## I. A. Mitchell.

Converting Motion.

Nº91,555.

Patented San. 22,1869.





Fig. 4
Fig. 5



Witnesses MmHSeaman MeDodge

Inventor Thomas A. Mitchell per Daniel Breedsty

## Anited States Patent Office.

## THOMAS A. MITCHELL, OF WASHINGTON, DISTRICT OF COLUMBIA.

Letters Patent No. 91,555, dated June 22, 1869.

## IMPROVED DEVICE FOR CONVERTING MOTION.

The Schedule referred to in these Letters Patent and making part of the same.

To all whom it may concern:

Be it known that I, THOMAS A. MITCHELL, of Washington, in the District of Columbia, have invented a new and useful Improvement in Converting Motion; and I do hereby declare that the following is a full and exact description thereof, reference being had to the accompanying drawings, and to the letters of reference marked thereon.

My invention consists of certain guides, guide-blocks, and buffers, arranged as described.

In the accompanying drawings

Figure 1 is a side view of my invention. Figure 2 is a modified form of my rack.

Figure 3 is a sectional view of my rack through the

line x x, fig. 1.

Figures 4 and 5 are guide-blocks.

In fig. 1, the double rack A is formed of the frame a, to which are fastened, in different planes, the racks bb; also the guide-rods BB, the elastic buffers cc, and the connecting-rod D, by which the contrivance may be attached to any machine of which it shall form a part.

Between the guide-rods B B is the shaft E, carrying two mutilated pinions, meshing with the racks

alternately.

These pinions are formed with such a number of teeth, that during their continuous revolution, the

rack will receive a reciprocating motion.

The guide-rods B B, resting on the shaft E, are intended to support and direct the motion of the frame But if the frame and racks be made in one piece, and solid, a slot may be used, the edges of which shall be the equivalent of the guide-bars.

The buffers c c, striking the shaft E at each end of

the stroke, prevent a strain upon the cogs of either rack or pinion at the instant of changing motion.

To avoid the wear of the shaft from the friction of the guide-rods, I introduce a block, similar to fig. 4 or 5, hung on the shaft between the guide-rods, as may be seen at K, in sectional view, fig. 3, in which E is the shaft; F F, the pinions; B B, the guide-rods; b b, the racks; and a a, the frame.

For producing reciprocating rectilinear motion, I prefer the form shown in fig. 1; but for certain purposes, I use racks of a simple or compound curvature, or any form adapted to the machine of which it makes

Fig. 2 is an illustration of a simple curved rack.

In order to increase the strength of the apparatus, I sometimes use four or more racks, arranged in opposite pairs, as in fig. 3, in which  $b \ H \ b \ H$  are the racks operated by the pinions F F.

Having thus described my invention,

I claim, and desire to secure by Letters Patent— 1. The guide-rods, forming a slot, resting on the shaft, for supporting and directing the racks.

2. Introducing a block in the slot, or between the guide-bars, hung on the shaft, to reduce friction and cause a more smooth and even motion of the racks.

3. In combination with the above, the elastic buffers at each end of the rack-frame, for preventing undue strain on the teeth of either racks or pinions, at the end of stroke.

THOMAS A. MITCHELL.

Witnesses:

DANIEL BREED. A. B. PAIGE.