PATENTOVÝ SPIS

<table>
<thead>
<tr>
<th>Číslo přihlášky:</th>
<th>2003-2685</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přihlášeno:</td>
<td>18.04.2002</td>
</tr>
<tr>
<td>Právo přednosti:</td>
<td>18.04.2001 US 2001 284458</td>
</tr>
<tr>
<td>Zveřejněno:</td>
<td>16.06.2004</td>
</tr>
<tr>
<td>Uděleno:</td>
<td>03.06.2015</td>
</tr>
<tr>
<td>Oznámení o udělení ve věstníku:</td>
<td>15.07.2015</td>
</tr>
<tr>
<td>PCT číslo:</td>
<td>PCT/CA2002/000535</td>
</tr>
<tr>
<td>PCT číslo zveřejnění:</td>
<td>WO 2002/083120</td>
</tr>
</tbody>
</table>

Číslo dokumentu: 305 273

Druh dokumentu: B6

Int. Cl.:
- A61K 31/20 (2006.01)
- A61K 31/23 (2006.01)
- A61K 31/25 (2006.01)
- A61K 31/26 (2006.01)
- A61K 31/10 (2006.01)
- A61K 31/114 (2006.01)
- A61P 31/00 (2006.01)
- A61P 35/00 (2006.01)
- A61P 31/00 (2006.01)
- A61P 17/02 (2006.01)
- A61P 7/00 (2006.01)
- A61P 7/09 (2006.01)
- A61P 08/19 (2006.01)
- A61P 31/02 (2006.01)
- A61P 31/04 (2006.01)
- A61K 31/10 (2006.01)
- A61K 34/00 (2006.01)
- A61P 35/02 (2006.01)
- A61K 45/06 (2006.01)
- A61K 45/20 (2006.01)
- C1N 217222 (2006.01)
- C1N 233472 (2006.01)
- C1N 06/00 (2006.01)

Relevantní dokumenty:
WO 99/26640; WO 95/30413; WO 89/02275; WO 01/95914

Majitel patentu:
PROMETIC BIOSCIENCES INC., Montreal, Quebec H4P 2R2, CA

Původce:
Lyne Gagnon, Laval, Quebec H7M 3E5, CA
Jean Barabe, Montreal, Quebec H1X 3J1, CA
Pierre Laurin, Montreal, Quebec H2M 2M9, CA
Christopher Penney, Pierrifonds, Quebec H8Z 3K7, CA
Boulos Zacharie, Laval, Quebec H7P 5Y3, CA

Zástupce:
Mgr. Martina Dvořáková, Mendlovo nám. 1a, 603 00 Brno

Název vynálezu:
Mastné kyseliny jako faktory aktivace a přežití neutrofilů

Anotace:
Použití kovových solí mastných kyselin pro výrobu léčiva k léčbě stavu vyvrženého z myelosuprese, poranění, transplantace kostní děleně a neutropenie.
Mastné kyseliny jako faktory aktivace a přežití neutrofilů

Oblast techniky

Výnálež se týká prevence a/nebo léčby neutropenie. Tato prevence a léčba zahrnuje léčbu neutropenie, jež je spojena s použitím chemoterapie a radioterapie, dále léčbu neutropenie, jejíž původ je v infekcích, hematologických onemocněních a podvýživě. Výnálež se dále obecně týká snižování toxicity léčiv a zvyšování jejich účinnosti. Výnálež se zejména týká použití středně dlouhých mastných kyselin, jako například kyselina kaprinová, kyselina kaprylová nebo jejich solí nebo triglyceridů nebo jejich mono- nebo diglyceridů nebo jiných jejich analogů jako neutrofilních faktorů přežití a aktivačních faktorů nebo faktorů proliferace kmenových buněk kostní dřeně.

Dosavadní stav techniky

Chemoterapie používá cytotoxická činidla jako například, ale není omezeno na, cyklofosfamid, doxorubicin, daunorubicin, vinblastin, vinkristin, bleomycin, etoposid, topotekan, irinotecan, taxotere, taxol, 5-fluorouracil, metotrexát, gemcitabin, karboplatin nebo chlorambucil, pro ničení karcinogenních buněk a tumors. Tato činidla jsou však nespecifická a zejména ve vysokých dávkách toxická pro normální a rychle se dělící buňky. To vede často k různým vedlejším účinkům u pacientů, kteří podstupují chemoterapii a radioterapii. Jedním z vedlejších účinků je myelosuprese, závažné snížení továry krevních buněk v kostní dreně. Je pro něj charakteristická leukopenie, neutropenie a trombocytopenie. Závažná chronická neutropenie (idiopatická, cyklická a konogenitální) je také charakterizována selektivním úbytkem cirkulujících neutrofilů a zvýšením vnímavosti k bakteriálním infekcím.

Základem léčby rakoviny chemoterapeutickými léčivy je kombinace mechanismu cytotoxicity a mechanismu selekce rychle proliferujících tumorových buněk. Chemoterapeutická léčiva jsou však zřídka selektivní. Cytotoxicita chemoterapeutických činidel limituje podávané dávky, ovlivňuje léčebné cykly a vážně ohrožuje kvalitu života onkológieho pacienta.

stavu jsou náchylní k infekcím a často trpí poruchami srážlivosti krve, což vyžaduje hospitalizaci. Nedostatek neutrofilů a krevních destiček je hlavní přičinou chorob a úmrtí, které provázejí lečení rakoviny a přispívá k vysoké ceně léčby rakoviny. Za výše zmíněných podmínek může být použití jakéhokoli činidel, která umožňují zastavit apoptózu neutrofilů nebo stimulovat aktivaci a mobilizaci neutrofilů, terapeuticky cenné. Snaha obnovit pacientův imunitní systém po chemoterapii zahrnuje použití růstových faktorů krvevoryby pro stimulaci zbývajících kmenových buněk k proliferaci a diferenciaci, což vede k vytvoření zralých buněk bojujících s infekcí.

Při transplantaci kostní dřeně byl také využit jev, známý jako „mobilizace“ pro získání většího množství kmenových/progenitorových buněk z periferní krve. Tato metoda se dnes používá pro autologní nebo alogenní transplantace kostní dřeně. Růstové faktory se používají pro zvýšení množství periferních progenitorových kmenových buněk, které mají být získány před myeloablační terapií a infuzí progenitorových kmenových buněk.

Terapie následující po transplantaci kostní dřeně může také zahrnovat léčbu neutropenie. Takové terapie však vyžadují 10 až 15 dní léčby, kdy jsou pacienti citliví k infekci. Činidla schopná stimulovat kmenové buňky kostní dřeně mohou usnadnit a urychlit začlenění kmenových buněk a tak zkrátit neutropenické období, které následuje po transplantaci kostní dřeně.

Ačkoliv růstové faktory krvevoryby, jako například granulocyt-makrofág kolonie stimulující faktor (GM–CSF) a granulocyt kolonie stimulující faktor (G–CSF), se mohou v takových případech uplatnit, jejich použití je nákladné, protože musí být vyrobeny rekombinantní technologií. Taková post-terapeutická podpůrná léčba není nezbytná v případě, že je pacient „chemicky chráněn“ proti snížení imunity.

Je proto zapotřebí získat nové kompozice a způsoby snižování nežádoucích vedlejších účinků myelosupresivních stavů způsobených chemoterapií a radioterapií.

Podstata vynálezu

Stávající vynález vychází z poznatku, že určité soli jsou činidla chemické ochrany. Podle stávajícího vynálezu, sloučenina je použita pro výrobu léčiva k léčbě stavu vybraného z myelosuprese, poranění, transplantace kostní dřeně a neutropenie, kde sloučenina je súl vzorce

\[(R_1-CO-O)_nM\]

kde \(R_1\) je C2–C11 alkyl a M je kovový monokation \((n=1)\) nebo dikation \((n=2)\), s výhodou je M kation vápníku, hořčíku, draslíku nebo sodíku.

Dalšímu provedení podle vynálezu je použití sloučeniny, kde sloučenina je s výhodou kaprylát sodný, kaprínát sodný, kaprylát vápenatý, kaprínát vápenatý.

Ještě dalšímu provedení podle vynálezu je použití sloučeniny, kde M je monokation, s výhodou je sloučeninou kaprínát sodný.

Stávající vynález poskytuje prostředky pro léčbu myelosupresivních účinků chemoterapie a radioterapie a ještě jiných stavů, ve kterých stimulace hematopoetického systému může být tepautickou hodnotou jako takovou, ale není to omezeno na transplantaci kostní dřeně a chronické neutropenii, stejně tak i neutropenii vyplývající z infekcích, hematologických onemocnění, radioterapie a nedostatečně výživy. To napomáhá hematopoetickému systému čelícímu myelosupresi, přičemž dochází k vyššímu neutrofilního přezití a aktivaci, u pacientů, kteří podstupují takovouto léčbu.
Ještě dalším provedením vynálezu je přípravek obsahující sloučeninu podle vynálezu a lidský, kolonie stimulujiící faktor, pro současné nebo oddělené použití k léčbě stavů, jak jsou definovány výše. S výhodou je faktorem G-CSF nebo GM-CSF.

Ještě dalším provedením vynálezu je kompozice obsahující sloučeninu podle vynálezu a interleukín 15.

Vysoké dávky chemoterapie a radioterapie níčí hematopoetické buněčky v kostní dřeni, což způsobí pacientovi závažný pokles množství neutrofilů a krvních destiček. Po takové léčbě musí pacient strávit několik týdnů na jednotce intenzivní péče, aby byl ochráněn před infekcí a horčíkou, jež může být způsobena neutropenií. Trombocytopenie vede k pomalejšímu srážení krve a krvácivým poruchám, což vyžaduje transfuzii krvních destiček. Myelosuprese je faktor, který limituje dávkování při léčbě rakoviny a nedostatek neutrofilů a krvních destiček je hlavní příčinou morbidity a mortality po takové léčbě rakoviny.

Když se použije v chemoterapii a radioterapii, kompozice obsahující sůl se podá před, během a/nebo po léčbě, aby se zkrátilo neutropenické okno a zrychlilo se doplnění hematopoetického systému. Dále je možné použít kombinaci solí v řadě bodů, které se týkají léčby chemoterapie a radioterapie. Případně je možné podat kombinaci simultánně; před, během a/nebo po léčbě chemoterapii a radioterapii. Při těžké neutropenií použijte kompozice obsahující sůl, jako terapeutické činidlo. Při transplantaci kostní dřeně se použije sůl, aby se zvýšil počet periferních kmenových buněk dostupných pro transplantaci po ablační radioterapii nebo chemoterapii. Po transplantaci kostní dřeně může být také použita sůl, aby se stimulovaly kmenové buněčky kostní dřeně, tedy aby se zkrátila doba zotavování z neutropenie.

Vynálež je proto užitečný ke stimulaci hematopoiezy k léčbě myelosuprese, která vzniká při chemoterapii nebo radioterapii; chronické a přehodné neutropenie; neutropenie vyvoláni lékem; a neutropenie, která vzniká při hematologickém onemocnění, nedostatečné výživy, infekci a radioterapii. Přehodná neutropenie může vyvstát vlivem stresu z důvodu přepravy zvířete nebo cesťování lidí či zvířat. Použijte podle vynálezu je prospěšné při stimulaci hematopoiezy k léčbě poranění u pacienta a aby přivodila mobilizaci neutrofilů k usnadnění transplantace kostní dřeně u pacienta.

Jak je zde použit pojem „kompozice obsahující sůl“, který se týká kompozice obsahující uvedenou aktivní složku jeden nebo více farmaceuticky přijatelných nosičů.

Jak je zde použit pojem „farmaceuticky přijatelný nosič“, který se týká složky, která nepřekáží fyziologickým účinkům solí a která není toxická pro savce, včetně člověka.

Kompozice pro použití podle stávajícího vynálezu připravena za použití solí a farmaceuticky přijatelných nosičů postupy, které jsou odborník v dané oblasti známý (Merck Index, Merck&Co., Rahway, NJ). Tyto kompozice obsahují, ale nejsou omezeny na kapaliny, oleje, emulze, aerosolí, inhalační prostředky, tobolky, pilulky, náplasti a čípky.

Všechny postupy zahrnují krok vnesení aktivní složky (žek) do spojení s nosičem, který sevařím z jedné nebo více složek.

Je-li způsob podle vynálezu aplikován na chemoterapii, kyselina kaprinová nebo kyselina kaprylová nebo jejich soli nebo triglyceridy nebo mono- nebo diglyceridy nebo jiné jejich analogy nebo MCT kompozice mohou být podávány před, v průběhu a po skončení chemoterapie. (tj. před, v průběhu nebo po skončení podávání cytotoxického činidla).

„Cytotoxickým činidlem“ je minéno činidlo, které zabíjí vysoce prolifereující buňky, jako jsou například tumorové buňky nebo hematopoetické buňky. Příklady cytotoxických činidel, která mohou být použita v vynálezu, zahrnují, ale nejsou omezeny na: cyklofosfamid, doxorubicin, daunorubicin, vinblastin, vinkristin, bleomycin, etoposid, topotekan, irinotekan, taxoter, taxol, 5-fluorouracil, metotrektát, gemcitabin, cisplatiná, carboplatina nebo chlorambucil a agonista kterékoliv z dříve uvedených sloučenin. Cytotoxická činidla mohou také být antivirová činidla, jako například AZT (tj., 3'-azido-3'-deoxytymidin) nebo 3TC/lamivudin (tj. 3'-tacytidin).

Zde používaný pojem „leukopenie“ znamená abnormální snížení množství leukocytů v krvi.

Zde používaný pojem „neutropenie“ znamená přítomnost abnormálně malého množství neutrofilů v krvi.

V jednom způsobu provedení je farmaceutická kompozice s výhodou ve formě jakékoliv kompozice pro orální, podjazykové podávání nebo inhalaci (nosní sprej), intravenózní, intramuskulární, podkožní podávání, vhodné pro použití v lečbě neutropenie, trombocytopenie nebo jako faktor přežití a aktivace neutrofilů.

Množství kompozice podle vynálezu, které je zapotřebí pro použití v lečbě, se mění v závislosti na způsobu podávání, povahu onemocnění, které má být léčeno, vérem a kondicí pacienta a závisí na posouzení ošetřujícího lékaře. Potržebná dávka může být podána najednou nebo rozdělena do dávek podávaných ve vhodných intervalech, například dvakrát, třikrát čtyřkrát nebo vícekrát denně.

I když je možné, pro použití v lečbě, podávat sůl jako surovou chemikálii, je výhodné podávat aktivní složku ve formě farmaceutické formulace.

Podle výhodného provedení vynálezu je množství podávané aktivní složky takové, že koncentrace v krvi (volné a/nebo vázané na sérový albumin) je větší než 1 μM. Ve zvláště výhodném provedení je koncentrace v krvi větší než 1 mM.

Podle ještě dalšího provedení vynálezu je farmaceutická kompozice ve formě, která je vhodná pro podávání orální (včetně podjazykového) nebo parenterální (včetně intramuskulárního, podkožního, rektálního a intravenózního). Formulace může být, tam, kde je to vhodné, rozdělena do malých dávkových jednotek a může být připravena kdykoliv postupem známým ve farmaci. Všechny postupy zahrnují krok spojení aktivní sloučeniny s kapalnými nosiči nebo jemně rozmělěnými pevnými nosiči nebo oběma a poté, je-li to zapotřebí, tvarování produktu do požadované formule. Je-li to zapotřebí, může dříve zmíněná formulace upravena tak, aby se aktivní složka uvolnila postupně.

Následující Příklady ilustrují vynálezný.
Příklady uskutečnění vynálezu

Studie chemické ochrany: in vivo indukce proliferace imunitních buněk nebo jejich ochrana pomocí MCT

U C57BL6 myších samic, 6 až 8 týdnů starých byla navozena snížená imunita pomocí 5-fluorouracilu (5-FU) 80 mg nebo cyklofosfamidu (CY) 100 až 200 mg nebo taxotetu (TX) 12 mg, podaného intravenózně v den 0. Pro zjištění ochranného chemického účinku MCT nebo jiných sloučenin, byly myší předem pošetřeny orálním podáním dne −3, −2 a −1 nebo intravenózním podáním v den 0 testované sloučeniny. Myši se usmrtily dne +5 vpichem do srdece a dislokací krční páteře. Poté se připravily buněčné suspenze z thymu, sleziny a kostní dřeně, jak je uvedeno dále.

Tkáně se narušily v PBS pufru a kontaminované erytrocyty se lyzovaly v AKC pufru (155 mM NH₄Cl, 12 mM NaHCO₃, 0,1 mM EDTA, pH 7,3) po dobu 5 minut. Buňky se získaly centrifuga-cí a promytím tříkatá v PBS a resuspendovaly se v médiu tkáňové kultury. Buňky se sečetly na hematocytometru.

Výsledky ukazují, že středně dlouhý triglycerid (MCT) významně zvyšuje množství buněk v imunitních tkáních normálních zvířat a zvířat se sníženou imunitou ve srovnání se samotným nosičem, jak dokumentují následující tabulky a obrázky. V závislosti na pokusu a stavu imunity myší, mohou MCT zvýšit počet buněk kostní dřeně a/nebo sleziny a/nebo thymu.

Příklad 1

Účinek kapronanu sodného na in vivo indukci proliferace imunitních buněk nebo jejich ochranu se stanovil podle postupu uvedeného výše. Kapronan sodný (6,25 µM) má slabý (nevýznamný) účinek na množství buněk kostní dřeně a sleziny u myší s oslabenou imunitou pomocí CY (Tabulka 1).

Tabulka 1

<table>
<thead>
<tr>
<th>kostní dřen</th>
<th>Slezina</th>
</tr>
</thead>
<tbody>
<tr>
<td>#buněk (x10⁶)</td>
<td>P/kontrola</td>
</tr>
<tr>
<td>kontrola</td>
<td>48 ± 4,9</td>
</tr>
<tr>
<td>CY</td>
<td>25 ± 4,9</td>
</tr>
<tr>
<td>CY + kapronan sodný</td>
<td>39 ± 17,9</td>
</tr>
</tbody>
</table>

Příklad 2

Účinek kaprylatu sodného a kaprinanu sodného na in vivo indukci proliferace imunitních buněk nebo jejich ochranu se stanovil podle postupu uvedeného výše. Významné zvýšení proliferace nebo ochrany buněk kostní dřeně bylo pozorováno při preventivní léčbě kaprylatem sodným a
kapronanem sodným u myší ošetřených CY od asi 24 x 10⁶ (CY) až 30 x 10⁶ (CY + 3% kaprylát sodný) nebo 35 x 10⁶ (CY + 3% kapronan sodný).

Příklad 3

Studie účinku chemické ochrany byly provedeny podle popisu uvedeného výše, ale myší se následně léčily 12,5 µM kaprylátem sodným, kapronanem sodným podávanými orálně až dne 1, 2, 3 nebo 4. Významné zvýšení množství buněk kostní dřeně bylo pozorováno u následné léčby (tabulka 2).

Tabulka 2

<table>
<thead>
<tr>
<th>kostní dřen</th>
<th>slezina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#buněk (x10⁶)</td>
</tr>
<tr>
<td>Kontrola</td>
<td>52 ± 6,17</td>
</tr>
<tr>
<td>CY</td>
<td>19 ± 4,99</td>
</tr>
<tr>
<td>CY+ kaprylát sodný</td>
<td>26 ± 5,33</td>
</tr>
<tr>
<td>CY + kapronan sodný</td>
<td>29 ± 4,45</td>
</tr>
</tbody>
</table>

Studie účinku chemické ochrany: imunofenotypový postup

C57BL/6 myší samice 6 až 8 týdnů staré se předem léčily ve dnech −3, −2 a −1 orálně, nebo dne 0 intravenózne, různými koncentracemi testované sloučeniny. Imunofenotypový postup se provedl také na zvířatech se sníženou imunitou. Imunosuprese bylo dosaženo 200 mg/kg cyklofosfamidu (CY) nahořkovaného intravenózne dne 0. Myší byly usmrceny páteho dne vpichem do srdece. Odebrala se krev a slezina, připravila se buněčná suspenze a erytrocyty se lyzovaly v ACK pufru (155 mM NH₄Cl, 12 mM NaHCO₃, 0,1 mM EDTA, pH 7,3) po dobu 5 minut. Buňky se promýly třikrát PBS, pH 7,4 a resuspendovaly se v médiu tkáňové kultury. Buňky se poté inkubovaly po dobu 45 minut na ledu s fluoresceinizothioxianytem (FITC) nebo fyoerytinem (PE) konjugovaným markrem buněčného povrchu podel návodu výrobce (Gibco/BRL, Cedarlane, Boehringer Mannheim), Buňky se poté promýly PBS, zařazovaly 1% paraformaldehydem a analýzovaly Coulter XL průtokovým cytometrem. Analýza buněčných podskupin se provedla určením standardních markerů buněčného povrchu, které byly následující: TCR (T–buněčný receptor), CD4 (T helper), CD8 (T cytotoxicí/supresor), CD11b (makrofág), NK (NK buňky) a Ly5 (B–buňky).

Buňky se obarovaly 45 minutovou inkubaci FITC nebo PE konjugovaným markerem buněčného povrchu podel návodu výrobce. Buňky se poté promýly PBS, zařazovaly 1% paraformaldehydem a analýzovaly Coulter XL průtokovým cytometrem. Analýza buněčných podskupin se provedla určením standardních markerů buněčného povrchu, které byly následující: CD34 (hematopoietické progenitorky), CD41 (destičky, megakaryocyty), CD13 (myelomonocytické kmenové buňky, myelocyty, promonocyty) a CD38 (lymfoïdní kmenové buňky, pro–B, pre–B).
Příklad 4

Imunofenotypizace kapronanu sodného se provedla podle imunofenotypového postupu uvedeného výše. 6,25 μM kapran sodný významně zvyšil relativní procentu LY5−TCT− ne krev, z 40,41 " 8,84 za použití CY samotného ona 52,43 " 10,16 (p = 0,063, týden).

Příklad 5 Studie účinku chemické ochrany: imunofenotypový test kostní dřeně

Účinek MCT, kaprylátu sodného, kaprananu sodného na imunofenotypovou analýzu kostní dřeně byl testován podle postupu uvedeného výše. Při použití cyklofosfamidu je zaznamenáno významné zvýšení ve všech testovaných podskupinách (CD34+, CD13+, CD4+ a CD38+). Přídavek kaprylátu sodného nebo kaprananu sodného zvyšuje množství buněk v linii CD13+, což jsou myelomonocytické kmenové buňky, myelocyty a promonocyty. Toto zvýšení relativního procenta v CD13+ je významné ve srovnání s cyklofosfamidem samotným. Výsledky jasně ukazují na to, že sodné soli indukují významné zvýšení množství buněk kostní dřeně (jak ukazují předcházející příklady) a dále zvyšují relativní procento prekurzoru fagocytujičích buněk (PMN a monocyty). To může být příčinou lepšího zotavování z cytotoxické léčby nebo ochránit organismus proti infekčním činidlům (tabulka 3).

Tabulka 3

<table>
<thead>
<tr>
<th></th>
<th>CD34+</th>
<th>CD13+</th>
<th>CD41+</th>
<th>CD38+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrola</td>
<td>1,1 ± 0,3</td>
<td>0,8 ± 0,2</td>
<td>1,6 ± 0,2</td>
<td>29,8 ± 6,5</td>
</tr>
<tr>
<td>cyklofosfamid (CY)</td>
<td>10 ± 1,0</td>
<td>3,2 ± 0,5</td>
<td>4,2 ± 0,6</td>
<td>39,6 ± 13,6</td>
</tr>
<tr>
<td>CY + kaprylát sodný</td>
<td>11,2 ± 1,3</td>
<td>4,9 ± 1,2 p < 0,017</td>
<td>4,6 ± 1,3</td>
<td>36 ± 9,7</td>
</tr>
<tr>
<td>CY + kapranan sodný</td>
<td>9,1 ± 3,1</td>
<td>4,7 ± 1,7 p < 0,06</td>
<td>3,7 ± 0,7</td>
<td>44,3 ± 22,8</td>
</tr>
</tbody>
</table>

PATENTOVÉ NÁROKY

1. Použití sloučeniny pro výrobu léčiva k léčbě stavu vybraného z myelosuprese, poranění, transplantace kostní dřeně a neuropenie, kde sloučenina je sůl vzorce

 \[(R_1=\text{C}_7-\text{C}_{11})_{n}\text{M}\]

 kde \(R_1\) je \(\text{C}_7-\text{C}_{11}\) alkyl a \(\text{M}\) je kovový monokation \((n=1)\) nebo dikation \((n=2)\).

2. Použití podle nároku 1, kde \(\text{M}\) je kation vápníku, hořčíku, draslíku nebo sodíku.

3. Použití podle nároku 1, kde sloučeninou je kaprylát sodný, kaprinát sodný, kaprylát vápenatý, kaprinát vápenatý.

4. Použití podle kteréhokoliv z předcházejícího nároku, kde \(\text{M}\) je monokation.
5. Použití podle nároku 1, kde sloučenina je kaprinát sodný.

6. Použití podle kteréhokoliv z předcházejícího nároku, kde stavem je neuropenie vyvolaná léčivem nebo neuropenie vznikající z hematologických chorob, z nedostatečné výživy, z infekcí nebo radioterapie.

7. Produkt pro simultánní nebo separované použití k léčbě stavů jak jsou definovány v nároku 1 až 6, vyznačující se tím, že obsahuje sloučeninu, jak je definována v kterémkoliv z nároků 1 až 5 a lidský faktor stimulující kolonie.

8. Produkt podle nároku 7, kde faktor je G–CSF nebo GM–CSF.

9. Kompozice, vyznačující se tím, že obsahuje sloučeninu, jak je definována v kterémkoliv z nároků 1 až 5 a interleukin 15.

7 výkresů
Obrázek 1

Obrázek 2
Účinek doxorubicinu na apoptózu neutrofilů

Obrázek 3A

Účinek doxorubicinu na apoptózu neutrofilů

Obrázek 3B
Účinek MCT na doxorubicinem indukovanou apoptózu neutrofilů

Odpověď MCT v závislosti na čase byla vyhodnocena v čase 0, 30min, 1h, 2h a 4h po doxorubicinem indukované (5*10^{-7}M) apoptóze (doba inkubace 0).

Obrázek 4A

Účinek MCT a trikaprinu na proliferaci buněk kostní dřeně u C57BL/6 myší

Obrázek 5
Účinek MCT na množství buněk kostní dřeně u zvířat se sníženou imunitou

Obrázek 6

Účinek MCT na množství buněk sleziny u zvířat se sníženou imunitou

Obrázek 7
Účinek MCT a GM-CSF na váhu thymu u normálních myší

Obrázek 8

Účinek MCT, kaprilátu sodného a kaprinanu sodného na množství buněk kostní čeně u zvířat se sníženou imunitou

Obrázek 9
Účinek chemické ochrany a protinádorový účinek MCT v kombinaci s menší než terapeutickou koncentrací doxorubicinu (dox, 10 mg/kg) (B16F10 model melanomu)

Obrázek 10

Účinek chemické ochrany a protinádorový účinek MCT v kombinaci s menší než terapeutickou koncentrací cyklofosfamidu (CY, 100mg/kg) nebo taxoteru (TX 20 mg/kg) v DA-3 modelu karcinomu prsu

Obrázek 11
Účinek chemické ochrany a protinádorový účinek MCT v kombinaci s terapeutickou koncentrací cyklofosfamidu (CY 200mg/kg) nebo taxotéru (TX 30 mg/kg) v DA-3 modelu karcinomu prsu

* skupina CY + MCT je významná (p = 0,0162) ve srovnání s kontrolou
N.B. Řípy znamenají dny (9 a 16) léčby cytotoxickým léčivem.

Obrázek 12

Konec dokumentu