PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 ;
H04K 1/00, HO4L 9/00, 9/08, 9/14, 9/32 | Al

(11) International Publication Number:

(43) International Publication Date:

WO 96/38945

5 December 1996 (05.12.96)

(21) International Application Number: PCT/US96/08851

(22) International Filing Date: 3 June 1996 (03.06.96)

(30) Priority Data:

457,489 1 June 1995 (01.06.95) us

(71) Applicant: KEYBYTE TECHNOLOGIES, INC. [US/US]J;
Law Offices of Larry Huntsman, 10374 Democracy Lane,
Fairfax, VA 22030 (US).

(72) Inventor: FOLLENDORE, Roy, D., III; 11611 Olympic Drive,
Manassas, VA 22111 (US).

(74) Agent: NOVICK, Harold, L.; Larson and Taylor, 727 23rd
Street, South, Arlington, VA 22202 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,
CA, CH, CN, CZ, DE, DK, EE, ES,
IS, JP, KE, KG, KP, KR, KZ, LK, LR
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, 8], SK, TJ, T™M, TR, TT, UA, UG, UZ, VN,
ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: CRYPTOGRAPHIC ACCESS AND LABELING SYSTEM

(57) Abstract

An access control module permits a user with a preassigned passphrase to have access to the encryption or decryption portion of a
program by comparing a generated vector or key with a partially decrypted version of a second vector or key stored on a portable storage
medium, such as a floppy disk. If successful, the access control module creates a main key that is then used throughout the remainder of
the program to encrypt or decrypt labels. Part of the encryption or decryption process utilizes an internal, reproducible, but not reversible,
scramblmg subroutine in which the bytes of an initializing vector are successively Exclusive Ored with one another; an input number, called

spinup number, controls the number of times the process is repeated.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemnational

applications under the PCT.
AM Armenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI Cote d’Ivoire
CcM Cameroon

CN China

(o0} Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851

PHIC S

Field of the Invention

This invention relates in general to a cryptographic
control system. Many encryption systems use a publicly known
mathematical encryption algorithm that is initialized with a
privately known, secret key or vector. The present invention
in particular relates to a system of managing the encrypting
keys, which is one of the means by which access to private
information protected by cryptography is controlled. Because
keys or vectors are usually lengthy alphanumeric numbers that
are difficult to remember, many encryption systems use a
rememberable word or phrase, called passwords or passphrases,
respectively, to initiate a key generation system. The present
invention also relates to a computer program and a programmed
computer system which permits or denies access to protected
data by the use of a passphrase. Sophisticated encryption
systems usually use labels, which are words or information that
are related to the message being encrypted, that are encrypted
and removeably attached to the message. The present invention
also relates to a computer program and a programmed computer
system that generates encrypted labels for attachment to a
message as a header or trailer thereof. 1In addition, the
present invention is related to a computer program and a
programmed computer system that can reverse the process and
decrypt a message, including the label information.
Background of the Invention

Commercial privacy systems utilize cryptographic
algorithms to protect information and limit access thereto. A
standard cryptographic algorithm is the Data Encryption
Standard ("DES"). As such, cryptographic privacy systems
permit individuals within an organization to encode plain text
information into "cipher text" using a cryptographic key.
Cipher text is mixed up and unreadable. 1In an encrypted
computer system, cipher text characters may be any of the
standard ASCII characters that are used in modern computer
systens. |

A cryptographic process which produces cipher text is
reversible and through the use of the appropriate key which was
used to encrypt the plain text, can be regenerated by a person

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851

- 2 -
having that key into the original plain text form. Except for
being unreadable, cipher text can be stored and transferred and
manipulated just like any other file or data. By keeping the
key and the identity of the cryptographic algorithm a secret,
the ciphered text is kept from being unscrambled.

In addition to the difficulties of encrypting and
decrypting plain text, there is also the problem of designating
which ones of a number of organizations and divisions within
those organizations, as well as the particular people in those
divisions, who can have controlled, controllable access to
written information and on-line communications. Obviously, a
unique key can be used for each particular text and each
particular use of that text. However, this gives rise to a
tracking process that must be applied in order to keep track of
the unique keys. This function or role is called key
management. It can be manually intensive and it certainly
affects organizational performance. Thus, key management is
often the most costly part of an organizational sécurity
system.

The value of the performance of a key management system is
the value of important organizational information reaching the
right people at the right time in the right way. When there
are a number of large groups of people communicating private or
sensitive information that needs to be protected, tracking
which of each of the unique keys that is used, by whom used,
and the rationale for the use of a particular key is a
difficult part of the key management process.

As a result of the complex array of keys necessary for
such a large number of people divided into different, often
overlapping, and often changing groups, who communicate for
divergent reasons through many dynamic multi-media methods, key
management is made extremely difficult if not nearly
impossible. Additionally, the tracking of the key represented
a simple assignment process of assigning a particular key to a
project or to a particular station with no verification of the
justification of the creation, generation or use of that key.
In other words, once a key is generated, the reasons for its
generation are often lost. It is just this independent

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-3 -

tracking of keys which makes the conventional key management
systems extremely difficult to maintain.

Thus, there is a need for a key management system which
will not only keep track of the keys which are used with a
particular message, but will also maintain the justification
for the use of that key and the justification for the different
categories of personnel access and the criteria used for
selecting the communications system.

The principle problems with the use of traditional
cryptographic systems today concerns their use that is
associated with the context, intent and sensitivity of the
information being distributed and stored using modern desktop
multi-media methods. However, because the skill of the user of
the information is usually non-technical, a very simplified,
computerized system is needed to accomplish these purposes.

The data or information being transmitted may have a
substantial representation of rationality, but is incomplete
because it can only convey self-referenced and internal
information. The data may also not be complex enough to
provide external references necessary for communicating the
inferential components that provide the reason for the data and
communication. There is thus also the need for a means to
apply external rationalization for the purposes and use of the
data or information.

In today's communication envi;onment, a desktop multi-
media system generates a very large amount of information, much
of which may be sensitive, and all of which needs to be passed
through inter-organizational networks and intra-organizational
subnetworks. To some degree, all organizations require the
compartmentalization of different types of information. The
organizations have requirements for multi-level access to some
or all of the sensitive information and the concept of that
access usually involves a consideration of the need and
capability of an individual to access the particular
information. On the other hand, any information access
limiting system cannot be so cumbersome or difficult to use
that as a minimum discourages the use or access of the
information and at the maximum prevents its access and
utilization.

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-4 -

There is thus the need for an object oriented key
management philosophy in which the data or information carries
with it its reason for being and the rationale for access to
it. This is sometimes called the need for a secured signature
of the rational link between the key used in the algorithm and
the cipher text product or its use.

Standard cryptographic privacy systems are traditionally
based on manually indexed associations between an irrational
key and often some narrow reason for its use. Keys are chosen
from essentially random numbers and are used to initialize
pointers in a cryptographic algorithm. Often, such keys are
generated by a random number generator and are not known to the
user, but are instead buried in the particular computer program
which that user is using. Obviously, this type of system has
the disadvantage in that the key is integral to the systenm
which is generating or transmitting the data or information.

By using an irrational key, that is a key comprised of
characters which together have no meaning; it is'Very difficult
to keep track of the reason for the existence of that key.

With time, associated with situational conditions, the
association between the reasons for the generation of the key
and the data degenerates.

Furthermore, cryptographic keys are usually managed under
systems that generally provide only a static distribution
means. Keys are reused for significant periods of time for
many reasons and for many types of messages. Traditional
privacy systems are periodically secured, but not
transactionally secured. This results in the privacy keys
remaining the same for each message passed through a
communications node during a defined period of time.

Sometimes, keys are expected to be used from 180 days to years,
during which time all messages stored or moved use the same
key. During this period windows of opportunities exist to
exploit "protected" traffic, if one obtains the correct key(s).

Closely associated with the concept of keys is the concept
of passwords, passphrases, and labels. Whereas many |
cryptographic systems utilize irrational numbers for keys,
other systems use as an input a password or passphrase which is
then encoded, manipulated, or translated into a key. Passwords

10

15

20

25

30

35

WO 96/38945 » PCT/US96/08851
-5 =

and phrases are usually in the form of words or a number of
words which have a rational meaning and thus are easy to
remember. 1In addition, because they can be longer strings of
characters, they have a cryptographic advantage because there
are more characters to work with. For example, a passphrase
can be simply "The rain in Spain" which is concatenated to be
"THERAININSPAIN." On the other hand, a password could just be
the word "Spain" or "rain". Because passwords and passphrases
have meaning, as indicated above, they are called or defined at
least herein as being "rational." On the other hand, bank
accountant numbers and a group of numbers and letters raudomly
generated (e.g. OX342PN17) are called or defined at least
herein as being "irrational" because they have no internal
meaning.

The prior art is replete with cryptographic data
management systems which attempt to address one or more of the
foregoing problems. Generally however, none of these
references totally satisfies the requirements of modern
communications with a large number of messages, a large number
of senders and receivers, a large number of places to which the
messages are sent, and an efficient and easy to use tracking
system. Furthermore, these references also generally do not
address the problem of regulating user access to the data in an
efficient, yet secure way. Example of such prior art
references are mentioned below and are incorporated herein by
reference. Such references also disclose background
information relevant to the present invention.

The United States Pond et al Patent 4,864,616 discloses a
method of cryptographically labelling electronically stored
data in which a plurality of key streams are utilized. An
encryption and decryption method utilizes reproducible
mathematical functions such as an EXCLUSIVE OR mathematical
methodology and incorporates a label that contains encrypting
and decrypting information which is added to the header of the
file. The label is also used for controlling access to the.
file and verifying the integrity of the file. The patent also
discloses encrypting and decrypting the labels separately from
the file itself.

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-6 -

A similar cryptographic system is disclosed in the Preston
et al United States Patent 5,052,040. This patent discloses a
system and method of utilizing a plurality of labels that
includes the configuration that the file was created on, the
owner of the file, the machine that it was created on, and any
special algorithms that may be used on the files. The label
also contains a plurality of unique I.D.’s for each of the
users that has access to the file. Obviously, such a system
would have limitations where there was a large number of users.
As in the Pond et al patent mentioned above, the method and
system of the Preston et al patent encrypts the label
information.

There are many methods that are available for reversibly
altering a key or label. A common method is to use the
EXCLUSIVE OR function, sometimes referred to simply as the XOR
function. The Smith, Sr., et al. United States Patent
5,214,698 discloses putting a key into multiple parts which are
XORed of a key part with a proper control vector.

The United States Patents to Greenberg 5,220,606 and to
Matyas et al. 4,993,069 disclose cryptographic techniques which
utilize control vectors or labels for use with encoding keys or
for controlling access to the system.

A recently issued United States patent to the present
inventor 5,369,707 discloses a somewhat different key
management rational that utilizes a separately encrypted header
which in turn contains réuting information about the message.
The header is also used to generate a key used in the
encryption-decryption process.

Summary of the Invention

The present invention provides a computerized key
management system that is inexpensive, automated, and increases
organizational performance. It is decentralized to the
individual communicating elements, yet it is completely capable
of managing and minimizing sensitive data flow across inter and
intra organizational information systems. It provides a low
cost rational solution with a maximum of flexibility and a
maximum of security.

A primary objective of the present invention is to support
the privacy of local area networks and modem user groups

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-7 -

through controlled compartmentalization and privatization of
information. A principal objective is to minimize
organizational information sensitivities through enforced
information specification and information flow control. A user
given access to a single custom label addressing set for
private communications is able to communicate privately with
managers who are given a "dictionary" of thousands of labels.
All of these labels can be accurately tracked, maintained and
controlled. A single label can be used to provide private,
secure communications to an entire organization or to any
specified subset thereof.

The present invention is primarily directed to a label
management system that is completely independent of any
specific encoding algorithm, yet is useable with any of them.
The present embodiment uses the Data Encryption Standard (DES),
yet various specialized privacy algorithms can also be used
transparently.

An important overall purpose of the present invention is
to provide a cryptographic label key creation system that can
minimize the sensitivity of encrypted messages by creating a
unique transactional key which can be used by a cryptographic
algorithm, such as DES, to scramble or encipher a plain text
file. By using the present invention, both the sender and the
receivers who use the transactional key know not only that it
is unique to the message being sent, but also that the message
could not even have been sent unless certain conditions had
been met.

A preferred, working embodiment of the present invention
is compatible with Microsoft Corporation’s Windows operating
environment. It also has automated rekey capability that
provides it with a unique precise control of networks.

The present invention is directed to an integrated,
computerized approach that has particular advantages over all
other known key management systems. The present system
utilizes unique access control techniques and data manipulation
techniques to provide a maximization of security, yet has a
simplified designed use that allows even the most
unsophisticated person to use it. A plurality of variable
length passphrases are used to modify other variables that may

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-8 =

be embedded in the computer program or obtained from an outside
source. In this way, each passphrase can be used to control
one aspect of the communication environment. For example, in
the present invention, seven aspects are controlled. These are
the how, why, where, who to, who from, what and when. 1In the
language of the application environment, they are the
identification of the network over which the communicated
transmission will or has taken place; the purpose of the.
communication; the place where the communication originated;
the person, persons, groups or organizations to whom the
communication is being or has been sent; the originator of the
communication; the classification of the communication
including the file name of the message; and the environment of
the communication including the date stamp of the message.

To accomplish its purposes and objectives, the present
invention utilizes one or more labels that are appended to a
message. In the preferred embodiment, the labels are
encrypted, concatenated and appended to a separately encrypted
message. In this way, the labels can be stripped off and
separately decrypted.

Access to both the sending and receiving of a
communication is provided by a unique access control module in
which a portable key disk is utilized to store unique
initializing vectors that are used to generate a key.

These and other objectives, advantages, and features of
the present invention will be expounded upon and set forth in,
or apparent from, the accompanying detailed description of a
presently preferred embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic block diagram of a plurality of
interconnectable computer systems;

Fig. 2 is a very general schematic flow chart of the
decryption process;

Fig. 3a and 3b are a chart of the structure and
substructure of the trailer of a message assembled with the
present invention;

Fig. 4 is a general schematic flow chart of the encryption
process;

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
-0 -

Fig. 5 is a general schematic flow chart of the subroutine
used to generate a key disk; _

Fig. 6 is a schematic block diagram of a subroutine used
for encrypting an initializing vector or for generating a
random number;

Figs. 7a through 74 are general block diagrams which
depict the interrelationships between some of the subroutines
of the computer program modules;

Fig. 8 is a more detailed schematic flow chart of an
access control module or subroutine;

Fig. 9 is a detailed schematic flow chart of the module or
subroutine that permits the user to select labels;

Fig. 10 is an schematic flow chart of an overview of the
process used to create an encryped file key and message
trailer;

Fig. 11 is an schematic flow chart of an overview of the
process used to create the decryption file key;)

Fig. 12 is a more detailed schematic flow chart of the
label encryption module;

Fig. 13 is a schematic diagram detailing the label lookup
process;

Fig. 14 is a detailed schematic flow chart of the module
that decrypts the trailer of a message;

Fig. 15 is a general schematic flow chart of a module that
uses the labels generated by the label selection and generation
module of Fig. 9 and in turn generates label trailkeys;

Fig. 16 is a schematic flow chart of a subroutine used in.
Fig. 15.

Fig. 17 is a schematic flow chart of a subroutine used in
Fig. 15 to generate a trailkey;

Fig. 18 is a schematic flow chart of a subroutine used in
Fig. 16 to reduce in a reproducible way the number of digits in
an alphanumeric string to one integer; and

Fig. 19 is a schematic flow chart of a subroutine used to
reproducibly meld together two equal or unequal length strings
and is used in Fig. 17;

Fig. 20 is a schematic flow chart of a subroutine used to
reproducibly combine the trailkeys generated in Fig. 16 to

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 10 -

produce a single file key that is used as a vector in the
encryption algorithm;

Fig. 21 is a schematic flow chart of a subroutine used to
automatically rekey the recipient of a message.

Fig. 22 is a schematic flow chart of an expert systems
subroutine used to determine the weights of selected labels and.
whether the selected combination of labels are acceptable.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention utilizes a computer program, and
like many computer programs it involves a complex set of
instructions, some of which, called subroutines, are repeatedly
used at different times or are called at different locations
within the program. In addition, as in many complex computer
programs, the present computer program has a number of
independent modules or subroutines which have a core of
instructions that can be used in different environments with
only the front end and/or the rear end of the subroutines being
changed. However, the present description is that of a working
embodiment of the present invention written in Visual Basic as
it was developed for a specific application. As one skilled in
that program would know, there are many features of Visual
Basic which can be called from an applications program written
in it. Also, as one skilled int the art would know, the
computer program of the present invention could be written in
other computer languages, such as C and C++. These features
are not disclosed herein, but are incorporated herein by
reference as that which would be known by one of ordinary skill
in the art.

Other variations of the present invention are possible and
some have been designed, but the embodiment of the invention
described hereinbelow is believed to be the best mode because
the code for it has been written.

I. OVERVIEW.

With reference now to the figures in which like numerals
represenﬁ like elements throughout the several views, an
interconnected computer communication organization 100 is
depicted in Fig. 1. Communication organization 100 is
comprised of a plurality of Local Area Networks (or LAN) 106
interconnected by a telephone wide area network (or WAN) 108.

10

15

20

25

30

35

WO 96/38945 ' PCT/US96/08851
- 11 -

Other links to computer communication organization 100 can
include a satellite link (not shown) and a ground based
microwave network (not shown).

An exemplary LAN 106 is comprised of a plurality of
microcomputers 110 (sometimes called personal computers or
PC’s), an IBM AS/400 minicomputer 112 and a mainframe computer
114. Each local area network 106 is controlled by a server
116. Also connectable to LAN 106 is a docking station 120 into
which a laptop computer 122 can be inserted, and a palmtop or
hand-held computer 126, such as the type made by the Psion
Company of England, which is shown connectable through
minicomputer 112.

Microcomputer 110 typically is comprised of a
microprocessor 130, a random access memory (or RAM) 132, a hard
disk drive 134 and one or more floppy disk drives 136. 1In
addition, computer 110 includes a video interface 138 connected
between microprocessor 130 and a video monitor 140. For
outside communications, microprocessor 130 is also connected to
a modem 142, which in turn is connected through a public switch
144 to wide area network 118.

Communicating elements in computer organization 100
include a number of devices which can be removably or
permanently connected to one another with communication links
so that files or data can be passed from one to another or one
can control another. The communication links can include a
direct wire or fiber connection 150, an electromagnetic wave
connection 152 (e.g. radio wave radiation, infrared radiation
or light radiation), and a telephone wire connection 154. The
communicating elements depicted in Fig. 1 are microcomputers
110, minicomputer 112, mainframe computer 114, laptop computer
122 and hand-held computer 126. Aséociated with each
communicating element is a removable, portable memory storage
medium, such as a floppy disk (FD) 160 or a magnetic card 162
that can be read by an associated memory drive, such as floppy
disk drive 136. 1In organization 100 floppy disk 160 is usable
in every communicating element except hand-held computer 126.
Because of its small size, hand-held computer 126 can not use a
floppy disk, but instead must use a different medium, such as
magnetic card 162 that can be removably inserted therein. This

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 12 -

portable storage medium is generically called herein a key disk
and it contains two files currently having file names
keyfile.kbt and chkfile.kbt. Each file is an encrypted
randomized string that is 80 bytes or characters long and is
produced in a Passphrase Keydisk Creation subroutine 500,
depicted in Fig. 5 and described herein below.

Each memory storage medium of a communicating element
contains certain critical files and data that are used by the
computer program of the present invention. These include a
file containing selected keys, a cryptographic algorithm, one
or more spin-up numbers, and other data and information,
described in greater detail hereinbelow. Each memory storage
medium permits its associated communicating element to obtain
the necessary keys and passwords as well as control numbers
used in the controlling subroutines to manage and direct the
operation of the present invention.

The communicating elements, memory storage elements, and
communication links depicted in Fig. 1 are merely illustrative.
Presently existing substitutes or substitutes developed in the
future that are functionally or operational equivalent are also
included in the definition.

The present invention includes a complex system computer
program 170 that is comprised of a series of instructions.
System program 170 is usually stored on the hard disk drive 134
of an individual microcomputer 110 or on network server 116 and
is diagrammatically indicated there in Fig. 1. The
instructions are arranged into a number of independent modules,
independent routines, and called subroutines as well as
dedicated sets of instructions. Figs 2 through 21 contain flow
charts of the series of instructions or diagrams of data being
used by the sets of instructions. It must be understood that
each set of instructions is used by its associated computer at
different times and in different combinations. For this
reason, the present invention is believed to be best described
by describing it as it operates and does a number of different
functions, such as an encryption function or a decryption
function.

Turning now to Fig. 2 an overall block diagram of the
decryption function of system computer program 170 of the

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 13 -

present invention is depicted as being comprised of a number of
modules or subroutines. These subroutines function together to
take an encrypted input file and produce a plain text message
if all of the labels and keys are correct. The encrypted
message can be received by the computer over modem 142 or from
local area network 116, or it could have been stored on either
hard disk 134, a floppy disk 160 or a memory card 162.

An Access Control module 210, described hereinbelow with
respect to Fig. 8, is used to control access to system computer
program 170 and is the first computer program element that is
encountered by a user when system computer program 170 is
called. A successfully run Access Control module 210 produces -
an 80 byte or character string that is called the Gamma key or
vector and is denoted 211. As seen below, Gamma key 211 is
used throughout the rest of the program.

A first input statement 212 then calls for the user to
enter the user passphrase and a second input statement 214
calls for the user to pick the files to be decrypted and to
enter the destination for the decrypted file. A subroutine 216
then gets the identified file to be decrypted, denoted 218, and
puts it into computer RAM memory 132.

File 218 must be in a predefined format and protocol and
consists of the following parts: a header 220, an encrypted
file portion 222, and a trailer 224 that contains a plurality
of encrypted labels. Reference is now made to Figs. 3a and 3b
where trailer 224 is depicted in greater detail.

It is the information that is stored in trailer 224 that
provides the originator of file 218 the opportunity to add
specific information about the file. 1In the present
embodiment, trailer 224 has an exemplary division into the
following seven portions and the information in each portion is
called a label: the network portion 330 containing the Network
label; the purpose portion 332 containing the Purpose label;
the place portion 334 containing the Place label; the to
portion 336 containing the To label; the from portion 338
containing the From label; the classification portion 340
containing the Classification label; and the environment
portion 342 containing the Environment label. Each unencrypted
trailer portion has a predefined length of 20 characters and

10

15

20

25

30

35

WO 96/38945 , PCT/US96/08851

- 14 -
the label in each can have up to 20 characters. However, if
the label does not contain 20 characters, then, as described
hereinbelow, the computer program packs the label, as shown in
Fig. 3c, with a random character, which in the present
embodiment is all the same character and is the letter "X."
The encryption process increases each label to 80 characters
producing a total of 560 characters or bytes actually carried

~as an encrypted label for each encrypted file. Because the

standard bit length of each character in the conventional
computer software is eight, each trailer has a total of 4480
bits.

In the present embodiment of the protocol for trailer 224,
certain parts of certain trailer portions have certain)
character locations reserved to indicate a particular type of
information. For example, as shown in Fig. 3b, classification
portion 340 has been broken down into 4 parts: a plain text
filename part 352 having 11 locations in length; a reserved
part 354 having one location in length that is filled by the
computer program with a random character, which in Fig. 3b is
an "X;" a classification code part 356 having two locations in
length, which in the present example is "SG" for "secret"
classification and for General Use; and a data code part 358
having six locations, which for example can contain an
Organizational Drop Dead data code date, such as "101595,"
(October 15, 1995). As another example of subdivisions within
a trailer portion, reference is made to environment portion 342
in Fig. 3b in which it is also broken down into four parts: an
encrypted date part 370, which in the present example is
October 10, 1994; an encrypted time part 372, which in the
present example is 9 AM and 15 seconds; an encrypting algorithm
code part 374, which in the present example is "D" which
represents the DES encrypting algorithm; and a unique digital
file signature part 376, which in the present example is
"89A3114."

Returning now to Fig. 2, subroutine 216 also reads and .
checks header 220. Header 220 is a fixed length message header
that can contain plain text information and a marker. If used,
a marker designates the beginning of a file so that should a

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 15 =

plurality of files be concatenated, the ending of a previous
file can always be determined.

After reading the header and trailer, the program proceeds
to a subroutine 230 which cuts or breaks out trailer 224 by
going to the end of the file and then selecting the last 560
bytes. The header is then transferred to a separate storage
location in the computer RAM memory 132. The next set of
instructions, subroutine 232, then decrypts the trailer labels
and provides the information to a subroutine 234.

System program 170 then enters a subroutine 234 that
creates a key combiner that is necessary as an input to the
encryption algorithm in order to properly decrypt file 218, and
it sends a created file key to a run subroutine 236 and sends
the entire file 234 to a second break-out subroutine 238.
Subroutine 238 uses the information of the fixed length of
header 220, the location of the fixed length trailer 224 in
file 218, and a mask to break-out or strip-out the encrypted
file 222. 1In this way, encrypted file 222 can have any length
and thus file 218 can have any length. All that is required is
that header 220 contains a unique string of characters so that
the beginning of file 218 can be determined.

Subroutine 236 uses the information in part 374 of
environment portion 342 of header 220 to determine which
cryptographic algorithm was used to encrypt file 218, and
retrieves that algorithm from its storage location 240 on a
storage disk, which storage disk could be hard disk 134, or
less preferably floppy disk 160. In this embodiment, the
conventional DES algorithm was used, but any cryptographic

algorithm could be used. After subroutine 236 runs the

cryptographic algorithm, a decrypted file 242 is created and
stored in a storage location 244 on some storage medium, such
as hard disk 134, or just temporarily in computer RAM memory
132,

The encryption process is essentially the reverse of the
decryption process and the subroutines used to accomplish it
are depicted in general in Fig. 4. Access Control module 210
is used to control access to the rest of system computer
program‘170 in conjunction with a user passphrase, called for
by first input set of statements 212. Once system program 170

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 16 -

has been opened, it provides a set of instructions 420 to
assist the user in selecting the desired ones of the labels
(see Fig. 3a) to be used and the label information to be used
in a particular label. Exemplary labels are depicted in Fig.
3a and a subroutine for selecting the label is described below
with respect to Fig. 9. v

Two further sets of instructions, 422 and 424, call for
the selection by the user of the input file to be encrypted,
the name of the output file name and the algorithm to be used
for the encryption. This information is used to build part of
classification portion 340 and environment portion 342 of
trailer 224. Subroutine 426 then uses the entered input
information from instruction sets 212, 420, 422 and 424 to
build an unencrypted header 220. Some of the same information
is used by a subroutine 428 to generate the requisite file key,
discussed hereinbelow with respect to Fig. 7d.

A subroutine 430 then encrypts the label to create an
encrypted label 224. Label 224 is received by a subroutine 432
which combines all of the label information that has been
entered by the user and encrypted. The file key generated by
subroutine 428 is used by a subroutine 434 to encrypt the
selected file 422 in a conventional way to produce an encrypted
file 222. When concatenated with header 220 and trailer 224, a
secure file 218 is produced. File 218 is then stored in a
storage medium, such as a hard disk 440, as a secure file.
Alternatively or in addition, file 218 could be transmitted to
another computer as mentioned above with respect to Fig. 1.

II. Key disk.

An example of a portable storage medium usable with the
present invention has been described above as including floppy
disk 160. For the purposes of describing the present
invention, the portable storage medium will be referred to as
floppy disk or key disk 160, but no limitation on the type of
usable portable storage medium that is intended. Key disk 160
contains vital information without which the decrypting station
could not decrypt an encrypted message. System computer
program 170 includes a Passphrase Keydisk Creation subroutine
500, depicted in Fig. 5, to generate and store the information
on key disk 160.

10

15

20

25

30

35

WO 96/38945 ' PCT/US96/08851
-17 =~

The user’s passphrase, entered by the user in input
statement 210, is sent to a set of instructions which convert
the individual alphanumeric elements of the passphrase to a
string of two number ASCII values using conventional well known
techniques. The converted passphrase is then padded to 80
ASCII characters in process box 524 utilizing a padding vector
526 to pad the entered passphrase and thereby to generate a key
called Betal. Betal is then received by a set of instructions
in process box 528 which perform an EXCLUSIVE OR operation on
Betal with a generated string called keyupl.

As is well known, the EXCLUSIVE OR (often called XOR)
process is extensively used in the cryptographic computer field
to reversibly generate a scrambled output. The EXCLUSIVE OR
process compares every bit of one input word with a correspond-
ingly located bit of a second input word and produces an output
of a "1" if and only if one of the input bits is a "1" and the
other input bit is a "0". Otherwise the output from the
comparison is a "ov.

The Keyupl string, the other input to XOR subroutine 528
is the output from a Spinup Randomizer subroutine 530 depicted
in greater detail in and discussed hereinbelow in connection
with Fig. 6. For the present time, however, it is sufficient
to state that Spinup Randomizer subroutine 530 produces a new
80 character randomized alphanumeric string from an internal
initializing vector 532 that has undergone a number of cycles
in subroutine 530 determined by a spinup number 534.

The output from XOR subroutine 528 is sent to a second XOR
subroutine 536 which produces an exclusive ORing with a vector
located in data box 535 and denoted Gammal. Gammal in the
present embodiment is a vector that is stored in system
computer program 170. However, Gammal could be unique to a
communication network, such as LAN 116, and thus limit access
to an encrypted file using this key to a particular LAN, for
example. The output from XOR subroutine 536 is sent to a third
XOR subroutine 538 which produces an XORing with Gamma vector
211 generated by Access Control subroutine 210. The output
from subroutine 538 is denoted Keyl, as depicted in data output
box 542, and is stored on key disk 160.

10

15

20

25

30

35

WO 96/38945 PCT/US96/08851
- 18 -

Gamma vector 211 is also the input to the last XOR
subroutine 554 of three XOR subroutines 550, 552 and 554. One
of the two inputs to subroutine 550 is from Spinup Randomizer
subroutine 530 which produces its output, denoted Keyup2, based
on a second internal initializing vector 556 and a second
spinup number 558. The other input to subroutine 550 is the
reverse of Gamma vector 211, which is denoted Beta2 and
produced by a set of instructions in process box 560. The
output from subroutine 550 is XORed with a vector Gamma2 551 in
XOR subroutine 552, and the output of subroutine 552 is XORed
with the Gamma vector 211. The output of XOR subroutine 554 is
denoted Key2 in a data box 560 and is stored on key disk 160.

Spinup Randomizer subroutine 530 is now described with
respect to Fig. 6. An exemplary ten byte, stored initializing
vector, which in the present embodiment is contained in system
computer program 170 but could be a called string, is loaded by
the instruction set defined by program box 610 into a -
subroutine 612 that emulates a shift register. Each character
or byte of the initializing vector is initially loaded in
parallel and stored into its own storage box 621 through 630.
The outputs of the last storage boxes 629 and 630 are used as
inputs into an XOR subroutine 640. Each storage box then
shifts its character contents one box to the right as seen in
Fig. 6, replacing the character in that box. Subroutine 640
XORs each corresponding bit of the two characters located in
storage boxes 629 and 630 together and provides the output as
an input to first storage box 621 of shift register subroutine
612. A decision diamond 642 compares the number of cycles,
spins or shifts with a spinup number 644 and when the numbers
are equal, the spinup is complete and an output initializing
vector is provided at exit box 646.

The string that results represents a reproducible, but not
reversible, randomization of the original string. The unique
initializing vector can be embedded in system computer program
170, can be generated as a unique alphanumeric string, or can
be stored in the system, on key disk 160, or provided from some
other source outside of the particular computer (e.g. with a
received file). This is also true of the spinup number, except
that the spinup number in the presently preferred embodiment is

10

15

20

25

30

35

WO 96/38945 | PCT/US96/08851
- 19 -

a single digit integer in order to minimize the time spent by
Spinup Randomizer subroutine 530. 1In addition, the system
computer program 170 utilizes a spinup subroutine in several
locations and the subroutine can be the same one called every
time or can be similar with some relatively minor differences
(e.g. see the discussion regarding Spinup Random Characters
subroutine 1732). Also, the initializing vector can be the
same for all uses, used only with some of them or completely
different for each use. Similarly the spinup number can be the
same, or one or more of them can be unique to the particular
use. It is noted that although the length of the string of
data boxes in Fig. 6 (i.e. the number of boxes) is depicted as
ten, the length can really be any integer greater than one.
While the larger the number of boxes means a more secure
system, it also means that it will take longer to run the
subroutine.

Also, although the spinup number has been described as
being a single digit integer, it can also be a multiple digit
integer. Knowing the exact value of either the initializing
vector or the spinup number is not important. What is
important is that if the same spinup number and initializing
vector are used, then the same result will appear at exit box
646.

Returning to decision diamond 642, if the number of spins
does not equal the spinup number, then the program proceeds to
process box 648 where a modulo 10 operation is performed on the
value of the digits provided by XOR subroutine 640. The number
48 is then added to the modulo result so that the resulting
number will always be a two digit number. The output of modulo
process box 648 is then entered into process box 650 where each
digit is converted to its ASCII equivalent.

For example, if the results in stages 9 and 10 are 28 and
4, respectively, their binary equivalents are: 0001 1100 and
0000 0100 respectively. The results from XOR subroutine 640
are:

10

15

20

25

WO 96/38945 PCT/US96/08851
- 20 -

0001 1100

0000 0100

0001 1000,
or the decimal number 24. The ASCII equivalent of 2 is 50 and
the ASCII equivalent of 4 ié 52 and that is the number that is
stored in stage 621.
III. More Detailed Description.

A more detailed explanation of the computer program
modules and subroutines of the present invention will now be
presented with initial reference to Figs. 7a through 7f which
depict the association between the modules and subroutines.

Fig. 7a depicts the association of components for Access
Control module 210. When system computer program 170 is first
entered, the authorization of the user is initially chééked to
insure that the user is authorized to use the system in Access
Control Module 710 depicted in Fig. 8. The user inputs a
passphrase in input box 712 which is checked in module 710.
During part of the check, a random number is generated by
Spinup Randomizer subroutine 530, described hereinabove with
respect to Fig. 6. If the passphrase is valid, the user is
given access to the rest of system computer program 170 and as
mentioned above, a pass key called the Gamma vector is produced
at data output box 211.

Fig. 7b depicts the association of components for the
Label Element Decryption module 720 depicted in Fig. 14. The
stripped off trailer of an incoming ﬁessage or file is provided
as data at data input box 722. A random number is generated by

Spinup Randomizer subroutine 530 and used in the decryption

10

15

20

25

WO 96/38945 PCT/US96/08851
- 21 -

process of module 720 to produce a decrypted label at data

output box 726.

Fig. 7c. depicts the association of components for the
Label Element Encryption module or subroutine 730 depicted in
Fig. 12. A serial number representative of the network or some
other initializing vector, and the Alpha, Beta and Gamma keys
are provided as input data in data input box 732. These
numbers or vectors and keys are described herein below. A
random number is generated by Spinup Randomizer subroutine 530
and an optional label look up process is provided by subroutine
734. Label Decryption module 730 produces a fixed size
rational traiier label at data output box 736. |

Fig. 7d depicts the association of components depicted ih
Figs. 16 through 19 for the File Key Production Module 740
depicted in Fig. 20. Module 740 receives the labels that are
used in trailer 224 as inputs at data input box 742 and
produces a key (sometimes called a vector) at data output box
744 that initializes the file encryption algorithm as described
above in the description of Fig. 4. The labels are provided to
a Label Key Generation Subroutine 746 that is used to produce
related trailkeys. A Meld Key module 746 receives a random
number generated by Spinup Randomizer subroutine 530, a spin-up
number compacted from several keys in a subroutine 748 and uses
a subroutine 750 to combine the various strings to encrypt a
label which it provides to File Key Production module 740.
Subroutine 746 produces a plurality of trailkeys, one per
label, and provides them to module 740.

Referring now to Fig. 8, Access Control module or

subroutine 210 will now be described. As mentioned above,

10

15

20

25

WO 96/38945 PCT/US96/08851

- 22 -
Access Control module 210 is used to control access to the rest
of system computer program 170 and is the first computer
program element that is encountered by a user when system
computer program 170 is called. Access control module 210 is
quite similar to Key Disk Creation module 500 described above
with respect to Fig. 5.

Input statement 210 receives and checks the user’s
passphrase to ensure that it is both valid and has the
requisite 20 byte length. Instructions in process box 820
cénvert the passphrase string to ASCII values as described
hereinabove. Instructions represented by decision diamond 822

check the length of the ASCII string and if the string is less

‘than 80 characters or bytes long, the program branches to

instructions represented by process box 824 which uses a
padding vector 826 to create an 80 ASCII character string which
is called Betal. 1In the presently preferred embodiment,
padding vector 826 is embedded in system program 160, but it
need not be and as stated before, can for example be supplied
to system program or generated. If the converted passphrase
string is equal to 80 characters in length, the program

identifies it as Betal and provides it as an input to the first

of three concatenated XOR subroutines (XOR) represented by

process boxes 828, 830 and 832. The other input tb XOR
subroutine 828 is a string called "keyupl." Keyupl is a random
number produced by Spinup Randomizer subroutine 530, described
hereinabove with respect to Fig. 5, that uses the same initial
input or internal initializing vector 532 and spinup number 534
as were used to create key disk 542 with the module depicted in

Fig. 5.

10

15

20

25

WO 96/38945 PCT/US96/08851
- 23 -

The second inputs to XOR subroutines 830 and 832 are
Gammal from data box 535 and Keyl in data box 834 obtained from
key disk 160, respectively. The final result is denoted Alphal
and it is sent to one input of a comparator decision diamond
834.

It is noted that the Gammal vector used to permit access
to the system is also the same vector that is used to create
Keyl in data box 542. Thus, a random, unknown, but
reproducible number, keyupl, has been genérated to be XORed
with a padded user only known passphrase, the result XORed with
a number, Gammal, located only on a system that has the same
system software, and that result XORed with a number, Keyl,
that only the user has.)

The output from XOR subroutine 832 is the input to a set
of instructions in process box 836 where the string of
characters that forms Alphal vector are reversed in their order
and form the vector Beta2. Vector Beta 2 is one of the inputs
to the first of a second set of three concatenated XOR
subroutines (XOR) represented by process boxes 838, 840 and
842. The other input to XOR subroutine 838 is a string called.
"keyup2." Keyup2 is a random number produced by Spinup
Randomizer subroutine 530, described hereinabove with respect
to Fig. 5, that uses the same initial input or internal
initializing vector 556 and spinup number 558 as were used to
create the second of the inputs to key disk 160 with the module
depicted in Fig. 5. The result of XOR subroutine 838 is one of
the two inputs to the second XOR subroutine 840, the other
input being Gamma2, which is the same as Gamma2 discussed above

with respect to Fig. 5. Like Gammal, Gamma2 is provided by

10

15

20

25

WO 96/38945 PCT/US96/08851

- 24 -
system computer program 170 and thus could, if desired, be the
same only with those communicating elements on the same
communication link. The result of XOR subroutine 840 is one of
the two inputs to XOR subroutine 842, the other input being
Key2 in data box 560 and obtained from key disk 160.

The output from XOR subroutine 842 is denoted Alpha2 and
is the other input to comparator decision diamond 834. 1If the
comparison is positive, that is if Alphal and Alpha 2 are the
same, then Alpha2 is relabeled Gamma (i.e. Gamma 211) in
process box 844, Gamma 211 is made available to the rest of the
software modules and subroutines at exit port 846, and access
is granted to the rest of the software modules. If the output
is not the same, then an increment counter 848 is increased and
the result is sent to a decision diamond 850. If no more than
three tries have been made, the user is given another
opportunity to enter his or her passphrase. If this is the
fourth try, then the program branches to a memory box 852 where
a record is made of the attempt so as to create an audit trail,
and the program exits in exit port 852.

With reference now to Fig. 9, the Label Selection
subroutine 420 will now be described. Subroutine 420 is
selected when the user indicates that an unencrypted file is to
be encrypted and transmitted or stored. Subroutine 420 is
entered after access has been granted by Access Control
subroutine 210 (see Fig. 8) through an input box 910. Input
box 910 also provides a menu to the user to select an input
file, usually plain text, or an output file. The menu directs
a monitor output of a selection of input files from a disk file

912, as indicated by monitor box 914, or a monitor output of a

10

15

20

25

WO 96/38945 PCT/US96/08851

- 25 =
selection of output encrypted files from a disk file 916, as
indicated by monitor box 918. At the same time, the user
selects an encryption file, as indicated in input box 920, to
be used to encrypt the output file.

It is noted, that should the user desire to create his or
her own labels at this point, there isAa routine in the Visual
Basic software that permits the user to create and store such a
label. Thus, the user can run that routine at this point, and
then use subroutine 420 to select that newly created label or
labels.

As a safety measure to ensure that only properly
designated files are used by the program, all file names are
required to have a predetermined extension, such as the
extension "kbt". The extension of a selected output file is
checked in decision diamond 922 and a selected input file is
checked in decision diamond 924. If the extension is improper,
the program branches to issue an appropriate error message in
process box 926 or process box 928, respectively, and the
program is returned to provide an output directory file 918 or
an input directory file 912, respectively. If the file
extension of the selected file is proper, the program continues
and provides the user with a menu of the types of label to be
selected in monitor box 930. As mentioned above, the present
invention has selected seven label types, although a greater or
lesser number of types can be used. In the present embodiment,
the label types are: network labels 932; purpose labels 933;
place labels 934; to labels 935; from labels 936;

classification labels 938; and environment labels 939.

10

15

20

25

WO 96/38945 PCT/US96/08851
| - 26 -

The user selects the label group of interest in an input
box 940, and as each label is selected from the presented list,
or generated by the user at the time, the selected label is
stored in an appropriate data output box 942 for the network
label, 943 for the purpose label, 944 for the place label, 945
for the to label, and 946 for the from label. However, as
indicated in Fig. 3a ahd 3b above, the classifications and
environment labels also contain certain contemporaneously
generated information. Thus, when the classification label is
selected in input box 940, the selected classification label is
sent to process box 950 and 952 where the environment code to
be used is looked up and added, and the classification code to
be used is looked up and added, respectively. The
organizational drop dead date (e.g. the date the file is to be
declassified or destroyed) is then added to the modified
classification label in process box 954 and the further
modified classification label is then stored in a data output
box 956. Finally, after the file to be sent is encrypted in
user input box 958 (using a conventional algorithm and
conventional process, as mentioned above), the program checks
in decision diamond 960 that all but the last label, the
environment label, have been selected. 1If all other labels
have been selected, then the program branches to a process box
962 where the system time/date stamp are added to the
environment label, and the environment label is stored in data
output box 962. At this point, the program has had all of the
labels selected, and it leaves Label Generation subroutine 420

and enters the Generate Key subroutine 428.

10

15

20

25

WO 96/38945 PCT/US96/08851
- 27 -

At this point in the description of the present invention,
there should be sufficient information to now describe an
overview of the entire encryption label key creation program.

Thus, referring now to Fig. 10 with a comparison being
made to Figs. 4 and 8, a flow chart for encrypting the label
keys is depicted. The user calls the system program 170 and
enters a passphrase at input box 212. The program proceeds to
verify the entered passphrase in the Access Control subroutine
210 which utilizes the Spinup Randomizer subroutine 530 and
obtains the Gamma key 211 made available at process box 844.
The user selects the desired labels made available in input box
420 and provides the selected labels to the rest of the system
at data box 1020. The selected labels together with Gamma key
211 represent the input data at data box 1022. From data box
1022, the program divides into a first part to produce
encrypted labels and a second part to produce a file key usable
with an encryption algorithm to encode the file. It is noted
that a feature of the present invention is that the encryption
of a data file need not be done at the time a file key and
trailer are created.

To create the trailer, the data in data box 1022 are
provided to a Label Element Encryption subroutine 730 which
utilizes Spinup Randomizer subroutine 530 and a label lookup
table if irrational labels are desired. The spinup number and
the initializing vector for Spinup Randomizer subroutine 530
are embedded in and obtained from system software 170, although
as stated above, it could be obtained from outside the system.

The output from encryption subroutine 730 is provided to a

10

15

20

25

WO 96/38945 PCT/US96/08851

- 28 -
first file storage 224 as a trailer to be concatenated to a
file and to a second file storage 1028 as a secure audit trail.

The other path from data box 1022 is provided to a Label
Key Generation subroutine 1030 and to a Meld Key subroutine
1032. Meld Key subroutine 1032 takes the software embedded
Alpha and Beta keys and the generated Gamma key 211 and encodes
them using Spinup Randomizer subroutine 530 and calculated spin
numbers derived by Squish subroutine 1034 f:om the label
itself. The encoded key strings are then combined together by .
a MeldIn subroutine 1036 and provided to subroutine 1030.
Subroutine 1030 uses a unique keyup number and initializing
vector provided at data box 1037. The result is a plurality of
reproducible trailkeys provided by subroutine 1030 at data box
1038 which are respectively unique to each label.

The trailkeys from data box 1038 are provided to a File
Key subroutine 1040 where they are all combined by a string
combiner process in the Meldin subroutine 1036, described
herein below. The combined result is a single file key
provided at data’box 1042.

A somewhat opposite process to the encryption label key
creation module is the label key creation decryption module
depicted in Fig. 11. The decryption module, however, has
sufficient difference to warrant a separate detailed
description thereof. However, some initial observations are
necessary in order to understand the principles of operation.
In order for the label decryption process to have occurred, the
same information for access control must have been entered.
This does not necessarily mean that the pass phrase must have

been the same, since the "pass-phrase vector" compensates for

10

15

20

25

wo 96/38945-- PCT/US96/08851

- 29 -
the differences in the pass-phrase, and the "mask" being the
same, the same key-up variable is generated. Thus the key-up
variable must have been the same when it entered the "Spinup
engine" in order for the label decryption process to correctly
occur. The Spinup(n) must also be the same. With these
elements being the same, and by knowihg what Beta(n) and Gamma
211 are, one can determine what Alpha(n) must be and therefore
a label can be decrypted.

Also, it is important to realize that all encrypted labels
have a fixed length and are placed at the end of an encrypted
message in a concatenated relationship. The trailer is used to
recover the key that is used in the body of the message. The
encrypted trailers (n), where in the present embodiment "n" is
equal to seven, have a known, fixed length. An advantage of a
fixed length encrypted trailer is that each trailer can be
easily identified, separated out and decrypted. In the present
embodiment, the length of each trailer element is eighty bytes
and thus the length of the entire trailer is seven times eighty
or 560 bytés. Thus, because the encryption and decryption
processes of the present invention are incremental and
separable, the encrypted trailer for the "place," for example,
that is trailer number 3 (i.e. n = 3), can be isolated with the
correct Beta(n) key, the correct Gamma key 211, the correct
Spinup number, and the correct keyup variable or initial
vector. However, in the present embodiment, the value of the
key-up variable is common to each of the label elements (n),
although a different variable could be used with each label.
Other advantages of using this type of a trailer system is that

it is both faster to decrypt and easier to access than a header

10

15

20

25

WO 96/38945 PCT/US96/08851

- 30 -
system. Also this system can be used for routing the
information without decrypting the message, and any number of
labels can be used in the trailer without significantly
affecting the delivery system design. This latter advantage is
not true for a header system because such systems require the
transfer of the body of the encrypted message to add or delete
portions of the file or of the trailer.

Thus, referring now to Fig. 11, with reference to Fig. 10,
and also to Figs. 2 and 8, access to the computer program is
obtained by the user entering the passphrase at input box 212.
The program proceeds to verify the entered passphrase in the
Access Control subroutine‘210 which utilizes the same Spinup
Randomizer subroutine 530 as described above with respect to
Fig. 10. The result is the production of the Gamma key 211
made available at process box 844.

Once, access to the program is granted and the appropriate
selections are made, the program obtains the trailer portion
212 of the message to be decrypted, indicated as being on disk
in Fig. 11, but which could be obtained from other sources,
such as from RAM 132 having been stored therein directly from
an input from modem 142. The program then strips off the
encrypted label portion, as indicated in data box 1110 to
provide data in data box 1112 and also provide a secure audit
trail 1114 indicated as being stored on disk. The required
portions of the encrypted label portion are then selected by
the program and provided in data box 1112.

The program then branches to a called subroutine, the
Label Element Decryption subroutine 720, which uses gamma key

211 and the encrypted data 1112 to produce decrypted label

10

15

20

25

WO 56/38945 PCT/US96/08851

- 31 -
information data as indicated in data box 1116. The Label
Element Decryption subroutine 720 is described hereinbelow with
respect to Fig. 14. The remainder of the program is identical
to that of Fig. 10 with the result that a file key is made
available in data box 1042.

The Label Element Encryption suﬁroutine 730, called by the
Encryption Label Key Creation routine described in Fig. 10,
will now be described with reference to Fig. 12. The user
enters the subroutine by making a selection in input box 1210
(shown in the upper right of Fig. 12) to either enter the
user’s own rational label, such as one depicted in Fig. 3a, or
to proceed to a Label Lookup subroutine 1212, depicted
schematically in Fig. 13 and described hereinbelow. Subroutine
1212 permits the user to select a rational label from a
plurality of pre-stored labels and then to associate an
irrational key variable 1214, shown stored on a hard disk, such
as hard disk 134, Fig. 1. In most cases the association is
simply a one-to-one correspondence that is available in a 1ook;
up table. .In either case, a rational, literal, and/or
meaningful string label that can be read and perhaps remembered
by the user, can be selected.

The program then selects the label chosen in process box
1216 and provides it as an ASCII alphanumeric string to process
box 1218 where the program pads the selected label to 20
characters. The padding is done by generating a pseudo-randon
number, spinup key 1220, in Spinup Randomizer subroutine 530,
described above with respect to Fig. 6. In this embodiment, an
initializing vector used in Label Element Encryption subroutine

730 is provided by input box 1222 and is the serial number of

10

15

20

25

WO 96/38945 PCT/US96/08851
| - 32 -

network, but it could be the called serial number of the
computer being used (if available on the particular computer)
or simply an embedded number in the program. The spinup
number, which as described above is an integer and is the
number of cycles through the spinning steps that are used in
subroutine 530, is also an embedded number provided at input
box 1224. The resulting output,as previously mentioned, is
provided at output box 1220 as the spinup key as an ASCII
number. The padding in this embodiment, as depicted in Fig. 3,
is a simple concatenation, but it could be done by a
mathematical operation, such as an ORing, ANDing or EXCLUSIVE
ORing.

From the padding process box 1218, the program proceeds to
a plurality of serially connected EXCLUSIVE OR (sometimes
denoted XOR) steps. As stated above, the purpose of the labels
are to maintain the rationality or reasons for the encryption
of the host system files in order to specify the sensitivity of
decrypting the file within the constraints of many situations
and conditions. This rationality goes with each encrypted file
in the form of an encrypted trailer of fixed size having a
plurality of encrypted labels. For simplification, the
designator "n" is used to identify the explicit label being
handled. The internal designation used for the different
labels are: the input rational label, the (nth) label, the
Alpha(n) key or label, the Beta(n) key or label, and the Gamma
key or vector 211. The Alpha(n) key, the Beta(n) key, and the
Gamma key 211 are all XORed together along with the product of
the vector produced by the Spinup engine subroutine. When all

are properly XORed, the encrypted label (n) is created.

10

15

20

25

WO 96/38945 _ PCT/US96/08851
- 33 -

In the first stage of the EXCLUSIVE OR encryption stages,
the padded number from process box 1218 is XORed in process box
1226 with the ASCII representation of an embedded key, denoted
the Alpha Key and provided in data box 1228. The product of
this EXCLUSIVE Oring is then EXCLUSIVE ORed in process box 1230
with the ASCII representétion of a second embedded key, denoted
the Beta Key and provided in data box 1232. A third EXCLUSIVE
Oring occurs in process box 1234 with the product of process
box 1230 and Gamma key 211, produced in the Access Control
subroutine 210, Fig. 8.

The result of the EXCLUSIVE ORing in process box 1234 is
then is used as an input to a register or an output data box
1236 in which the result of the particular label’s encryption
is stored. The subroutine is repeated for each of the labels
(which is seven in the embodiment depicted in Fig. 3), and all
of the results are concatenated together to form an encrypted,
fixed size rational trailer label.

With reference now to Fig. 13, the Label Lookup subroutine
1212 used in the Label Element Encryption subroutine 730 of
Fig. 12, will now be described. 1In the present embodiment, the
label system uses three associated variables or keys to encrypt
or build each label and there are a total of seven different
labels. Therefore, there are twenty-one independent variables
associated with the labels. As mentioned above, the seven
labels represent the rational for securing the individual file
and indicate the sensitivity of the file by describing who to,
who from, the purpose of the message or file, the network on

which the file will be transferred, the classification of the

10

15

20

25

WO 96/38945 PCT/US96/08851

- 34 -
file, the place where the file is to go, and the environment in
which the file is allowed to be presented.

When subroutine 1212 is called by subroutine 730, the
program enters an Associative Index Mapping subroutine 1310.
Subroutine 1310 incorporates a sorted table that relates each
available label to the corresponding lébel key for the purpose
of allowing users to select a coded, irrational, associated
input variable used in place of the actual rational label.
Subroutine 1310 first gets a Label Data file 1312 from hard
disk memory 134 and stores it in the computer’s RAM memory 132.
Label Datafile 1312 is comprised of a plurality of pre-
established, rational labels 1314, 1316, 1318, and 1320. Then
subroutine 1310 presents the data to the user on monitor 140,
and/or prints out the data on a connected printer (not shown in
Fig. 1). When the user selects a pre-established label, the
associative index mapping subroutine 1310, using a Label Key
Datafile look-up table 1322, provides an associated irrational
label, such as one of keys 1324, 1326, 1328 and 1330.

The program flow of the Label Element Decryption
subroutine 720 have been described above with respect to Fig.
7b, but the details thereof are depicted in Fig. 14. The input
to Label Element Decryption subroutine 720 is the encrypted
label trailer 1112. Subroutine 720 first determines the length
of the label trailer by counting the number of bytes in process
box 1410 and then in process box 1410 selects the first four
elements from label 1112. The selected four elements are then
tested in decision diamond 1414 to determine if the string is
odd or even. If the string is even, then subroutine 720

branches to process box 1416 where the program selects the

10

15

20

25

WO 96/38945 PCT/US96/08851
- 35 =

second and third elements and strips the least significant
character and transfers the result to a data input box 1418.
On the other hand, if the value of the selected elements is
odd, then the program branches to the process box 1420 where
the least significant element is stripped off and the first
three elements are tranéferred to data input box 1418.

The rational for the decryption program flow is to perform
the steps opposite to the encryption steps. For example, in
encrypting the various alphanumeric elements of the label
network portion 330 "BLUENETWORKEASTXXXXX" (Fig. 3), the
encrypted packed string could be "9338 1201 5176" for the
elements "B," "L," and "U." The encrypting packing subroutine

determines if the resulting encryption of an element is three

.or two digits. If three digits, then the encryption is packed

with a random odd least significant digit, and if two digits,
then the encryption is packed with a random even least
significant digit and with a random most significant digit.
Thus, in the above example, the above described subroutine
would strip the packed numbers to yield:

"33 120 17".

In either the odd number case or the even number case, the
value in the ihput box 1418, sometimes referred to as the keyup
value, is used as the variable input to a three EXCLUSIVE OR
gates (or XOR gates), 1420, 1422, and 1424 which afe connected
in series. Thus, the output of one XOR gate serves as one of
the two inputs to the next XOR gate, with the first input being
the keyup value 1418, and the other of the two inputs being the
Alpha key 1228, the Beta key 1232 and the Gamma key 211,

respectively. The output of the last XOR gate is the input to

10

15

20

25

WO 96/38945 PCT/US96/08851

- 36 -
a decrypted element data input box 1426, the output of which is
stored in a process box 1428 as the first portion of the
padded, decrypted label. Process box 1428 is essentially a
software register where succeeding elements are concatenated to
the previous element.

From process box 1428, the progrém proceeds to a decision
diamond 1430 where a count of the number of elements decrypted
is kept and compared with the length of the label trailer
determined in process box 1410. Also in decision diamond 1430,
a determination is made whether all of the label elements have
been decrypted. If not, the program branches back to process
box 1412 where the next four elements from the label trailer
1112 are selected for processing. If all of the label elements
have been decrypted, then the program branches to a process box
1432 where the padding from the concatenated product of process
box 1428 is removed. The result is provided to data output box
1434 as the decrypted label. In order to remove the padding
from the concatenated product, the reverse of the padding
process performed in the Label Element Encryption subroutine
730 (described with respect to Fig. 12) is done. A spinup
number 1224 is used to determine the number of cycles that are
performed in Spinup Randomizer subroutine 530, and the same
internal initializing vector, which is the network serial
number, is used as the input to subroutine 530.

The generation of the key used in the encfyption algorithm
will now be described with reference to Figs. 15 through 20.
Fig. 15 discloses the Label Key Generation subroutine 746.
Subroutine 746 uses a unique keyup or initializing vector from

input data box 1520 and a unique spinup number from input data

10

15

20

25

WO 96/38945 PCT/US96/08851

- 3‘7 -
box 1522 in Spinup Randomizer subroutine 530 to generate an
input keyup for each of a plurality of Label subroutines 1523,
1524, 1525, 1526, 1527, 1528 and 1529. The output from each of
the Label subroutines is a trailkey stored in respective output
data boxes 1533, 1534, 1535, 1536, 1537, 1538, and 1539.

Each Label subroutine, depicted in Fig. 16, is
substantially the same and thus will be described in general.
Essentially, the label subroutine is comprised of MeldKeys
subroutine 1032 with four inputs. The labels from Fig. 9 are
correspondingly used in turn as an input in Fig. 16, and for
convenience are denoted in Fig. 16 as 1610. A particular label
is identified as "n," and in the present embodiment "n" goes
from one to seven to identify each of the seven labels. Label
1610 is redesignated in Fig. 16 as Alpha key 1620. A second
input in each Label subroutines 1523, 1524, 1525, 1526, 1527,
1528 and 1529 is an individual Beta key for each subroutine
1622, denoted Beta(n) 1622, where "n" is the same as that used
for the labels. At this time in the preferred embodiment,
Beta(n) is a meaningless, embedded vector, but as should be
obvious to those skilled in the art, Beta(n) could have some
rational meaning or purpose. A third input is Gamma key 211,
and thus it will be the same for each label subroutine. The
last input to each label subroutine is a keyup vector 1626
designated keyup(n). Where keyup(i) vector 1626 is the same as
keyup 1520 in Fig. 15 for the first run label subroutine 1523
(the Network label), keyup(n) vector 1626 for the other six
label subroutines is the trailkey 1533 ~ 1538 generated for the

previous label subroutine. For example, keyup(2) 1626 in Fig.

10

15

20

25

WO 96/38945 PCT/US96/08851

- 38 -
16 (the Purpose keyup) is Network Trailkey 1533 and keyup(7) is
Classification Trailkey 1538.

With reference now to Fig. 17, the Meld Keys subroutine
1032 will now be described. The purpose of Meld Keys
subroutine 1032 is to produce a corresponding unique key or
vector, called here a trailkey, représentative of each label
330, 332, 334, 336, 338, 340 and 342 by using a one-way
process. Each trailkey is a unique, reproducible,
pseudorandom, non-reversible key or vector that maintains a
suitable répresentation of the input values.

As an overview, Meld Keys subroutine 1032 does this by
packing each label (here called Alpha key 1620) to 80
characters with a filler from keyup 1626 using a well known
concatenation subroutine, which could simply be a programming
command (for Visual Basic the command is MID$), the packed
label being called Alpha Prime 1710. This process is repeated
for each unique Beta(n) key 1622 to produce a Beta Prime vector
1712; and again repeated each time for Gamma key 211 (produced
by Access Control subroutine 210) to produce a Gamma Prime
vector 1714. Then the three packed keys, Alpha Prime 1710,
Beta Prime 1712 and Gamma Prime 1714, are folded together, that
is combined, to produce.one key, a trailkey 1716, for each
label. The trailkeys are then combined, as described below
with reference to Fig. 20, to produce a single file key thaﬁ is
used to initiate the selected encryption algorithm.

In this way, the produced trailkeys and the file key are
100 percent relational to the labels that generated them (i.e.
the key has a flat representative function). Although the

combination of the keys can be done in a number of ways, in

10

15

20

25

WO 96/38945 PCT/US96/08851

- 39 =
this particular embodiment, Beta Prime key 1712 and Gamma Prime
key 1714 are first combined using a bit-by-bit XOR in a Meldln
subroutine 1720, denoted 1720a and described hereinbelow with
respect to the description of Fig. 18. MeldIn subroutine 1720a
produces an intermediate product having the same length as one
of the original keys, and is then combined using a bit-by-bit
XOR with Alpha Prime key 1710 in MeldIn subroutine 1720b to
produce Key 1716, which also has the same length as the
intermediate product and the three input primed keys, Alpha’
key 1710, Beta’ key 1712 and Gamma’ key 1714.

The process of creating or making the primed Alpha, Beta
and Gamma keys from the unprimed keys will now be described.
First, Alpha key 1620 is subjected to Spinup Randomizer
subroutine 530 (see Fig. 6) for a predetermined number of spins
determined by an internal integer 1718, which in the preferred
embodiment is one, but which as one skilled in the art can
appreciate could be generated, such as by a Squish Function
subroutine 1034a. Because of the operation of process box 648
in Spinup Randomizer subroutine 530, the output from Spinup
Randomizer subroutine 530 will be the ASCII representation of
an integer. The oﬁtput of subroutine 530 is used as the input
to a SpinRandom Characters subroutine, which at this point in
the program is denoted 1732a. The SpinRandom Characters
Subroutine is identical to Spinup ﬁéndomizer subroutine 530
(Fig. 6), except that process box 648 (Fig. 6) which performs
the modulo 10 arithmetic is not used. Thus, it is possible to
generate all ASCII characters in process box 650 (Fig. 6) and
to provide them as an output from the SpinRandom Characters

subroutine. The number of spins of subroutine 1732a is

10

15

20

25

WO 96/38945 PCT/US96/08851

- 40 -
determined by an integer from 1 to 9 from Squish subroutine
1034a, described hereinbelow with respect to the description of
Fig. 18. The number of spins is limited here only in the
interest of the time that it takes to operate subroutine 1732
and in a faster computer could be larger thah a single digit
integer. The output of subroutine 1532a is used as the input
to a conventional concatenation subroutine 1734a, the packing
or filler input of which is keyup 1626. The output from
subroutine 1734a is provided as the input vector to a second
SpinRandom Characters subroutine 1732b. The spinup number for
subroutine 1732b is determined by an embedded internal integer
1736, which for the presently preferred embodiment at this time
is one, and thus is the same as internal integer 1718. The
output from subroutine 1732a is Alpha Prime 1710.

The packed vectors Beta Prime 1712 and Gamma Prime 1714
are created in a similar way. Keyup 1626 is used as the input
to a SpinRandom Characters subroutine 1732c. The spinup
number, which in this embodiment is a single digit integer (but
as mentionéd above could be larger), is generated by a Squish
Function 1034b from the unpacked Environment Label, called here
the,Environment Trailer 964. The output from SpinRandom
Characters subroutine 1732c is used as the filler or packing
input to a Concatenation subroutine 1732b and a second
Concatenation subroutine 1734c. The vector to be packed by
subroutines 1734b and 1734c are Beta(n) key 1622 and Gamma key
211, respectively, and the outputs are Beta Prime key 1712 and
Gamma Prime key 1714. The Environment label is used to
generate the spinup number because it contains the unique time

and date at which the file is being encrypted and thus

10

15

20

25

WO 96/38945 PCT/US96/08851
- 41 -
represents a rational connection to the particular encrypted
file. It should be obvious that changing any of the Spinup
values results in a dramatic change in the output key. Such
internal Spinup integers are designed to contain values
independent of the others and capable of being derived from
external or internal sources or computations, such as by Squish
Function 1034.

Squish subroutine 1034 is depicted in Fig. 18. The
purpose of Squish subroutine is to take a multi-element string .
input and reduce it, in a reproducible manner, to a single
integer. The input string is received in an input data box
1810. Then, in a process box 1812 an iteration counter (which
is essentially just a memory storage location and is not
separately shown) is initialized and the accumulated total of a
Last Accumulated Total totalizer (which also is essentially
just a memory storage location and is not separately shown) is
set to zero. The program proceeds to a conventional subroutine
1818 to determine the number of elements in input string 1810.
The program then enters the reiteration portion of Squish
subroutine 1034 at a decision diamond 1820 to determine if the
number in the iteration counter is greater than the number of
elements in the input string.

Initially, the answer will be "no," and thus the
subroutine branches to a process box 1822. In process box
1822, subroutine 1034 adds the integer at the iteration
location to the number in the totalizer. Next, the subroutine
proceeds to a decision diamond 1826 which determines whether
the iteration is greater than the number of elements in the

input string. If the answer is no, the subroutine branches

10

15

20

25

WO 96/38945 ‘ PCT/US96/08851

- 42 -
back to process box 1822 to begin the loop again. If the
answer in decision diamond 1826 is yes, then the subroutine
branches to a process box 1828 which sets the last accumulated
total to equal the current accumulated total.

Squish subroutine 1034 then continues to a decision
diamond 1830 which detéimines if the number in the totalizer is
greater than one. If so, subroutine 1034 loops back to
decision diamond 1820. If the answer is "no," then the process
is completed and the resulting integer is stored in an output
data box 1834.)

As an example, suppose that the input sting of numbers in
box 1810 has initially only 3 digits, namely 653. When the
subroutine enters decision diamond 1820, the iteration counter
will have been initialized to one by process box 1812 and since
the number of elements in the input string is three, the
subroutine will drop down to process box 1822. The integer at
the first iteration location is "6" and this is added in
process box 1822 to the Accumulated Total which has been
initialized at zero. Thus the new total is now 6. The
subroutine then proceeds to process box 1824 which increments
the iteration counter and then to decision diamond 1826 which
takes the "no" branch because the iteration count is now 2,
which is not greater than the number of elements in the string,
which is 3. The subroutine again enters process box 1822 and
now the iteration location (which is now 2) has the number 5.
This is added to the present Accumulated Total of 6 to yieid
11. In a similar program flow, the next trip around the lobp

will yield an Accumulated Total of 14 (11 + 3). After this

third trip around the loop, the iteration number will now be 4

10

15

20

25

WO 96/38945 PCT/US96/08851

- 43 -
which is greater than the number of string elements which is 3
and the program branches to decision diamond 1830.

Now the Accumulated Total has two digits (a "™1" and a "4%)
so the program will branch back to decision diamond 1820. The
iteration counter not having been reset is now at 3 and thus
the subroutine will branch to process box 1832. Here the
subroutine again initializes the iteration counter to 1 and the
Last Accumulated Total to 0 and it proceeds through the "no"
branch of decision diamond 1826 (iteration is now 1 and the new
number of string elements is 2). By looping twice the result
in the Accumulated Total is "S5" (1 + 4) and is a single digit.
Therefore, when the subroutine again enters decision diamond
1830, the result will be "no" and the program will finally end
at output data box 1834. Thus, by successive additions of the
elements in the input string, the result will be a single
digit. MeldIn subroutine 1720 is depicted in Fig. 19. The
function of subroutine 1720 is to combine two separate strings
of the same or different length in a reproducible manner into
one string having the length of the longer string.

Initially, in steps that are not depicted, a software

shift register is initialized to zero and the subroutine loads

in parallel each stage of a primary serial-parallel shift

register 1910 having "n+1" stages with a first, primary input
string and each stage of a secondary serial-parallel shift
register 1912 having "n+1" stages with a second, secondary
input string. For example, as seen in Fig. 17, a primary
string is Alpha’ key 1710 or the output from the first MeldIn
subroutine 1720, and a secondary string is Beta’ key 1712 or

Gamma’ key 1712. The outputs from Data n+l stage of each shift

10

15

20

25

WO 96/38945 , PCT/US96/08851
- 44 -

register 1910 and 1912 are used as inputs to a subroutine 1914
and 1916, respectively, which convert the value in the data n+1
stage to its ASCII value. Then the elements in each shift
register 1910 and 1912 are shifted one place to the right. The
output from subroutines 1914 and 1916 are then EXCLUSIVE ORed
together in process box11918 and the counter is advanced one
count in process box 1920. Since this is the initial looping,
the output from XOR process box 1918 is a one and is stored as
an integer in data output box 1922.

The integer in data output box 1922 is then convertéd to
its ASCII character in process box 1924 and concatenated onto a
string in a register process box 1926. The subroutine in
decision diamond 1928 then checks to see if the count in the
Counter is equal to the length of the string in shift register
1910. Since the length of the strings used in Meld Keys
subroutine 1032 (Fig. 17) and entered into shift register 1910
is 80, having been packed to that length by subroutine 1732,
the result of the test in decision diamond 1928 will be a "NO"
on the first loop. Thus, the subroutine 1720 proceeds to
process box 1930 where the ASCII character produced in process
box 1924 is loaded into the first stage of secondary shift
register 1912 and both shift registers 1912 and 1910 are
shifted one stage to the right. After 80 iterations, the
length of the string in process box 1926 will be 80 and the
count in the Counter will be 80. Therefore, the result in
decision diamond 1928 will be a "YES" and the program will
branch to load the product in process box 1926 into data ouﬁput

box 1932 as the MeldProduct. The MeldProduct produced by the

10

15

20

25

WO 96/38945 PCT/US96/08851

- 45 -
second MeldIn subroutine 1720 in the Meld Keys subroutine 1032
of Fig. 17 is a trailkey for the particular label.

It can be seen that the length of the secondary string
loaded into register 1912 can be shorter than the primary
string loaded into register 1910 because extra characters are
added to the end of the secondary string by process box 1930 to
make up, automaticallj, for any length difference.

The production of file key 1042 is shown in Fig. 20. The
first two trailkeys, 1533 and 1534 are combined in a first use
of MeldIn subroutine and then the result of that combination is
used as the primary string input to a second MeldIn subroutine
1720b where the secondary string input is the next trailkey, in
this case the place trailkey 1535. This process of using the
result of a previous MeldIn subroutine 1720(n) as the primary
sting input to the next MeldIn subroutine 1720(n+l) is repeated
until all trailkeys are used in turn. The last step produces
File Key 1042. In Fig. 20, trailkey 2010 is depicted to
illustrate that any number of trailkeys (and thus labels) can
be used and the number is not limited to the seven in the
presently preferred embodiment.

As mentioned above, the present invention contemplates the
changing or rekeying of the files on keydisk 160 by an incoming
message and the changing of keys, spinups, and embedded
initializing vectors. This procedure is desirable in order to
increase overall system security by shortening the life of a
key, and is also desirable in order to destroy the ability of a
presently unauthorized user to use the system. The software to
accomplish this is a Rekey and Relabel subroutine 2100 depicted

in Fig. 21.

10

15

20

25

WO 96/38945 PCT/US96/08851
- 46 -

Subroutine 2100 can be inserted in the program depicted in
Fig. 2 between Label Decryption subroutine 232 and Key Creation
Combiner subroutine 234. An incoming message 230 is being
decrypted by decryption subroutine 232. After the trailer has
been decrypted, the subroutine 2100 enters decision diamond
2110 where the decrypted Purpose label is checked to determine
if that label has a predetermined series of characters, such as
"REKEYKEYBYTE." 1If it does not, the program branches out of
subroutine 2100 to process box 2112 where the program is
directed to continue with the decryption process described
hereinabove with respect to Fig. 3. 1If the comparison‘in
decision diamond 2110 is "yes," then the subroutine proceeds to
a Label Element Decryption subroutine 2114, which then proceeds
to decrypt the trailer file on KeyDisk 160. This decryption
requires the use of the rekey file trailer labels which are
obtained from keydisk 160.

From process box 2114, subroutine 2100 proceeds to two
decision diamonds 2116 and 2118 where the program checks for
proper authorization for the rekey. In decision diamond 2116,
the subroutine determines if the Rekey Command Label matches
the Purpose label, and if it does, then the subroutine is
permitted to proceed. If it does not, then the subroutine
branches to a subroutine 2120 where the program issues a Rekey
Error to the User and writes the éfror to an audit trail.
Similarly, in decision diamond 2116, the subroutine determines
if the From label of the rekey message matches the
Authorization label in the rekey file located on the keydisk.
If the two are the same, the subroutine proceeds to subroutine

2122 which writes the decrypted message file to the keydisk and

10

15

20

25

WO 96/38945 PCT/US96/08851
- 47 -

"then to subroutine 2124 which issues a rekey message and writes

a message to the audit trail. If the two labels are not the
same, the subroutine branches to subroutine 2120, as described
above.

| In addition to changing the files on the keydisk,
subroutine 2122 can also change any internal vector or key in
the system. 1In this way, the user can be kept up to date, or
an improper user’s program can be disabled.

The specification has now described a presently preferred
embodiment of the present invention in which a unique
transactional key can be generated to initialize a conventional
encryption algorithm and seven labels can be encrypted and
concatenated to the encrypted message as a trailer. 1In
creating the trailer, key labels from the Netwqu, Purpose,
Place, To, From, Classification and Environment categories must
exist or be created first. The relationship between any
selection of labels contains sufficient information to explain
the justification or "story" surrounding the encryption of the
message. However, in some circumstances the justification may
be acceptable and in some it may not be acceptable. For
example, a message may have a minor sensitivity when
communicated between two persons through a given network to a
given place, but the same message, to and from the same persons
may have a high sensitivity when passed through a different
network to a different place. The present invention includes a
system for producing "sensitivity factors"™ that can be used to
prevent harmful combinations of labels, and thus prevent a
harmful message from being sent in the selected combination of

categories.

10

15

20

25

WO 96/38945 PCT/US96/08851
- 48 -

An analysis of all of the labels with respect to the
operational environment, and within their respective label
categories can be made in advance to produce rational
"sensitivity" weights assigned to specific labels. Further
separate analysis of the label categories, in context with the
organizational security policies of the participants in the
network, can be used to produce "sensitivity factors" that in
turn can be used to prevent harmful combinations.

In order to implement such a check, the present invention
utilizes a rule-based expert system approach. Two different
kinds of if-then-else rules are stored in separate databases.
A first database stores a plurality of associated label weight
rules that are used to calculate a selected label’s final
weight as a function of that label’s initial weight and one or
more other label that have been selected. A second database
stores a plurality of label weight acceptance rules that are
used to determine the overall acceptability of the label
combinations as a function of the calculated final label
weights. These rules are fired sequentially to calculate a
related weighted value of perspective label combinations.

An example of a rule in the first database can be:

IF [Weight(label 5)] > 7 AND [Weight(label 3)] < 5,
THEN [Weight(label 3)] = 3 x [Weight(label 3)] AND
[Weight(label 5)] = 2 x [Weight (label 5)7.
In words, this rule can be translated to séy that originally if
the selected From Label has an assigned weight of "8" or more
and the selected Place Label has an assigned weight of from "oO"
to "4", then the final weights of both of these labels will be

changed to increase both label weights. The weight of the From

10

15

20

25

WO 96/38945 PCT/US96/08851
- 49 =
Label will be increased by a factor of two and the weight of
the Place Label will be increased by a factor of three. Thus,
the mere fact that the From and Place labels have certain
thresholds of sensitivity and both are being used together
increases both of their final sensitivities. In combination
with the evaluation rules, this combination could have easily
excluded the particular label combination from being allowed.
However, the particular rule could just as well have reduced
the'sensitivity of one or both the weights of the labels.
An example of a rule in the second database can be:
[Weight(label 5)] > 7 AND [Weight(label 3)] < 5,
IF, SUM [Weight(label n),n= 1 to 7] > [Weight(label
4), THEN [Show Message: "Label Selections Not Allowed"];
AND Reset Label Selections To [Null}:;
AND Initialize Sum to [0];
AND Restart Label Creation Process:;
" ELSE Write label combination to associated label
database.
In words, this rule can be translated to say that if the sums
of the final weights of all of the labels is greater than the
final weight of the To Label, then an error message will be
typed to the monitor’s screen (or printed out) and all of the
label selection will be nullified, the sum of the final weights
will be initialized to zero and the label creation subroutine
will Se restated. If the sums of the final weights are less
than the final weight of the To Label, the label combination is
allowed and the combination will be written to an associated

label database.

10

15

20

25

WO 96/38945 PCT/US96/08851
- 50 -

Obviously, any number of databases can be used to make
different numbers of label categories. For example, within the
label association process, eight separate databases can be
used. Seven of the databases contain the label records for the
corresponding label category and each record contains a text
field for the particular label and an integer field for the
weight of that label. The eight database contains the records
of the previously selected labels. Each record has seven text
fields to store the seven associated labels and a date/time
field to store the "drop dead" date and time of the record.

These rules can be tailored for the organizational
eﬁvironment according to the local organizational operational
policies. The summed sensitivity threshold that can be set
may, for example, be used to prevent the use of certain label
combinations on certain days, by certain people of appropriate
rank, and at different locations. The disclosed expert system
tyﬁe of apalysis is only one such possibility, and other types,
such as neural netwofks, fuzzy logic systems, or a genetic
algorithm methods, could be used instead. Also, if an expert
system or rule based evaluation system is used, the fules could
be executed external to the present system.

With reference now to Fig. 22, an expert system subroutine
for checking the combination of selected labels is disclosed.
Initially, the user selects a label from any of the
unassociated Label databases 932 to 939 in manual input box
2210. The program branches upwardly to a process box 2212
where the sum of the label weights is initialized to zero.

Then the program proceeds to a subroutine box 2214 where the

program, based on the selected label, selects the appropriate

10

15

20

25

WO 96/38945 PCT/US96/08851

- 51 -
rules to use from an Associated Label Weight Rulebase 2216.
Since there are no other associated labels yet, no rules within
Associated Label Weight Rulebase 2216 fires. Subroutine 2214
would then calculate all of the associated label weights for
all of the labels selected so far, but on this first round none
would be calculated. The program proceeds to a process box
2218 where all of the selected associated label weights of the
labels selected so far are summed, and the progress is
displayed on a terminal as indicated by output box 2220. On
the first round, the Sum of all selected label weights becomes
the weight of the single selected label, and the display
provided by output box 2220 would simply be the single weight
of the first selected label. As indicated in Fig. 9, the first
selected label could really be any of the seven labels, except
for the Environment label, which must be the last label
selected so that the system time/date stamp can be added to
make the label unique.

The program then proceeds to a subroutine 2222 where the
subroutine checks the label weights selected so far are
evaluated for acceptance based upon the set of rules setup in a
Label Weight Acceptance Rulebase 2224. The appropriate one or
ones of the stored rules will fire depending upon the label
weights, the label weight sum and an internal threshold value
set by the organizational policy. However, on.the first round,
the total weight being only the one label is under the maximum
allowed weight. Thus, the user is given the option as the
program branches back to input box 2210 of quitting, selecting
a different label from any of the categories, or accepting the

existing associated selections. On the other hand, should the

10

15

20

25

WO 96/38945 PCT/US96/08851

- 52 -
result be over the maximum allowed weight, which for the first
selected label would be rare, the program causes an error
message to be displayed on the terminal as indicated by display
box 2226. Nevertheless, should this the weight be over the
maximum allowed weight, the program still gives the user the
option to choose to quit, to select a new label or accept the
existing associated label selections in input box 2210.

If the user chooses at inpﬁt box 2210 to select a new
label from a different category, then the program proceeds to
process box 2212 once again where the sum of the label weights
is initialized to zero. Now there will be two labels and any
affected rules in subroutine 2216 will fire and subroutine 2214
will thereupon calculate the new associated weight of the now
two selected labels. The program then proceeds to process box
2218 where a new sum of the weights is calculated and then to
subroutine 2222 where the weights are evaluated for acceptance
based upon which rules fire in subroutine 2224. Again, if the
evaluation is found to be unacceptable, then an error message
is shown to the user as indicated in box 2226, and the program
returns to input box 2210.

The process continues until the user has selected all of
the desired labels and hés elected to accept the existing
labels in input box 2210. If all labels have been accepted by
the user, the program branches down to a decision box 2228
where a check is made to determine if in fact a label from each
category has been selected. If not, then the program branches
back to input box 2210. If so, then the program branches to a
decision diamond 2230 where the program asks if the weights

have been accepted by Label Weight Rulebase 2224. It is noted

10

15

20

WO 96/38945 PCT/US96/08851

- 53 =
that there may or may not be a requirement to select all of the
labels, depending upon the rules in Label Weight Acceptance
Rule Base 2224 and how decision diamond 2228 is set up. If the
weights have not been accepted, then the program branches back
to input box 2210. If they have been accepted, then the
program continues to a process box 223é where the user can
input a drop dead period. The program then continues to a
process box where the record transaction is recorded to an
audit trail, to an Output to Disk box 2236 where the program
writes associated labels with the association drop dead date to
the next available database record, and then to a subroutine
return box 2238 where the program branches back to the main
program.

If at any time the user accepts the option to quit in box
2210, the program branches to process box 2240 where the Label
Selection Process is aborted and then to subroutine return box
2242 where the program returns to the main program.

The present invention has now been described with respect
to a presently preferredvembodiment with some descriptions of
alternatives. However, additional embodiments and variations
of the present embodiment would be apparent to those skilled in

the art.

10

15

20

25

WO 96/38945 | PCT/US96/08851
- 54 -
I Claim:
1. A cryptographic system comprising

a portable medium on which a data key is retrievably
stored;

a communicating element that includes means for reading
said portable medium and retrieving said data key, means for
receiving an input from a user, and means for manipulating
information; and means for storing digital information;

a message of digital information that can be manipulated
by said communicating element;

a program having a plurality of parts and which controls
said communicating element, said program being stored in said
storing means and accessible by said communicating element and
can be run by said communicating element, said program
including

means for directing said communicating element to
read said portable medium and retrieve said data key;

means for receiving an input passphrase from a user,
said passphrase comprising at least one password;

means for granting access to parts of said program
based on said input passphrase and said data key;

means for creating a message trailer having a known
number of bytes if access thereto has been granted by said
access granting means of said computer program, and

means for attaching said message trailer to said
message.
2. A cryptographic system as claimed in Claim 1 wherein said
communicating element is a computer and said program is a

computer program that can be run by said computer.

10

15

20

25

WO 96/38945 PCT/US96/08851

- 55 -
3. A cryptographic system as claimed in Claim 2 wherein said
computer program further includes means for creating a unique
file encryption key from information contained within said
message trailer.
4. A cryptographic system as claimed in Claim 2 wherein said
computer program further includes means for assigning program
code representing a plurality of reasons for creation and use
of said data key.
5. A cryptographic system as claimed in Claim 4 ;herein said
computer program further includes means for identifying said
reasons for each key created prior to the creation of said key.
6. A cryptographic éystem as claimed in Claim 2 wherein said
computer program further comprises means for rekeying at least
one variables in said computer program used to encrypt at least
one of said labels and file key.

7. A cryptographic system as claimed in Claim 2 wherein said
message trailer is comprised of a plurality of concatenated
identifiable label portions.
8. A cryptographic system as claimed in Claim 7 and further
including a data base containing a plurality of label strings
and a plurality of corresponding weighting factors, each said
label portion being an encrypted said label string;

and said message trailer creating means including means to
permit a user of said cryptographic system to access said data
base and to select a label string.
9. A cryptographic system as claimed in Claim 7 and further
including expert system means for evaluating said weighting

factors of the user selected label strings to determine if the

WO 96/38945 PCT/US96/08851
- 56 =
combination of selected label strings is a permitted

combination.

PCT/US96/08851

WO 96/38945

1/21

2z I/ —— 0z 00t
£ ’
F1R | +sindwod _ uopels .
doj deq 1 Bupppoqg
. L | 0sh 031
0st
Jandwiod J9)ndwod
\ﬂ -0I01N aweyule i 80}
o001 82— o9l ol
: ost l\ /
. L endwon 41 d
oLt . - Ja)ndwod | ost
Pl3ypueyH 1
094 /TS | NV
i
o 4 _
‘l@ s3indwoy : Jaindwod iy !
ORI 051 ——_) |
031 “ N1
A it —/ o3k ! 7
ozt — 1 Jonag ! yoyms rp—
ot ot -/ pIeD " onand \
9 A ofjeubey { 1444
........... (NV) JomaN ealy |20} ~——— e T
} [mTmm e ||..-7||:_2:qu020_§!
|
A
901 g
o — | apon
] [
]
|
| oct
1
Jojuopy " aoBy3| J0ssasold
03pIA i 03pIA -0I0IN Wvd
i
!
|
1
|
|
!
|
I
i.

4

\E
094 ——

©
o
-

] L —

aaug

l_w>:o
%810 preH

9t}

Tm_o Ea%
ozt yep —

—_—

PCT/US96/08851

2/21

WO 96/38945

Z b4 !

ClIE]
paydiious o}y pojdAsoug ——
N0 Yeaig
4
scz
Jauiquio) e sllg
uoneal) Ay Aox otd-— |UiLpuoBly uny paydfioeq
e 2
e P
vez 7 ggz e -
wsiq
uo wyobiy
olydeiboydAin
\\
sjaqge Jajiel| ore -
ydAioaq
\

e a
Jojel)
1| no yeaig

ogz |

aseiydssed
s1aug Jasn

N\ CI2AN 01z
N N |

JapesH uofjeunysaQ 7 e1eq
| sjoqe) paydhiougy Bosyod '8 Sl SHdId 19sn A

81T \
//

\ 9 peay \ leussyy)
vee % % p
s|id [——oild enxeg— 7 /
\\ paydhiouz me we
zee
\ h@UN@I

[s144

PCT/US96/08851

WO 96/38945

3/21

e

™. ase ,
A v \ \
-
/// e

qg 614 .

PlLiEves

51006060101

0CS6G1014¢

DS XPpOa31idLs3l

/

/
ove

/

/

T\ \
/ / , / Nmn

Vese N\
\ pse

0

e

ore

gee -

9ee

eg ‘b4

PLIEV68ASLO060F60L01L

XXXXXX9sX00a31141831

XXXXXXXXIHOANITI04ST

XXXXXIII340AN3I11040y

CXXXXXXXXXXIOI4403IWOH

XXXXXX3S0d¥NdIVYINITO

XXXXXL1SVIMdOoML3INaNg

PCT/US96/08851

WO 96/38945

4/21

y B4

0Ebr
$S30019 AN
uondAioug AN
[eqe-]
uonouny
Jouiqwon
1egen _
-— | sjoqe paydilioug ~—
$53001d T e
uoljesauan) $sad0.d
foyond | | L—»| | uvondkwoug | |—- a4 > | angemoes |
»> I~ h
a4 pajdAiouy AN
- / N v
szv vy _vlui..z|v 1apesy 2z
JapesH ajeal) - N 0zz
ozv :1%4
wnobly so|i4 Indjno sjeqe] aselydsseq
P3PS g 3 Induj 109198 | LETETS s1a)u3 sesn 10U05
\ —— - mwmoo<
Ve yd \\« i \.u ’
y ‘ .
o cer o= az - oz~

PCT/US96/08851

WO 96/38945

5/21

(009)
augnhoigng ~
uolleal) ysighay .
asselydssed -
. G Bi4

_- | as1ahay
\.‘\
091 ~

HOX

ewwes

\ 3AISN|oX3 ¢
8€S a

40X

\ SAISN|OXg
95

ﬂ

dOX

x ‘ .-
- SAISN|OX
825 — 1smox3
A
1dnhey
I
10}09A
Buzieniu e
feuwsa) 1kas
\ s e
2es 7
squiny
- dnuidg

SES
\

< Lewwes

teeg -

09s \ 091

senjeA J10sY o) Bums |

N
—— 40X \ :
— eydiy — — omsnpxg [Zhay Vanta Asiahey
. / ——
\\.\.. +
vss -~
ox . Zewuwes Q
BAISN|OXg \
])
P 3 P
255 . 155 <
Zeleg ejeald o) HOX
ewwes asionsy | T8 oaenioxg . oss
) ,\.\. Nn_,»ov_ \\\
L 1 . —— .
124 o8- 10)09 \
M 19ziwopuey 6 1097 /
dnuidg uiZjeny)
ozs . : leuso)
..... i /////,
10J03A \ JaquinN 95§
Buipped / dnuidg
. _/ 8ss
siajpeleyD
IHOSY 08 01 ped
) o1z

(P24 Jaj0RIRYD 0Z)
aselydqssed ndu)

aselyqssed PaAuoD

e
o

L

PCT/US96/08851

WO 96/38945

6/21

(0es)
augnoigng
Jaziwopued dnuidg
9 ‘b4

HOX
"] anisnpx3
. . 0ES

ap9 - |I*’wi.l \\

S3A 8r9 0s9 /
L/ / \ /
7 /, . -/ A _

n:c_nm j Jajpeleyn

,ole\ - su a s \:! ON——— 8r+0L PO nosvy
/ 0} U3AU0D

. d40OX
SAISN|OX]

4

-) NV AN

\ o // e | : N

ejeqg \ N EWD \ \ Emn_) m«mD \ \Ir Emo \ \ mumD \... m.u m-mn_ / N END \ \ Emo \ % eeq -

o ﬁeco..om_%zh_.o ou:m,u(ﬂo:o 8:@6%20 8%%(%20 8:92%20 85%(%,20 8:5(%20 §§u<wco 856L

10J03A

e 7

4
/

o Buizifeniu)

\ peo]
ol9

PCT/US96/08851

WO 96/38945

7/21

0sL /

61 big
ssasoid
pauyspailyg

H

Koy a1y
eleq
vy
p.L ‘614
0z ‘614 i

> ss3001d 8e

pauyspalg

OGS | ovz

Sl ‘614
eleq ssaooid <
pauyapaid
2 A
e~
spL
9 By
ssasold 4
pauyspalg
ocs
Z1 Bl 8L Bi4
ss3004d < ssaoold
paulyapaiyg p3uljapald
/ 4
spL 7 osL

0€S - o/ Bi4 VEL
N
9 Bi4 €L ‘B4
ssaooud ssasoud
pauyapaid pauyapaiy
ZL B4
Bjeq ssaoosd [
pauyspaid
yd zeL -
0EL
q/ 614
eleg h\l mﬂrwowwun_u [gjeq /
\ paulspalg e/

0123

coo 1
\\ . :

961 ||
ssaoold
pauyapald

(3% A

oz~

/ /
ewuwes - ssaooid
|\ pauyspalg
. A
/ 7

0gs

e, B4

czL

g bl

indut jenuepy H

e

lg——

9 By
ssaooud
paulepald

(417

PCT/US896/08851

WO 96/38945

8/21

(o12)

aupnoigng oN ——»{ JSlUN0D JuswWalou) —
|0Jju0)) ss8a0y ASIa4 .,_
.m_ vee obg T IJAS)
8 ‘04 // - . \\ o091
_ Zeydyy \ 7
POJUBID SSS00Y)e—— = BWWRD |¢-sap—— ¢SWES U ch?, o dox
« .III.T uBissy . Pue leydiy ary STV A o enioxg chon
: /) 7 o i/
are \ vpg o~ ,,ﬁ\ e \\ —— ylﬂ 096 \.ir, - %
dOX /
AAISN|OX]
U \\..
e ore © - ,ilr iss -
cejeg ajearn
/ jeydiy T e L d0X
ot 0) Leyd|y asiansy ceea " 3AISN}OX] . 0gs
5 NSIghaN V\ —~— 091 ¥ e
teydyy . dnkey
- |\rl . s see o —— ...:!n_liwxl Ty
10J09p
HOX JazZiwopuey ,
Lhay| dnuid Suzieniu;
aAISNjox3 \ 1as lewsjup -
/ 4 ﬂ - |
.
cee HOX ewwe hmaEzz 955
anisnpxg [b 9 muw Q::aw 088 _
s ‘ . Vil 88§ ~y
ocg yd e R
R / ,.v L N i - .
zEes | 7 oss” ’ ;sassanb ¢
JOX - sisjoRIRYD 10 ; HPNY O] |- ——SOA ----- ¢ <
< iejeg JOIA rd .. uaeg s
aze \ BAISN|OX] 1OSV 08 0} peq Sutpped / plooay 8 g 819y w.mI
+ X v ///—x
dnhey sep 258
- _ °N A ™~ 7
10}09A N I j
Jsziwopue —
Buizijenu N m:c.mw o Mﬂm«ow EV (Pra14 191081RYD 0Z)
leusaju : senjeA 110SY o} Bumg :
lI0osY oN—— . aselydssed jndu)
- % 09> Sa€ OSBIlSSEH HOAUOD .
0ts \ . s _ \\\\\
JaquinN _ [174: 1N \\.
dnuidg e -
veS 01z -

11

PCT/US96/08851

WO 96/38945

9/21

956 AN

(ozv)
aulnoigng
: leqe “
uonoales [eqe co__mow_mmm_o sjeQ peag m&o
6 B4 aihghey \ leuoneziuebiQ o
- ves ovs e e £re
7 7
1=qen 4 1eqen 1sgqeq
dmjoo7 apo) wolg _MMM._AMM / \ soe|d ssodind ¢
dnyoo1 apo) uonealisseld ajkghay / / @vkakay aghay
JusWiLONAUT ‘ 1 1 ‘ 1
e zs6
056 - I
sjeqe
JUsWwuoNAUT v v 8s6 o
IR - 'siaqe] Jo adA} yoes _,| Ptddhous Y
6es - »| 40 8UO jo uoisjeg % saji4 Jo o)
sjeqe] _ r Aiopatig pdino /
uojealisse|d —
°N ozy _
86 * A..>UN®W/VA|I¢.0> / 816 ~ /’ 18 N
N
sjaqe] woi4 -Slsqe] FEN ‘ A uooajes \,
096 ?)elauan) 26 \ a4 S&:nw
SBA—— oz -
986 296 - | S A o H o all4 1dAiouz
ajeqg/ewit abessapy sued 3 ~ dps
sieqe] : leqeT m weyshg 1013 seweN ol 1oudio .
N gk / - T INdINO pue o) ey
) ahghay N ON indu| spa|as 1esn 016
se6 7 P e ~. ves _ o
v96 - N zz6 A
siaqeq aoeld —< <> uojsuexg P — _
e _! "2l Indu; s| $3A o N - < 16
sisin SOA 418" uoisuag .. 1IN L
vee uonoag . \/ a4 Indino s| - uoposjes |} -
slaqeT sieqe oN——— . d _eudndy)
asoding Sughey / 826 |Hnr|(\
oee abessapy Joug —
S9ji4
e slaqe T I Jo Aiopang I
q
- ndy
sHomiaN _\ nusy Jsjug g
06 .

ajhghay

[45

L

PCT/US96/08851

WO 96/38945

10/21

oL By

61 B4 9 Bi4 61 Bi4
ssa004d ssaooud ssaoosd
pauljapaid pauljepald pauljepaid
. Z T Y 8
oc0 0€s scor
A 4
oz B4 Sl Bi4 L} B4
ssao0.ud ssa00id ssaooud <
pauyapaid pauyapaid pauyapald
\\ 4 A A
Zvol -
orol ocor - \ zeol
0es 9201
9 Bi4 €L Bi4
ssaooud ssaoo.d e ~ -
pauyapaid pauyepaid
bez - «!» ne . 01z -
- v / e S
2L by STy \) ,Ix...N g ‘B4
FETIEITY sssooid e s eleg <4 / euwuey 4 ssaooid <
/ pauyapald f.w;l . ’ pauyapaid
\ - 4
N osL X
‘Bt
Ns_ sioqeq sjaqe wajes mmmom_ ’
llei] upny pes)jes
aImnoag N pauiepaid

8201

oz ozy \

’
.\.
r

0gs -

gL B4
ssaooud
pauljepaid

(4T

) ww..w:ﬁwwmn_

PCT/US96/08851

WO 96/38945

11/21

L1 B4
) 61 BiJ 9 BiJ 6l b1
ssaooud ssaooid ssaooud
pauyspaid pautjapald pauyapaid
% 4 B Y o
ocoL ~ L
90t N
rom 7 0z Bi st] nty || 8LL Bl
ally - ssaoold ssao0id e ssaooud < ssaooud
A pauyspald pauyapalg _ pauljapald _ pauljspaid
A)
Zvol P
\ . 7
ovoL veor
eleq SR
\ [4%4 N
o bk~ Lz - 0z~
/r /“rlf // s / SURUUU—
1 By / 7/ .N 8 Bi4 aseiydssed
ssaoo.d e e ejeq e -- 7 ewwes g— . . | ssaooid P e
/ paulapaid ./ L/ pauyepald e T
x\\
ozz ~ +»
dnuidg .m_Ba._.---. - 9 ‘m_n_n
ssaooud pojdhiouz —— | onelL mww.wwo‘_
peLlepely pauyapaid
ogs -+ \\ . vez ©
oL’ _ 0es

liedf upny
ainoag

PCT/US96/08851

WO 96/38945

12/21

(og2)

auphoigng uondAioug
juswg|3 |agen

ZL b4

- anjeA I10SY -—

ewwes -
0] YOX Snomalqd |~

40 HOX 8Aisn|jox3 ONjEA {IOSY -~ = o

#ge
19nel
feuoney
821 paxid

\
S

£oyi elog \N/
—.
ejog 0} JOX SNoIAdlg

A 1o o onsnioxa —= - -3N(EA ISV - Aay eydly

- gzz1

-7 dnuids jo YOX aAIsnjox3

oczt - —
ﬁ eydyy o) Koy %
ozzt - __,

e ~

; .// ——— e ‘... - -
» ao1nog

19sn
Ag uoposjeg
10 jndy
|eqen [euoley

N o
L A sisjpoeleyd oz o) ped Aayi dnuidg
Teezt gz -

Jaziwopuey] Jaquiny
dnuidg |euag

19ge 19198

a|qeneA e

xapuj dnyjoo — £ayj |euopey)

JaquinN
dnuidg

™~ vzzl

PCT/US96/08851

WO 96/38945

13/21

(ziz1)
aunnoigng

dnyjoo jage
€} bi4

el

slyeleq Aay |eqe
ogEl - SN
\ /
X®.zdoMEd
9| dwexg
ohay
8cel -

zhay
wmnp

\\

/

/

veer \

oiel

clel

slyeleq |aqen

/ g
T leqen .
/ ozel

Buiddepy
xapu|
aAjjeloossy

S ogLEl

JBJgaz joafoig, /

9|dwex3y A

I 13ge7 \ " piet

PCT/US96/08851

WO 96/38945

14/21

214 43

(0z2)

augnoigng
uondAsoeq Jsjies]
vi b4

juswia|z
pajdAisag

yevt]
| wuox
SAISNioXg
A
2wt /
HOX
SAISNIOX]
y
o~ | wox
. AAISNOX3
\\\\
2744} 7

vEPL -

l1agen \

———

pajdAioag - \

8wl .

ndino
sjeuajeosuod

e ~

ewwes

[4x4%

elog

sjuswa|3 piyL
pue puoosg
CINBLETETS

~

ozyl /

sjuswaly
Bulueway
931yl 8 psjes

o éuang .
[4seA-< Juswalzy Jueoyiubig
N e 8y st

-
/\\

T

e

+
$9,

ocyl ,/.L>

\\ AN -
-7 ¢paydhioag v
Sjuswe|3 Jiv 8y
/ \\\
ocs
\,
\|| A [
101997 _mN_Eoucmm
Buiziieniu) dnuids
\ jewsa) :
hll'll’4|
4 _
k11 Jaquiny \N
- dnudg
vl -~ -
oN
oibL \ 2Ll /

T 1opei] 19le1) ey
13qeT woi4 4 ®eeer | iapesy
sjuaws|3 o yjbua) (£ 15

dnogjosRs | | einoed e

[4% 4%

ndino

- -{pajeusjeouod woi4

Buipped srowey

PCT/US96/08851

WO 96/38945.

(ov2)

aunnoiqng
uoljessuas) A8y jaqe]
Gl B4

8€S1

d

e
2651 -
Aoy
- leip
o
/ 7
Te) 9€S1 -
-
SESt
LEN]
leig

AN

VvESL

€€51

6€S1 - _—————————-N“
8csi

1

ozsL

n
o
7]
-
\

vesi

}

€csi

juswWwuoNAUg

4

9291 |

uonesyisse|d

4

: (21 B13) :?\\ E \
m>ox PISW n3>wv_

Y W
aoe|d — _
T / / 7 / -
/
ﬁ \\ ewwes \..\ /() eeg / / eudiv \
/. / /) / /
oL
. vwe 7 ze9l - ozel
—
)
h| leqe
woi
L otol -
asoding oes
{9 Btd)
SOMIBN e -~ | wopuey
c_n_w
a:c_aw M dnfey /
e/
2251 o0zst

PCT/US96/08851

WO 96/38945

16/21

Kayjpredy ulplIo
! u -
IPISN [ejog
-/
VI
9LLL
qozLb
awud si9eleyD -
eydiy 08 0} o Aoy
£ay} ejag 0} (u) ejeg
9jeusieouo) —
(\T¥13 . zzoL -
P siepRIRYD avesi ﬁ
Ju| sigpeseyn >w
£ dnudg.-. M 08 0} Aoy sIseIBYD
, lewayy / vﬁ ; Eoucmmcaw \ ewwes) euwiw N ‘ ,
oeLl - Y S — wﬁ:&m%:mm,u :m_.w.mmww_m._m.w: B
\ e —— ReL dnuids
Lr1 weL T T L
2209«.._0 JETIR le N uogoun4
— uswuosaug ysinbg
08 9} re6 e
Kayjeydiy oy | [T T [_ =~ qveot
dJeuajesuon
i dnuidg siajoeleyd
\.\ wopueyuidg
p VI H -
eyl 7 R ey eeesl ——— ——
uoiouny ;. 4eba _dnudg-.»| | J9ZIWOPURY
usinbg /o fewsi - Ll dnuds
epeoL / ‘ oot - oS
_/ hex \
/ (u)eydyy

shay ploiy
Ll B4

fmmq e e

auwiug ;IN

9zgl -

PCT/US96/08851

WO 96/38945

17/21

(yeot)

aunnoigng 9lbuig
ysinbg indino
g1 B4 e

vegL

1abayy)

ON P | < SJUBWa3 Jo JBaquinN . -
~~._SJej0] pajejnwnody uaunRy S| -
Nl =

~.. LT
AT L

0£8}

1ejoL
_ PajeiNWINDOY Jualing = \
7 |ejo] paje|nwnooy jse /
8zel -~ 7y

SOA

_/

%:Bws%_:_mcwso_m//i
0 JaquINN < uonelay| | \VI

\

lejol

~J PeRrenwnooy jseq

0] UolEdoT UolEID)|
W 19Baju| ppy

1Lunod N
uonessyy
jJuswalou}

vesl e

‘0 0} |ej0L.
pajeinwnooy
Jse pue ‘L o)

+
ON
.

" - .,//!)
~

~.

\ 1BUN0Y uonesay|
JuawalIou|

azien)

A

zesr

\.:%:Bms%_:_mzmem_m ../,F .;
% 40 13quinN < J8junod :o_ﬁg. o

~.

.

ozaL — S Buug jnduj u|
ﬂ .\._ﬂcmswmhoaas:zso

Q3
SF

T8~ \\ 00l |eop / \\. slaquinN

N 191uno) uonesa)| azienuj
N\

- -

/{ Ppaje[nwnody g auQp o) < 10 Buis

nduy

PCT/US96/08851

18/21

- WO 96/38945

(0z£1)
auynogng
UlpisiN
61 b1y

vzl H

bumg e

“1Bpeeyy
oSV

0} UdAUOD

826l

0} 9jeuajeosuo) ‘V v.f../

41
T N

\ ©npoidpIaN
yA—

/
Lo

A

~ ¢wbua | Bumg

.
) W61y 0} sisysiBa
" se_oN-

Eonzzwu:mco_zmoa
@.m:uw Jayunog s| - I ElEQ Ul JopeieyD

~

T 1OSY peoT

oeel -

b+u
eleq

ou«_noz

SuO uoco eoejday -LeuQ eoueapy--aug aoueRApY

A

[4%-1 00

— ————e

—

/ Em@.\ /

/ '/ \ \. 'z
smo smo / N smo \ smo eleq

L + 18junon
= Jajunon
A
glsl
anjea
11osv
0} Y8AU0D
JOX
AAISN|OX] —
\ 1osv
[¢) SAUO
gi6l e 0
S/
/
Va
viel -

w\

L+u
ejleq ﬂmn_ Emo

-

ey /e
I

eog|dey

W

Py Leuo 8%6(H30 ggﬁco g(HQG 8:93_

pa

oi6L

M ‘—by| M H M q -
BUQ souerpy -LauQ aoueApy Leup soueapy-leug eoueapy Leug soueApY

PCT/US96/08851

WO 96/38945

19/21

(ov2)
8|inpoy
co_uosuohn_
LENETE
o¢ 614

ko) aji4

/
cvoL ¢

oz

ulplR

1

|

jo0zL)

UIpe A_P

Aoyery foqet N

hin ujplow

s0zLL ©

POZLL

ujpisy

e
\\
sozzs /- —

I -ll_l

uplen

]

UlpisN

™~ 010z
Aedjjiest ewiuonAug
™ gl
Aeyjiel] uonesyisse;n
///
> 9EG1
Aoyjies) wiory
2651
Aeies) o)
ToTmomem T / 9€51
AoMliey) eoelg
S~
a1
Asdjies) esoding
/ pESH
AoMlia), spomeN

€ESI

PCT/US96/08851

WO 96/38945

20/21

(0012)
augnoigng
leqeiey
pue Aayay
1z 614

sjaqge] Japel)
3|14 Aeyey

\
> /

7
Iz -

vziz

(4424

saji4hay J9A0O eig Jpny o} |
ysiqhey o) a4 SJUM B 438N
abessapy jdA1vag o} abessapy
UM faxoy anss|
.\\., T
: mH, el ypny veie
0} UM 8
\ﬁ Jasn o} Jougy
7 e Aoy anss|
<7 ueqen ~ K -
uogezoyiny N oN T oese
foyey yoew jpge - "
woig ss0q
v
SOA
; esoding ~
A W jeqe puewiwed oN
TN Kayay sso0Qg .\:\ .
S
¥sighay uo a4
u| uQ Jajes) ydhioaq
A
SOA
Lmﬁm”my// 19lielL
YU HEIS oqe] ~4————— | 314 Buiwooy|
esoding seog .~ ydAioag
7/
e
oN z \.\ 7
i 4 sjaqe Jsjiel) /
sbessapy /
ad Burwosuy \
obessayy Buiwosuy)
ydAinaQ o) snuguod
! omN P

PCT/US96/08851

WO 96/38945

21/21

piooay eseqejeq
aiqejieny
XaN o) ajeq peag
doig uonepossy
yim ‘sjsqen
pojerossy ajm
. P

Ny
SN
2z 614 ~._.)
o RN /0
- N
- ~ -- 1eij 3pn /
e OSEQRINY OO joqe Aq > sox. pouayd : ._.ow_..n v
ﬁv ~ M/wﬁmoo,\ udag sjybiam aney - A peag doig sinduj sesn |~ | uonoesuesy [
/.,,,// \..\\ 7 picosy
szzz ™ zeee -
$0A \ ~
3\ 9zze L .
TN \ veee - ,
7 EPoRIRg T =
-~ ussg Kobajey \mmmmmmw,/ sz
.l// yoe3 woiy .\Vll A;o:m sesn)
/LMnm._ eseH. " ._Moug
ST oN
o o
fiv9jeg
Pejelossy sidesoy sesn ON o N
uoosleg ‘ -
pajeioossy aseqgajny
ay)- sidaooy souejdaooy wa_umwn_s woi4
und o jsqen o4 « 510913 sjybiop
e sjoses o Sublam P u__w S) laqe 3
0} sasooyn Jjenjeay wng pajeloossy
18yng Jasn I | sjenoen
.4./. T T ,
\, P vizz -
~orze eeze - 812z .
" sBlam
’ 15qe
$S3001d pajepossy
T LETETS o \ >m_nm_o\\ I
1sqeq yoqy aseqajny Sian
L— aduejdaosoy aseqajny
ovez Wbiam 7 | wBemegeq
ajnpoyy \ 1eqen ozee s1zz pPejeioossy
uopeasn veez -
woil4 0197
wmay 1Bqe) ¥ spojeg sesny » 0} s)ybrap jaqe
J0 wng azjenuiay
evze | -
, az —

s|npopw
uoneain
woi4
uinay

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/08851

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO04K 1/00; HO4L 9/00, 9/08, 9/14, 9/32
US CL :380/4, 21, 25, 49, 50
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 380/4,21,25,49,50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US, A, 5,191,611 (LANG) 02 March 1993, the whole| 1-9
document.

Y US, A, 5,369,707 (FOLLENDORE, Ill) 29 November 1994, 1-9
the whole document.

Y US, A, 5,052,040 (PRESTON ET AL.) 24 September 1991, | 1-9
the whole document.

Y US, A, 4,993,069 (MATYAS ET AL.) 12 February 1991, the| 1-9
whole document.

Y US, A, 5,303,303 (WHITE) 12 April 1994, the whole| 1-9
document.

Y,P US, A, 5,495,533 (LINEHAN ET AL.) 27 February 1996, the| 1-9
whole document.

Further documents are listed in the continuation of Box C.

D See patent family annex.

- Special categories of cited d
"A" d defining the | state of the art which is not considered
to be of particular relevance

carlier document published on or afler the intermational filing date

document which may thm\v doubts on pnomy claim(s) or which is
cited to establish the date of or other
special reason (as lpeclf ied)

E*
L

‘0 document referring to an oral disclosure, use, exhibition or other

means
Pt document published prior to the international filing date but later than
the priority date claimed

T later d blished after the i 1 filing date or priority
dﬂemdnotmconﬂmwnhthelpphauonhncnedw\mdm&c

principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

e 14 of particul ' : the claimed i 9 ¢ be
considered to involve an mvenuve step when the document is
combined with one or more other such d such

being obvious to a person skilled in the art

x*

& document member of the same pateat family

Date of the actual completion of the international search

16 SEPTEMBER 1996

Date of mailing of the international search report

160CT 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Au}llfgcd officer gfﬂ-f&é/ é: . }é‘

HRAYR A. SAYADIAN
(703) 3064177

v%’k/

Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/08851

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Relevant to claim bNo.

Category* Citation of document, with indication, where appropriate, of the relevant passages

Y US, A, 5,406,624 (TULPAN) 11 April 1995, the whole 1-9
document.

Y US, A, 5,369,702 (SHANTON) 29 November 1994, the whole 1-9

document.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

