

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2646216 A1 2007/07/12

(21) **2 646 216**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2006/12/22
(87) Date publication PCT/PCT Publication Date: 2007/07/12
(85) Entrée phase nationale/National Entry: 2008/06/26
(86) N° demande PCT/PCT Application No.: EP 2006/070139
(87) N° publication PCT/PCT Publication No.: 2007/077165
(30) Priorité/Priority: 2006/01/04 (US60/756,090)

(51) Cl.Int./Int.Cl. *C10L 1/02*(2006.01),
C10L 1/14(2006.01), *C10L 1/185*(2006.01),
C10L 1/232(2006.01)

(71) Demandeur/Applicant:
CIBA HOLDING INC., CH

(72) Inventeurs/Inventors:
LI, NATALIE R., US;
HUGHES, DAVID ROYSTON, US;
CUSATIS, PATRICE, US;
OLENSKI, DAVID, US

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : COMPOSITIONS STABILISEES DE COMBUSTIBLE BIODIESEL

(54) Title: STABILIZED BIODIESEL FUEL COMPOSITIONS

(57) Abrégé/Abstract:

Disclosed are stabilized biodiesel fuel compositions, which compositions comprise a bio- diesel fuel, for example the methyl esters of the fatty acids of rapeseed or soy oil, and one or more additives selected from the group consisting of the 3-arylbenzofuranones and the hin- dered amine light stabilizers, and optionally, one or more hindered phenolic antioxidants.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
12 July 2007 (12.07.2007)

PCT

(10) International Publication Number
WO 2007/077165 A1

(51) International Patent Classification:

C10L 1/02 (2006.01) **C10L 1/232** (2006.01)
C10L 1/185 (2006.01) **C10L 1/14** (2006.01)

(74) Common Representative: **CIBA SPECIALTY CHEMICALS HOLDING INC.**; Patent Department, Klybeckstrasse 141, CH-4057 Basel (CH).

(21) International Application Number:

PCT/EP2006/070139

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

22 December 2006 (22.12.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/756,090 4 January 2006 (04.01.2006) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): **CIBA SPECIALTY CHEMICALS HOLDING INC.** [CH/CH];

Klybeckstrasse 141, CH-4057 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **LI, Natalie R.** [US/US]; Bank Street Apt 121i, White Plains, New York 10606 (US). **HUGHES, David Royston** [US/US]; 2200 North Benson Road, Fairfield, Connecticut 06824 (US). **CUSATIS, Patrice** [US/US]; 44 Brandywine Crossing, Newburgh, New York 12550 (US). **OLENSKI, David** [US/US]; 12 Barger Hill Road, Putnam Valley, New York 10579 (US).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2007/077165 A1

(54) Title: STABILIZED BIODIESEL FUEL COMPOSITIONS

(57) Abstract: Disclosed are stabilized biodiesel fuel compositions, which compositions comprise a bio-diesel fuel, for example the methyl esters of the fatty acids of rapeseed or soy oil, and one or more additives selected from the group consisting of the 3-arylbenzofuranones and the hindered amine light stabilizers, and optionally, one or more hindered phenolic antioxidants.

Stabilized Biodiesel Fuel Compositions

The invention is aimed at biodiesel fuel (or bio-fuel) compositions, stabilized against the deleterious effects of heat, light and oxygen by an effective amount of a stabilizer selected from the group consisting of the 3-arylbenzofuranone stabilizers and the sterically hindered 5 amine light stabilizers, or an effective amount of a stabilizer selected from the group consisting of the 3-arylbenzofuranone stabilizers and the sterically hindered amine light stabilizers in combination with a stabilizer selected from the group consisting of the hindered phenolic antioxidants.

WO 2004055141 teaches the stabilization of fats, oils and food. The stabilizers are selected 10 from the group consisting of the 3-arylbenzofuranones, long chain N,N-dialkylhydroxyl- amines, substituted hydroxylamines, nitrones and amine oxides.

U.S. Pat. No. 6,548,580 teaches ethylene homo- and copolymers stabilized by sterically hindered amines or by N-hydroxy or N-oxyl derivatives to produce articles for the storage and transport of biodiesel fuel.

15 JP2004059720 discloses polyoxymethylene resin containing a hindered amine light stabilizer that is used in a part in direct contact with a bio-diesel fuel.

EP 1 170296 teaches a process for the preparation for 3-aryl-benzofuranones. Fuel additives are disclosed therein.

EP 1 486 555, EP1 484 387 and EP1 484 388 disclose a low corrosive fuel composition for 20 use in a blue flame burner or an optimized yellow flame burner of a boiler.

Biodiesel fuel is of increasing importance as a renewable fuel source. It may for example be employed as a fuel itself, or may be used in combination with diesel fuel.

Disclosed are biodiesel fuel compositions stabilized against the deleterious effects of heat, light and oxygen, which compositions comprise

25 A biodiesel fuel and

An effective stabilizing amount of one or more additives selected from the group consisting of the 3-arylbenzofuranone stabilizers and the hindered amine light stabilizers and

Optionally, one or more additives selected from the group consisting of the hindered phenolic antioxidants.

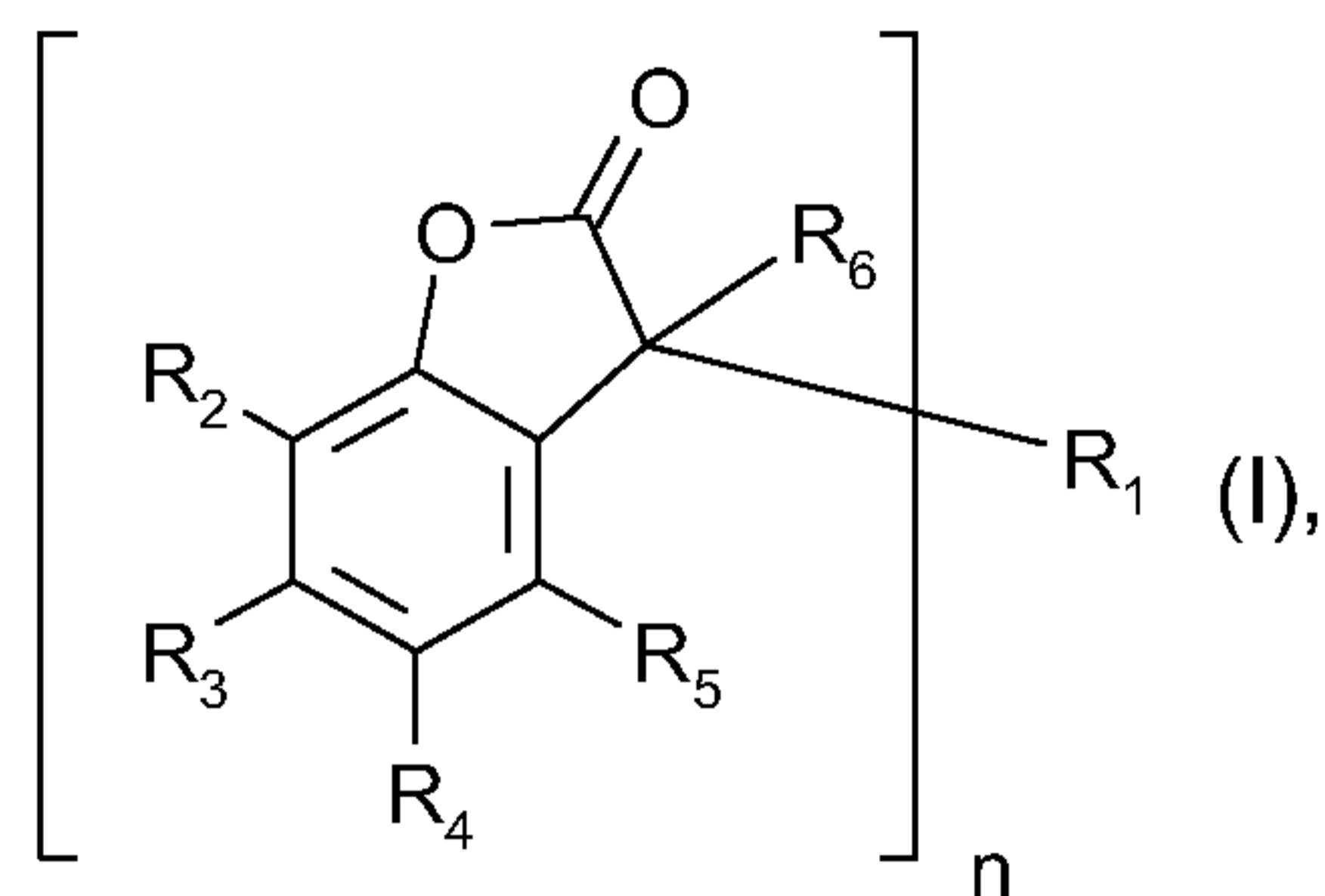
30 Also disclosed is a process for the stabilization of a biodiesel fuel against the deleterious effects of heat, light and oxygen, which process comprises incorporating into a biodiesel fuel an effective stabilizing amount of one or more additives selected from the group consisting of

the 3-arylbenzofuranone stabilizers and the hindered amine light stabilizers and optionally, one or more additives selected from the group consisting of the hindered phenolic antioxidants.

Biodiesel fuels are a renewable resource and are of increasing importance.

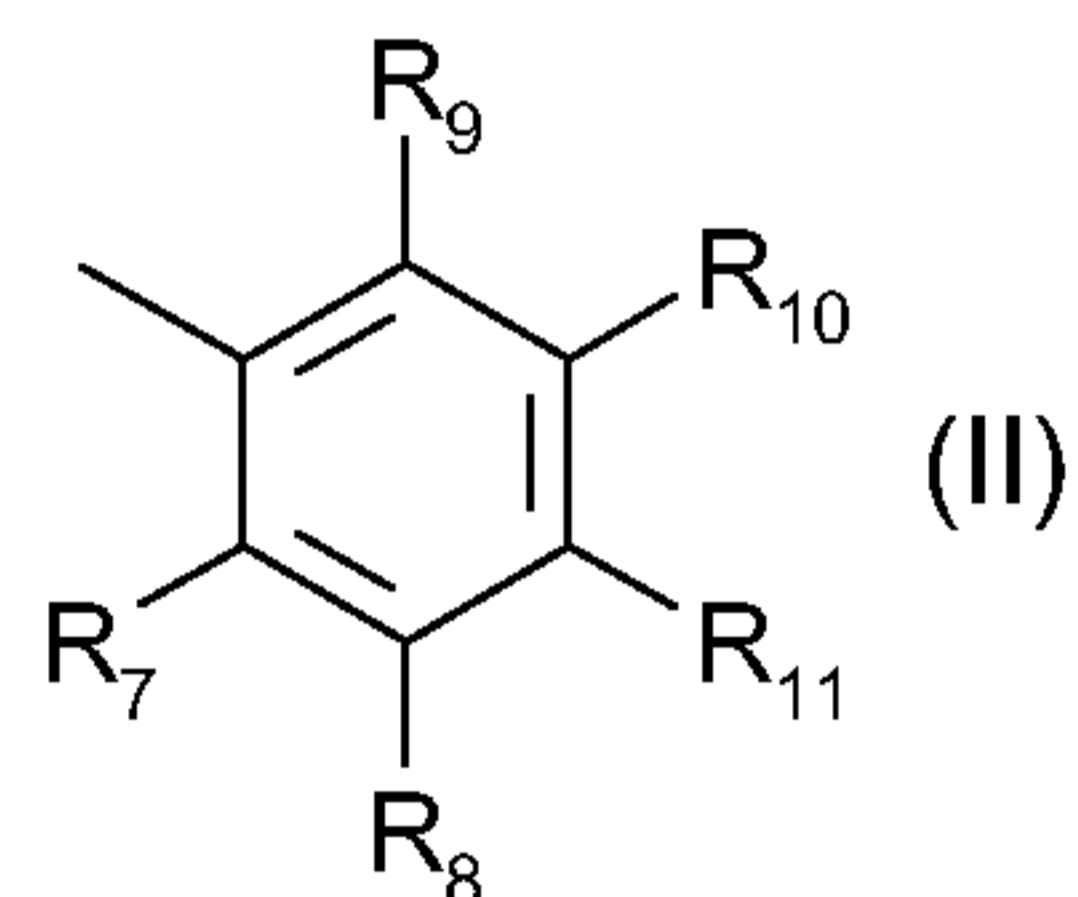
5 Biodiesel fuels comprise lower alkyl fatty acid esters, prepared for example by transesterifying triglycerides with lower alcohols, e.g. methanol or ethanol. A typical biodiesel fuel is the fatty acid methyl ester of rapeseed oil or of soy oil. Sources for biodiesel fuel include vegetable and animal sources. Recycled cooking oil may be a source of biodiesel fuel.

Biodiesel fuel and its preparation is disclosed, for example, in *U.S. Pat. Nos. 5,578,090, 10 5,713,965, 5,891,203, 6,015,440, 6,174,501 and 6,398,707.*


Biodiesel fuel of the invention for example comprises lower alkyl esters of a mixture of saturated and unsaturated straight chain fatty acids of from 12 to 22 C-atoms, derived from vegetable or oleaginous seeds. The term "lower alkyl ester" means C₁-C₅-esters, in particular methyl and ethyl esters. The mixture of methyl esters of the saturated, monounsaturated and 15 polyunsaturated C₁₆-C₂₂-fatty acids are what is known as "biodiesel" or "rapeseed methyl ester".

Biodiesel fuel according to the invention is 100% lower alkyl fatty acid ester, or is a combination of a lower alkyl fatty acid ester with diesel fuel. The biodiesel fuel is for example between about 5 and about 95% by weight fatty acid ester and between about 95 and about 5% by 20 weight diesel fuel. For example, the biodiesel fuel is between about 10 and about 90% by weight fatty acid ester and between about 90 and about 10% by weight diesel fuel. For instance, the biodiesel fuel is between about 25 and about 75% by weight fatty acid ester and between about 75 and about 25% by weight diesel fuel.

The 3-arylbenzofuranones antioxidants of the invention are for example those disclosed in 25 *U.S. patent Nos. 4,325,863; U.S. 4,388,244; U.S. 5,175,312; U.S. 5,252,643; U.S. 5,216,052; U.S. 5,369,159; U.S. 5,488,117; U.S. 5,356,966; U.S. 5,367,008; U.S. 5,428,162; U.S. 5,428,177; and U.S. 5,516,920.*

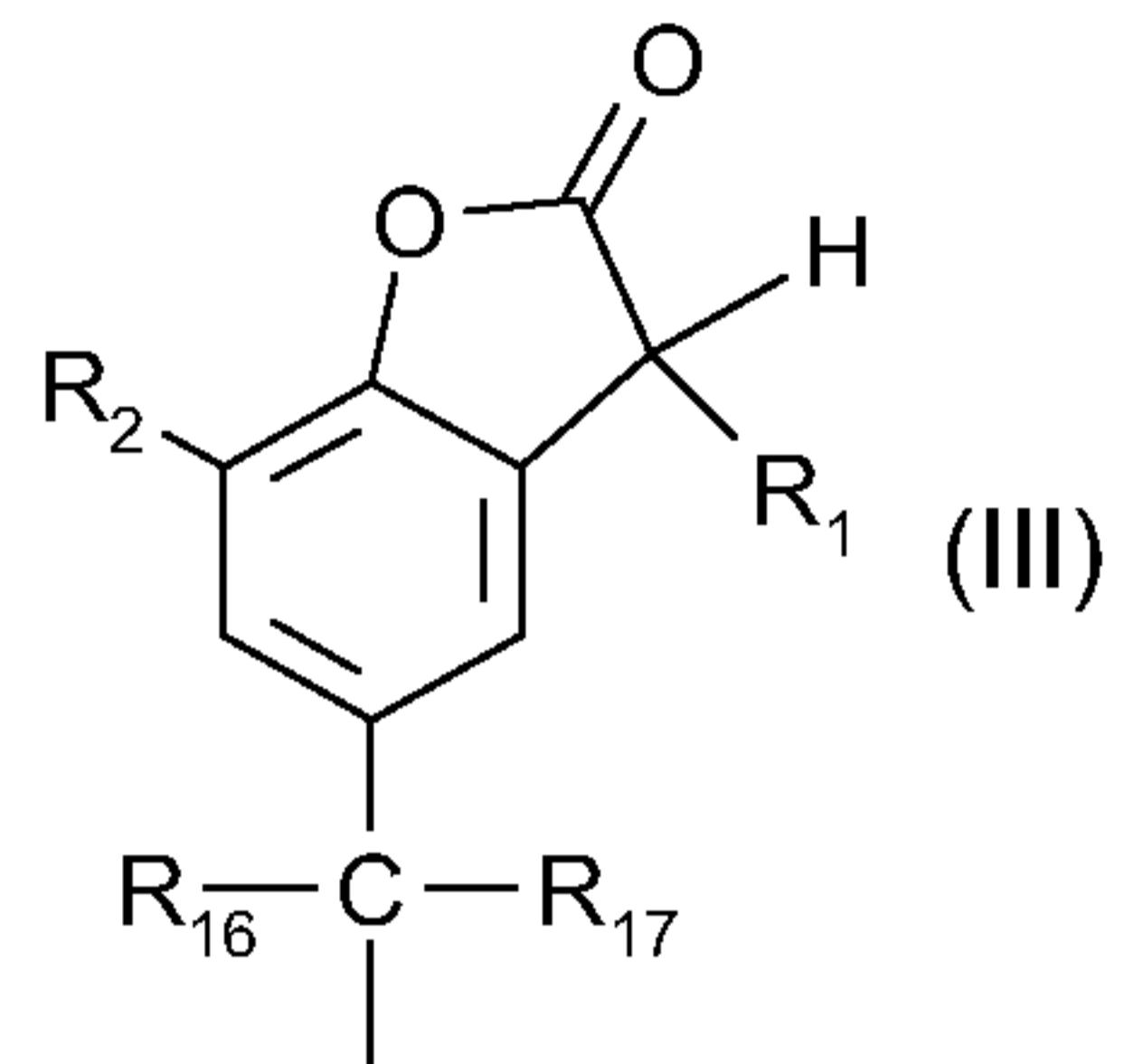

Particularly suitable 3-arylbenzofuranones in the invention are compounds of the formula I

- 3 -

in which, if n is 1,

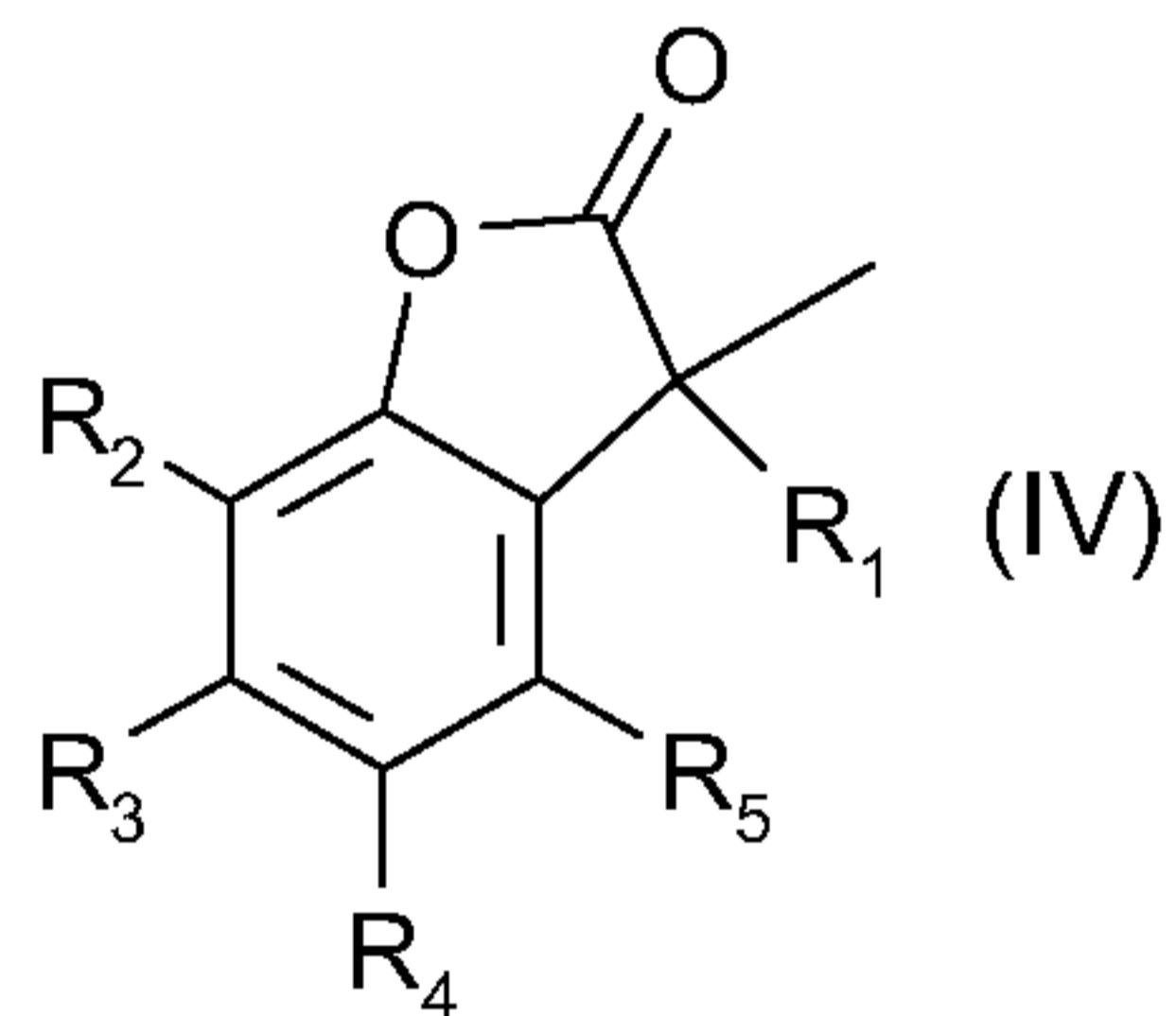
R₁ is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chrom-5-enyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or any of 10 these carbocyclic or heterocyclic groups substituted by C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino; or R₁ is a radical of the formula II

and


15 if n is 2,

R₁ is unsubstituted or C₁-C₄alkyl- or hydroxy-substituted phenylene or naphthylene; or is -R₁₂-X-R₁₃-,

R₂, R₃, R₄ and R₅ independently of one another are hydrogen, chlorine, hydroxyl, C₁-C₂₅alkyl, C₇-C₉phenylalkyl, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-20 substituted C₅-C₈cycloalkyl; C₁-C₁₈alkoxy, C₁-C₁₈alkylthio, C₁-C₄alkylamino, di(C₁-C₄alkyl)-amino, C₁-C₂₅alkanoyloxy, C₁-C₂₅alkanoylamino, C₃-C₂₅alkenoyloxy, C₃-C₂₅alkanoyloxy which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array}$ N—R₁₄; C₆-C₉cycloalkylcarbonyloxy, benzoyloxy or


C₁-C₁₂alkyl-substituted benzyloxy; or, in the alternative, if the radicals R₂ and R₃ or the radicals R₃ and R₄ or the radicals R₄ and R₅, together with the C-atoms to which they are attached, form a benzo ring, R₄ is additionally -(CH₂)_p-COR₁₅ or -(CH₂)_qOH or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of the formula III

5

in which R₁ is defined as indicated above for n = 1,

R₆ is hydrogen or a radical of the formula IV

where R₄ is other than a radical of the formula III and R₁ is defined as indicated above for n = 10 1,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, halogen, hydroxyl,

C₁-C₂₅alkyl, C₂-C₂₅alkyl interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array} N-R_{14}$; C₁-C₂₅alkoxy,

C₂-C₂₅alkoxy interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array} N-R_{14}$; C₁-C₂₅alkylthio, C₃-C₂₅alkenyl,

C₃-C₂₅alkenyloxy, C₃-C₂₅alkynyl, C₃-C₂₅alkynyoxy, C₇-C₉phenylalkyl, C₇-C₉phenylalkoxy, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted phenoxy; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkoxy; C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₂₅alkanoyl, C₃-C₂₅alkanoyl

interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array} N-R_{14}$; C₁-C₂₅alkanoyloxy, C₃-C₂₅alkanoyloxy inter-

- 5 -

rupted by oxygen, sulphur or $\text{C}_1\text{-C}_{25}\text{alkanoylamino}$, $\text{C}_3\text{-C}_{25}\text{alkenoyl}$, $\text{C}_3\text{-C}_{25}\text{alkyl}$ or $\text{C}_1\text{-C}_{25}\text{alkylsulphonyl}$.

C₂₅alkenoyl interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array}$ N—R₁₄ ; C₃-C₂₅alkenoyloxy, C₃-

C₂₅alkenoyloxy interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array}$ N—R₁₄; C₆-C₉cycloalkylcarbonyl, C₆-

C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl; benzyloxy or C₁-

5 C₁₂alkyl-substituted benzoyloxy; —O—C(R₁₈)=C(R₁₉)- or —O—C(R₂₀)—C(H)(R₂₁)-O—R₂₃, or in

the alternative, in formula II, the radicals R_7 and R_8 or the radicals R_8 and R_{11} , together with the C-atoms to which they are attached, form a benzene ring,

R_{12} and R_{13} independently of one another are unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

10 R₁₄ is hydrogen or C₁-C₈alkyl,

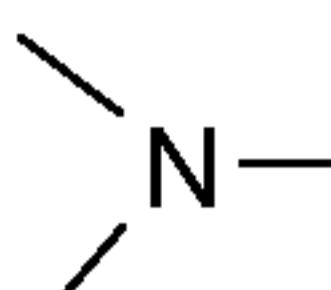
R_{15} is hydroxyl, $\left[-O^- \frac{1}{r} M^{r+} \right]$, C_1-C_{18} alkoxy or $\begin{array}{c} R_{24} \\ | \\ -N \\ | \\ R_{25} \end{array}$,

R_{16} and R_{17} independently of one another are hydrogen, CF_3 , C_1-C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the C atom to which they are attached, form a C_5-C_8 cycloalkylidene ring which is unsubstituted or substituted by 1-3 C_1-C_4 alkyl;

15 R₁₈ and R₁₉ independently of one another are hydrogen, C₁-C₄alkyl or phenyl,

R_{20} is hydrogen or C_1-C_4 alkyl,

R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl, C₂-C₂₅alkyl interrupted by oxygen, sulphur or ; C₇-C₉phenylalkyl which is unsubstituted or


substituted on the phenyl radical by 1-3 C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted 20 or substituted on the phenyl radical by 1-3 C₁-C₄alkyl and interrupted by oxygen, sulphur or

→ N—R₁₄ , or, in the alternative, the radicals R₂₀ and R₂₁, together with the C-atoms to

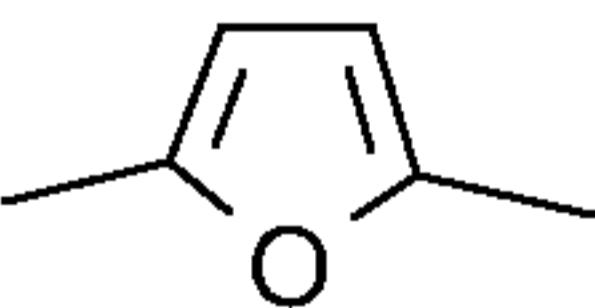
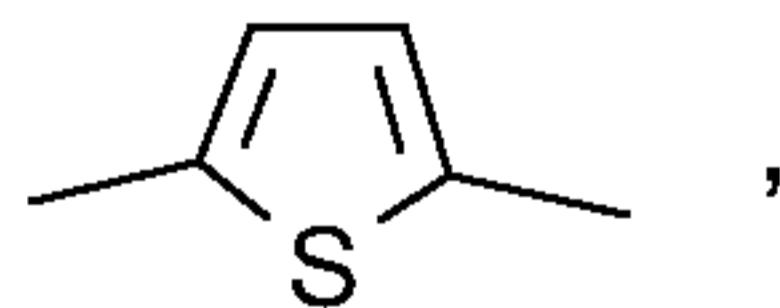

which they are attached, form a C₅-C₁₂cycloalkylene ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl;

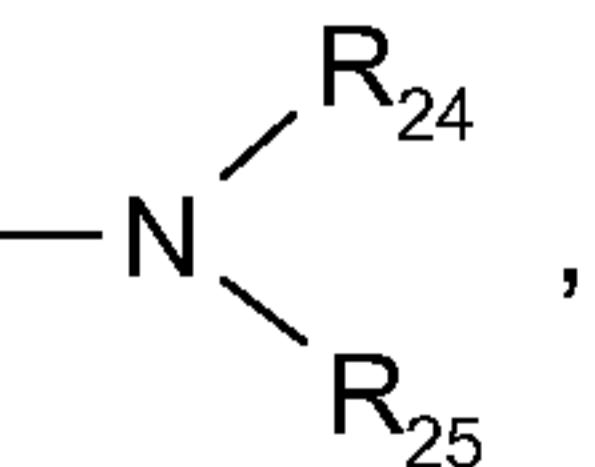
R₂₂ is hydrogen or C₁-C₄alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl, C₃-C₂₅alkanoyl interrupted by oxygen, sul-

5 phur or ; C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thienoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;



R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₈alkyl,


10 R₂₆ is hydrogen or C₁-C₈alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene, C₂-C₁₈alkylene interrupted by oxygen, sulphur or

 ; C₂-C₁₈alkenylene, C₂-C₂₀alkylidene, C₇-C₂₀phenylalkylidene,

C₅-C₈cycloalkylene, C₇-C₈bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted phenylene,

or or ,

15 R₂₈ is hydroxyl, $\left[-O^{-} \frac{1}{r} M^{r+}\right]$, C₁-C₁₈alkoxy or ,

R_{29} is oxygen, -NH- or $\begin{array}{c} O \\ || \\ \backslash \quad / \\ N-C-NH-R_{30} \end{array}$,

R_{30} is C₁-C₁₈alkyl or phenyl,

R_{31} is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

5 X is a direct bond, oxygen, sulphur or -NR₃₁-,

n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

10 s is 0, 1 or 2.

Naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thiienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl,

15 naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxyazinyl or any of these carbocyclic or heterocyclic groups substituted by C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino is, for example, 1-

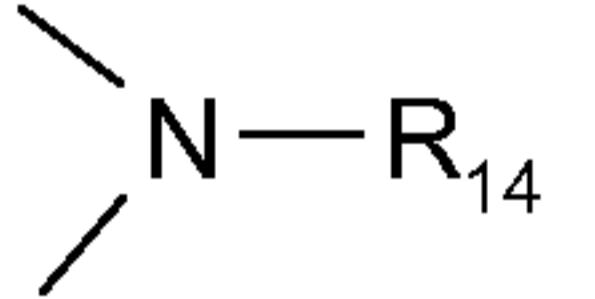
20 naphthyl, 2-naphthyl, 1-phenylamino-4-naphthyl, 1-methylnaphthyl, 2-methylnaphthyl, 1-methoxy-2-naphthyl, 2-methoxy-1-naphthyl, 1-dimethylamino-2-naphthyl, 1,2-dimethyl-4-naphthyl, 1,2-dimethyl-6-naphthyl, 1,2-dimethyl-7-naphthyl, 1,3-dimethyl-6-naphthyl, 1,4-dimethyl-6-naphthyl, 1,5-dimethyl-2-naphthyl, 1,6-dimethyl-2-naphthyl, 1-hydroxy-2-naphthyl, 2-hydroxy-1-naphthyl, 1,4-dihydroxy-2-naphthyl, 7-phenanthryl, 1-anthryl, 2-anthryl, 9-

25 anthryl, 3-benzo[b]thienyl, 5-benzo[b]thienyl, 2-benzo[b]thienyl, 4-dibenzofuryl, 4,7-dibenzofuryl, 4-methyl-7-dibenzofuryl, 2-xanthenyl, 8-methyl-2-xanthenyl, 3-xanthenyl, 2-phenoxythiinyl, 2,7-phenoxythiinyl, 2-pyrrolyl, 3-pyrrolyl, 5-methyl-3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 2-methyl-4-imidazolyl, 2-ethyl-4-imidazolyl, 2-ethyl-5-imidazolyl, 3-pyrazolyl, 1-methyl-3-pyrazolyl, 1-propyl-4-pyrazolyl, 2-pyrazinyl, 5,6-dimethyl-2-pyrazinyl, 2-indolizinyl, 2-methyl-3-isoindolyl, 2-methyl-1-isoindolyl, 1-methyl-2-indolyl, 1-methyl-3-indolyl, 1,5-dimethyl-2-indolyl, 1-methyl-3-indazolyl, 2,7-dimethyl-8-purinyl, 2-methoxy-7-methyl-8-

purinyl, 2-quinolizinyl, 3-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, isoquinolyl, 3-methoxy-6-isoquinolyl, 2-quinolyl, 6-quinolyl, 7-quinolyl, 2-methoxy-3-quinolyl, 2-methoxy-6-quinolyl, 6-phthalazinyl, 7-phthalazinyl, 1-methoxy-6-phthalazinyl, 1,4-dimethoxy-6-phthalazinyl, 1,8-naphthyridin-2-yl, 2-quinoxaliny, 6-quinoxaliny, 2,3-dimethyl-6-quinoxaliny, 2,3-dimethoxy-6-quinoxaliny, 2-quinazoliny, 7-quinazoliny, 2-dimethylamino-6-quinazoliny, 3-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 3-methoxy-7-cinnolinyl, 2-pteridinyl, 6-pteridinyl, 7-pteridinyl, 6,7-dimethoxy-2-pteridinyl, 2-carbazolyl, 3-carbazolyl, 9-methyl-2-carbazolyl, 9-methyl-3-carbazolyl, β -carbolin-3-yl, 1-methyl- β -carbolin-3-yl, 1-methyl- β -carbolin-6-yl, 3-phenanthridinyl, 2-acridinyl, 3-acridinyl, 2-perimidinyl, 1-methyl-5-perimidinyl, 10 phenanthrolinyl, 6-phenanthrolinyl, 1-phenazinyl, 2-phenazinyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-phenothiazinyl, 3-phenothiazinyl, 10-methyl-3-phenothiazinyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 4-methyl-3-furazanyl, 2-phenoxyazinyl or 10-methyl-2-phenoxyazinyl.

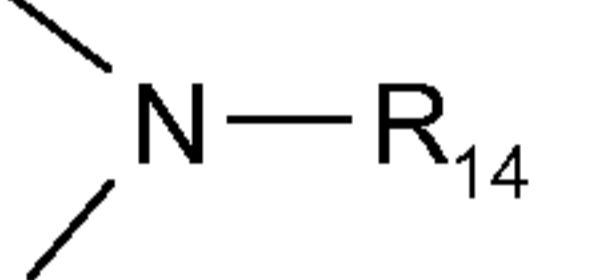
Particular preference is given to unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, phenylamino- or di(C₁-C₄alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxythiinyl, pyrrolyl, isoindolyl, indolyl, phenoxythiazinyl, biphenyl, terphenyl, fluorenyl or phenoxyazinyl, for example, 1-naphthyl, 2-naphthyl, 1-phenylamino-4-naphthyl, 1-methylnaphthyl, 2-methylnaphthyl, 1-methoxy-2-naphthyl, 2-methoxy-1-naphthyl, 1-dimethylamino-2-naphthyl, 1,2-dimethyl-4-naphthyl, 1,2-dimethyl-6-naphthyl, 1,2-dimethyl-7-naphthyl, 1,3-dimethyl-6-naphthyl, 1,4-dimethyl-6-naphthyl, 1,5-dimethyl-2-naphthyl, 1,6-dimethyl-2-naphthyl, 1-hydroxy-2-naphthyl, 2-hydroxy-1-naphthyl, 1,4-dihydroxy-2-naphthyl, 7-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, 3-benzo[b]thienyl, 5-benzo[b]thienyl, 2-benzo[b]thienyl, 4-dibenzofuryl, 4,7-dibenzofuryl, 4-methyl-7-dibenzofuryl, 2-xanthenyl, 8-methyl-2-xanthenyl, 3-xanthenyl, 2-pyrrolyl, 3-pyrrolyl, 2-phenoxythiazinyl, 3-phenoxythiazinyl, 10-methyl-3-phenoxythiazinyl.

Halogen (halo) is, for example, chlorine, bromine or iodine. Preference is given to chlorine. Alkanoyl having up to 25 C-atoms is a branched or unbranched radical, for example, formyl, acetyl, propionyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, eicosanoyl or docosanoyl. Preference is given to alkanoyl having 2 to 18, especially 2 to 12, for example 2 to 6 C-atoms. Particular preference is given to acetyl.

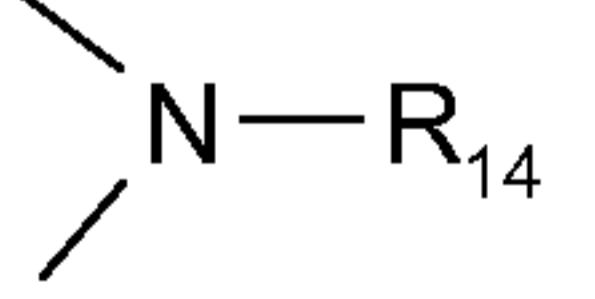

C₂-C₂₅ alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group is, for example, (CH₃CH₂O)₂POCH₂CO-, (CH₃O)₂POCH₂CO-, (CH₃CH₂CH₂CH₂O)₂POCH₂CO-,

- 9 -

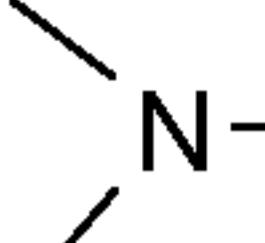
$(CH_3CH_2O)_2POCH_2CH_2CO-$, $(CH_3O)_2POCH_2CH_2CO-$, $(CH_3CH_2CH_2CH_2O)_2POCH_2CH_2CO-$,
 $(CH_3CH_2O)_2PO(CH_2)_4CO-$, $(CH_3CH_2O)_2PO(CH_2)_8CO-$ or $(CH_3CH_2O)_2PO(CH_2)_{17}CO-$.


Alkanoyloxy having up to 25 C-atoms is a branched or unbranched radical, for example, formyloxy, acetoxy, propionyloxy, butanoyloxy, pentanoyloxy, hexanoyloxy, heptanoyloxy, octanoyloxy, nonanoyloxy, decanoyloxy, undecanoyloxy, dodecanoyloxy, tridecanoyloxy, tetradecanoyloxy, pentadecanoyloxy, hexadecanoyloxy, heptadecanoyloxy, octadecanoyloxy, eicosanoyloxy or docosanoyloxy. Preference is given to alkanoyloxy having 2 to 18, especially 2 to 12, for example 2 to 6 C-atoms. Particular preference is given to acetoxy.

Alkenoyl having 3 to 25 C-atoms is a branched or unbranched radical, for example, propenoyl, 2-butenoyl, 3-butenoyl, isobutenoyl, n-2,4-pentadienoyl, 3-methyl-2-butenoyl, n-2-octenoyl, n-2-dodecenoyl, iso-dodecenoyl, oleoyl, n-2-octadecenoyl or n-4-octadecenoyl. Preference is given to alkenoyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 C-atoms.


C_3-C_{25} alkenoyl interrupted by oxygen, sulphur or is, for example,

15 $CH_3OCH_2CH_2CH=CHCO-$ or $CH_3OCH_2CH_2OCH=CHCO-$.


Alkenoyloxy having 3 to 25 C-atoms is a branched or unbranched radical, for example, propenoyloxy, 2-butenoyloxy, 3-butenoyloxy, isobutenoyloxy, n-2,4-pentadienoyloxy, 3-methyl-2-butenoyloxy, n-2-octenoyloxy, n-2-dodecenoyloxy, iso-dodecenoyloxy, oleoyloxy, n-2-octadecenoyloxy or n-4-octadecenoyloxy. Preference is given to alkenoyloxy having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 C-atoms.

C_3-C_{25} alkenoyloxy interrupted by oxygen, sulphur or is, for example,

$CH_3OCH_2CH_2CH=CHCOO-$ or $CH_3OCH_2CH_2OCH=CHCOO-$.

C_3-C_{25} alkanoyl interrupted by oxygen, sulphur or is, for example,

25 CH_3-O-CH_2CO- , CH_3-S-CH_2CO- , $CH_3-NH-CH_2CO-$, $CH_3-N(CH_3)-CH_2CO-$,
 $CH_3-O-CH_2CH_2-O-CH_2CO-$, $CH_3-(O-CH_2CH_2)_2O-CH_2CO-$, $CH_3-(O-CH_2CH_2)_3O-CH_2CO-$ or
 $CH_3-(O-CH_2CH_2)_4O-CH_2CO-$.

C_3 - C_{25} alkanoyloxy interrupted by oxygen, sulphur or is, for example,

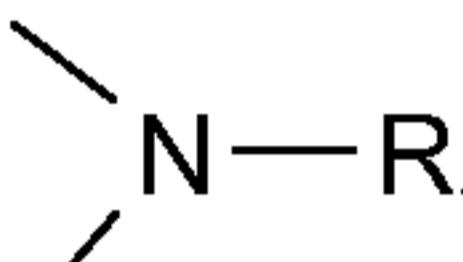
CH_3 -O-CH₂COO-, CH_3 -S-CH₂COO-, CH_3 -NH-CH₂COO-, CH_3 -N(CH₃)-CH₂COO-,
 CH_3 -O-CH₂CH₂-O-CH₂COO-, CH_3 -(O-CH₂CH₂-)₂O-CH₂COO-, CH_3 -(O-CH₂CH₂-)₃O-CH₂COO-
or CH_3 -(O-CH₂CH₂-)₄O-CH₂COO-.

5 C_6 - C_9 cycloalkylcarbonyl is, for example, cyclopentylcarbonyl, cyclohexylcarbonyl, cycloheptylcarbonyl or cyclooctylcarbonyl. Cyclohexylcarbonyl is preferred.

C_6 - C_9 cycloalkylcarbonyloxy is, for example, cyclopentylcarbonyloxy, cyclohexylcarbonyloxy, cycloheptylcarbonyloxy or cyclooctylcarbonyloxy. Cyclohexylcarbonyloxy is preferred.

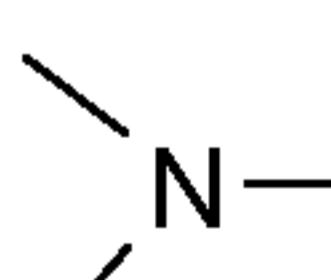
10 C_1 - C_{12} alkyl-substituted benzoyl, which preferably carries 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylbenzoyl, 2,3-dimethylbenzoyl, 2,4-dimethylbenzoyl, 2,5-dimethylbenzoyl, 2,6-dimethylbenzoyl, 3,4-dimethylbenzoyl, 3,5-dimethylbenzoyl, 2-methyl-6-ethylbenzoyl, 4-tert-butylbenzoyl, 2-ethylbenzoyl, 2,4,6-trimethylbenzoyl, 2,6-dimethyl-4-tert-butylbenzoyl or 3,5-di-tert-butylbenzoyl. Preferred substituents are C_1 - C_8 alkyl, especially C_1 - C_4 alkyl.

15 C_1 - C_{12} alkyl-substituted benzoyloxy, which preferably carries 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylbenzoyloxy, 2,3-dimethylbenzoyloxy, 2,4-dimethylbenzoyloxy, 2,5-dimethylbenzoyloxy, 2,6-dimethylbenzoyloxy, 3,4-dimethylbenzoyloxy, 3,5-dimethylbenzoyloxy, 2-methyl-6-ethylbenzoyloxy, 4-tert-butylbenzoyloxy, 2-ethyl-benzoyloxy, 2,4,6-trimethylbenzoyloxy, 2,6-dimethyl-4-tert-butylbenzoyloxy or 3,5-di-tert-butylbenzoyloxy. Preferred substituents are C_1 - C_8 alkyl, especially C_1 - C_4 alkyl.


20 Alkyl having up to 25 C-atoms is a branched or unbranched radical, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-ethylbutyl, n-pentyl, isopentyl, 1-methylpentyl, 1,3-dimethylbutyl, n-hexyl, 1-methylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 2-ethylhexyl, 1,1,3-trimethylhexyl, 25 1,1,3,3-tetramethylpentyl, nonyl, decyl, undecyl, 1-methylundecyl, dodecyl, 1,1,3,3,5,5-hexamethylhexyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl or docosyl. One of the preferred meanings of R_2 and R_4 is, for example, C_1 - C_{18} alkyl. A particularly preferred meaning of R_4 is C_1 - C_4 alkyl.

30 Alkenyl having 3 to 25 C-atoms is a branched or unbranched radical, for example, propenyl, 2-butenyl, 3-butenyl, isobutenyl, n-2,4-pentadienyl, 3-methyl-2-butenyl, n-2-octenyl, n-2-dodecenyl, iso-dodecenyl, oleyl, n-2-octadecenyl or n-4-octadecenyl. Preference is given to alkenyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 C-atoms.

Alkenyloxy having 3 to 25 C-atoms is a branched or unbranched radical, for example, prop-
enyloxy, 2-butenyloxy, 3-butenyloxy, isobutenyloxy, n-2,4-pentadienyloxy, 3-methyl-2-
butenyloxy, n-2-octenyloxy, n-2-dodecenyloxy, iso-dodecenyloxy, oleyloxy, n-2-octadeceny-
loxy or n-4-octadecenyloxy. Preference is given to alkenyloxy having 3 to 18, especially 3 to
5 12, for example 3 to 6, in particular 3 to 4 C-atoms.


Alkynyl having 3 to 25 C-atoms is a branched or unbranched radical, for example, propynyl
(—CH₂—C≡CH), 2-butynyl, 3-butynyl, n-2-octynyl, or n-2-dodecynyl. Preference is given
to alkynyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 C-atoms.

Alkynyloxy having 3 to 25 C-atoms is a branched or unbranched radical, for example, pro-
10 pynyloxy (—OCH₂—C≡CH), 2-butynyloxy, 3-butynyloxy, n-2-octynyloxy, or n-2-
dodecynyloxy. Preference is given to alkynyloxy having 3 to 18, especially 3 to 12, for exam-
ple 3 to 6, in particular 3 to 4 C-atoms.

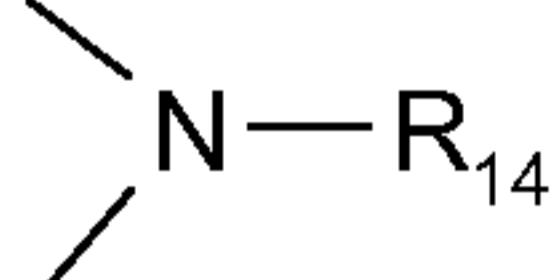
C₂-C₂₅alkyl interrupted by oxygen, sulphur or is, for example, CH₃-O-CH₂-,
CH₃-S-CH₂-, CH₃-NH-CH₂-, CH₃-N(CH₃)-CH₂-, CH₃-O-CH₂CH₂-O-CH₂-,
15 CH₃-(O-CH₂CH₂-)₂O-CH₂-, CH₃-(O-CH₂CH₂-)₃O-CH₂- or CH₃-(O-CH₂CH₂-)₄O-CH₂-.

C₇-C₉phenylalkyl is, for example, benzyl, α-methylbenzyl, α,α-dimethylbenzyl or 2-phenyl-
ethyl. Benzyl and α,α-dimethylbenzyl are preferred.

C₇-C₉phenylalkyl which is unsubstituted or substituted on the phenyl radical by 1-3 C₁-C₄alkyl
is, for example, benzyl, α-methylbenzyl, α,α-dimethylbenzyl, 2-phenylethyl, 2-methylbenzyl,
20 3-methylbenzyl, 4-methylbenzyl, 2,4-dimethylbenzyl, 2,6-dimethylbenzyl or 4-tert-butylbenzyl.
Benzyl is preferred.

C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the phenyl radical by 1-3 C₁-
C₄alkyl and is interrupted by oxygen, sulphur or is a branched or unbranched
radical, for example, phenoxyethyl, 2-methylphenoxyethyl, 3-methylphenoxyethyl, 4-
25 methylphenoxyethyl, 2,4-dimethylphenoxyethyl, 2,3-dimethylphenoxyethyl, phenyl-
thiomethyl, N-methyl-N-phenylmethyl, N-ethyl-N-phenylmethyl, 4-tert-butylphenoxyethyl, 4-
tert-butylphenoxyethoxymethyl, 2,4-di-tert-butylphenoxyethyl, 2,4-di-tert-butylphenoxyeth-
oxymethyl, phenoxyethoxyethoxymethyl, benzyloxymethyl, benzyloxyethoxymethyl, N-
benzyl-N-ethylmethyl or N-benzyl-N-isopropylmethyl.

C_7 - C_9 phenylalkoxy is, for example, benzyloxy, α -methylbenzyloxy, α,α -dimethylbenzyloxy or 2-phenylethoxy. Benzyloxy is preferred.


C_1 - C_4 alkyl-substituted phenyl, which preferably contains 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-di-
5 methylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2-methyl-6-ethyl-phenyl, 4-tert-butylphenyl, 2-ethylphenyl or 2,6-diethylphenyl.

C_1 - C_4 alkyl-substituted phenoxy, which preferably contains 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylphenoxy, 2,3-dimethylphenoxy, 2,4-dimethylphenoxy, 2,5-dimethylphenoxy, 2,6-dimethylphenoxy, 3,4-dimethylphenoxy, 3,5-dimethylphenoxy, 2-methyl-6-ethylphenoxy, 4-tert-butylphenoxy, 2-ethylphenoxy or 2,6-diethylphenoxy.
10

Unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl is, for example, cyclopentyl, methylcyclopentyl, dimethylcyclopentyl, cyclohexyl, methylcyclohexyl, dimethylcyclohexyl, trimethylcyclohexyl, tert-butylcyclohexyl, cycloheptyl or cyclooctyl. Preference is given to cyclohexyl and tert-butylcyclohexyl.

15 Unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy is, for example, cyclopentoxy, methylcyclopentoxy, dimethylcyclopentoxy, cyclohexoxy, methylcyclohexoxy, dimethylcyclohexoxy, trimethylcyclohexoxy, tert-butylcyclohexoxy, cycloheptoxy or cyclooctoxy. Preference is given to cyclohexoxy and tert-butylcyclohexoxy.

Alkoxy having up to 25 C-atoms is a branched or unbranched radical, for example, methoxy,
20 ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, heptoxy, octoxy, decyloxy, tetradecyloxy, hexadecyloxy or octadecyloxy. Preference is given to alkoxy having 1 to 12, especially 1 to 8, for example 1 to 6 C-atoms.

C_2 - C_{25} alkoxy interrupted by oxygen, sulphur or is, for example,

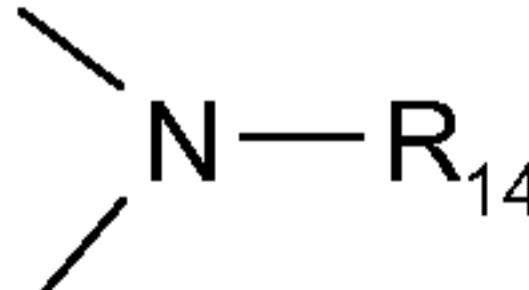
25 CH_3 -O-CH₂CH₂O-, CH_3 -S-CH₂CH₂O-, CH_3 -NH-CH₂CH₂O-, CH_3 -N(CH₃)-CH₂CH₂O-, CH_3 -O-CH₂CH₂-O-CH₂CH₂O-, CH_3 -(O-CH₂CH₂-)₂O-CH₂CH₂O-,
 CH_3 -(O-CH₂CH₂-)₃O-CH₂CH₂O- or CH_3 -(O-CH₂CH₂-)₄O-CH₂CH₂O-.

Alkylthio having up to 25 C-atoms is a branched or unbranched radical, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, pentylthio, isopentylthio, hexylthio, heptylthio, octylthio, decylthio, tetradecylthio, hexadecylthio or octadecylthio. Preference is given to alkylthio having 1 to 12, especially 1 to 8, for example 1 to 6 C-atoms.
30

Alkylamino having up to 4 C-atoms is a branched or unbranched radical, for example, methylamino, ethylamino, propylamino, isopropylamino, n-butylamino, isobutylamino or tert-butylamino.

Di(C₁-C₄alkyl)amino also means that the two radicals independently of one another are

5 branched or unbranched, for example, dimethylamino, methylethylamino, diethylamino, methyl-n-propylamino, methylisopropylamino, methyl-n-butylamino, methylisobutylamino, ethylisopropylamino, ethyl-n-butylamino, ethylisobutylamino, ethyl-tert-butylamino, diethylamino, diisopropylamino, isopropyl-n-butylamino, isopropylisobutylamino, di-n-butylamino or diisobutylamino.


10 Alkanoylamino having up to 25 C-atoms is a branched or unbranched radical, for example, formylamino, acetylamino, propionylamino, butanoylamino, pentanoylamino, hexanoylamino, heptanoylamino, octanoylamino, nonanoylamino, decanoylamino, undecanoylamino, dodecanoylamino, tridecanoylamino, tetradecanoylamino, pentadecanoylamino, hexadecaneoylamino, heptadecanoylamino, octadecanoylamino, eicosanoylamino or docosanoylamino.

15 Preference is given to alkanoylamino having 2 to 18, especially 2 to 12, for example 2 to 6 C-atoms.

C₁-C₁₈alkylene is a branched or unbranched radical, for example, methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, decamethylene, dodecamethylene or octadecamethylene. Preference is

20 given to C₁-C₁₂alkylene, especially C₁-C₈alkylene.

A C₁-C₄alkyl-substituted C₅-C₁₂cycloalkylene ring, which preferably contains 1 to 3, especially 1 or 2 branched or unbranched alkyl group radicals is, for example, cyclopentylene, methylcyclopentylene, dimethylcyclopentylene, cyclohexylene, methylcyclohexylene, dimethylcyclohexylene, trimethylcyclohexylene, tert-butylcyclohexylene, cycloheptylene, cyclooctylene or cyclodecylene. Preference is given to cyclohexylene and tert-butylcyclohexylene.

C₂-C₁₈alkylene interrupted by oxygen, sulphur or is, for example, -CH₂-O-CH₂-, -CH₂-S-CH₂-, -CH₂-NH-CH₂-, -CH₂-N(CH₃)-CH₂-, -CH₂-O-CH₂CH₂-O-CH₂-, -CH₂-(O-CH₂CH₂-)₂O-CH₂-, -CH₂-(O-CH₂CH₂-)₃O-CH₂-, -CH₂-(O-CH₂CH₂-)₄O-CH₂- or -CH₂CH₂-S-CH₂CH₂-.

30 C₂-C₁₈alkenylene is, for example, vinylene, methylvinylene, octenylethylene or dodecenylethylene. Preference is given to C₂-C₈alkenylene.

Alkylidene having 2 to 20 C-atoms is, for example, ethylidene, propylidene, butylidene, pentylidene, 4-methylpentylidene, heptylidene, nonylidene, tridecylidene, nonadecylidene, 1-methylethylidene, 1-ethylpropylidene or 1-ethylpentylidene. Preference is given to C₂-C₈-alkylidene.

5 Phenylalkylidene having 7 to 20 C-atoms is, for example, benzylidene, 2-phenylethylidene or 1-phenyl-2-hexylidene. Preference is given to C₇-C₉-phenylalkylidene.

C₅-C₈cycloalkylene is a saturated hydrocarbon group having two free valencies and at least one ring unit and is, for example, cyclopentylene, cyclohexylene, cycloheptylene or cyclooctylene. Preference is given to cyclohexylene.

10 C₇-C₈bicycloalkylene is, for example, bicycloheptylene or bicyclooctylene.

Unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene is, for example, 1,2-, 1,3-, 1,4-phenylene, 1,2-, 1,3-, 1,4-, 1,6-, 1,7-, 2,6- or 2,7-naphthylene. 1,4-Phenylene is preferred.

15 A C₁-C₄alkyl-substituted C₅-C₈cycloalkylidene ring, which preferably contains 1 to 3, especially 1 or 2 branched or unbranched alkyl group radicals is, for example, cyclopentylidene, methylcyclopentylidene, dimethylcyclopentylidene, cyclohexylidene, methylcyclohexylidene, dimethylcyclohexylidene, trimethylcyclohexylidene, tert-butylcyclohexylidene, cycloheptylidene or cyclooctylidene. Preference is given to cyclohexylidene and tert-butylcyclohexylidene.

20 A mono-, di- or trivalent metal cation is preferably an alkali metal, alkaline earth metal or aluminium cation, for example, Na⁺, K⁺, Mg⁺⁺, Ca⁺⁺ or Al⁺⁺⁺.

25 A particularly preferred composition of the invention contains at least one 3-arylbenzofuranone of formula I, wherein, if n = 1, R₁ is phenyl which is unsubstituted or substituted in para-position by C₁-C₁₈alkylthio or di(C₁-C₄alkyl)amino; mono- to penta-substituted alkylphenyl containing together a total of at most 18 C-atoms in the 1 to 5 alkyl substituents; naphthyl, biphenyl, terphenyl, phenanthryl, anthryl, fluorenyl, carbazolyl, thienyl, pyrrolyl, phenothiazinyl or 5,6,7,8-tetrahydronaphthyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, hydroxy or amino.

Preference is given to compounds of the formula I in which, if n is 2,

30 R₁ is -R₁₂-X-R₁₃-,

R₁₂ and R₁₃ are phenylene,

X is oxygen or -NR₃₁-, and

R₃₁ is C₁-C₄alkyl.

Preference is also given to compounds of the formula I in which, if n is 1,

R₁ is unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-,

C₁-C₄alkylamino- or di(C₁-C₄-alkyl)amino-substituted naphthyl, phenanthryl, thieryl, dibenzo-

5 furyl, carbazolyl, fluorenyl or a radical of the formula II, wherein

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, chlorine, bromine, hydroxyl, C₁-C₁₈alkyl, C₂-C₁₈alkyl interrupted by oxygen or sulphur; C₁-C₁₈alkoxy, C₂-C₁₈alkoxy interrupted by oxygen or sulphur; C₁-C₁₈alkylthio, C₃-C₁₂alkenyloxy, C₃-C₁₂alkynyloxy, C₇-C₉phenylalkyl, C₇-C₉phenylalkoxy, unsubstituted or C₁-C₄alkyl-substituted phenyl;

10 phenoxy, cyclohexyl, C₅-C₈cycloalkoxy, C₁-C₄alkylamino, di(C₁-C₄-alkyl)amino,

C₁-C₁₂alkanoyl, C₃-C₁₂alkanoyl interrupted by oxygen or sulphur; C₁-C₁₂alkanoyloxy,

C₃-C₁₂alkanoyloxy interrupted by oxygen or sulphur; C₁-C₁₂alkanoylamino, C₃-C₁₂alkenoyl,

C₃-C₁₂alkenoyloxy, cyclohexylcarbonyl, cyclohexylcarbonyloxy, benzoyl or C₁-C₄alkyl-substi-

tuted benzoyl; benzoyloxy or C₁-C₄alkyl-substituted benzoyloxy; $\text{---O---C}(\text{R}_{18})\text{---C}(=\text{O})\text{---R}_{15}$ or
 $\text{---O---C}(\text{R}_{19})\text{---C}(=\text{O})\text{---R}_{15}$

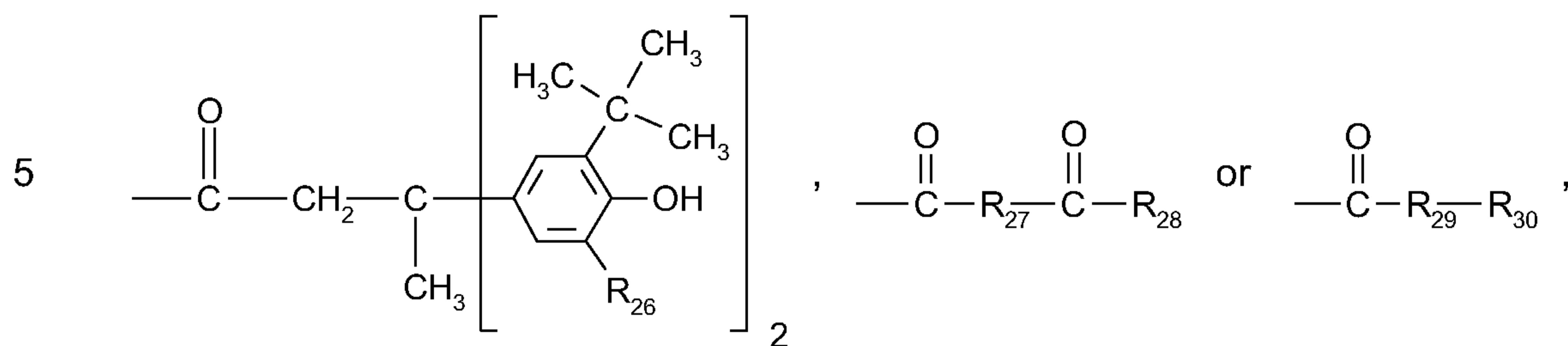
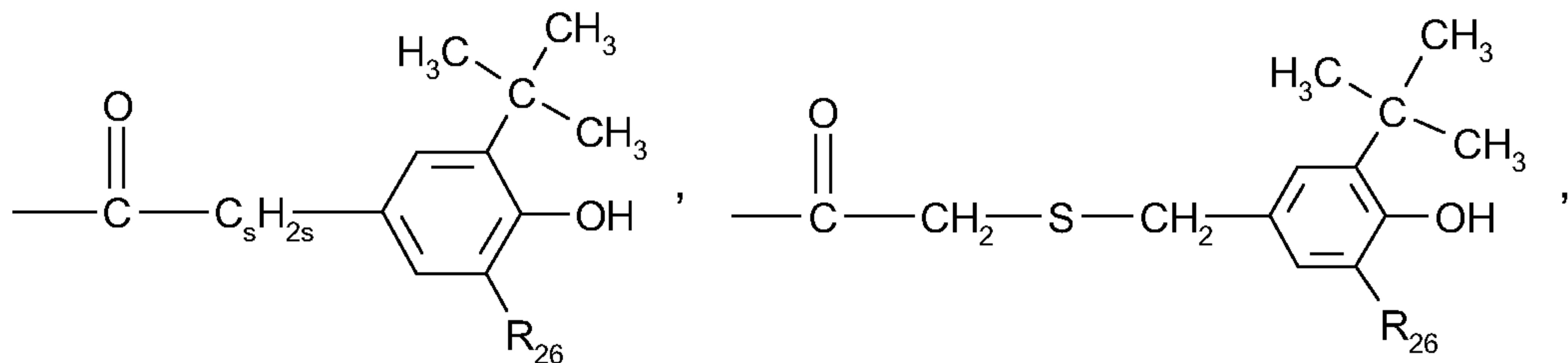
15 $\text{---O---C}(\text{R}_{20})\text{---C}(\text{R}_{21})\text{---O---R}_{23}$ or, in the alternative, in formula II the radicals R₇ and R₈ or the
 $\text{---O---C}(\text{H})\text{---C}(\text{R}_{22})\text{---O---R}_{23}$

radicals R₈ and R₁₁, together with the C-atoms to which they are attached, form a benzene ring,

R₁₅ is hydroxyl, C₁-C₁₂alkoxy or $\text{---N}(\text{R}_{24})\text{---C}(\text{R}_{25})$,

R₁₈ and R₁₉ independently of one another are hydrogen or C₁-C₄alkyl,

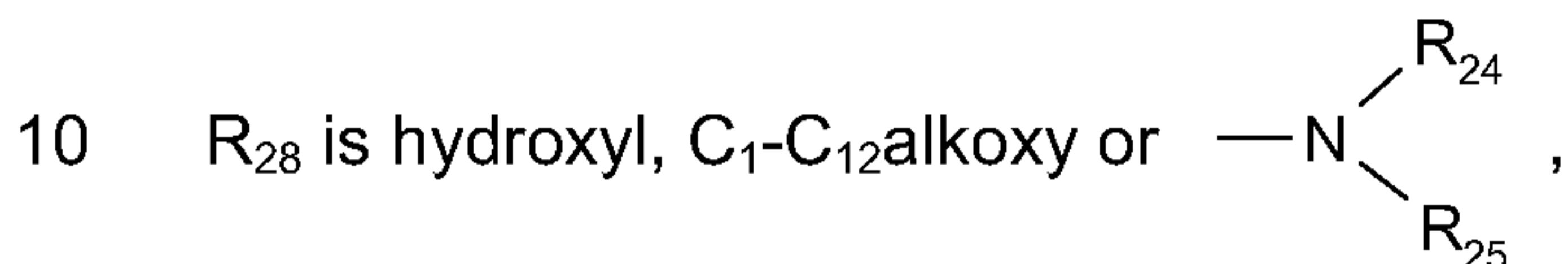
20 R₂₀ is hydrogen,



R₂₁ is hydrogen, phenyl, C₁-C₁₈alkyl, C₂-C₁₈alkyl interrupted by oxygen or sulphur;

C₇-C₉phenylalkyl, C₇-C₁₈-phenylalkyl which is unsubstituted or substituted on the phenyl radical by 1-3 C₁-C₄alkyl and is interrupted by oxygen or sulphur, or, in the alternative, the radicals R₂₀ and R₂₁, together with the C-atoms to which they are attached, form a cyclohexylene

25 ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl,

R₂₂ is hydrogen or C₁-C₄alkyl,

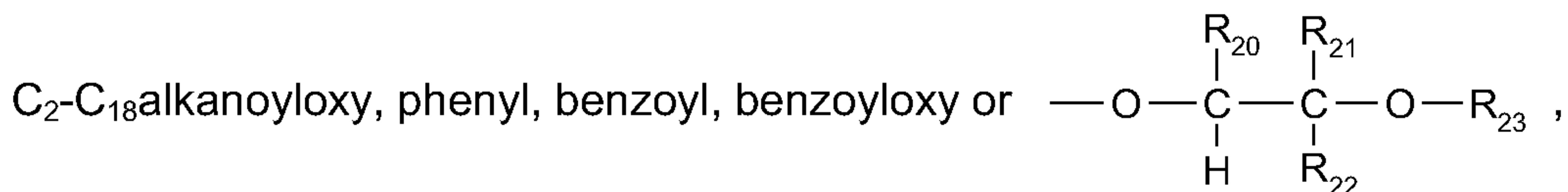

R_{23} is hydrogen, C_1 - C_{18} alkanoyl, C_3 - C_{18} alkenoyl, C_3 - C_{12} alkanoyl interrupted by oxygen or sulphur; C_2 - C_{12} alkanoyl substituted by a di(C_1 - C_6 -alkyl)phosphonate group; C_6 - C_9 cycloalkyl-carbonyl, benzoyl,

R_{24} and R_{25} independently of one another are hydrogen or C_1 - C_{12} alkyl,

R_{26} is hydrogen or C_1 - C_4 alkyl,

R_{27} is C_1 - C_{12} alkylene, C_2 - C_8 alkenylene, C_2 - C_8 alkylidene, C_7 - C_{12} phenylalkylidene, C_5 - C_8 cycloalkylene or phenylene,

R_{29} is oxygen or $-NH-$,


R_{30} is C_1 - C_{18} alkyl or phenyl, and

s is 1 or 2.

Preference is likewise given to compounds of the formula I in which, if n is 1,

15 R_1 is phenanthryl, thienyl, dibenzofuryl, unsubstituted or C_1 - C_4 alkyl-substituted carbazolyl; or is fluorenyl; or R_1 is a radical of the formula II, wherein

R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_3 - C_4 alkenyloxy, C_3 - C_4 alkinyloxy,

R₂₀ is hydrogen,

R₂₁ is hydrogen, phenyl or C₁-C₁₈alkyl, or, in the alternative, the radicals R₂₀ and R₂₁, together with the C-atoms to which they are attached, form a cyclohexylene ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl,

5 R₂₂ is hydrogen or C₁-C₄alkyl, and

R₂₃ is hydrogen, C₁-C₁₈alkanoyl or benzoyl.

Particular preference is given to compounds of the formula I in which, if n is 1,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, C₁-C₄alkylthio or phenyl.

Of particular interest is a composition containing at least one compound of the formula I in
10 which R₂, R₃, R₄ and R₅ independently of one another are hydrogen, chlorine, C₁-C₁₈alkyl,
benzyl, phenyl, C₅-C₈cycloalkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkylthio, C₁-C₁₈alkanoyloxy, C₁-C₁₈alk-
anoylamino, C₃-C₁₈alkenoyloxy or benzyloxy; or, in the alternative, the radicals R₂ and R₃ or
the radicals R₃ and R₄ or the radicals R₄ and R₅, together with the C-atoms to which they are
15 attached, form a benzene ring, R₄ is additionally -(CH₂)_p-COR₁₅ or -(CH₂)_qOH, or, if R₃, R₅
and R₆ are hydrogen, R₄ is additionally a radical of the formula III,

R₁₅ is hydroxyl, C₁-C₁₂alkoxy or $\text{---N} \begin{array}{c} \text{R}_{24} \\ \diagup \\ \diagdown \\ \text{R}_{25} \end{array}$,

R₁₆ and R₁₇ are methyl groups or, together with the C atom to which they are attached, form
a C₅-C₈cycloalkylidene ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl,

R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₂alkyl,

20 p is 1 or 2, and

q is 2, 3, 4, 5 or 6.

Also of particular interest is a composition containing at least one compound of the formula I
in which at least two of the radicals R₂, R₃, R₄ and R₅ are hydrogen.

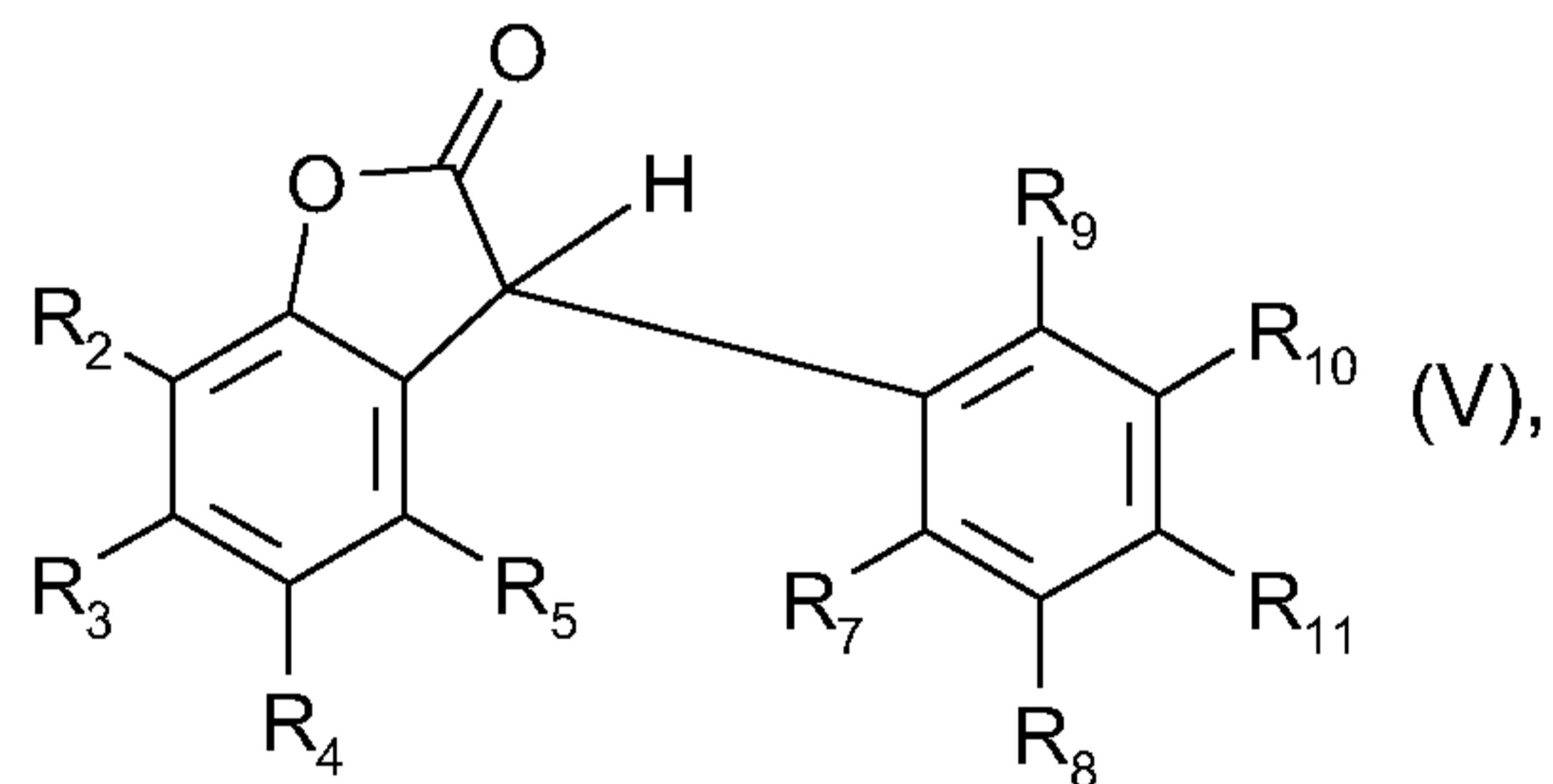
Of special interest is a composition containing at least one compound of the formula I in
25 which R₃ and R₅ are hydrogen.

Of very special interest is composition containing at least one compound of the formula I in
which

R₂ is C₁-C₄alkyl,

R₃ is hydrogen,

R₄ is C₁-C₄alkyl or, if R₆ is hydrogen, R₄ is additionally a radical of the formula III,


R₅ is hydrogen, and

R₁₆ and R₁₇, together with the C atom to which they are attached, form a cyclohexylidene

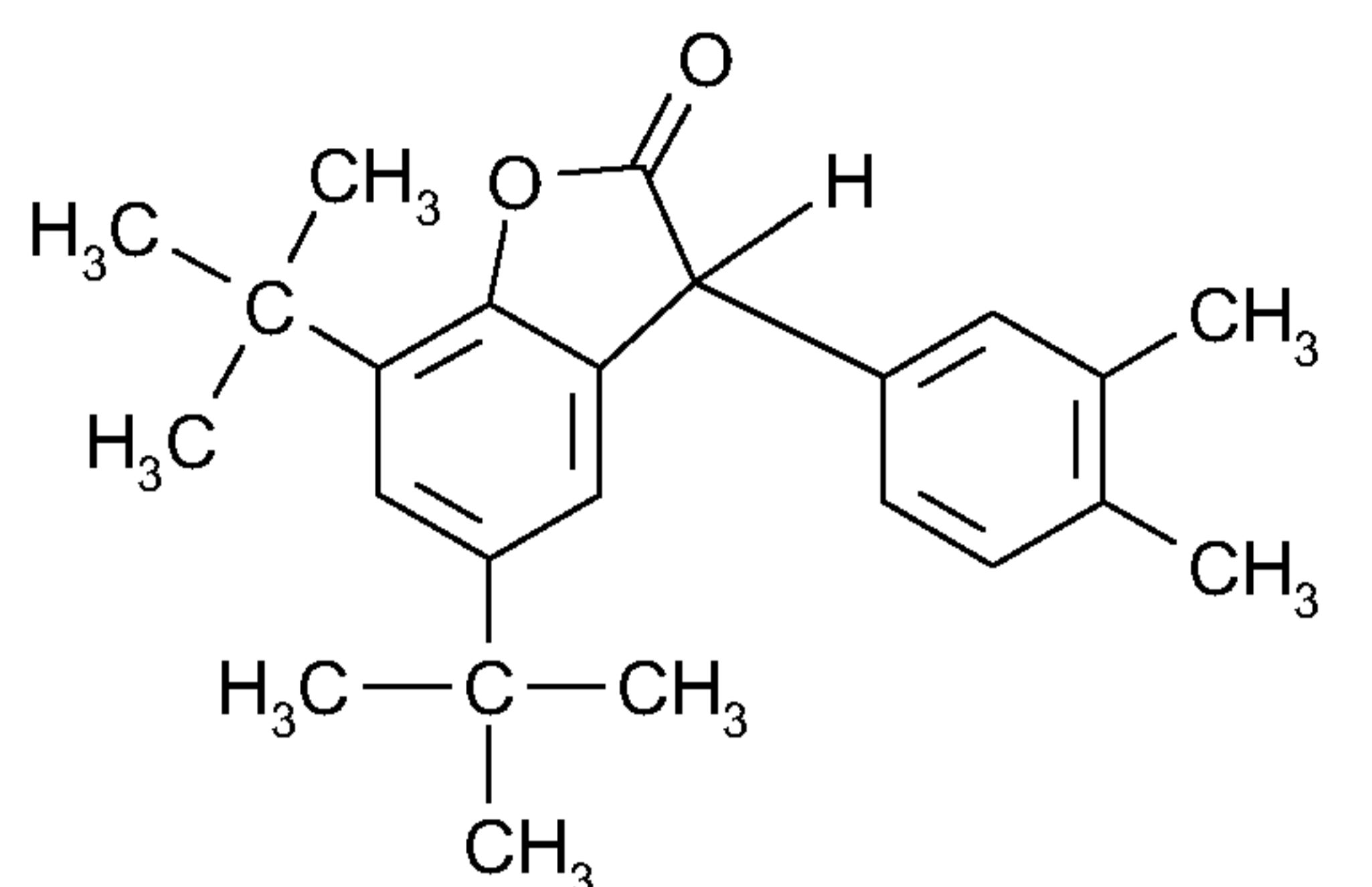
5 ring.

The following compounds are examples of the benzofuran-2-one type which are particularly suitable in the composition of the invention: 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butylbenzofuran-2-one; 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one; 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one]; 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one; 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butylbenzofuran-2-one; 3-(3,5-dimethyl-4-pivaloyloxy-phenyl)-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-phenylbenzofuran-2-one; 5,7-di-tert-butyl-3-(3,4-dimethylphenyl)-benzofuran-2-one; 5,7-di-tert-butyl-3-(2,3-dimethylphenyl)benzofuran-2-one.

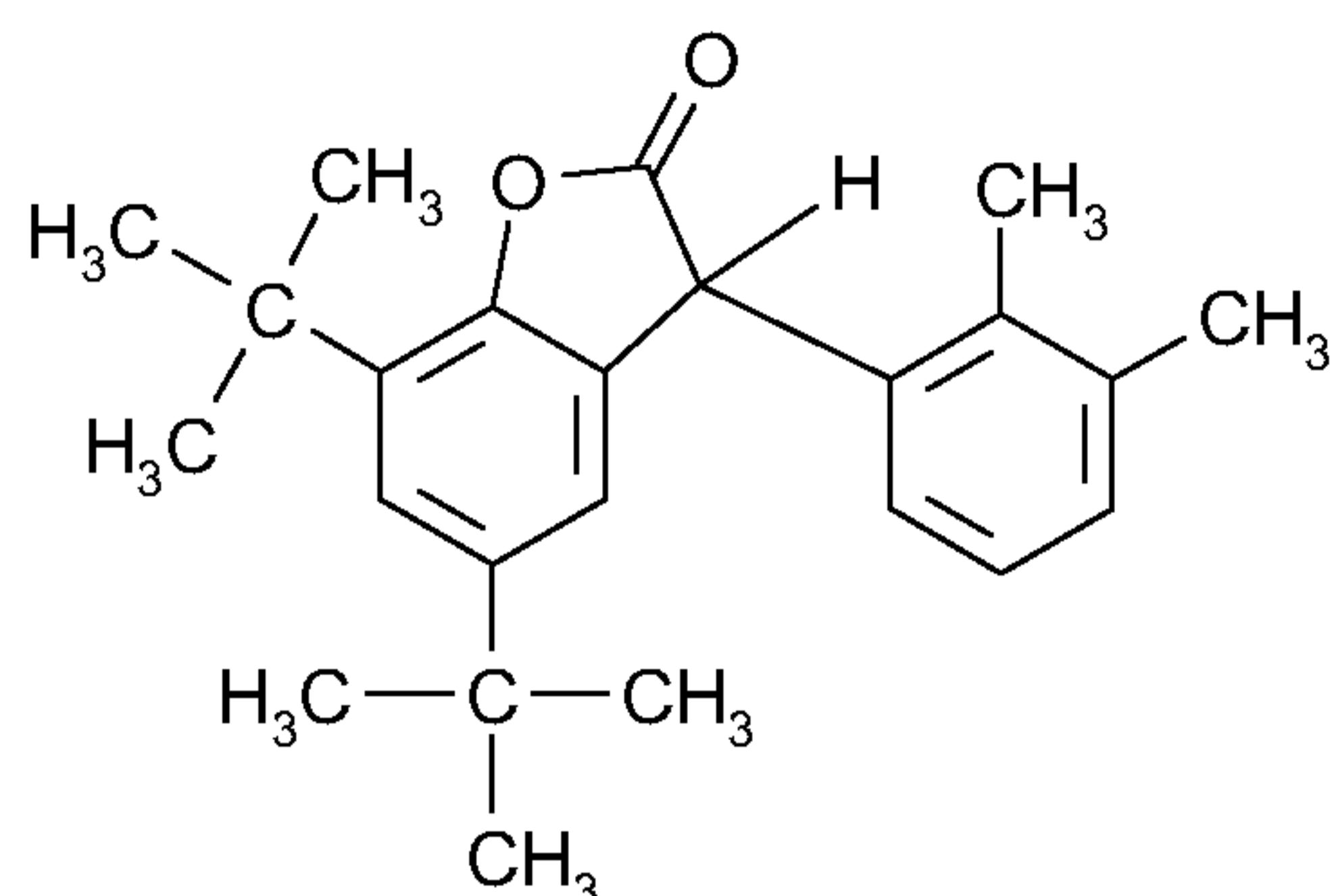
Also of special interest is a composition containing at least one compound of the formula V

in which

R₂ is hydrogen or C₁-C₆alkyl,

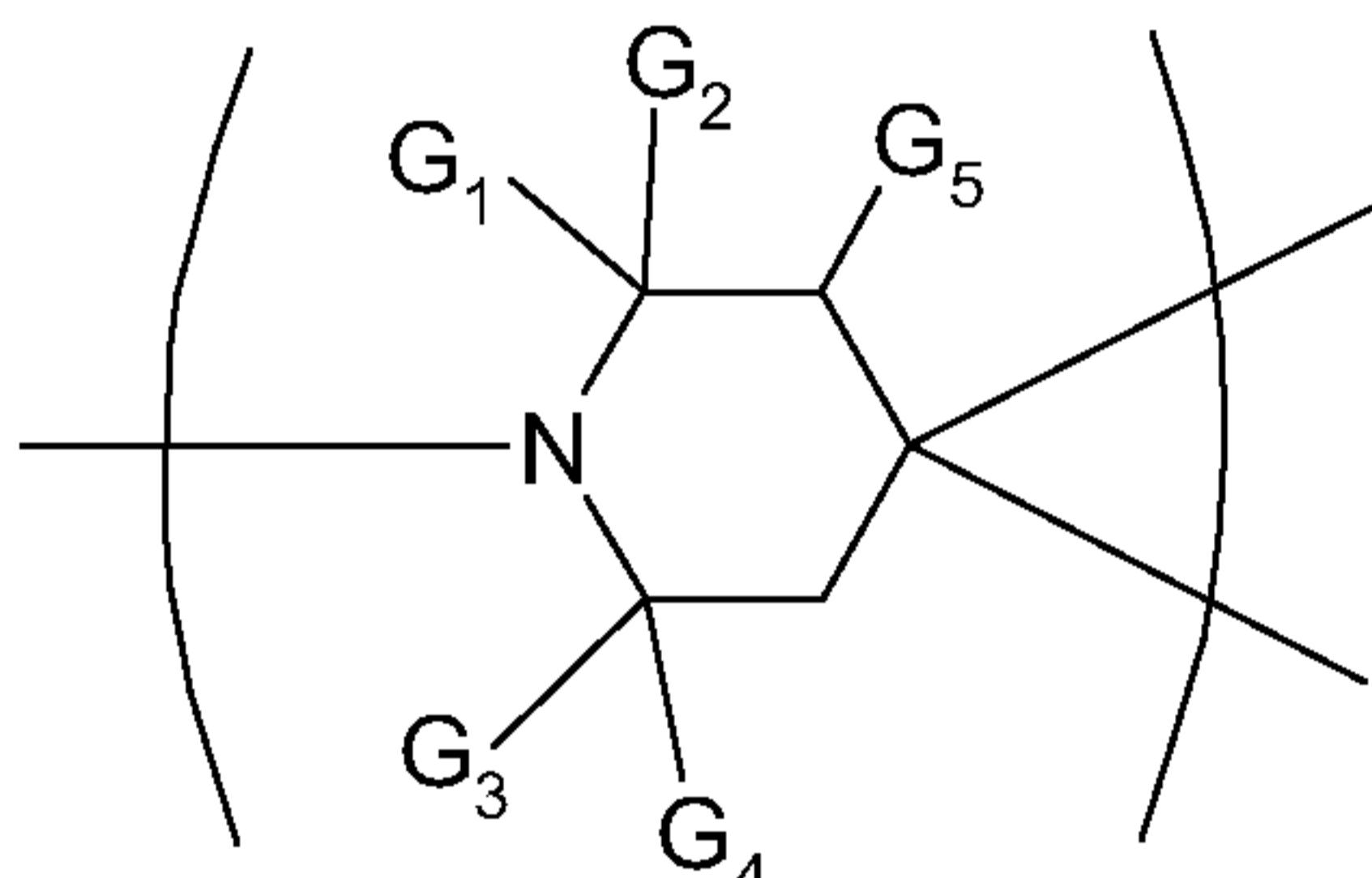

R₃ is hydrogen,

R₄ is hydrogen or C₁-C₆alkyl,


20 R₅ is hydrogen,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy, with the proviso that at least two of the radicals R₇, R₈, R₉, R₁₀ or R₁₁ are hydrogen.

Very particular preference is given to a composition containing at least one compound of the formula Va or Vb


(Va)

(Vb)

or a mixture of the two compounds of the formula Va and Vb.

The sterically hindered amine stabilizers contain at least one moiety of formula

5

where G_1 , G_2 , G_3 , G_4 and G_5 are independently alkyl of 1 to 8 C-atoms or G_1 and G_2 or G_3 and G_4 together are pentamethylene.

The hindered amines are disclosed for example in U.S. Pat. Nos. 5,004,770, 5,204,473, 5,096,950, 5,300,544, 5,112,890, 5,124,378, 5,145,893, 5,216,156, 5,844,026, 5,980,783, 6,046,304, 6,117,995, 6,271,377, 6,297,299, 6,392,041, 6,376,584 and 6,472,456, and the published U.S. application Nos. 09/714,717, filed Nov. 16, 2000 and 10/485,377, filed August 6, 2002.

U.S. Pat. Nos. 6,271,377, 6,392,041 and 6,376,584, cited above disclose hindered hydroxalkoxyamine stabilizers.

15 Suitable hindered amines include for example:

- 1) 1-cyclohexyloxy-2,2,6,6-tetramethyl-4-octadecylaminopiperidine,
- 2) bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
- 3) bis(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,

- 20 -

- 4) bis(1,2,2,6,6-pentamethyl-4-yl) sebacate,
- 5) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
- 6) bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate;
- 7) bis(1-acyl-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
- 5 8) bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malonate
- 9) 2,4-bis[(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6-(2-hydroxyethylamino-s-triazine,
- 10 10) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
- 11) 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine,
- 12) 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine,
- 13) 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethylpiperidine,
- 14) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine,
- 15 15) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
- 16) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
- 17) 2,4-bis{N-[1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-butylamino}-6-(2-hydroxyethylamino)-s-triazine,
- 18) 4-benzoyl-2,2,6,6-tetramethylpiperidine,
- 19) di-(1,2,2,6,6-pentamethylpiperidin-4-yl) p-methoxybenzylidenemalonate,
- 20 20) 4-stearyloxy-2,2,6,6-tetramethylpiperidine,
- 21) bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) succinate,
- 22) 1,2,2,6,6-pentamethyl-4-aminopiperidine,
- 23) 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane,
- 24) tris(2,2,6,6-tetramethyl-4-piperidyl) nitrilotriacetate,
- 25 25) tris(2-hydroxy-3-(amino-(2,2,6,6-tetramethylpiperidin-4-yl)propyl) nitrilotriacetate,
- 26) tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
- 27) tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
- 28) 1,1'-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazinone),

29) 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione,

30) 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione,

31) 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dione,

32) 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione,

5 33) N,N'-bis-formyl-N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine,

34) the reaction product of 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine with N,N'-bis(3-aminopropyl)ethylenediamine),

35) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid,

10 36) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine,

37) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine,

15 38) linear or cyclic condensates of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,

39) linear or cyclic condensates of N,N'-bis-(1,2,2,6,6-pentamethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,

40) the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane,

20 41) the condensate of 2-chloro-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane,

42) a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxo-spiro [4,5]decane and epichlorohydrin,

25 43) poly[methyl,(3-oxy-(2,2,6,6-tetramethylpiperidin-4-yl)propyl)] siloxane,
CAS#182635-99-0,

44) reaction product of maleic acid anhydride-C₁₈-C₂₂- α -olefin-copolymer with 2,2,6,6-tetramethyl-4-aminopiperidine,

45) the oligomeric compound which is the condensation product of 4,4'-hexamethylenebis(amino-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(2,2,6,6-tetramethyl-

piperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

46) the oligomeric compound which is the condensation product of 4,4'-hexamethylenebis(amino-1,2,2,6,6-pentaamethylpiperidine) and 2,4-dichloro-6-[(1,2,2,6,6-pentaamethylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

47) the oligomeric compound which is the condensation product of 4,4'-hexamethylenebis(amino-1-propoxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(1-propoxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

48) the oligomeric compound which is the condensation product of 4,4'-hexamethylenebis(amino-1-acyloxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(1-acyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine and

49) product obtained by reacting a product, obtained by reacting 1,2-bis(3-aminopropylamino)ethane with cyanuric chloride, with (2,2,6,6-tetramethylpiperidin-4-yl)butylamine.

Also included are the sterically hindered N-H, N-methyl, N-methoxy, N-propoxy, N-octyloxy, N-cyclohexyloxy, N-acyloxy and N-(2-hydroxy-2-methylpropoxy) analogues of any of the above mentioned compounds. For example, replacing an N-H hindered amine with an N-methyl hindered amine would be employing the N-methyl analogue in place of the N-H.

The hindered phenolic antioxidants are for example

1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-di-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α -methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1-methylundec-1-yl)phenol, 2,4-dimethyl-6-(1-methylheptadec-1-yl)phenol, 2,4-dimethyl-6-(1-methyltridec-1-yl)phenol and mixtures thereof.

1.2. Alkylthiomethylphenols, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-diocetylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.

1.3. Hydroquinones and alkylated hydroquinones, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis-(3,5-di-tert-butyl-4-hydroxyphenyl) adipate.

5

1.4. Tocopherols, for example α -tocopherol, β -tocopherol, γ -tocopherol, δ -tocopherol and mixtures thereof (Vitamin E).

1.5. Hydroxylated thiodiphenyl ethers, for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis-(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)disulphide.

10

1.6. Alkylidenebisphenols, for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-(α -methylcyclohexyl)-phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(α -methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-(α , α -dimethylbenzyl)-4-nonylphenol], 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3-tert-butyl-4-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadiene, bis[2-(3'tert-butyl-2-hydroxy-5-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1,1-bis-(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis-(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis-(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.

15

1.7. Benzyl compounds, for example 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine,

20

25

30

1,3,5-tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, di-(3,5-di-tert-butyl-4-hydroxybenzyl) sulphide, 3,5-di-tert-butyl-4-hydroxybenzyl-mercapto-acetic acid isoocetyl ester, bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithiol terephthalate, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) iso-

cyanurate, 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid dioctadecyl ester and 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid monoethyl ester, calcium-salt.

1.8. Hydroxybenzylated malonates, for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonate, di-5 dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.

1.9. Aromatic hydroxybenzyl compounds, for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.

10 1.10. Triazine compounds, for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate.

20 1.11. Benzylphosphonates, for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.

1.12. Acylaminophenols, for example 4-hydroxy-lauric acid anilide, 4-hydroxy-stearic acid anilide, 2,4-bis-octylmercapto-6-(3,5-tert-butyl-4-hydroxyanilino)-s-triazine and octyl-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamate.

25 1.13. Esters of β -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, 30 trimethylolpropane, 4-hydroxymethyl-1-phospho-2,6,7-trioxabicyclo[2.2.2]octane.

1.14. Esters of β -(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, di-

ethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.15. Esters of β -(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric

5 alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

10 1.16. Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

15 1.17. Amides of β -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid e.g. N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazide, N,N'-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamide (Nau-

20 gard[®]XL-1 supplied by Uniroyal).

Each of the 3-arylbenzofuranone and hindered amine light stabilizers, and the optional phenolic antioxidant, are employed at levels of about 5 ppm to about 5000 ppm, for example from about 50 ppm to about 5000 ppm, for example from about 100 to about 5000 ppm by weight, based on the weight of the biodiesel fuel. For example, each of the additives are present from about 150 to about 4000 ppm, from about 200 to about 3000 ppm, or from about 250 to about 2500 ppm by weight, based on the weight of the biodiesel fuel. In certain instances, the levels may be as high as about 1%, about 2% or about 3% by weight, based on the weight of the biodiesel fuel.

The stabilized biodiesel fuels exhibit increased storage stability vs. unstabilized samples.

30 Degradation of biodiesel fuels under the conditions of heat, light or oxygen is observed by the formation of carboxylic acids, peroxides, aldehydes and alcohols.

Examples

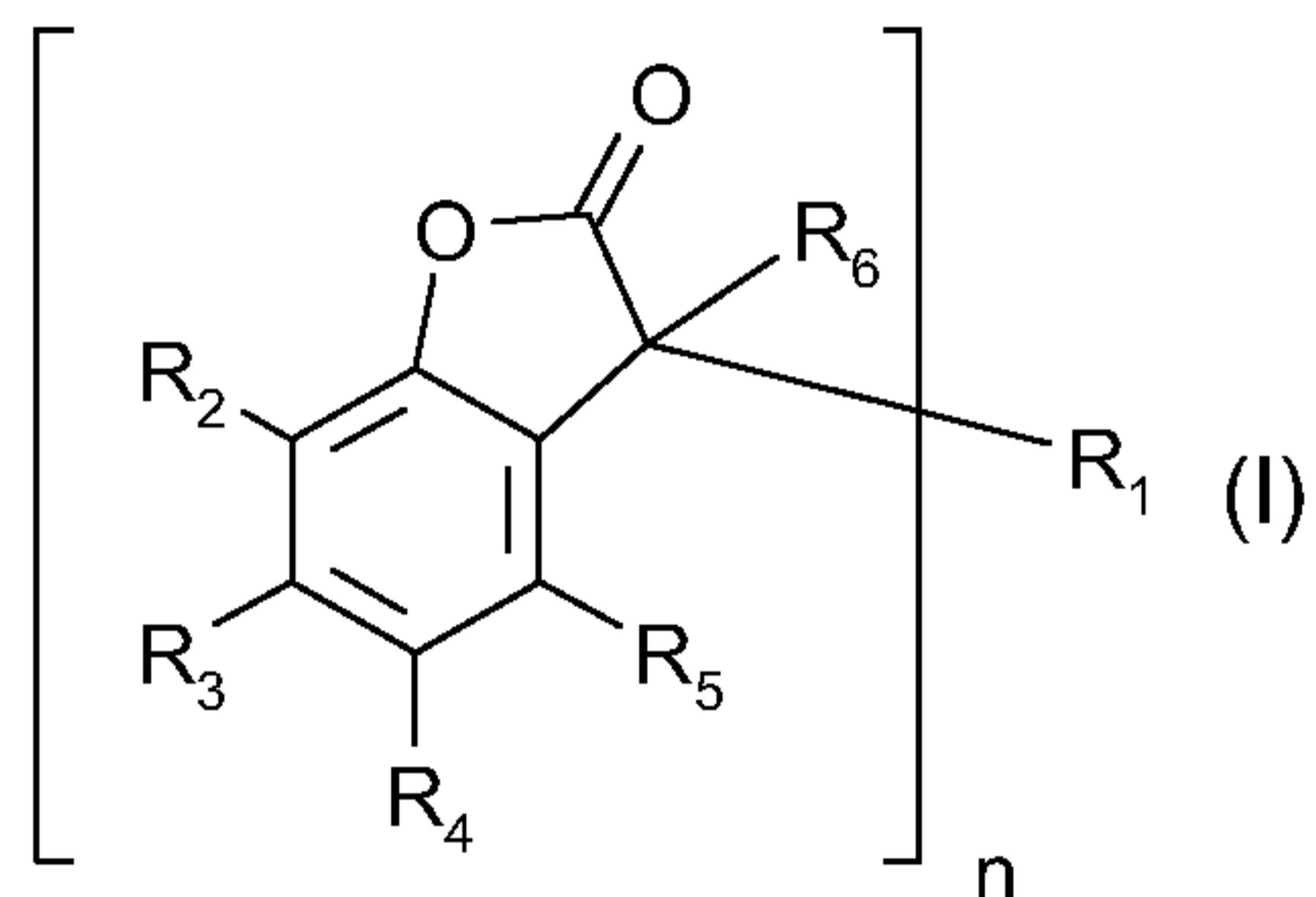
The Rancimat test, developed by the food industry, is employed to test the oxidative stability of soy biodiesel (methyl ester of soy fatty acid). A 3.0 g sample of soy biodiesel is held at 111.7°C and exposed to a bubbling stream of air (10 liter per hour). The sample vessel is vented to a secondary container, where the off-gases are bubbled through 60 ml of distilled water. The test measures the volatile oxidation decomposition products such as peroxides, alcohols, aldehydes and carboxylic acids. The volatile decomposition products (chiefly formic acid) are swept through the sample vessel and vented into the secondary container where they are trapped by the distilled water. The conductivity of the water is constantly monitored as a function of time through use of an electrode. The inflection point (not a specific value) of the conductivity curve is the measured induction time. It should be pointed out that some samples will be highly conductive before the inflection point is achieved, while others will only be slightly conductive. An increase of the induction time indicates an increase in oxidative stability. Results are in the table below. Levels of additive are in weight percent based on the weight of the biodiesel.

15 Rancimat Induction Time

<u>sample</u>	<u>additive</u>	<u>Induction Time (hours)</u>
1 (control)	none	5.0
2	250 ppm A	6.6
3	2500 ppm A	8.8
4	2500 ppm B	12.7

Additive A is bis-(1,1,2,2,6,6-pentamethyl-4-piperidyl) sebacate; B is 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one. A 6 hour induction time is necessary to meet the EN 14214 specification.

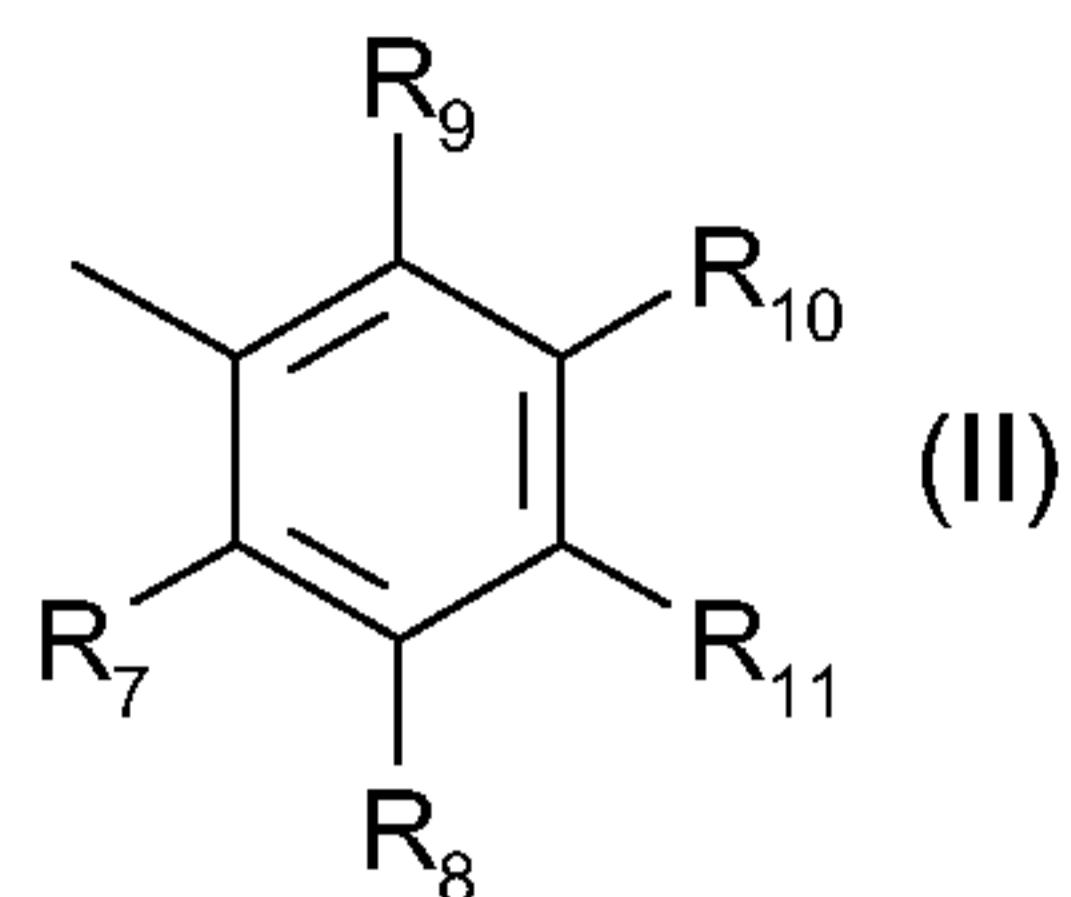
Claims


1. A biodiesel fuel composition stabilized against the deleterious effects of heat, light and oxygen, which composition comprises

A biodiesel fuel and

5 An effective stabilizing amount of one or more additives selected from the group consisting of the 3-arylbenzofuranone stabilizers and the hindered amine light stabilizers and

Optionally, one or more additives selected from the group consisting of the hindered phenolic antioxidants.

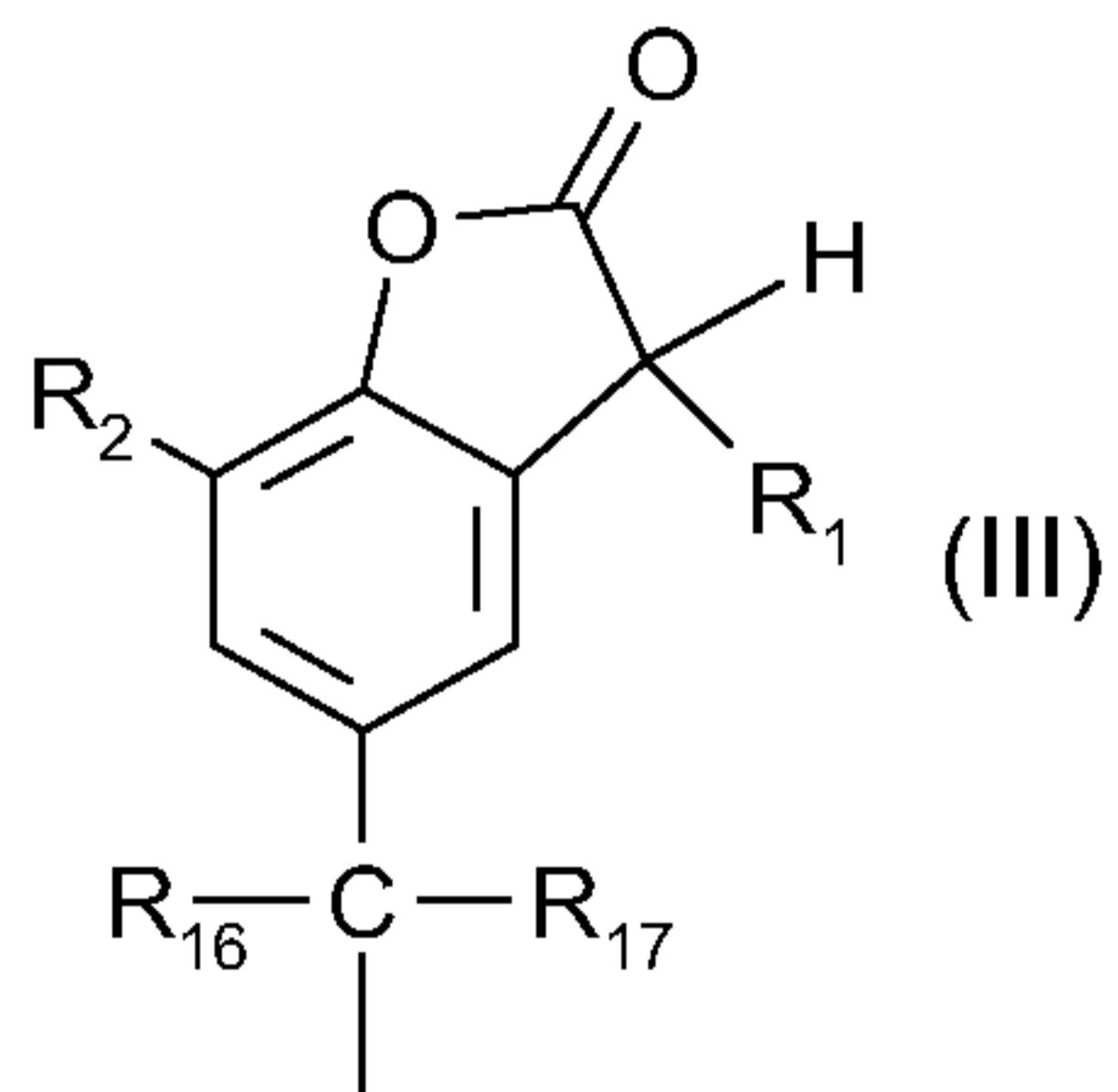

10 2. A composition according to claim 1 comprising one or more 3-arylbenzofuranone stabilizers of formula I

in which, if n is 1,

15 R₁ is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, 20 phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoazinyl, or any of these carbocyclic or heterocyclic groups substituted by C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino; or R₁ is a radical of the formula II

- 28 -

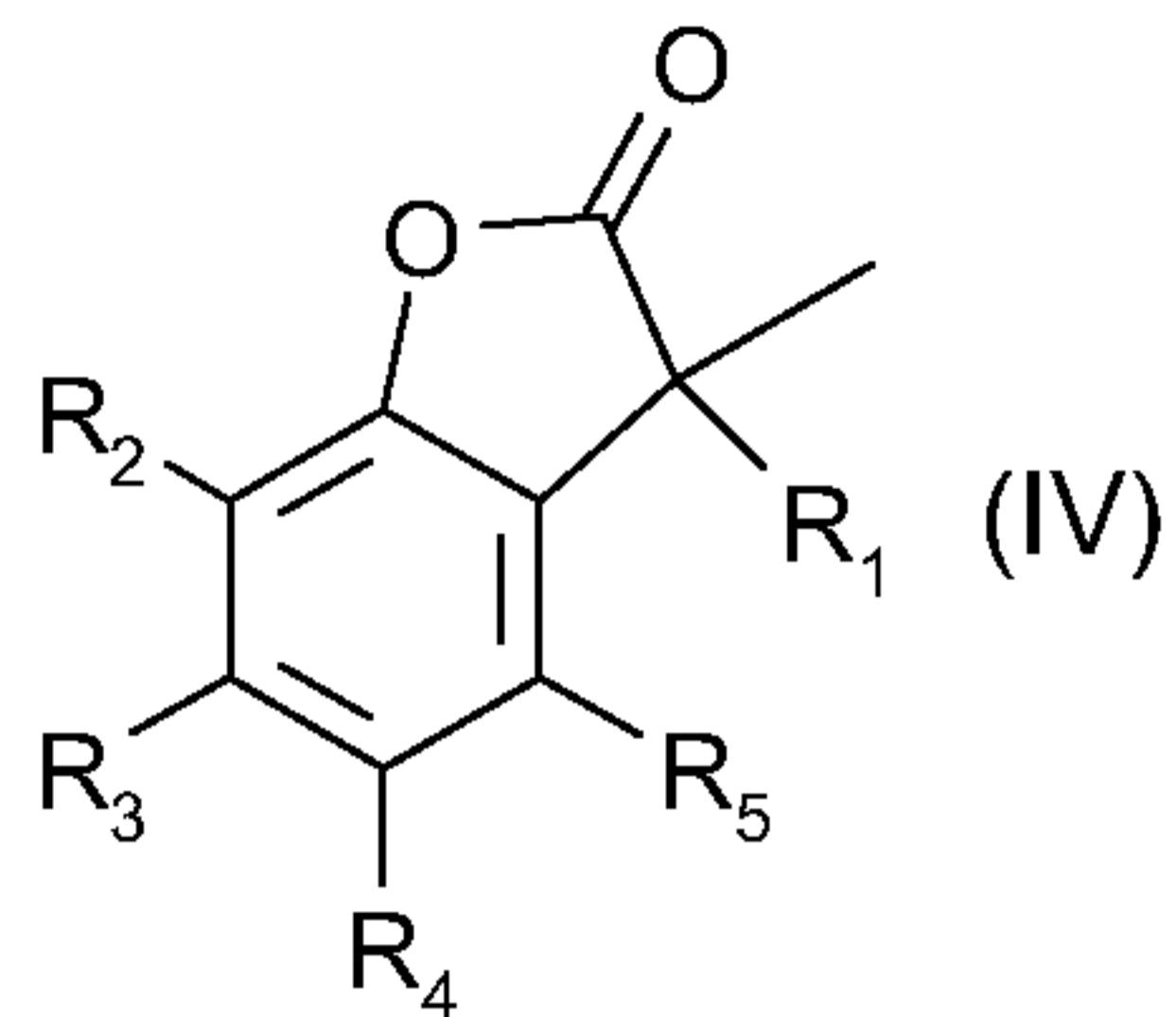
and


if n is 2,

R₁ is unsubstituted or C₁-C₄alkyl- or hydroxy-substituted phenylene or naphthylene; or is
5 -R₁₂-X-R₁₃-,

R₂, R₃, R₄ and R₅ independently of one another are hydrogen, chlorine, hydroxyl, C₁-C₂₅alkyl, C₇-C₉phenylalkyl, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; C₁-C₁₈alkoxy, C₁-C₁₈alkylthio, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₂₅alkanoyloxy, C₁-C₂₅alkanoylamino, C₃-C₂₅alkenoyloxy,

10 C₃-C₂₅alkanoyloxy which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N} - \text{R}_{14}$; C₆-C₉cycloalkyl-carbonyloxy, benzyloxy or


C₁-C₁₂alkyl-substituted benzyloxy; or, in the alternative, the radicals R₂ and R₃ or the radicals R₃ and R₄ or the radicals R₄ and R₅, together with the C-atoms to which they are attached, form a benzo ring, R₄ is additionally -(CH₂)_p-COR₁₅ or -(CH₂)_qOH or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of the formula III

in which R₁ is defined as indicated above for n = 1,

R₆ is hydrogen or a radical of the formula IV

- 29 -

where R_4 is other a radical of the formula III and R_1 is defined as indicated above for $n = 1$,

R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl,

$C_1\text{-}C_{25}\text{alkyl}$, $C_2\text{-}C_{25}\text{alkyl}$ interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_1\text{-}C_{25}\text{alkoxy}$,

5 $C_2\text{-}C_{25}\text{alkoxy}$ interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_1\text{-}C_{25}\text{alkylthio}$, $C_3\text{-}C_{25}\text{alkenyl}$,

$C_3\text{-}C_{25}\text{alkenyloxy}$, $C_3\text{-}C_{25}\text{alkynyl}$, $C_3\text{-}C_{25}\text{alkynyloxy}$, $C_7\text{-}C_9\text{phenylalkyl}$, $C_7\text{-}C_9\text{phenylalkoxy}$, un-substituted or $C_1\text{-}C_4\text{alkyl}$ -substituted phenyl; un-substituted or $C_1\text{-}C_4\text{alkyl}$ -substituted phenoxy; un-substituted or $C_1\text{-}C_4\text{alkyl}$ -substituted $C_5\text{-}C_8\text{cycloalkyl}$; un-substituted or $C_1\text{-}C_4\text{alkyl}$ -substituted $C_5\text{-}C_8\text{cycloalkoxy}$; $C_1\text{-}C_4\text{alkylamino}$, di($C_1\text{-}C_4\text{alkyl}$)amino, $C_1\text{-}C_{25}\text{alkanoyl}$, $C_3\text{-}C_{25}\text{alkanoyl}$

10 interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_1\text{-}C_{25}\text{alkanoyloxy}$, $C_3\text{-}C_{25}\text{alkanoyloxy}$ interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_1\text{-}C_{25}\text{alkanoylamino}$, $C_3\text{-}C_{25}\text{alkenoyl}$, $C_3\text{-}$

$C_{25}\text{alkenoyl}$ interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_3\text{-}C_{25}\text{alkenoyloxy}$, $C_3\text{-}$

$C_{25}\text{alkenoyloxy}$ interrupted by oxygen, sulphur or $\text{>N}-\text{R}_{14}$; $C_6\text{-}C_9\text{cycloalkylcarbonyl}$, $C_6\text{-}$

$C_9\text{cycloalkylcarbonyloxy}$, benzoyl or $C_1\text{-}C_{12}\text{alkyl}$ -substituted benzoyl; benzoyloxy or $C_1\text{-}$

15 $C_{12}\text{alkyl}$ -substituted benzoyloxy; $\text{---O---C}(\text{R}_{18})\text{---C}(=\text{O})\text{---R}_{15}$ or $\text{---O---C}(\text{R}_{20})\text{---C}(\text{R}_{21})\text{---O---R}_{23}$, or
 $\text{---O---C}(\text{R}_{19})\text{---C}(=\text{O})\text{---R}_{15}$ or $\text{---O---C}(\text{H})\text{---C}(\text{R}_{22})\text{---O---R}_{23}$

else, in formula II, the radicals R_7 and R_8 or the radicals R_8 and R_{11} , together with the C-atoms to which they are attached, form a benzo ring,

R_{12} and R_{13} independently of one another are un-substituted or $C_1\text{-}C_4\text{alkyl}$ -substituted phenylene or naphthylene,

- 30 -

R₁₄ is hydrogen or C₁-C₈alkyl,

R₁₅ is hydroxyl, $\left[-O^{-} \frac{1}{r} M^{r+}\right]$, C₁-C₁₈alkoxy or $\begin{array}{c} R_{24} \\ | \\ -N- \\ | \\ R_{25} \end{array}$,

R₁₆ and R₁₇ independently of one another are hydrogen, CF₃, C₁-C₁₂alkyl or phenyl, or R₁₆ and R₁₇, together with the C atom to which they are attached, form a C₅-C₈cycloalkylidene

5 ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl;

R₁₈ and R₁₉ independently of one another are hydrogen, C₁-C₄alkyl or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

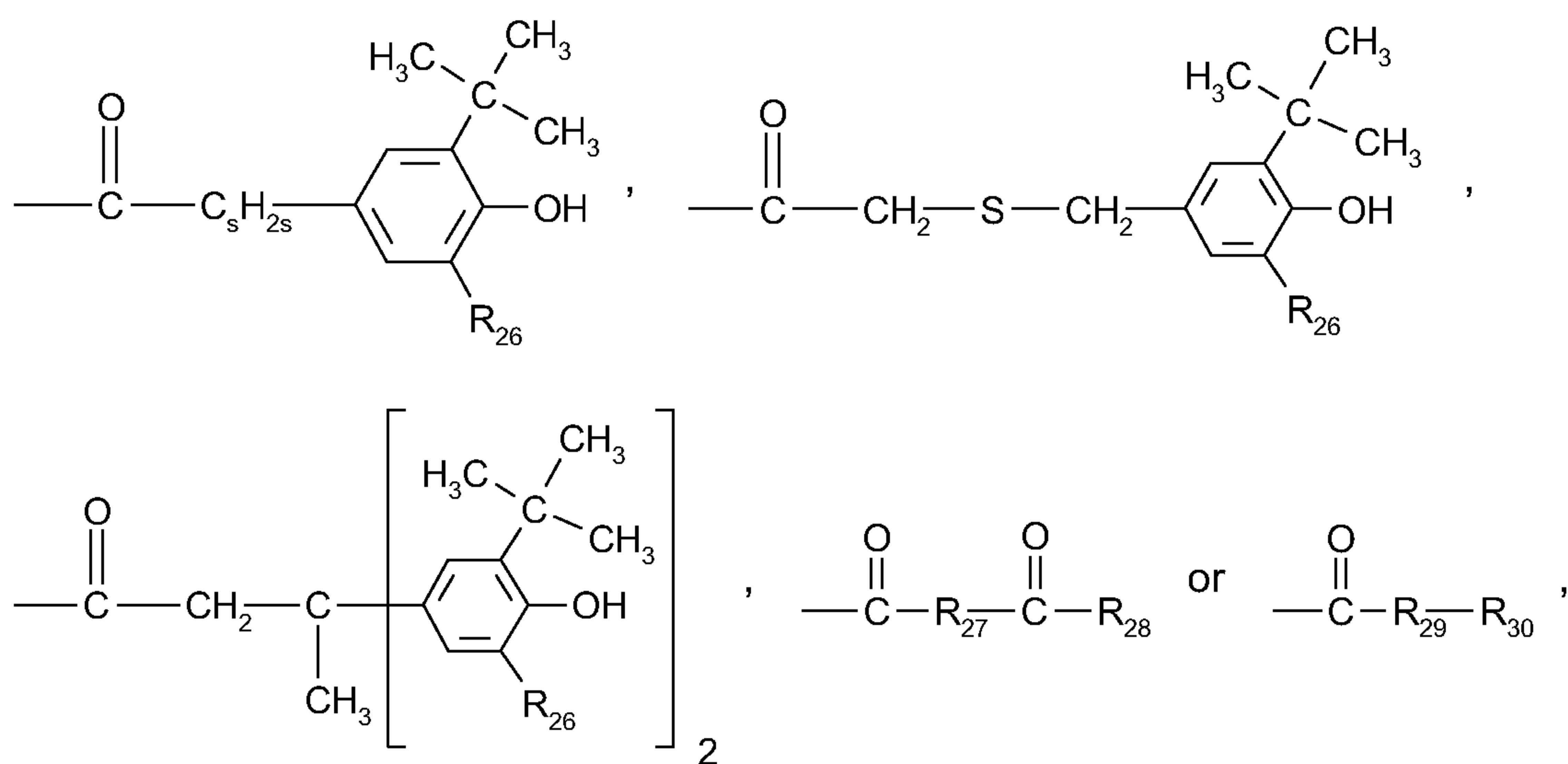
R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl, C₂-C₂₅alkyl inter-

rupted by oxygen, sulphur or $\begin{array}{c} > \\ > \\ N-R_{14} \end{array}$; C₇-C₉phenylalkyl which is unsubstituted or

10 substituted on the phenyl radical by 1-3 C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the phenyl radical by 1-3 C₁-C₄alkyl and interrupted by oxygen, sulphur or

$\begin{array}{c} > \\ > \\ N-R_{14} \end{array}$, or, in the alternative, the radicals R₂₀ and R₂₁, together with the C-atoms to

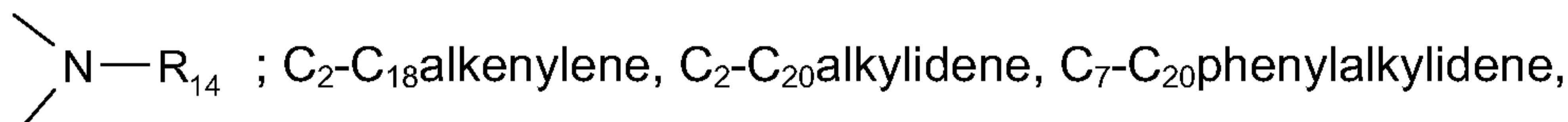
which they are attached, form a C₅-C₁₂cycloalkylene ring which is unsubstituted or substituted by 1-3 C₁-C₄alkyl;


15 R₂₂ is hydrogen or C₁-C₄alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl, C₃-C₂₅alkanoyl interrupted by oxygen, sul-

phur or $\begin{array}{c} > \\ > \\ N-R_{14} \end{array}$; C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;


- 31 -

R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₈alkyl,

R₂₆ is hydrogen or C₁-C₈alkyl,

5 R₂₇ is a direct bond, C₁-C₁₈alkylene, C₂-C₁₈alkylene interrupted by oxygen, sulphur or

C₅-C₈cycloalkylene, C₇-C₈bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted phenylene,

or or ,

R₂₈ is hydroxyl, $\left[-O^{-} \frac{1}{r} M^{r+}\right]$, C₁-C₁₈alkoxy or

10 R₂₉ is oxygen, -NH- or

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

X is a direct bond, oxygen, sulphur or -NR₃₁-,

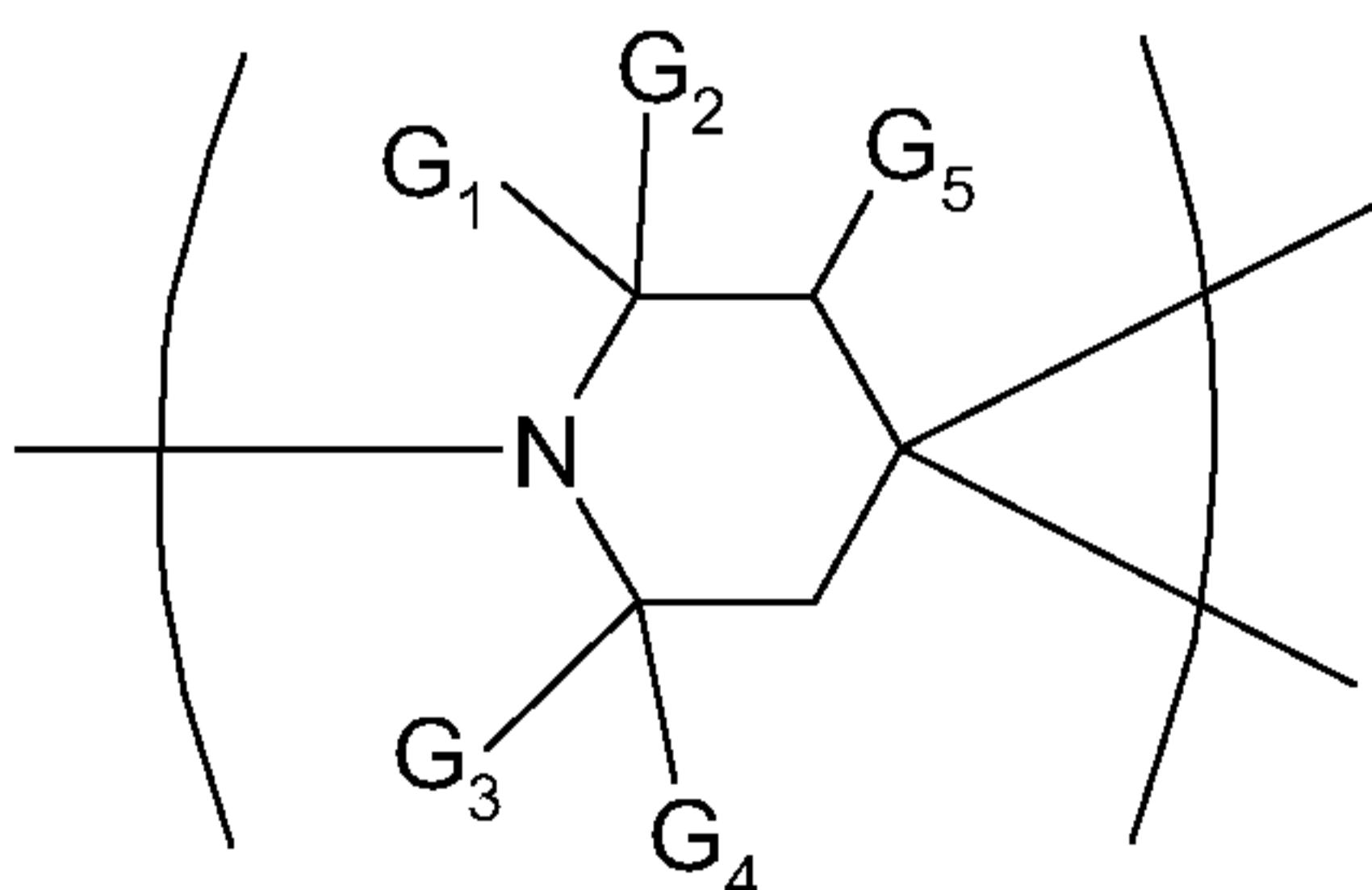
15 n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2.


5 3. A composition according to claim 2 wherein the 3-arylbenzofuranones are of formula I
 wherein n = 1, R₁ is phenyl which is unsubstituted or substituted in para-position by
 C₁-C₁₈alkylthio or di(C₁-C₄alkyl)amino; mono- to penta-substituted alkyphenyl containing to-
 gether a total of at most 18 C-atoms in the 1 to 5 alkyl substituents; naphthyl, biphenyl, ter-
 phenyl, phenanthryl, anthryl, fluorenyl, carbazolyl, thienyl, pyrrolyl, phenothiazinyl or 5,6,7,8-
 10 tetrahydronaphthyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy,
 C₁-C₄alkylthio, hydroxy or amino.

4. A composition according to claim 2 wherein the 3-arylbenzofuranones are of formula I
 wherein n is 2, R₁ is -R₁₂-X-R₁₃-, R₁₂ and R₁₃ are phenylene, X is oxygen or -NR₃₁-, and R₃₁ is
 C₁-C₄alkyl.

15 5. A composition according to claim 2 wherein the 3-arylbenzofuranones are selected from
 the group consisting of 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one; 5,7-
 di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one;
 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one]; 5,7-di-tert-butyl-3-
 (4-ethoxyphenyl)benzofuran-2-one; 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butylbenzo-
 20 furan-2-one; 3-(3,5-dimethyl-4-pivaloyloxy-phenyl)-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-
 tert-butyl-3-phenylbenzofuran-2-one; 5,7-di-tert-butyl-3-(3,4-dimethylphenyl)-benzofuran-2-
 one and 5,7-di-tert-butyl-3-(2,3-dimethylphenyl)-benzofuran-2-one.

6. A composition according to claim 1 comprising one or more hindered amine light stabiliz-
 ers that contain at least one moiety of formula

25

where G_1 , G_2 , G_3 , G_4 and G_5 are independently alkyl of 1 to 8 C-atoms or G_1 and G_2 or G_3 and G_4 together are pentamethylene.

7. A composition according to claim 6 where the hindered amine is an N-H, N-methyl, N-

methoxy, N-propoxy, N-octyloxy, N-cyclohexyloxy, N-acyloxy or an N-(2-hydroxy-2-methyl-

5 propoxy) substituted amine.

8. A composition according to claim 1 comprising one or more hindered amine light stabilizers and one or more hindered phenolic antioxidants.

9. A composition according to claim 8, where the hindered phenolic antioxidants are selected from the group consisting of butylated hydroxytoluene, butylated hydroxyanisole, tocopherol,

10 benzylphosphonates, esters of β -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of β -(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, esters of β -(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols and esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols.

15 10. A process for the stabilization of a biodiesel fuel against the deleterious effects of heat, light and oxygen, which process comprise incorporating into a biodiesel fuel an effective stabilizing amount of one or more additives selected from the group consisting of the 3-arylbenzofuranone stabilizers and the hindered amine light stabilizers and optionally, one or more additives selected from the group consisting of the hindered phenolic antioxidants.