(57) **Abrégé/Abstract:**
The present invention provides an electrical tool with battery pack ejection assist mechanism. The electrical tool includes a housing receiving a motor and a transmission mechanism, a tool accessory driven by the motor for the operation, a battery pack slidably mounted to the housing for providing power and a locking mechanism for locking the battery pack after being mounted. The electrical tool further includes an ejection assembly for assisting in the ejection of the battery pack when the locking mechanism unlocks the battery pack, the ejection assembly includes a contacting member for contacting and ejecting the battery pack and a driving member for driving the contacting member for ejecting the battery pack. The contacting member is movably connected to the housing, and the driving member is arranged in the housing and contacts the contacting member.
ABSTRACT

The present invention provides an electrical tool with batter pack ejection assist mechanism. The electrical tool includes a housing receiving a motor and a transmission mechanism, a tool accessory driven by the motor for the operation, a battery pack slidably mounted to the housing for providing power and a locking mechanism for locking the battery pack after being mounted. The electrical tool further includes an ejecting assembly for assisting in the ejection of the battery pack when the locking mechanism unlocks the battery pack, the ejecting assembly includes a contacting member for contacting and ejecting the battery pack and a driving member for driving the contacting member for ejecting the battery pack. The contacting member is movably connected to the housing, and the driving member is arranged in the housing and contacts the contacting member.
ELECTRICAL TOOL WITH BATTERY PACK EJECTION ASSIST MECHANISM

Field of the Disclosure

[0001] The present disclosure relates to an electrical tool powered by a battery pack, and more particular to an electrical tool with battery pack ejection assist mechanism.

Background of Related Art

[0002] With the advancement of the technology, more and more electrical tools utilize a battery pack as a power source. Because an electrical tool powered by a battery pack can get rid of the physical limitations of power cables, it is easier for the operator to use the tool in various workplaces. However, for high-power electrical tools, the equipped battery pack with high voltage and high capability has a relative large size and weight. Because the weight of the battery pack and the elastic force between the battery pack and the connecting pole piece of the electrical tool are relatively large, it can be difficult and dangerous to pull out the battery pack directly by hand without assistance from an outside force when it is needed to remove the battery pack from the electrical tool.

[0003] Therefore, described herein is a mechanism arranged in the interior of the electrical tool to assist in the ejection of the battery pack from the electrical tool.

Summary of the Present Disclosure

[0004] To overcome these and other shortcomings in the prior art, the present disclosure provides an electrical tool with a function of assisting in the ejection of a battery pack.

[0005] The present disclosure provides an electrical tool with a battery pack ejection assist mechanism. The electrical tool includes a housing receiving a motor and a transmission mechanism, a tool accessory driven by the motor, a battery pack slidably mounted to the housing
for providing power and a locking mechanism for locking the battery pack after being mounted, and an ejecting assembly for assisting in the ejection of the battery pack when the locking mechanism unlocks the battery pack. The ejecting assembly includes a contacting member for contacting and ejecting the battery pack and a driving member capable of driving the contacting member and providing the assistance for ejecting the battery pack. The contacting member is movably connected to the housing, and the driving member is arranged in the housing and contacts the contacting member.

[0006] As an example, the driving member includes a first energy assembly for providing ejecting energy.

[0007] Furthermore, in another example, the first energy assembly is a helical spring with one end fixedly connected to the housing.

[0008] Furthermore, the helical spring may have an axis parallel to a sliding installation direction of the battery pack.

[0009] Furthermore, the contacting member may be an irregular-shaped lever with a pivoting shaft which has an axis substantially perpendicular to the axis of the helical spring and the sliding installation direction of the battery pack, and the irregular-shaped lever is rotatably connected to the housing.

[0010] Furthermore, the irregular-shaped lever may include one end connected to the other end of the helical spring and the other end formed with a projecting head for contacting and pushing out the battery pack.

[0011] As another example, the driving member further includes a first elastic block fixedly connected to the other end of the helical spring and having an inclined contacting surface.
[0012] Furthermore, the helical spring has an axis substantially perpendicular to a sliding installation direction of the battery pack.

[0013] Furthermore, the contacting member is a second elastic block having a contacting surface with an inclined angle which is the same as that of the contacting surface of the first elastic block.

[0014] Furthermore, the second elastic block is slidably connected to the housing and has a sliding direction parallel to the sliding installation direction of the battery pack.

[0015] Furthermore, the contacting surfaces of the first elastic block and the second elastic block have an acute angle of 45° relative to the sliding installation direction of the battery pack.

[0016] The electrical tool with a mechanism for assisting in the ejection of the battery pack enables the operator to remove the battery pack with a relatively small force so as to enhance the efficiency of exchanging the battery pack and avoid the risk of falling of the battery pack due to an excess force. In addition, the electrical tool with the assist mechanism may be relatively easy to operate and include a relatively simple structure for a prolonged working life.

Brief Description of the Drawings

[0017] FIG. 1 is a schematic view showing a first example of the electrical tool with a battery pack ejection assist mechanism according to the present disclosure;

[0018] FIG. 2 is a schematic view showing a second example of the electrical tool with a battery pack ejection assist mechanism according to the present disclosure.

Detailed Description

[0019] The present disclosure will be described in details with reference to the drawings and the examples.
Referring to FIGS. 1-2, in a first example, an electrical tool with battery pack ejection assist mechanism of the present disclosure includes a housing 1 receiving a motor and a transmission mechanism, a tool accessory driven by the motor for the operation, a battery pack 5 slidably mounted to the housing for providing power and a locking mechanism for locking the battery pack 5 after being mounted. Additionally, in order to assist in the ejection of the battery pack, the electrical tool further includes an ejecting assembly for assisting with ejecting the battery pack 5 when the locking mechanism unlocks the battery pack 5.

The ejecting assembly includes a driving member 2 and a contacting member 6 for contacting and ejecting the battery pack 5. The driving member 2 is capable of driving the contacting member 6 and providing an assistive force for ejecting the battery pack. The contacting member 6 is movably connected to the housing 1, and the connection between the contacting member 6 and the housing may be a rotating connection, a sliding connection, or any other suitable connection as desired. The driving member 2 is arranged in the housing 1 and contacts the contacting member 6.

Specifically, the electrical tool may be a garden tool, such as hedge trimmer. The electrical tool includes a main handle (not labeled) formed on the housing 1 and a secondary handle 3 for assisting in the handling of the tool. The tool may further include a transmission device 7 for transmitting the power of the motor and a cutting blade 8 as working accessory.

In one example, the driving member 2 includes a first energy assembly for providing ejecting energy. In the illustrated example, the first energy assembly is a helical spring with one end fixedly connected to the housing 1.

FIG.1 shows a first example of the electrical tool with battery pack ejection assist mechanism according to the present disclosure. In this example, the helical spring has an axis...
parallel to a sliding installation direction of the battery pack 5. The contacting member 6 is an irregular-shaped lever rotatably connected to the housing 1 by a pivoting shaft 4. The axis of the pivoting shaft 4 is perpendicular to the axis of the helical spring and the sliding installation direction of the battery pack 5. Additionally, one end of the irregular-shaped lever is connected to the other end of the helical spring and the other end of the irregular-shaped lever is formed with a projecting head (not labeled) for contacting and pushing out the battery pack 5. The helical spring connected between the housing 1 and the irregular-shaped lever is in a compressed state, thus the helical spring is capable of providing a continuous first biasing force F_1 to one end of the irregular-shaped lever. When the locking mechanism is unlocked, the first biasing force F_1 provided by the helical spring is converted into a second biasing force F_2 by the irregular-shaped lever, and transmitted to the battery pack 5 by the projecting head on the other end of the irregular-shaped lever. Due to the leverage action, the second biasing force F_2 may be larger than the first biasing force F_1. In this example the second biasing force F_2 is sufficient to push and/or assist in pushing the battery pack 5 outwards a certain distance.

[0025] FIG.2 shows a second example of the electrical tool with battery pack ejection assist mechanism according to the present disclosure. The electrical tool in the second example is similar in principle to the electrical tool in the first example. However, the driving member 2 in the second example further includes an elastic block 9 fixedly connected to the other end of the helical spring and having an inclined contacting surface. The axis of the helical spring is substantially perpendicular to the sliding installation direction of the battery pack 5. The contacting member in this example is a second elastic block 10 having a contacting surface with an inclined angle which is the same as that of the contacting surface of the first elastic block 9. The second elastic block is slidably connected to the housing 1 and the sliding direction of the
second elastic block 10 is parallel to the sliding installation direction of the battery pack 5. Moreover, the connecting surfaces of the first elastic block 9 and the second elastic block 10 have an angle of 45° relative to the sliding installation direction of the battery pack 5.

[0026] When the helical spring connected between the housing 1 and the first elastic block 9 is in a compressed state, the helical spring can provide a continuous first biasing force F1 to the first elastic block 9. When the locking mechanism is unlocked, the first biasing force F1 exerted to the first elastic block 9 by the helical spring is converted into a second biasing force F2 by the inclined contacting surface, and transmitted to the battery pack 5 by the second elastic block 10. The second biasing force F2 can push and/or assist in pushing the battery pack 5 outwards a predetermined distance.

[0027] When the battery pack is removed from the electrical tool with the function of assisting in the ejection of the battery pack according to the present disclosure, the battery pack may be pushed outwards a certain distance by virtue of the ejecting assembly, thus the connecting effect between the battery pack and the electrical tool may be reduced and even eliminated. At that moment, the operator may remove the battery pack with a relatively small force. Thus, the risk of the battery pack falling due to an excess force of the operator is avoided and the efficiency of exchanging the battery pack is enhanced. Additionally, the ejecting assembly is arranged in the housing of the electrical tool, and it is easy to be operated and has a relatively simple structure and a good working life.

[0028] The above description shows and illuminates the basic principle, main features and advantages of the present disclosure. It may be appreciated by a person of ordinary skill in the art that the above examples are not intended to limit the present disclosure in any forms, and the
technical solutions obtained by equivalent replacement or equivalent modification are contained in the protection scope of the present disclosure.
We claim:

1. An electrical tool with battery pack ejection assist mechanism, comprising:
 a housing receiving a motor and a transmission mechanism;
 a tool accessory driven by the motor for the operation;
 a battery pack slidably mounted to the housing for providing power and a locking mechanism for locking the battery pack after being mounted;
 an ejecting assembly for assisting in the ejection of the battery pack when the locking mechanism unlocks the battery pack, the ejecting assembly comprising a contacting member for contacting and ejecting the battery pack and a driving member capable of driving the contacting member for ejecting the battery pack, the contacting member being movably connected to the housing, and the driving member being arranged in the housing and contacting the contacting member; and
 wherein the contacting member is an irregular-shaped lever, the driving member is capable of providing a first biasing force F_1 to one end of the irregular-shaped lever, and the first biasing force F_1 is converted into a second biasing force F_2 by the irregular-shaped lever when the locking mechanism is unlocked, the second biasing force F_2 is larger than the first biasing force F_1.

2. The electrical tool with battery pack ejection assist mechanism according to claim 1, wherein the driving member comprises a first energy assembly for providing ejecting energy.
3. The electrical tool with battery pack ejection assist mechanism according to claim 2, wherein the first energy assembly is a helical spring with one end fixedly connected to the housing.

4. The electrical tool with battery pack ejection assist mechanism according to claim 3, wherein the helical spring has an axis parallel to a sliding installation direction of the battery pack.

5. The electrical tool with battery pack ejection assist mechanism according to claim 4, wherein the contacting member is an irregular-shaped lever with a pivoting shaft which has an axis substantially perpendicular to the axis of the helical spring and the sliding installation direction of the battery pack, and the irregular-shaped lever is rotatably connected to the housing.

6. The electrical tool with battery pack ejection assist mechanism according to claim 5, wherein the irregular-shaped lever has one end connected to the other end of the helical spring and the other end formed with a projecting head for contacting and pushing out the battery pack.

7. The electrical tool with battery pack ejection assist mechanism according to claim 3, wherein the driving member further comprises a first elastic block fixedly connected to the other end of the helical spring and having an inclined contacting surface.

8. The electrical tool with battery pack ejection assist mechanism according to claim 7, wherein the helical spring has an axis perpendicular to a sliding installation direction of the battery pack.
9. The electrical tool with battery pack ejection assist mechanism according to claim 8, wherein the contacting member is a second elastic block having a contacting surface with an inclined angle which is the same as that of the contacting surface of the first elastic block.

10. The electrical tool with battery pack ejection assist mechanism according to claim 9, wherein the second elastic block is slidably connected to the housing and has a sliding direction parallel to the sliding installation direction of the battery pack.

11. The electrical tool with battery pack ejection assist mechanism according to claim 10, wherein the contacting surfaces of the first elastic block and the second elastic block have an acute angle of 45° relative to the sliding installation direction of the battery pack.