSREsRERI, *h brransmidd wrarssssnss e S2FPhhranawy NPT TR AN AN R AR AR R LI A RN RAR RN dAvtarsvurs
" b - - - .- o
+ . SO
. - .
M v s =

X

~
»
%
4
:
3
4

R R A AN T Tl a s AT s R N I R AL R R R R ARA AL S S AAG S P A r AP P Y YIRS ISP AR s s rs SR saES -~

PIRT TN
wssssmannn

.

.

i

AR L0 TS BT 0 T AP
CECERT TR TRy
ssssssssnnna

ATV LR R R Ry e N
TAMLLLELlbrrrrerarerassssnnnnsnnnnnn

:
[
4
:
3
§
:
¢
¢
:
¢
¢
;
:
¢
;
;
t
§
H
§
§
§
:
§
i

P -
v rrywienwy

(AT XL AR ZALTLL
'

»
ARALA LS ALAARLLS AALARARAAAALALLA A WA o b 80 00 00000 e e e e e s L

ﬁ@ 102 30U 5303 1 raouaju mm

--

R e e e A N L L R R RN T2 L R R T A T T T L L UL

uxmucou
JUGE0USaA iewwedsy .

I I D W 0 3 R N A PR

I FYTWVA T VO £ OV VI Y R e W T R W WA AL e W e Ve e 5 s A <% - 0 4T P T TR e T Y Y S TRV AW 8 J?g-5(15».»7.5.’f;?oi-ls../(((tngfvégggffﬂ%li;fff-.0.5-....(.fc.il%xggS(t(qggﬁéuv.géi’i».\»(..ul...-.r.;.(..%(..htff.o(»5-\5.?....-.»0»\.d?’%E}Enggg.-g tttttt e TRV Y YR o WYY A W s e W

- . . . : : " *

LAA NN e e e oW e e e e PO PR (ey W
..
. i
. . . . e
- - - .. .
.- . .
. .
14 . i

e LT L LTSS (PR KN %’ abbpaguqgy

eSSy, R e e Ve A R R R
N . . [N O Al S s -]) A LOEN A
. e L/ r - --- -
H : =

L AT AR AN O N ANS SRR RREAN A SpAp b,
NN SRR IR ddddddunddhda PP PP PR R YT YIRS PP
.
.
'
'
'
'
'
N
M
.
N
M
.
v
.
-
-
.
.
v
.
.
v
.
o
I
'
v
.
'
'
v
1
v
.
'
¢
.
'
.
3
>
7
‘
z
:
v
v
v
¢

--
..

..........

*".'fA\-v.v».w.m.v.r.wv.-.v.
wrrverrrrasrs

e ..Q sv..n..\ ...»v.. S‘..?f.zé ,x.., ﬂ%«@ .ﬂ.ﬂ,....,,.....maﬁ#v #ﬁv&&.ﬁ.&v ..ﬁv.%w..u.....(&ws.\..ms“). Y”w”,....a....s.uy./\.«‘.u.vwﬁ.& ﬁ,ﬁﬁqﬁ&.\x f/fé\%ﬂ&?f//ﬁ;{ &:/fw] *P.ﬁ:;:h SRR o2 ..ﬁz./z&ﬁrﬁv«},&aﬁ.a. .L“ .u...mp..ﬁﬁn.\ a.,...; i ..a LR I Q&x&&u‘? \.t@..?:.% “‘vﬂg&mﬁ»ﬁ& o g2 .v.?/ .,.x., .,.,\,. .v.«. RSt

........................... 2:1.23??.... .

e ggggur....nr..ﬁn. SRR UAY N INAS s A (.Jo.{.\. J_(.r__ﬂ{r..}))})l{ Jl):».{.o.(r.r).- J'.J(r-.(ru\-.c.})(a) AN AT W S VR T TR L L 4-..,./ (KT NN IAAAv}(-}.vI.‘a-rflro}({.t(}{t{\{.} .-..-..S.on....l AR T T A W WA WA, fIJla}é;?t;frJ'. Sahe ;5...})..) n.l.r:“-r.r).l...r-).)tra..fll-.l{ffl‘: (ECEREC TIRNVEAR T RT RN s!?;.fff (W) ({-(..?) (AR NN JJJIJ.?.J W YRR A LAY .f.

ﬂJ
U’l
M
S
IIJ
I
Q
U
N
et
K
LB
e
| T
o
U
L
a3
E
E
{9
-
’«D
RPN .:‘.’,&,w

H:E_._o ﬁ
q ,ﬂﬁ
pibousad & -
Juqerousah g -
p4D*g|geliea-pauljapun B -
juqe*g|qeliea-paulapun fEgH.
P46 ueno3-pajeadau [BH-
Juqe usyol-pajeadal m =
pibsasied-Auew [EBH.
juge'sas.ied-Auew m L
PAD MS-W044-U0ISIaAUu0D-peq m
JUCE " IMS-1U0 1J-UOISIBAL0I-pE] .

pisaadedyq - | - ¢
juqesaaiediq n .m T

i S o
™

[VON, = oussi+ "gnol (ao3s3x300 a0u s,98U9 5 &

_meausuuoqv wNMm

= ou§ ajearad.cy
e §

TR

10/15

LR
-
g |

CIL, = ousadtano) (92Inos Io mﬂw@w
| 1231102 gt

| aybBTx W wﬂmwm

| s34) 5T

= B34S ajyearad. .y

A 2 L D B AR MRS e e s

R B e

:'a‘.é::':'::""

uo_u ww

T D D L L T L L e o A A A e W D T WA S L A AR A NS fu-rf((.r Bt Sl AR A ".

EmEEm_m_ ﬁ

mv%ﬁ Aucﬂmw%.mﬁ,mmﬂﬁu = Qﬂmwh.wscw ouy | 11

.........

R A S N N A
b ¥
%
qroe

.\% e &Sf.? ﬁaﬂbﬁﬁx&v\v/ //»xqoa.,..yy#:.a....~..m.“........h.”.“.“..”.“f..”.“.“..”.z.”.h....ﬁw...$,.,.Fﬁ,... .,c,.,,..,. .}L/ﬁ.&%}ﬁ.m ,.y.z:“ \ .»......-..“.”.“...,.“....“.f..xa...“..uﬂ.p.“f..“.....““..."a..”“..%.xﬂ.“...?...........“.n..."n%?x.xﬁé#ﬁ}mﬁxk&%ﬁ....\....»...\..v.....»......

.l
: g oe .
> ’
)]

o e ve was Slew
/.)({()..).55.5){ 41-? .r) WL N VAT LA LY, R SRR LA AN W 5}) %%.”\..}?{1;'.);) JJ:)JJ%«(.?JJUJJJ/JJ:\J\rI.rJ?{l AN f«.;r-.\c’ll:r.}%a{)) J)JJJ({(-}S{) ..)-J et eV .q' ..d-.r-u- wa .,J.r.rla-;.(,.i(l.r e r?f-.-.r(.r..)crr- " })J;).} ({...-)-.rs-ﬁ.ﬁ.,.r).ri-.r) 5..;- O O N A AT L T e N 2N IENERK r . NN A R LT . x) e - - ST -y

....... Ry P -y :
........... m@ﬁwﬂ Mw,m oA o) e Y .w,,

xnm wma__ um_ -.hcnm.acmgmﬂ@EEﬁmﬁmEEwm EEw:: E m::_n_wawm_ ..nEzagu

CA 02671722 2009-07-15

11/15

‘é

----- T35 '.\\\\\-.'-‘.W.‘fﬂﬁ":'.':'.'.'J.' O e e el b b S S A S S A R R R R R R N R T e e U R U U

ot

.F.

‘Bsweeamay

\0-.‘(/“

N.VNIMVWV””WW NIIIT ARSI SV VNN S PO WP AN PP P S P S P PSS AP S PP PP P Y

#ABNF 1.0 UTF-8;

i A, 0 N3 1 AN P 0 SN0 3 R 3 A NP, MR, VM ‘JAWQ‘#A’/}’

tag-fnmat {semantlr:.s.e"l 0>:

R R N AR U e e
-’

2

root S$bhillpavees:

b .:
3
X
3
'
N

;
f
“
T
.
.

ublic S$bhillpayees =
Falk
Efor [(entry : entries) 5
fcall processkEntry [Entryfg

Terd
Tend

e

@deflne processEntry (entry)
[@alk
fword entrv.name
ffor [alias : entrv.alliases)
fword alias

D s e

e
e utete e ALY
R R N

FIG. 12A

CA 02671722 2009-07-15

12/15

SEES

I) [r) '.,. "_: " s _/‘-;_4(4‘;_-‘-/ _-J_-,d-u_a_} [N i, A AN A
-)

.
.

;
l!

K

.
3
3
&
Ny
7,
X

“u e
%7,
.
e
‘llllll
N
"
s
R
N
A
>3 N

e
e 8
.w..”
SR
X8
‘l
2
g
S
e

;

SRk

oy
e
3,
¥
e
Ravrad
A
o ay
N
3
“.\um-
e
oo

e,
o
%
o
ek
e
-
-
Il
v
Il
e
o

.

-

N

144 .

{2, 410IdIA, = TOMMAS 1IN0} (UODIJI03PTA)
= sazdedTTIgs mﬁﬁaﬂam

.........

ueqg TeUOTABN | Bpeuss JO jyueg TBUOTIBN) E

HMNYT, = TocuuAs ano} (Te=IqUol JOo jued) f

AIVSTIA, = TOOMAS-qnol (surpaelsag BSTA) m
|

HAS*NoY (0X33am 2en | ueliTodoIq=ay zen)
2 OD0ddAH,, = ToCcAg*4no} (2agand-0IpAH)
GHOHTTIES, = Tocuag ano} (AQTTTCON TT124)

= Toquas-ano} (TT=2d | epeur) T1129)

deaaAedTTTOS uaauw

gwuHDb.Mﬁo

AR \)?s\--?\-sgp}g;-r/ I))I-c..lnn}!?f-r------. St AN S S S S AT S N (-?E-r;}-r)f SNSRI LY IC»Z-(EE

m- .Umm

Mw%upﬂmu Aajqugsszssoad TrE2g

B
<0 T /S0T1T3UBmIaS udEHoHimMHm

mfi..ﬂ&\r&h&&&.&.s RRAARAM G e b A b L B AT LR R Ad.vvtr..../ .
\

C s

éwﬁ%ww\%w% v@f

................

..
...

SBEITE pPIoMg
([saseTITe"AJIaUua | sSBITR] TOFD
UM "AI9US PpIoMg

3123)
: [AJqua) AJgqunysssaooad IuryFopy

puay
pu=y

D U S R RO IR I PRI JORON O

.“
£
b
:
ry
w
4
A
.
.
%
3
w
b
i
QX

iR

» W
(33
4
<

S K K K
R e

[S2TI9U3a ! AJIQUIa) TOFP

r i £
= S3a3AvdTTIdS uﬁﬂnﬂm

V(/-VM

ssasAedITICS 3003

WM@?WW%WMM 4

‘<" meuHuﬂMEmmv u@EﬂcH _Bey

AP RE N h.fan .S.-..(lxurrr \-s\r)rbr() AN A A A A A A AT AN AL R SN

(-.:gz)o(}gz?.r..{r NN AR NS WA IR NN GG AR, NS R Y, A nn.

A HH mmmﬂmﬂddg

m hPD D H hZMdu

»r (.(.(.i.\t) s/ //(.r/ l/{!/{-v-r \‘-1\\-))}1 /--/-;-{-g \rl.())\- / f .r{?.()//!.r.).\r/.ri-b(f.-(..f)//.tob//r\(l#}.)-.b/../.riﬂl.\.?}//-\%({//}J.-}/J}J/}JJJ/J}JJ}KS\R\%\..\> e) FAX AT E RN PARTHET ENEEN NI EET EEEN AR IS

"

ﬂ
m
«w

//.wwwmwx%

. Lmhn_nxu. m cm_umumhnhm“_:_w@

- - Y AN LA e S 2 1 5 3 ety SR LR LR SEAE TR L CER CACRRE RS CR TR U S OO AR AL RS U O AN '.-.?nrftrsln;})il\r} .ttr SRR LI /levt. AR ke TR A N A A A N e A A A A N N e A A A

"‘AMM%

13/15

L e e L O e O L L L L L L L LT N Y AT e ey e e A e e AR AL B L NSNS AR MYV IS Y AR FEY MY YIYIYIIY PR s e s asvand Ly e ee LS

CA 02671722 2009-07-15

..

R Y

N -'}..'-é"-’

L !r. -.-...-.-...:-...- ‘e -.. e v PRCRCECELEELERERER .). R A e e R A e AR LA K L L e C e e e R R S R g e R A e SR R R ERRES ML g ... A '.r-.-.r- sssssesiia J{.l}: e e is e b LLCL T iama -)-..- waas ..-.v.- s, J-.- naanea PP VR T LT T PER PR TPTRE TN -.J-...)-.- sneseinimae -.-,..- e -...:-.-..)rrr. -.-.)-.r alaeee -.- [SELT LI PV R ..-.-...- naeAses AmnLLE L AR R nessssvmanannnne . naneee s ..-4 v, aemssaaatete iy e sare -.. -.-.)- sessssese niiannenaey nanviee- c.)-.-.){ neene

,...wH.,.#.,.#v..“H«”N.;.NN.,.“&”HH%.”»#/..z,./ RS %/é;ﬁ%f»&&%aﬁ? T — N A AN R At

.. 0

sbey ayndax3 Al

e

w

e A s e T e e e e e e T SRR LR P N S S e U LR TR P S Lo

P P AR AN S S S S ARRRASSAS SRR AR A A A BB A A RS A S S A S S P A A A A eSS AR AN N AR PN AS SRR R rasae s s st aand ettt ittt ard i v d el vt bt Lt bt P handdaddhvitttrmsnssbdssnaRierraTaTr st snrarsssErREE s sne

o Y R ke S’ k-)

TR : R Y

-%’!ﬁ/ 14 Moy

R P R o TR et T N S

AAAAASAAL ad A LA LALEALRLEUEAARIIL LS AR IR A S AR Sl A S A AS,

A

FPETR s s s wwRwe s e s s VY E R o M r e TR PP YRR Y N s A Y SV TN RN VA N R s BTN T Y Y e W s s s VP v rrs s rs rvrrrrrvrrs rrrrsrreva s s

res

[2Ald-AJUamy pUe paIpUNy OM3 | :aJuajuas

P P P RN P R P T R R R N I N P P R N I TR R N T RN RN NN RN R N N I T S N N N R N RN RN RN RN AAN T IR N T RAAA AL NI N AAAAAA SR I ANANS L d I ALMANRRRJddANN

-

R A R e e e e e R S L o R T T e R O e S G O S e e S S e O e S e 5 e 3 o § SO L SR AR A L S L N

3XaJuUoD

e

SN

G S

Jaquinu

SadadAd e

H_EQm..m._mn_Ejﬁ ?—MEE@.—U

PRV YRR TR I P r i AT R T r Y MY Y Y

‘asled m__w_.__m

e . . . ceee . . . e e ce o . “e . .
.,'p...,...“.‘.,‘..“‘4‘(“(‘...‘(0.ssl-Alnul“an‘ln‘.‘al“Aaaugs--5---------------------------------------‘---l-!n(‘0.0000DQ'D)DD)IIP'I)DDPID)"'D‘)---vl'(l"ll""l"l--l-

. e e e e eee e e e e e e e e e eae e sae e L T e
R e e N aad a aa E S T e e L L R e U X LS A SRR AR R R S B B .1.»-5415(5.‘.\\((»(.;5 3).:...)(.\\..5. ANV .);Jgg.?)J)(riilégj)‘.gulg\ojgfsg\hrjlfgi. - 3)(5/(?%%&-5)5!%;& cl(.«((g..g' 9)#555}))5(5‘.%3 »(.\9&/)){.5? Ave e bt St AN AT, /(....7 /.r{“{. .r/.n(.n/.y..?;v'.u.n.u.ﬂurﬁ? 3
. ’ a .
- . . : 5. <
g ¥ £ ! 3
- "
L L EE L T e T e T e T e h ; 3 Lo mem_ﬂﬂhn_ miﬁ}n. w
. .
. et oo maa e tecessececs e £ . m ' .
- g CelreessdTTo e et 0T T L T v = ." M L B ﬁ
.f/ ’ O e SR O “: B A..... B ﬁ..uo
T .-..:.-r...:r..::...:::::.:-:»:-:-.:-:...-!.u.-!.n..».............::'»-r....-r.-'.-..-....:::.....:....:.:::.:::....-....-..-n)-:..'v.r:.......::-.:...-..-..-..-..........-u...........r:-:-.-..-...v.p..........:... SEsssss s imLEEssEEEEEEEEEYET LAY IVASSLESRERERERR IR AIYLEIuLE B I T S T I P T I T I TP

CA 02671722 2009-07-15

Ay A A Sy
e LN e \'\‘\‘:" .- i v o~ PR N a

E .Umrm

.s.. ;...?..n».:?/f»v.m..?&n,..?s.»..f e awffv\..v»m A AN AR I S wj.“%#w.,

) \-) S I SRR ‘ror Ok

. .7{...”&3 %m%g&ﬁfﬁwa% om%%%ﬁ%@s%/ﬂé&?ﬁéﬁ%&ﬁﬁb&% nﬁmﬁmﬁﬁwﬁ#ﬁg 5&%@@«9

A e e AR A L A A e 1 At A AR A AL S b PR e P P B B I o N B R AR A A A L A A VA N L B e A A L e e e S R B A N 7 P P R O VT N AN A N N B U A (A WA P W L A S A A NN VA R S A L MRS ARARTAR 0 5 5 A AR AR A VAR SN AARARAL SR A AR A A AR S ANV A AN ..//{J./l{?....///.r,..?,...'.?rl

/w”u

AN A R N S A AN

..ﬁ__m.u_“_mEB_._m. 3|l 0] PPy _H_

66-1 .mmu_._m.u_cmm

SRR %&&%«wﬁﬁ»fﬁfﬂ/ﬁ»ﬁ%f&*%‘?ﬁ

7

:

gséggs)‘i\

au ﬁ__._m}mm pa.Jpuny a0 A

334 AJXIS pue paJpuny e puesnoy x|s
U3ADS5 AJXIS puUe palpuny UaAas puesnoLy] aaJuy;
XIS AJJ0J paipuny aaJy3 puesnoyy] suo
uaAaas AJy paipuny x1s Ajyblie

U33jaulu paJpuny sulu pUesnaoL] aAl

m}_u_ AJAY3 paJpuny om] puesnoL aAl

Al AJuam] paJpuny e puesnoyy sull

2aJyy Aybia paJpuny 4no, puesnoyy aul
Anoj Ajuam) pue _um,__u_.__.__._ Al pUBSNOY] aAl
:E n&va_.ﬁ L_.*m_z \.tr_m

w

deddeds

2

A R R e B

S

. -.‘--r-qa-- o e e N Y ASASAAOSASAAOAHDASIANN O .,,.,\.,._,_,_,_
v -,_:- o) -_.._- '.‘:-.- D .}.\}_ o _::._ —_— _\‘:_-_ _-_;;;:‘: .-'..;“ OO OO O SO) :‘ B} e - X
L GOy R R o P e s/ e AN A o A i i A

- U3aXIs _”_mh_”.::r_ Al
83443 AJXIS paipuny xis puesnoly) jybia
aUO AJXIS paipuny 8a.uyy puesnoyy nay

OM] AJUSASS PaJpuUNy auiu PURSNOU] D)

.__pH_._m__m w__._m, _umh_n_c:_._ aua

..
..
P

Lot e e S R RSO xR RO DRSO SO

MY o e el e LA R
SOOOOUS . o e i epeponedely e el AL L L L
ARl b A s G LALLM G e machy s Y LI Nt 2 ' o N A o s e PR T2 e
L Coton T i T T R e :
Lt S L R S S e TR e e L e S T
« x s wess e ee s O < s 5 s w e . x .. - X = S
Do .+ R AL S S S P L . - i - : o =R -
N S s = seee b . ae 2 e s mw cesa we . » o B - 0
- ARl . CLiitiiititiL ot Lol LT . - BB el . S
es s & wvias BT ® & & sse s s @ . s s ssse . S el ey . Dttt o 2
X . . oLt pitititiivn S 52 s wes s
2, R - WOk b

. Gy
Sl

ARREAN ..av?# géﬁ%%%ﬁ?f x?v.}..}_../. A %...fagn .?.3.....("... .Si.{.?/ -.o.o....?_.) s...}r .«/ NS .Y-.o....?....// .v..\vx{h NSEAL S L

...A K /.?.?...5.\&.?\??).?/.,7 Jx./f.‘...QA...h AR AT AR A NG N O ,\Lcai)/vv?z?.}... O] ?/.Fe.o.\% SUNN 6.}_.?6‘ a«///ﬁ.?.oo.o.o.ofc../z/ A AL ATATLA 1 S R A A A A A A A S A A S A S A S RN,.n.......n....v...?...../ A(: .o.a.o.v.:_..?.?/ 6.?.3 .-.3../ .w.?z.r e .g&wnﬁwv..r...ﬁ.(...........155....,../....

.
..”.?

. . T LI N B LR FI R LT R .
RILATIT S oL B * *

CA 02671722 2009-07-15

ST "OIA

i

s

{Iacpmur {1 18318 "€3THd = Isumu-anoe} goLTas AR
| {0 = Ascumu-ano} 0I3=§ T

= §OLOXS oTTYnd..()

w
|
w

o 013z | 4o Lb
. = 032§ orrynd.gh

15/15

{

S asad
™

JesjeltexaRTnid = A0} g0LTaS Ay

mwﬁm | {f=J3camu- inc} B 7F

s v s
B N

nEﬁﬂ GOLTI E2T0T + ISCMUNT GﬂmﬂomOHDmu ‘E2TRT = JITCPMUINO} GOLTIS 0TAQO0GOLOZTS

| {J3=cpmu- () 4833 "€3Tnl = IS InG)
OTAUDROLOEXS
| 6TOLOTXS FE

A AR R AT AR O 0 .r);.r).r.r RO CCY LV Y PN ..v.r.r.r .r.r.r.r.r.r.ri.r-)..r/ \ v;.r.rf.r.rg\..r.. .r s.r;i.r-\(.t: .r.r).r.r).r.(-..r.r-\r-\.. .r...r.r.{r.r.{r- f {.-v-}.-\\...f.. N \....u(..\\ F ARV KX CAN \N.).I/I(... AR AT A USSR R AP SRt S PR U R O .'.rli.r " /.r/l.r/a. SN J.v.rli.(/.'.(......\ N AL T O S S e e e VN S S e S e e b gf{...?{?}g.._.rs.rs-)rs\./:d)}(rs\:(rr..)11..J§lr/.}r.\\§flff....?:lf. s

”..)“.3

b it L i R Jge’sisquind .

AN uw:i%cr:..r:..zgiﬁﬁ T A A L L A R AR P SR LA A S b "

: -.r-

WE-%Z"A&&E-‘.QE&-‘:Q-‘RE-‘.-’:& A R R N e T e T A A S R A T T S AR A A

ol

(.(Ju.(.(.(.r.(\(.r).(.(/ \- /ov an .f/ov.f ov.f/ovJ-rov.f l.r -r-(.f ov .(.r.v.r/) eyl in ov/;/ \.(.(.flJ-rur o o ov.f/ov.f/ovs' MO SR) .f;g ur/-((.(n\. ov 55‘:\ T L L N O AT Y T e

”W.”
3
o
.‘..-.

. NADEIE NN .,
&vr(“k\/ ”v e -N X -%-NnV % .
v.l
l.- . 2 G4 =" - - " . e WA - s A e - .~
! K N S e e T A A e E R T R A A A 444 .
) el SR e, N Lgaais ob e e R . eg o s 0 ® = e .o. . ‘e
RO -‘.-. el s rme Sl e ERXKER LR Qe on = e el SRR el ot
LALLM °pe . et - - . O e e’ " Wt .. e "t N ® oo o - O e
3] e D I P R e St e o v R Lo e
(K SRS . o gete fee 7, et > et LT o e mem o eeletataieile - e el LTl e
ML Ha BN o - R ol b R KIS -) s]
DR - .) e oo ®sose . 2%s % % %8 o ss ge.s . . EHRCM %’ %
R K KR e I E e L e ML TII T L oE e ey ot T] . i aaiaisio. e caleeeTp e

*v __Hcm\—h—l-u-ﬂ.*u- -H“QH@—_-V “m——l-.h

L
¢ __Hcm:a_.é ,A59%8], } ejaul

...

E e R s e S

YL IAANTAARNAS AR AN AN AN AN A OV N AN S e A o i VA A U L W N W VR T L U A A A T AL S S AL SRS AL A S S S A T A AN AL SRR, TSRS SR AR A, SR, B LA - A AR A8 A
“

b

mohﬁh

666011/
6666014
Lo S3Ind BADYS

b L L L e e R D e R b edede LR b le D e e R R It B

B R R B 2 St e P R Pkl R AR RO AR A OB AL AA A AR A A AR S L AR SN LRSS N ARSI ANATARSASN NS AR ANNNAS S O A D AN AR A RS AR e A A A Ao

m}.ﬁ _ucm ﬂ_mguc:; 93”_ .m_u.E__s _um_._u“_u_}_
mo..t m__._l_ m.::mn_r_m: nmum “Em._._:u

.'b

w/w::b’ T Ty B o S S A R A ittt

- \\- .r-f t'\l) -r \u\\u . DO ...l..“.n.lllun
L- I“sr.f/-n.(.f s' -rur/-t/in} /)/J\(.(' #/Jnrgr -(J-r-(.(.(.(.(.fg / f)}/gfgflf.(.rfgs' .D J v-.)n Jo'nro' nrono\ . nrlo'nrl

......

Grammar

— Grammar — :
Instantiated
Template Grammar Generated Binary

Grammar String
|

Model

Instantiate

Grammar
Instantiation

Context
A

Select
Instantiation
Context

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - abstract drawing

