PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau: L

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 :

GOGF 9/00, 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 86/ 00437
16 January 1986 (16.01.86)

PCT/US85/00735
24 April 1985 (24.04.85)

(21) International Application Number:
(22) International Filing Date:

(31) Priority Application Number: 626,363

(32) Priority Date: 28 June 1984 (28.06.84)

(33) Priority Country: Us

(71) Applicant: MOTOROLA, INC. [US/US]; 1303 E. Al-
gonquin Road, Schaumburg, IL 60196 (US).

(72) Inventors: ZOLNOWSKY, John ; 9 Homer Lane, Men-
lo Park, CA 94025 (US). CRUESS, Michael : 7405
Cannon Mountain Place, Austin, TX 78749 (US).
MacGREGOR, Douglas, B. ; 3705 Tarragona Lane,
Austin, TX 78727 (US).

(74) Agents: GILLMAN, James, W. et al.; Motorola, Inc.,
Patent Department, Suite 300K, 4250 E. Camelback
Road, Phoenix, AZ 85018 (US).

(81) Designated States: DE (European patent), FR (Euro-
pean patent), GB (European patent), IT (European
patent), JP, KR, NL (European patent).

Published
With international search report.

(54) Title: DATA PROCESSOR HAVING MODULE ACCESS CONTROL

(57) Abstract

A data processor (12) cooperates with an
access controller (14) to control access to a module
stored in a storage device (20). In response to re-
ceiving an instruction which requests access to the
module and specifies an address within the storage
device (20) containing an access request, the data
processor (12) retrieves the access request and pro-
vides the access request to the access controller (14).
The data processor (12) will then initiate the re-
quested access. However, the access will be faulted
if the access controller (14) decides to deny the
access request.

PCNTL wATCHDOg |
L
senn!| TMER 20,
ADDR IAD0R PADDR 2
—Y\umu Y [-PeNTL S
= g
14 DATA| A__N
N~ Y DATA | EDAC
3 FAULT U
8 BERR |
2 seve QRE=—EEBRJ | Rermy 2
g 32 RETRY 28
g N
HALT =R HALT PADDR J
h B s
5 34 g
Q
N [0ATA | owac
S I Sl N
¥ onfom N (I ey
b |) I §§ VN Ny
3 BERR |
E 4 18 R
S DATA DATA
S}
127 : |
9 18 | [eaoor
\ ~¥
MASS
DATA | STORAGE
N——1{INTERFACE
PCNTL
——d 14

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to idéntify States party to the PCT onthe front pages of pamphlets publishing international appli-
cations under the PCT.

AT Austria GA Gabon MR Mauritania
AU Australia GB United Kingdom MW Malawi

BB Barbados HU Hungary NL Netherlands
BE Belgium IT Italy NO Norway

BG Bulgaria JP Japan RO Romania

BR Brazil KP Democratic People’s Republic SD Sudan

CF Central African Republic of Korea SE Sweden

CG Congo KR Republic of Korea SN Senegal

CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK Sri Lanka TD Chad

DE Germany, Federal Republic of LU Luxembourg TG Togo

DK Denmark MC Monaco US United States of America
FI Fiaaland MG Madagascar

FR France ML Mali

v 3

A)

WO 86/00437
PCT/US85/00735

DATA PROCESSOR HAVING MODULE ACCESS CONTROL

Efeld of the Invention
The present invention relates generally to a dats

processors &nd, more particularly, to a data processor having
a module access control mechanism,

Background of the Invention

In many data processors, the executing program has the
ability to access any address within the address space '
generally available to the processor. In many other data
processors, access limitations are imposed upon a user
program, but not upon the supervisor program. Typically, the
access limitations are in the form of address range or space
1imits imposed by hardware, Another common limitation is the
imposition of write protection upon certain designated address
ranges which are otherwise accessible to the user program.

In some other systems, the supervisor program includes a
number of service routines for performing input/output
operations and other necessary system functions., In general,
such routines are considered to be privileged, and all
accesses thereto by user programs typically results in traps
to an appropriate privilege violation handler within the
supervisor program. In such implementationms, the handler is
responsible for deciding if the request should be honored, If
the decision is affirmative, the handler enables the requested
service to be performed before control is transferred back to
the user program, While this software implemented access
control mechanism is quite versatile, the overhead associated
with such a mechanism is far from insignificant,

In some other data processors, such as the Digital
Equipment Corporation VAX and the Kational Semiconductor
NSC16000 microprocessor, 8 program may be configured as a set
of data’/code modules which can be %®called® as appropriate by

- WO 86/00437

PCT/US85/06735

2=
other modules, At the end of the called module, control is
returned to the calling module, However, these processors
provide no mechanism for controlling access to such modules,
Thus, the module call instruction i{s comparadble to a
conventional branch-to-subroutine instruction wherein the data
processor would simply stack away onto a user stack certain
return information before dbranching to the appropriate
starting address of the module, In scme of these systems,
this starting address is part of a ®*mcdule descriptor® which
is constructed by the compiler/assembler and linker in the
process of creating an executable load module, Other
information relating to the module may also be provided in the
- module descriptor, '

In the General Electric GE685 "MULTICS™ machine, and, more
recently, in some of the machines offered commercially by
Prime Computers and Data General, each "page"™ of the available
address space within the system memory has associated with it
an access level, creating in effect a2 set of concentric
"rings* of protection. Although the number of rings may vary,
the most sensitive data/code modules are typically stored
within. the innermost ring and the user modules are within the
outermost ring, the balance of the supervisor progfam and
associated compilers/assemblers being appropriately
distributed among the several available rings. In order to
obtain access to data/code modules stored within the innermost
ring, the calling module must have been granted the highest
access level, while even those modules having the lowest
access level can access modules stored in the outermost ring.
In this more useful form, the call module instruction allows a
user program controlled access to data/code modules which the
system wishes to protect against unauthorized use.

In a typical data processing system which implements an
access control mechanism, the supervisor program has the
responsibility of assigning access levels to each of the user
programs which are installed in the asystem. For example, some

WO 86/00437
PCT/US85/00735

3=
users, because of their duties, may be assigned a higher
asccess privilege than other users of the same program.
Similarly, different programs, because of their nature, may
require higher access levels than other programs. On the
other hand, all of the programs will typically require access
to those modules of the supervisor program which perform
common 1nput/outputwand related service functions. The call
module mechanism facilitates Just such a dynamic change in
access level,

During the compilation/assembly and linking process, the -
supervisor program typically initializes the module
descriptors (sometimes referred to as segment descriptors) to
contain information relating to the address of the respective
modules and to the access level thereof. Depending upon the
requirements of the system, these descriptors may be stored
either within or without the ring containing the respective
modules. The addresses of these descriptors are thereafter
inserted into the appropriate call module instructions in the
calling module and the linked program installed into an
appropriate storage medium within the system resources. Thus,
whenever the program is executed, the supervisor program can
be sure that all module calls made by that program have
previously been approved. However, the program must still be
prevented from extending the higher level access privilege
beyond the authorized module. This dynamic access control
function is typically handled by an access controller
implemented within the data processor itself or in a memory
management unit which is tightly coupled to the data
processor. In general, the access controller monitors each
access to the system storage to determine that the access
level of the currently executing module is greater than or
equal to the access level of the accessed page, If s0, the
access is allowed; if not, the access is faulted to force the
termination of the calling module, Whenever a call module
instruction is executed, the data processor notifies the

WO 86/00437
. F : PCT/US85/00735

access controller that the access level must be changed to &
higher level, {f necessary, to enable the called module to
execute, The access controller would thereafter allow
accesses to pages having the higher access level. Upon
executing a corresponding wreturn-from-module® instruction,
the data processor orders the access control to change the
asccess level back to the original level of the calling module,

In some systems, each access level has @& set of %gates"
associated therewith, each of which can be "open®™ or “closed™ .
at the discretion of the supervisor program. 1In general, if a
particular module is going to be made accessible to user
programs having a particular access level, the supervisor
program will open a gate to that module by storing the
descriptor for that module within a particular gate table at
that access level; without such an entry, the gate will be
effectively closed. Thereafter, 2 calling module can request
access to a module by specifying the number of the gate within
the calling module's access level which controls access to the
desired module, together with the index intc the respective
gate table at which the module descriptor is stored. If the
access controller verifies that such an entry actually exists,
the processor is allowed to establish the appropriate access
jevel and pathway to the ealled module using the information
contained in the module descriptor identified in the call
pmodule instruction; otherwise the access is faulted to force
the termination of the calling module. Upon exiting from the
called module, the processor reestablishes the original access
jevel of the calling module before returning control thereto.
In addition to dedicating significant storage space for the
gate tables, this technique requires 2 significant amount of
rather complex circuitry to implement the table lookup
function.

Enmmazx_si_Ih:_Inxsniinn
Accordingly, it is an object of the present invention to

¥

©

WO 86/00437

b=
provide s data processor having an improved module access
control mechunism,

Another object is to provide a module access controX
mechanism which does not require the data processor to be
concerned with the criteria under which access is granted,

Yet another object is to provide a data processor wherein
an access controller independent of the data processor decides
for the data processor whether a requested access should be
granted.

Sti11 another object is to provide an efficient mechanism
for a data processor to cooperate with an independent access
controller in the control of access to a module stored in
system storage.

One other object of the present invention is to provide an
improved gate mechanism for an access controller to directly
control access to the system storage by modules executimg in a
data processor.

These and other objects are achieved in a data processor
which has been adapted in accordance with the present
invention to cooperate with an access controller to control
access to a module stored in a storage device. In the most
basic form of the present invention, the data processor is
constructed to receive an' instruction which requests accesss
to the module, the instruction specifying an address within
the storage device containing an access request. Using the
address specified in the instruction, the data processor
retrieves the access request and provides the access regquest
to the access controller. The data processor then initiates
the requested access to the module, However, the access will
be faulted if the access controller decides to deny the access
request.

In the preferred form of the present invention, the data
processor requests the decision of the access controller to
the access request before attempting the requested access. If
the decision of the access controller is affirmative, the data

PCT/US85/00735

WO 86/00437
PCT/US85/00735

eb=
processor allows access to the module, However, if the
decision of the access controller is negative, the data
processor denies sccess to the module.

In either form, the data processor need not be aware of
the access eriteria being imposed by the access controller,
Thus, the form and content of the access request may be
changed to suit specific requirements without changing the
data processor and the manner in which the access control
mechanism is implemented therein.

Brief Description of the Drawings
Figure 1 is s block diagram of a data processing system
suitable for practicing the present invention.
Figure 2 is a block diagram of the data processor of
Figure 1.

Shown in Figure 1 is a data processing system 10 wherein
logical addresses (LADDR) issued by a data processor (DP) 12
are mapped by a memory management unit (MMU) 18 to a
corresponding physical address (PADDR) for output on a
physical bus (PBUS) 16. Simultaneously, the various logical
access control gignals (LCNTL) provided by DP 12 to control
the access are converted to appropriately timed physical
access control signals (PCNTL) by a modifier unit 18 under the
control of MMU 13, 1In the preferred form, DP 12 is adapted in
accordance with the present invention to cooperate with an
access controller implemented, for example, in MMU 14, to
control access to data and code ttored as modules in the
memory 20. . '

In response to a particular range of physical addresses
(PADDR), memory 20 will cooperate with an error detection and
correction ecircuit (EDAC) 22 to exchange data (DATA) with DF
12 in synchronization with the physical access control signsls
(PCNTL) on PBUS 16. Upon detecting an error in the data, EDAC

chx

)

WO 86/00437
PCT/US85/00735

g B
22 will either signal a bus error (BERR) or request DPF 12 to
retry (RETRY) the exchange, depending upon the type of error.

In response to a different physical address, mass storage
jnterface 23 will cooperate with MP 12 to transfer data to or
from mass storage 26. If an error occurs during the transfer,
interface 2% may signal a bus error (BERR) or, if appropriate,
request a retry (RETRY). '

In the event that the MMU 13 is unable to map a particular
logic address (LADDR) into a corresponding physical address ’
(PADDR), the MMU 18 will signal an access fault (FAULT). As a
check for MMU 13, a watchdog timer 28 may be provided to
signal a bus error (BERR) if no physical device has responded
to a physical address (PADDR) within a suitable time period
relative to the physical access control signals (PCNTL).

If, during a data access bus cycle, 2 RETRY is requested,
OR gates 30 and 32 will respectively activate the BERR and
HALT inputs of DP 12. 1In response to the simultaneous
activation of dboth the BERR and HALT inputs thereof during a
DP-controlled bus cycle, DP 12 will abort the current bus
eycle and, upon the termination of the RETRY signal, retry the
cycle,

If desired, operation of DP 12 may be externally
controlled by judicious use of a BALT signal. In respomse to
the activation of only the HALT input thereof via OR gate 32,
DP 12 will halt at the end of the current bus cycle, &nd will
resume operation only upon the termination of the HALT signal.

In response to the activation of only the BERR input
thereof during a processor-controlled bus cycle, DP 12 will
abort the current bus cycle, internally save the contents of
the status register, enter the supervisor state, turn off the
trace state if on, and generate a bus error vector number. DP
12 will then stack into a supervisor stack area in memory 20 a
block of information which reflects the current interral
context of the processor, and then use the vector number to
branch to an error handling portion of the supervisor program.

WO 86/00437
"9 PCT/US85/00735

During the stacking operation, DP 12 will stack certain
information of a general nature, including: the saved status
register, the current contents of the program counter, the
contents of the {nstruction register which is usually the
first word of the currently executing instruction, the logical
address which was being accessed by the aborted bus cycle, and
the characteristics of the aborted bus cycle, i.e, read/write,
instruction/data and function code, In addition to the above
information, DP 12 is constructed to stack much more
information about the internal machine state. If the ‘
exception handler 1is successful in resolving the error, the
last instruction thereof will return control of DP 12 to the
aborted program. During the execution of this instruction,
the sdditional stacked information is retrieved and loaded
jnto the appropriate portions of DP 12 to restore the state
which existed at the time the bus error occurred.

The preferred operation of DP 12 will be described with
reference to Figure 2 which {11ustrates the internal '
organization of a microprogrammable embodiment of DP 12.

Since the §1lustrated form of DP 12 is very similar to the
Motorola MC68000 microprocessor described in detail in the
several U.S. Patents e¢ited hereafter, the common operation
aspects will dbe described rather broadly. Once a general
understanding of the intermal architecture of DP 12 is
established, the discussion will focus on the access control
aspect of the present invention.

The DP 12 is a pipelined,,microprbgrammed data processor.
In a pipelined processor, each instruction is typically
fetched during the execution of the preceding instruction, and
the interpretation of the fetched instruction usually begins
before the end of the preceding instruction. In 2
microprogrammed data processor, each instruction 1s'typ1cally
fetched during the axecution of the preceding instruction, and
the interpretation of the fetched instruction usually begins
before the end of the preceding instruction. In a

WO 86/00437 ,

9 PCT/US85/00735
picroprogranmed data processor, each instruction 1s executed
as 8 sequence of microinstructions which perform small pieces
of the operation defined by the instruction., If desired, user
{nstructions may be théught of as macroinstructions to avoid
confusion with the microinstructions. In the DP 12, each
picroinstruction comprises a microword which controls
microinstruction sequencing and function code generation, and
a corresponding nanoword which controls the actual routing of
information between functional units and the actuation of
special function units within DP 12, With this in mind, a
typical instruction execution cycle will be described.

At an appropriate time during the execution of each
instruction, a prefetch microinstruction will be executed.
The microword portion thereof will, upon being loaded from
micro ROM 34 into micro ROM output latch 36, enable function
code buffers 38 to output a function code (FC) portion of the
logical address (LADDR) indicating an instruction eycle, Upon
being simultaneously loaded from nano ROM 30 into nano ROM
output latech 12, the corresponding nanoword requests bus
controller &% to perform an instruction fetch bus cyele, and
instructs execution unit 246 to provide the logical address of
the first word of the next instruction to address buffers 48.
Upon obtaining control of the PBUS 16, bus controller 23 will
enable address buffers 48 to output the address portion of the
logical address (LADDR). Shortly thereafter, bus controller
4% will provide appropriate data strobes (some of the LCNTL
signals) to activate memory 20. When the memory 20 has
provided the requested information, bus controller 34 enables
jnstruction register capture (IRC) 50 to input the first word
of the next instruction from PBUS 16. At a later point in the
execution of the current instruction, another microinmstruction
will be executed to transfer the first word of the next
jnstruction from IRC 50 into instruction register (IR) 52, and
to load the next word from memory 20 into IRC 50, Depending
upon the type of instruction in IR 52, the word in IRC 50 may

WO 86/00437
PCT/US85/00735

«10-

be immediate data, the address of an operand, or the first
word of a subsequent instruction. An example of an
jnstruction set which is generally suitable for DP 12, and the
picroinstruction sequences which may be adapted to implement
such an instruction set, are set forth fully in U.S. Patent
No. 5,325,121 entitled "Two Level Control Store for

Microprogrammed Data Processor® issued 13 April 1982 to Gunter

et al, and which is hereby incorporated by reference.

As soon as the first word of the next instruction has been
joaded into IR 52, address 1 decoder 54 begins decoding
certain control fields in the instruction to determine the
micro address of the first picroinstruction in the initial
microsequence of the particular instruction in IR 52.
Si{multaneously, illegal {nstruction decoder 56 will begin
examining the format of the instruction in IR 52. If the
format is determined to be incorrect, illegal instruction
decoder 56 will provide the micro address of the first
microinstruction of an illegal instruction microsequence. 1In
response to the format error, exception logic 58 will force
multiplexor 60 to substitute the micro address provided by
illegal instruction decoder 56 for the micro address provide
by address 1 decoder 54. Thus, upon execution of the last
microinstruction of the currently executing instruction, the
microword portion thereof may enable multiplexor 60 to provide
to an appropriate micro address to micro address latech 62,
while the nanoword portion thereof enables instruction
register decoder (IRD) 63 to load the first word of the next
instruction from IR 52. Upon the selected micro address being
loaded into micro address latch 62, miero ROM 3% will output a
respective microword to micro ROM output latch 36 and nano ROM
340 will output a corresponding nanoword to nano ROM output
latch &2.

Generally, a portion of each microword which is loaded
into micro ROM output lateh 36 specifies the micro address of
the next microinstruction to be executed, vhile another

“

-

WO 86/00437
PCT/US85/00735

Ade
‘portion determines which of the slternative micro addresses
will be selected by multiplexor 60 for input to micro address
lateh 62. In certain instructions, more than one |
picrosequence must be executed to accomplish the specified
operation. These tasks, such as indirect address resolution,
are generally specified using additional control fields within
the instruction. The micro addresses of the first
picroinstructions for these additional microsequences are
developed by address 2/3 decoder 66 using control information
in IR 52. In the simpler form of such instructions, the first
microsequence will typically perform some preparatory task and
then enable multiplexor 60 to select the micro address of the
microsequence which will perform the actual operation as
developed by the address 3 portion of address 2/3 decoder 66.
In more complex forms of such instructionms, the first
microsequence will perform the first preparatory task and then
will enable multiplexor 60 to select the micro address of the
next preparatory microsequence as developed by the address 2
portion of address 2/3 decoder 66. Upon performing this
additional preparatory task, the second microsequence then
enzbles multiplexor 60 to select the micro address of the
microsequence which will perform the actual operation as
developed by the address 3 portion of address 2/3 decoder 66.
In any event, the last microinstruction in the last’
microsequence of each instruction will enable multiplexor 60
to select the micro address of the first microinstruction of
the next instruction as developed by address 1 decoder 53, 1In
this manner, execution of each instruction will process
through an appropriate sequence of microinstructions. 1 more
thorough explanation of a suitable micro address sequence
selection mechanisam is given in U,S, Patent No. %,3%2, 078
entitled "Instruction Register Sequence Decoder for
Microprogrammed Data Processor® issued 27 July 1982 to

Tredennick et al, and which iz hereby incorporated by
reference,

WG 86/00437
PCT/US85/00735

«l2=

In contrast to the microwords, the nanowords which are
joaded into nano ROM output latch &2 indirectly control the
routing of operands into and, if necessary, between the
several registers in the execution unit 86 by exercising
control over register control (high) 68 and register control
(low and data) TO. In certain circumstances, the nanoword
enables field translation unit 72 to extract particular bit
fields from the instruction in IRD 6% for input to the
execution unit 46, The nanowords also indirectly control
effective address calculations and actual operand caleculations
within the execution unit 46 by exercising control over AU
control 74 and ALU control 76. In appropriate circumstances,
the nanowords enable ALU control 76 to store into status
register (SR) 78 the condition codes which result from each
operand calculation by execution unit 86, A more detailed
explanation of a suitable form of ALU control 76 is given in
U.S. Patent No. 4,312,034 entitled ®"ALU and Condition Code
Control Unit for Data Processor® issued 19 January 1982 to
Gunter, et 2l, and which 1s hereby incorporated by reference.
Other details relating to the comstruction and operation of DP
12 may be found in US Application Serial Number 337,600
entitled "Data Processor Version Validation® filed 7 December
1982 and allowed on 21 June 1984,

Sinece DP 12 is a microprogrammed machine, the
implementation of additional instructions is primarily 2
matter of providing appropriate microsequences for the new
instructions, provided, of course, that all of the resources
and control paths are available to support the functionality
of the new instructions. Such is the case of the module call
(CALLM) and module return (RTM) instructions in accordance
with the present invention, since the only hardware
requirement imposed upon DP 12 by this instruction is the
existing ability to read from and write to specific addresses
within the overall address space already available to DP 12.
On the other hand, within the constraints imposed by the

-

©

~

WO 86/00437
PCT/US85/00735

. -13-
CALLM/RTE interface, the implementation of the access
controller function is totally at the discretion of the systenm
designer. Thus, for the purposes of descridbing the operation
of DP 12 in the execution of the CALLM and RTM instructions,
the access controller, which could be conveniently integrated
into the MMU 1%, for example, will be assumed to exist as a
wplack box" which DP 12 perceives as a set of several
registers accessible at respective predetermined addresses
within the existing address space.

In the preferred form, the CALLM instruction consists of
an effective address which specifies the address within the
memory 20 at which a descriptor for the called module may be
found, and an argument count which indicates the number of
arguments, if any, the calling module is passing to the called
module. In preparation for the CALLM instruction, the module
descriptor will have been initialized at link time by the
supervisor program to contain the entry address of the called
module and the address of the data area associated with that
module. The module descriptor may also contain the address of
a stack upon which the module expects to find the arguments,
In addition, the module descriptor will contain an access
request of a specific format appropriate for the particular'
jevel of access control desired by the designer of the
system. For example, in the preferred embodiment, the access
request consists of an access type code which indicates
whether the access level must be changed, and, if so, what new
access level the called module requires,

Upon receiving the CALLM instruction for execution, DP 12
will first evaluate the effective address and then retrieve
from that address the access request, the module address and
the module data area address. DP 12 then tests the access
request to determine the type of access which is to be made,
that is, whether an access level change is required or the
current access level is adequate for the called module. 1In
addition, the preferred form of the access request also

Wi,
SR

WO 86/00437
‘i : PCT/US85/00735

indicates whether the called module expects to find the
arguments on the calling module's stack or on the called
podule's stack.

| 1f, for example, the access type indicates that the access
level need not be changed, DP 12 will build a module stack
frame at the top of the current stack., If the called module
expects to find the arguments on the calling modulets stack,
DP 12 will stack the calling module's stack pointer on the
podule stack frame so that the called module will know where
to find the arguments. If the called module expects to find
the arguments on its own stack, DP 12 does not stack the
calling module's stack pointer, but simply advances the module
stack frame pointer to compensate for the shortcut. DP 12
then writes the current value of the calling module's program
counter on the module stack frame, followed by the address of
the module descriptor. ,

In the preferred form, the first word of the called module
specifies a particular one of the several registers within D?
12 which that module expects to contain the address of the
data area of that module., At this point in the execution of
the CALLM instruction, DP 12 will retrieve this register
specifier, and then store the current contents of the
specified register on the module stack frame. DP 12 completes
the module stack frame by storing the argument count specified
by the CALLM jnstruction and the access request retrieved from
the module descriptor. DP 12 then begins execution of the
module at the first 1nstruct16u following the register
specifier. -]

If, on the other hand, the access type indicates that the
access level must be changed, DP 12 will firat determine if
the calling module is passing arguments to the called module
and, if so, DP 12 will verify that all of the arguments are
within the legitimate address space of the calling module., If
an access violation is detected, DP 12 will force the
termination of the calling module by vectoring to an exception

-

[23

WO 86/00437
- - PCT/US85/00735
«)5-
handler. 1If no access violation is detected, DP 12 will read
what it believes to be the access level of the calling module
f£rom a "current access level register” known to the DP 12 only
as a first predetermined address within the address space.
12 will then write the address of the called module to 2
=qodule address register™ known to the DP 12 only as a second
predetermined address in the available addzess space, and the
"new™ access level to a “increase access level registez™ known
to the DP 12 only as a third predetermined address within the
address space. DP 12 then reads what it believes to be the
decision of the access controller to the access Iequest from
an “access status register™ known to the DP 12 only as a
fourth predetermined address within the address space.

I1f the decision is negative (at least what DP 12 perceives
¢0 be negative), DP 12 will force the termination of the
calling module by vectoring to the exception handler. On the
other hand, if the decision is perceived by DP 12 to be
affirmative, DP 12 will insert the "old™ access level into the
access request being maintained within a temporary register

within DP 12 in place of the "new" access level originally
contained therein.

DP

1f the called module expects to find the arguments on the
calling module'’s stack or at least a pointer to the arguments
within the module stack frame, DP 12 procedes to complete the
module stack frame just as in the case described above when
there was no access level change. On the other hand, if the
called module expects to find the arguments on its own stack,
DP 12 will retrieve the called module's stack pointer from the
module descriptor, and transfer all of the arguments from the
calling module's stack to the called module' stack. DP 12
then builds the module stack frame as described above but on
the called module's stack rather than on the calling module's
stack. 1In either case, after the module stack frame is
complete, DP 12 then begins execution of the module uat the
first instruction following the register specifier.

WO 86/60437
f 186 PCT/US85/00735

Upon receiving the RTM instruction foXr execution at cne
end of the called module, DP 12 will retrieve the access
request, the argument count, the program counter for the
calling module and the value which was in the register used by
the called module as the pointer to its data area. 1If the
access type in the access request indicates that no access
change was made, DP 12 adjusts the current stack pointer to
discard the module stack frame and any associated arguments,
restores the original value of the register used by the called
module, and then restores the program counter to resume ‘
execution of .the calling module. 1If, however, the access type
indicates that an access level change was made, DP 12.
retrieves the %“old"™ stack pointer from the called module's
stack, before—wziting'the ®"0l1d"™ access level to a “decrease
access level register™ known to DP 12 only as a fifth
predetermined address within the address space. DP 12 then
reads the "access status zegiﬁte:' again to see what the
decision of the access controller is to the access level
decrease request. I1f the decision is negative, DP 12 will
force the termination of the calling module by vectoring to
the exception handler. If the decision is affirmative, DP 12
will adjust the "old"™ stack pointer to discard the module
stack frame and the associated arguments to derive the proper
current stack pointer. DP 12 will then procede as described
above to restore the original value of the register used by
the called module, and then the program counter to resume
execution of the calling module.

As explained above, DP 12, in the course of processing the
CALLM and RTM instructions, waits for the decision of the
access controller before proceeding with the execution of the
called module. However, if desired, DP 12 could simply
proceed with the requested access after passing the access
request to the access controller. 1If the acceuss controller
decides to deny access, the access controller can simply fault
the access cycle, thereby forcing DP 12 into the exceptien

WO 86/00437
f PCT/US85/00735

17

handler anyway. Thus, the present invention, in a general
sense, relates to a mechanism for a data processor such as Dp
12 to advise an independent access controller that an access
request is going to be made unless the access controllex
prevents it. How the access controller decides whether or not
to allow the access is totally outside the scope of the data

. processor.

Using the guide shown in Appendix I, the detailed
microsequence shown in Appendix II for a preferred

implementation of the CALLM and RTM instructions in a modified

form of DP 12 may be understood. For a general understanding

of such microsequences, as well the microsequences for all of
the instructions in DP 12, reference may be made

to US Patent
Number 4,325,121. :

WO 86/00437

. PCT/US85/00735
MICROINSTRUCTION LISTING
+--- CO-ORDINATE OF BOX MICRO SEQUENCER
+--- LABEL OF BOX INFORMATION
+-- MICRO ADDRESS
| 4-- ORIGIN
v v v v | v

|AAl| ExaM1 | 846 | ExaMm1 (1) | a1 |
trcctetotectentcrntetoccctena to= +

|SIZE |PADB| RXS| RYS| R/W TIME TYPE|
S > SR S—— SO S 1 + +
"COMMENTS" AU
TRANSFERS . ALD
>> T1 DESTINATION cc

> T3 DESTINATION SHFTO

SHFTC

FTU

PC

PI1PE

DATE

B o e > o e s e o e e - -

ORIGIN: if shared, co-ordinate of origin
if origin, # of boxes sharing with this box

DATA ACCESS INFORMATION:

R/W TIME
. = RO access X - no timing associated
<W> - write Tl - write to aob in T1
<> - read T3 - write to aob in T3
EPC - special signal T¢ - aob writen before T1
EXI. = latch exception

TYPE
e ,<>,<W> on R/W
normal access

UONK - program/data access
CNORM - conditional normal
CUNK - conditional prog/data
LS - alternate address space
CPOl - cpu access - different bus error
CPU2 -~ cpu access - normal bus error
RMC ~ read-modify-write access
SPC on R/W

RST1 - restore stage 1
BST2 -~ restore stage 2
HALT -~ halt pin active
RSET -~ reset pin active
SINC - synchronize machine

EXL on R/W .
BERR - bus error PRIV <~ privilege viocl.

AERR - address error TRAC - trace

Ll

WO 86/00437

LINA
LINF
ILL

DVBZ
BDCK
TRPV

line a
line £
illegal
divide by
bad check
trap on ©

13

-

TRAP

cop
FORE

zexro INT
INT2

verflow NOEX

MICRO SEQUENCER INFORMATION:

DB
BC
Al
AlA

AlB
A2
a7
A4
AS
a6

SIZE:

size
size
size
size
size

size

PCT/US85/00735

trap

protocol viol.
fomat error
interrupt lst stack
interrupt 2nd stack
no exception

direct branch - next microaddress in microword

conditional
use the Al
use the Al
trace

use the Al
use the A2
functional

branch

PLA sample interrupts and trace
PLA sample interrupts, do not sample

PLA do not sample interrupts or trace

PLA

conditional branch (DB or A2 PLA)

use the A4 latch as next micro address

use the AS PLA

use the A6 PLA
byte nano specified constant value
word nano specified constant value
long nano specified constant value
ircsz irc[ll]=8/1 => word/long
irsz jrd decode of the instruction size

(byte/word/long) . Need to have file
specifying residual control

ssize shifter control generates a size
value. The latch in which this value
is held has the following encoding

. 886 = byte

881 = word

616 = 3-byte

g1l = long /

106 = 5-byte *** must act as

long sized

- RX SUBSTITUTIONS:

RX is a general register pointer. It is used to point
at either special purpose registers or user registers.
RX generally is used to translate a register pointer
field within an instructiom into the control required
to select the the appropriate register.

rx = rz2d/rxd

conditionally substitute rza2d

use rz2d and force rx|[3]=6

mul.l
div.l

g1g@ 110 668 xxx XXX
g1dg 116 661 xxx xxXx

WO 86/00437

RYS

IX =

X =

rx =

IX =

IX =
IX =

rx =
X =

X =

IX =

Ty =

Iy =

20 PCT/US85/00735

rx {rd[11:9] muxed onto rx{2:8)
rx[3] = g (data reg.)
(unless resjidual points)
rxa then rx{3) =]
(residual defined in opmap)

rz2 irc2[15:12]) muxed onto rx[3:6]
rx[3] is forced to g by residual control
div.l 2166 116 601 xxx xxx
bit field reg 111g 1xx 111 xxx xxx

rp rx[3:8] = ar[3:0]
The value in the ar latch must be
inverted before going onto the rx bus
for movem rl,-(ry) €168 166 gix 188 xxx

rz irc[15:12] muxed onto rx[3:4]
(cannot use residual control)

ro2 rx[2:8] = irc2(8:6)
rx[3] = g (data reg.)
Used in Bit Field, always data reg -

car Points € cache address register
vbr points € vector base register

vatl points @ vatl
dt points € 4t

crp rx[3:8] = ar[3:4] .
The value in ar points. at a control
register (i.e. not an element of the
user visible register array)

usp rx[3:8] = p
\ force effect of Psws to be negated (g)

sp rx[2:6) = P,
if psws=8 then address usp
if psws=l & pswm=g then isp
if psws=l & pswn=l then msp

SUBSTITUTIONS:

Ty ird[2:6] muxed onto ryl[2:0]
ry[3] = 1 (addr Ieg.) unless residoal
points

ryd then ry[3) = g, (residual defined
in opmap)

ry/dbin This is a conditional substitution
ry/dob for the normal Iy selection {which

“wy

WO 86/00437

2]~

PCT/US85/00735

includes the residual substitutions
like dt) with dbin or dob. The
substitution is made based on
residual control defined in opmap
(about 2 ird lines) which selects the
dbin/dob and inhibits all action to
ry (or the residually defined ry).
Depending upon the direction to/from
the rails dbin or dob is selected.
If the transfer is to the rails then
dbin is substituted while if the
transfer is from the rails dob is
substituted.

Special case: IRD = $16@ 8xx #ss $80 xxx
(clr,neg,negx,not) where if driven
onto the a-bus will also drive onto

the d-bus.
ry = rw2 irc2([3:8] muxed onto ry([3:6]
use rw2
moven ea,rl 6166 118 €1lx xxx XXX
div.1 198 116 €81 xxx xxX
bfield 1116 xxx XXX XXX XXX
cop 1111 xxx XXX XXX XXX
do not allow register to be written to
div.w 1666 xxx xl1l xxx xxx
force ryl(3] = ¢
div.l 168 116 661 xxx xxX
bfield 1110 1xx x1l1 xxx xxX
ry = rw2/dt conditionally substitute rw2 or dt
use rw2 and force ry[3]=8
mul.l 9168 110 6606 xxx xxX
and irc2{18] = 1
div.l 168 116 €61 xxx xxx
and irc2{16] =1
ry = vdtl points € virtual data temporary
ry = vat2 points € virtual address temporary 2
ry = dty points € dt

AU - ARITHMETIC UNIT OPERATIONS:

g- ASDEC add/sub add/sub based on residual control
sub if ird = xxxx xxx xxx 180 xxX
l1- ASXS add/sub add/sub based on residual (use alu

add/sub) . Do not extend db entry

add if ird = 1181 xxx xxx xxx xxx add

WO 86/00437

1¢-
il-

13-

14~

15-

SUB

D1V

NIL

SUBZX

- ADDX8

ADDX6

ADD

MULT

ADDXS

ADDSE

ADDZX

ADDSZ

CONSTANTS

g,1

1,2,3,4

sub

add/sud

sub

add

add

add
add

add

add

add

addg

22 PCT, /U585/00735

or 8181 xxx #xx Xxx xxx addg
subtract AB from DB

do add if aut{3l) =1,

sub if aut[3l] = @; take db (part rem)
shift by 1 shifting in alut[3l] then
do the add/sub.

zero extend DB according to size then
sub AB

sign extend DB 8 -> 32 bits then
add to AB

sign extend DB 16 ~> 32 bits then
add to AB

add AB to DB

shift DB by 2 then add constant

sign/zero extend based on residual

and previous aluop

muls = always sxtd

mulu = sxtd when sub in previous
‘aluop

sign extend DB based on size then
add to AB

sign extend DB based on size then
shift the extended result by 6,1,2,3
bits depending upon irc[l14:9].
Finally add this to aB

zero extend DB according to size then
add to AB

zero extend DB according to size,
shift by 2, then add

1 selected by: .
(div * allzero) + (mult * alu carry = §)

selected by size
byte = 1
word = 2
3=by = 3
long = 4

)

~

WO 86/00437

1f

a source and dest

=23

PCT/US85/06735

(Rx=SP or Ry=SP) and (Ry=Ry or Rx=Rx) and (Rx or Ry is

ination) and (au constant = 1,2,3,4) and

(size = byte) then constant = 2 rather than one.

ALU - ARITHMETIC AND LOGIC UNIT OPERATIONS:

Iow

HWN\)U\U‘&NNH‘
«
t

11
12
i3

add

and
chg
clr
eor
not
or

set

colg = x,nil
coll = and
col2 = alul,div,mult,or
coll = alu2,sudb
col 1 col 2
ADDROW and add
ADDXROW and addx
SUBROW and sub
SUBXROW and subx
DIVROW and div
MOLTROW and mult
ANDROW and and
EORROW and eor
ORROW and or
NOTROW and not
CHGROW and chg
CLRROW and clr
SETROW and set
cin
db + ab 8
addx db + ab b 4
addl db + ab 1
ab * db -
ab xor k=-1 -
ab ® k=g -
ab xor db -
~ab v édb -
ab v db -
ab v k==1 -
édb + ab l

sudb

subx édb + ab

mult

div

for mult

(db shifted by 2

col 3

add
addl

sub
sub

add

x

) add/sub (ab shifted by 6,1,2
(if 8 then add/sub 8)) control for add/sub and
shift amount comes from regb. Don't assert atrue

cin = @

build part. quot and advance part. remain.l

ab (pr.l:pq) shifted by 1, addg,
value shifted in = au carry (quot bit)
cin = @

must assert atrue for div

WO 86/00437

54 PCT/US85/00735

The condition codes are updated during late T3
based upon the data in alut and/or rega. These
registers can be written to during T3. 1In the
case of rega, there are times when the value to
be tested is the result of an insertion from regb.

CC - CONDITION CODE UPDATE CONTROL:

ZOoW

add .
addx
sub
subx
éiv
mull
rotat
rox

W03 Ut)N

g 1log

standard

bit,bitfld

col 1 col 2 col 3

cnzve ddddd ddddd

cnzve ddkdc (bedl) cdzdc (bcd2)
cnzve knzve (cmp) ddddd
cnzve ddkde (bedl) cdzdc (bcdl)
knzvg (div) ddddd ddddd

knzv@ ddddad ddddd

knzéc , ddddad ddddd

cnzdc knzgg kkkvk

kxkzkk (bit) knz8g8 (b£fldl) kkzkk (b£142)
knz@g ddddd dddad

n = alut msb (by size)
z = alut=g (by size)

non-standard
add c
v

addx.l ¢
2

: v
becdl c
bcd2 c
z

bfldl n
2

bfld2 F
bit z
div v
mull n
z

v

rotat c
rox.l <
I0x.3 v

cout

vout

cout

pswz “ locz

vout

cout

cout v pswc

pswz ° locz

shiftend

all zero

pswz ~ allzero

allzero

au carry out

(shiftend * irc2[16]) v

(alut{31) * “izc2{19}])

(alut=@¢ “ shift allzero ° irc2{l14}) v
(alut=8 * “irc2[16])

“irc2[196] ° ((irc2{ll] * (Tallzero °
“alut{31l]) v (Tallone ® alut{31l}])) v
(Tirec2{1l1l] * “allzero))

shiftend = (sc=@8 - @8 sc<{>% - end)

shiftend = (sc=8 - pswx s5c<>8 = end)

! can do this in two steps as knzfc where

! c=pswx and cnzBc where c=shiftend (not

! with share row with shift)

shift overflow = ((Tallzero “ scdsz) v
{"(allzero v allones) “ sc<=sz))

WO 86/00437

PCT/US85/00735

25

! can simplify this if we don't share
! rows but it will cost another box

sub.l ¢ = “cout
v = vyout
sub.2 c = “cout
v = vout
subx.l ¢ = “cout
z = pswz - locz
v = vout
subx.2 ¢ = “cout
subx.3 ¢ = “cout v pswc
z = pswz - locz

The meaning

and source of signals which are used to set

the condition codes is listed below:

all

allone

shiftend

zero = every bit in rega field = @ where the
field is defined as starting at the bit
pointed to by start and ending (including)
at the bit pointed to by end.
(see shift control)

every bit in rega field = 1 where the
field is defined as starting at the bit
pointed to by start and ending (including)
at the bit pointed to by end,
(see shift control)

the bit in rega pointed to by end = 1.
(see shift control)

locz = all alut for the applicable size = §.

SHFTO -
ror
sxtd

xxtd

zxtd

SHIFTER OPERATIONS:

value in rega is rotated right by value in shift
count register into regb.

value in rega defined by start and end registers
is sign extended to £ill the undefined bits and
that value is rotated right by the value in the
shift count register. The result is in regb.

value in rega defined by start and end registers
is PSWX extended to £ill the undefined bits and
that value is rotated right by the value in the
shift count register. The result is in regb.

value in rega defined by start and end registers

“is zero extended to £ill the undefined bits and

that value is rotated right by the value in the
shift count register. The result is in regb.

WO 86/00437

ins

boffs

offs

SHFTC =

BIT
bit
mvp
swap
callm

PCT/US85/00735

-26~ .
the value in regb is rotated left by the value in
shift count register and then inserted into the
field defined by the start and end register in
rega. Bits in rega that are not defined by start
and end are not modified.

provides the byte offset in regb. If irc2{ll]=l
then the offset is contained in RO and as such
rega should be sign extended from rega to regb-
using the values established in start, end, and
shift count of 3,31,3 respectively. If irc2(1l)=8
then the offset is contained in the immediate
field and should be loaded from irc2{18:6] or
probably more conveniently osr{4:8]. This value
however should be shifted by 3 bits such that
osr[4:3] are loaded onto regb{l:8] with zero
zero extension of the remaining bits.

provides the offset in regb. 1f irc2[1l1l]=1 then
the offset is contained in RO and as such DB>REGS
should be allowed to take place. 1f irc2(11l]=0
then the offset is contained in the immediate
field and osr[4:8] should be loaded onto regb[4:46]
with zero extension of the remaining bits.

SHIFTER CONTROL:

{sbml} {sbm2}

st = @ st = wr - 8
en = =1 (31) en = wWwr - 1
SC = WI {16,32) SC = wr - 8
wr = BC[12:7] (16,32) W = wr - 8
OSr = X osr = x
cnt = X cnt = X
{sbm3} {sbm4}

st = DB [5:8] mod sz st = @

en = DB [5:8] mod sz en = =1 (31)
sc = @ SC = WL

wr = DB [S5:6] WI = WI
OST = X OSr = X
cnt = x cnt = x
{sbm5} {sbmé}

st = X st = 16

en = X en = 31

sC = X sc = 16

wr = DB [7:2] WI = WL - 1
oSt = X oS = X
cnt{1:6) = DB [1:90] ent = x

{1

st = x

en = X

E8C = X

s

WO 86/00437

MOUL
mulw
mull

divw

wZ = X ~27=
O8I = X
cnt = x

{mull}

st = wr

en = -1 mod sz
§C = Wr

wr = BC[12:7]
OST = X

cnt = X

(15,31)
(14,38)

{mul3}

st =0

en = =1 (31)
SC = X

wr = X

OSr = X

cnt = x

{}
st
en
8sC
wr
oSr = X
cnt = x

{1
st
en
sC
wI
osr = X
cnt = x

LI I I
MM MM

MM KM

{divwl}
st =@
en = 31
SC = wWI (16)
wr = BC[12:7] (16)
OSZ = X

cnt = x
{divw3}
st = wr (16)
en = -1 (31)
sC = wr {16)

wr = BC[12:7) (16)
osr = X
cnt = x

{divws}
st = 4

{mul2}

st = wr
en = wr
§C = Wr
WI = WX
oS = X
cnt = X

{muld}
st =0
en = en
8C = X
WL = X
08z = X
cnt = x

{mul6)

st = 16
en = 31
sC = 16
WL = X

oSr = X
cnt = x

{divw2}
st = @

en = =1
sc = 16
WL = wr
OST = X
cnt = x

{divwid}
st = 8

en = 31
SC = wr
WL = X

osr = X
cnt = x

{divw6}
st = 16

PCT/US85/00735

-2

-2
-2

mod s2

-1

(15)

WO 86/00437

divl

unk

-

en = -1 mod size {7

sc = 28
wr = X
osE = X
ent =X

{divw7}
st = 8¢
en = =1
sc = 9
wr = X
OoST = X

cnt = X

{divll}
st. = WI
en = =1
sc = X

(31)

-1 (31)
(31)

wr = BC{12:7] (32)

osr = X
cnt = X

{divi3}
st =@
en = -1
sc = @
wr = X
osr = X
cnt = X

{}

st = X

en = X

sC *= X

WL = X

osr = X
cnt = X

{}
st
en
sC
124
ost = X
cent = X

{}
st

I B
MMM

=
en =
sC =
wI =
OST = X
cnt = X

MMM

(31)

en = 31

sc = 16

wr *r X
oSz = X
caot = X

PCT/US85/00735

{diviz}

st = @

en = -1

sc = @

¥ = WI
0SE = X
cnt = X

{divl4}
st = @
en = 31
sc =@
W = X
osr = X
cnt = X

{div16}
st = 16
en = 31
sC 16
24 X

osr = X
cnt = X

{}
st

en
8C
wr
osr = X
cnt = X

U
MMM

(31)

WO 86/00437

asl

{}
st
en
sC
wI
OSr = X
cnt = x

{}
st
en
sC
wE
0OST = X
cnt = X

{1
5t
en
sc
wr

OSr = X
cnt = x

e nn
MM NMNMNM

L]

MM MHN

MMM

{asll}
st =0

en = 0OST + “WwWI
sc = “wr + 1

wr = DB [5:8] or BC[12:7] (Q)
osz = BC[5:0]

cnt = x

{asl13}
st =@

en = 0sT - 1

SC = X
WX = wIr
OST = X
cnt = x

{}
st
en
sC
wI
oSz = X
cnt = X

{}

st =
en =
§C =
wWI =
OSr = X

nnun
MK MM

MM MM

(8,16,32)

PCT/US85/00735

{}
st
en
sc
wr
osr = x
cnt = x

MMM

{unksé}

st = 16
en = 31
sc = 16
wr = X

0sr = X
cnt = x

{asl2}

st = x

en = “(wr-l) mod sz
5C = X

WL = Wwr

oSr = OsI

cnt = x

{asl4}

st = osr + “wr
en = -1 mod sz
SC = X

WL = WI

oSr = X

cnt = x

{aslé}

st = 16
en = 31
sC = 16
W = X

osr = x
cnt = x

WO 86/00437

asTt

rotl

30
cnt = X

{aszl}

st = wWr

en = oSz - 1

$C = WI

wr = DB [5:8] or BC[12:7] (Q)

osr = BC[5:0] {8,16,32)
cnt = X
{asz3}

st = osz -1
en = OSr - 1
sCc = X

WL = WL

©8T = OST
cnt = X

{}

st = X

en = X

sC = X

W = X

oST = X

cnt = X

{1

st =X

en = X

sC = X

W = X

oSz = X

cnt = X
{xotll}

st = osr

en = =1 (31)
SC = OST

wr = DB [5:8] or BC[12:7] (Q)
osr = BC[5:8] (8,16,32)
cnt = x

{xotl3}

st =0

en = 31

sc = ~“(wr - 1) mod sz
WI = WI

OSr = OSI

cnt = X

{}

st = x
en = X
sC = X

{asr2}

PCT/US85/00735

gt = wWr - 1
en = (wr - 1) mod sz

sC = X
WL = WI

o8r = GST

cnt = X

{1
st
en
sc
vr

uhNen
" M M N

OoSr = X
cnt = X

{asx6}
st = 16
en = 31
sc = 16
wr = X

OSr = X

cnt = X

{rotl2}
st = X

en = “(wr - 1) mod sz

sCc =X
WI = WI

oSr = OSI

cent = x
{}
st =
en =
sc =
wr =

osr = X
cnt = 2

" o MM

{zotls6}
st = 16
en = 31
sc = 16

WO 86/00437

rotr

roxl

wr = X
oS = X
cnt = X

{}
st = X
en = X
sc = X
wr = X
osr = x
cnt = x

{rotrl}

st = OSI

en = =1 (31)

SC = OSI

wr = DB [5:8] or BC{12:7] (Q)
osr = BC[5:8] (8,16,32)
cnt = X

{xotz3}

st =9

en = 31

sc = wr mod sz
W = WI

OoSr = OST

cnt = X

{1
st
en
sC
wIr
OSr = X
cnt = X

{}

st = X
en = X
sSC = X
WI = X
oSy = X
cnt = x

M OR MK

{roxll}

st =@

en = 0osr + “wr (14)
sC = =1 (31)
wr = BC[12:7] (1)
osr = BC[5:8] {16)
cnt = x

{zoxl3}
st = (T(wr-l) + 1) med &2

wI = X
08X = X
cnt = x

{rotz2}
st =X

PCT/US85/00735

en = {(wr - 1) mod sz

8Cc = X
WI = WI

O8I = OS5I

cnt = X

{}

st
en
sC
wI
OSr = X
cnt = X

MM MM

{rotz6}
st = 16
en = 31
sc = 16
WL = X

0ST = X
cnt = x

{rox12}
st = @

en = (osr - wr) mod sz

sc =4
WL = WI

OSIr = 0OSI

cnt = x

{rox14}
st = @

WO 86/00437

IOXI

en = =1 mod sZ

sc = {"(wr-1) + 1) mod s2
wr = DB [5:8] or BC[12:7] (Q)
(8,16,32)

osr = BC[S5:8]
cnt = X

{roxls}

gt = (“(wr-l) + 1) mod sz

en = -1 mod s2

sc = ("(wr-1l) + 1) mod sz

W = WI
OSI = 0OSI
cnt = X &

{zoxl7}

st =w -1
en = osr - 1
sc =@

WI = WI

OSr = 0OST
cnt = x

{roxrl}

st = wI

en = 0SY - 1

SC = WI

wr = BC[12:7] (1)
osr = BC[5:8] (16)
cnt = X

{zoxzr3}

st =@

en = (wz-l) - 1

sc = (wr-l) + 24,16,0

wz = DB [5:8) or BC{12:7] (Q)
{8,16,32)

osr = BC[5:4]
cnt = X

{roxz5}

st = @

en = (wz-l) -1

sc = (wr-l) + 24,116,080
WI = WI

OST = OSI

cnt = X

{zoxr7}

st = §

en = 0Sr - W[
sc =8

wWI = WT

OSI = OSI
cnt = X

~32-

PCT/US85/06735

en = 08 + ~Wr
sc = “wr + 1
WL = WI

OSLZ = OST

cnt = X

{rozl6}

st = 16

en = 31

sc s 16

Wr ®= WX = 1 - OSI
OSr = OSI

cnt = X

{roxxr2}

st =@

en = {Wwr - 1) mod sz
sc =@

W = WX

OSr = 0SI

cnt = x

{roxr4}

st = wr

en = osr - 1
SC = Wr

WL = WI

OST = OST
cnt = x

{zoxz6}

st = 16

en = 31

sc = 16 :

W = W - 1 - osc
0SI = OSI

cnt = x

61

WO 86/00437

bfreg

bfmt

{bfrqgl} 33

st = @

en = 31

SC = OST + WwI

wr = DBf{4:9)] or IRC2{4:9]
osr = REGB[4:8] or IRC2[19:6]
cnt = X

{bfrg3}

st =0

en = 31

§C = OSI + WwWr
W = Wr

0OSI = OST
cnt = x

{bfrg5}

st = X

en = x

EC = X

W = WIr

OSIr = X

cnt[l:8] = DB [1:0]

{bfzrg7}
st = §

en = 31
sc = 25
wr = X

OSr = X
cnt = x

{bfm¢tl}
st = 3

en = -1 (31)

sCc = 3

wr = DB{4:6] or IRC2[4:0]

osr = REGB[4:8] or IRC2{18:6]
cnt = x

{bfmt3}
st =@

en = 1l:"osr[2:9]
S§C = §

WI = wr

0Sr = 0SI

cnt = ¥

{bfmt5;
st = x

PCT/US85/00735

{bfrg2}

st = 0

en = wr - 1
sc = @

WI = WI

08I = OSI
cnt = x

{1
st
en
sc
wI
osr = X
cnt = x

B8 NN
MMM

{bfrgs}
st = 16
en = 31
sc = 186
WL = wWIr
osr = OST
cnt = x

{bfmt2}
st = §@:
“(osr[2:8]+(wr-1))

en = (osr[2:9]+(wr-1))
[4:3):"0sz([2:8]

sC = @

WI = wWI

0Sr = 08I

cnt = (osr2:98]+
(wr=1)) ([5:3]

{bfmt4}
st = @@
“(osr[2:8]+(wr-1))

en = -1 mod sz (7)

sC = @

WI = wI

0STX = X

cat = x

{bfnts}
st = 16

bfmi

WO 86/00437

en = X -3d-
8C = X

wI = X

osSr = X

cnt = X

{bfmt7}
st = X
en = x
sC = X
wI = X
oST = X
cnt = X

{bfril}
st = 3

en = =1 (31)
sc = 3

wr = DBR[4:8] or IRC2[4:8])
osr = REGR{4:8] or IRC2{1€:6]
cnt = % ,

{bfmil3}
st =8

en = 1l:7osr{2:8] 7
sc = 11:"(osr[2:8]+{wr-1))

WI = WY
OST = OST
cnt = x

{bfmis}

st = §

en = @g@:{osr{2:8]+(wz-1)}))
sc = 25+ (0@:

{osr[2:8]+(wr=1)))
WI ®* WI
oSt = X

cent{l:¢] = DB [1l:8]

{pfmi7}
st = @

en = 31
sc = 25
W = X

oS = X
cnt = X

PCT/US$5/00735

en = 31
s¢c = 16
Wl = WwWI
08z = OSI
cnt = X

{bfmi2}
st = g8:
“{osr{2:8]+(wz=1))
en = (osr{2:6]+(wr=-1))
[4:3]:"0osz{2:9)
sc = @@
“(osr[2:8]+(wz=-1))
WI = Wr
0Sr = 0OSI
cnt = (oszr[2:8)+
(wz-l)) [5:3]

{bfmi4}

st = @g@:
“{osz[2:8]+(wz-1))

en = =1 mod sz (7)

sc = gg:
“(osr[2:8]+(wz-l))

WI = Wr

oS = X

cat = x

{bfmic}
st = 16
en = 31
sc = 16

W = WI
OBr = OSC
cnt = x

WO 86/00437

cop

FTU - FIELD TRANSLATION UNIT OPERATIONS:

3=

‘l

LDCR

DPSW

CLRFP

LDSH2

{copl])
st = X
en = x
sc = X
WL = X
oST = X
cnt = x

{cop3}
st = x
en = X
sc = x
Wr = X
oS = X

cnt = x

{cops}
st = x
en = X
S§C = X

wr = DB [7:2]

OST = X

cnt[l:8] = DB {[1l:8]

{cop7}
st = x
en = x
sC = X
W = X
oSz = X
cnt = x

35

{cop2}
st = X
en = x
§C = X

PCT/US85/0073s

WI = WX - 1

08T = X
cnt = x

{copd}
st = x
en = X
8¢ = X
VI = X
oS = X
ent = x

{copé6}

st = 16
en = 31
sc = 16
WI = X

0SE = X
cnt = x

loaded based on ird([S5] - if ird[5] = @ then wr
value comes from BC bus else value is loaded

from rege.

load the control register from regb. The

register is selected by the value in
- ar{l:6], this can be gated onto the rx bus.

load the psw with the value in regb. Either

the ccr or the psw is loaded depending upon
size., 1f size = byte then only load the ccr

portion.

clear the f-trace pending latch.
only)

registers from regb. These include

wr,osr,count.

(fpend2

load the contents of the shifter control

WO 86/00437

19~

23-

25~

26~

28-

29~

LDSWB

LDSWI

LDSH1

LDUPC

LDPER

LDARL

BPSWM

RPER

PCT/US85/00735

-36=-

joad the internal bus register from regb.
This is composed of bus contraller state
information which must be accessed by the
user in fault situationms.

load the first word of sswi (internal
status.word) from zegb. This is composed of
tpend, fpendl, fpend2, ar latch

joad the contents of the shifter control
registers from regb. These include
st,en,sc. '

load micro pc into A4 from regb and check
validity of rev #.

load per with the value on the a-bus.
(should be a T3 load). ab>per

load the af latch from regb. May be able to
share with ldswi or 1ldswj

clear the psw master bit.

load output of per into ar latch and onto
bec bus. There are two operations which
use this function, MOVEM and BFFFO. MOVEM
requires the least significant bit of the
jower word (16-bits only) that is a one to
be encoded and latched into the AR latch
and onto the BC BUS (inverted) so that it
can be used to point at a register. If no
bits are one then the end signal should be
active which is routed to the branch pla.
After doing the encoding, the least
significant bit should be cleared.

For BFFFO it is necessary to find the most

‘significant bit of a long word that is a

one. This value is encoded into 6 bits
where the most significant bit is the
32-bit all zero signal. Thus the following
bits would yield the corresponding
encoding.

most sig bit set per out onto bc bus
31 g 11111 1110 9608

16 g 18000 - 1118 1111

8 g 80000 1111 1111

NONE 111111 @900 ©6ade

The output is then gated onto the BC bus
where it is sign extended to an B-bit

WO 86/00437

34-

37~

38-

39~

41-
43-

44-

47~

48

5@~

39 PCT/US85/00735

value. It does not hurt anything in the
BFFFO case to load the other latch (i.e.
BFFFO can load the AR latch).

For BFFFO it does not matter if a bit is
cleared.

STCR store the control register in regb. The
register is selected by the value in
ar{l:8], this can be gated onto the rx bus.

STPSW store the psw or the ccxr in regb based on
size. If size = byte then store ccr only
with bits 8 = 15 as zeros.

BPEND store the psw in regb then set the
supervisor bit and clear the trace bit in
the psw. Tpend and Fpend are cleared. The
whole psw is stored in regb.

1PSWS store the psw in regb then set the
supervisor bit and clear both trace bits in
the psw. The whole psw is stored in regb.

STINST store IRD decoded information onto the BC
bus and into regb. This data can be latched
from the BC bus into other latches (i.e. wr
& osr) by other control.

STIRD store the ird in regb.

STINL store the new interrupt level in pswi and
regb. The three bits are loaded into the
corresponding pswi bits. The same three
bits are loaded onto bc bus [3:1] with bc
bus [31:4] = 1 and [8] = 1, which is loaded
into regb. Clear IPEND the following Tl.

STV# store the format & vector number associated
with the exception in regb. ’
temtemtectectenteetectantectenteatententactantant
| x| X] ForMaT | 8| 8] VECTOR NUMBER |
temtmctectententectectententententectonteatanteat
15 14 13121116 9 8 7 6 S5 4 3 2 1 ¢
STCRC store the contents of the CRC register in

regb. Latch A4 with miczoaddress.
STSH2 store the contents of the shifter control

registers into regb. These include

wr,osz,count. Store high portion of shift
control

STSWE store the internal bus zegister in regb.

L
¥

WO 86700437 PCT/US85/00735

~35-
This is composed of bus controller state
information which must be accessed by the
user in fault situations.

S2-

L]
-
t0n

Wl store sswi (internal status word) in regb.
The sswi is composed of tpend, ar latch,
fpendl, fpend2

54- STSH1 store the contents of the shifter control
zegisters into regb. These include
st,en,sc.

56- STOPC store the micro pc in regb.

tmmtmntecteatecctectoctentententaateatoctontandant
[REV NUHBER;CRCI MICRO PC

fomtmctentcctanctuctnctectententcatontectantontend
15 141312 111¢ 9 8 7 & 5 4 3 2 1 g

62- NONE

63- STPER store the per onto the a-bus. (should be a
Tl transfer). perdab

PC -« PC SECTION OPERATIONS:

AOBP(1]
g 1

31 - 3PFI EV3FI OD3F1
3¢ - 3PEF TPF EV3?I

acbpt>dbr>sas
tp2>ab>sas

l- TPF
aobpt>db>tpl
aobpt>db>aupd>aocbp*,acbpt
+2>aup
tol>ep2
tp2>abdsas

2- PCR
tp2>abda-sect-

(if ry=pc then connect pc and address section)
aobpt>dbi>sas

3- PCRP
acbpt>db>tpl
aobpt>db>aup>acbhp*,aobot
+2>aup
tpl>tp2
tpl>abla-sect

WO 86/00437

19-

11-

12-

13-

15-

39

-

(if ry=pc then connect Pc and address section)

JMP1
tp2>db>a-sect
a-sect>abdaobpt

BOB
aobpt>db>tpl
tpl>tp2
tp2>ab>sas

EV3F1
aobpt>db>tplr
aobpt>db>aup>aobpt
+4>aup
tp2>ab>sas

OD3F1
aobpt>db>aup>aobpt, tp2
+2>aup
tp2>abl>sas

TRAP
tp2>db>a-~-sect
pc>abisas

TRAP2
tp2>ab>a-sect
aobpt>db>sas

JMP2

a-sectd>ab>aobpt
aobpt>dbdsas

pCoUT
pci>ablda-sect
aobpt>dbdsas

NPC Conditional update based on ce=t
tp2>db>aup,a-sect
a-sect>ab>aup>aobpt

LDTP2
a-sect>ab>tp2
aobpt>dbdsas

SAVEl
pad>aobp
aobpt>dbdsas
tp2>ab>sas

SAVE2
aobp>db>tpl
tp2>abrsas

/£

PCT/US85/00735

WO 86/00437

14- FIX -40-
acbpt>db>tpl
tp2>ab>aobpt
tpl>tp2

16~ LDPC
tp2>pe
acbpt>db>sas
tp2>ab>sas

PIPE - PIPE OPERATIONS:

Description of bit encodings.
[6] = use irec
[S] = change of flow
[4] = fetch imstruction

[3:6] = previously defined pipe control

functionality.
a0BP[1]
¢
g113- 30DI EV3Fa
1817 - 3UDF TUD
- EV3Fa
chrl>irb
chrhopb>imh,iml,izec
change of Zlow
fetch instr
- EV3FDb
chri>irdb
chrh>pb>imh,iml,ize
ire>ir :
use pipe
fetch instr
- QD3F

chrid>pbdirc

! implies use izc

PCT/US85/00735

! force miss regardless of whether ocdd or even

change of Ilow
fetch instr

g €6 € - NOD

o

166 € - JPIPE
use pipe

g € 1 1- FIX2 Xlways transfer irb up pipe

WO 86/00437

chr>izb

PCT/US85/00735

Bw
-

to irc,im and if irb needs

izb>pb>imh,iml,izc to be replaced, do access

and transfer chr to irb.

1 force miss regardless of whether odd or even

change of flow,

fetch instr
db>izd

irb>pb>imh,iml,izc

change of flow
fetch instr

2 - IRAD
ira>db

4 - IRTOD
ir>ird

§ = FIX1
chr>izrb

else load irb from d-bus.

if irc needs to be replaced,
do access and transfer chr
to irb, else no activity.

1 force miss regardless of whether odd or even

change of flow
fetch instr

6 - 270C
irxrc2>irc
ire>ir
use pipe

8 - CLRA
clear irc2[l4]
ira>adb

9 - STIRA
db>>ira
ira>pb>ire2

11 - ATOC
db>>ira
ira>pblirc

13 - LUD
chr>irb
irb>pb>imh,iml
fetch instr

14 - CTOD
irc>:ur,izd
irb>rzxc
use pipe

15 - 70D

zxtd 8 -> 32

WO 86/00437
42 PCT/US85/00735

chr>irb ,
i:b)pb)imh,iml,i:c
ircoiz

use pipe

£etch instr

g 1115 - TOAD
chr>ird
irb>pb>imh,iml,izc
irc>ix '
change of flow
fetch inst:

WO 86/00437

-43-
MICROINSTRUCTION SEQUENCES

CALLM EA

A2

tocatemvcvcwcacnee tomwew L L L tmmmaw +

|FAS| CHDE1 | 36e | | B |

tenctetrmccctentomatetencctennccccntccnaad

| x|DATA| DT| RY| . |

Y e S toerwoaa tomwn - e 2
n"pT e NEW pc" ' ADD

AOB>DB>AU>AQB NIL

4>A0 X

"STORE EVAL EA"™ X

AOB>DB>>REGA SBM2

"STORE MMU DESCRIPTOR ADDRESS" NONE

REGB>AB>AT,DT NF

"ST=24 ,EN=31,S8C=24" NUD}

"CLEAR BAD IRB"

AOB>DB>IRB 3/31
T tmm——— tomm———— -—— +
|FB5| CMDB2 | 36f | | pB
B e T e e . =
| LONG]DATAI RX| RY| <> T8¢ UNK |
R s 2 tm—— -+ + +

"READ NEW PC" ADD

"PT @ MDP" AND

AOB>DR>AU>AOB X

4>A0 X

"PEST TYPE" X

DBIN>DB>>IRA,REGB : NONE

"BUILD ¢ IN REGA" : NF

g>ALU>REGA UATOC

"STORE DESC. ADDR"

REGA>AB>AUT 2/25
tmontewnmnm———- tommm— trmmcmcccm————-) +
|FC5| CMDE3 | 3c80 | | BC |
tecwtetmmnctmntocatetennat + -4
| LONG]DATA] SP| RY] <> T8 UNK |
tercvecctecvcetaccc e e g tomom—- +

”READ MDP' : SUB

"STORE NEW PC" NIL

DBIN>AB>AOBPT X

"PT @ STACK SP" INS

SP>DB>AU>AOB p 4

4>AU0 NONE

"BUILD TYPE:@:@:8" JMP2

$ REGB>DB>SAD NUD

12/16
t - - > - - - + -
FD5 TYPEG"OPTO -> CMD#S (FFS)

TYPES"OPT4 ~> CMDB4 (FES)
TYPEl -> CMD13 (FES6)
ILLEGALFORMAT -> XFEA (FE4)

PCT/US85/00735

Wo 86/00437 4y

tPmcatoaamaeese= toceme P - - s - roa— -~
|FES| CMD@4 | 63£f | | pB |
$ocetmtmmeatenteantatncnctan e
‘ LONG]INST‘[SP] RYI <W> T8 |
————————————————————————————— tPmame=t
—"WRITE STACK OLD SP" X
SP>AB>>DOB NIL

$ AUT>DBO>SA X

X

X

NONE

NF

NUD

11/0
+ + : + -t ceceee-- tommmwd
|FFS| cMDE5 | 49f | | 0B |
tecntatconatentacatat e e +
| BYTE]DATA] s1>| RY[‘
bommmmtmmmetenmcen bt c et e ———— e +
*pT @ STACK OLD PC“ SUB
SP>DB>AU>ACB,SP NIL
gC>A0 X
"STORE OLD PC" ' X
TP2>AB>AT X
"STORE PSW" STPSW

$ REGADAB>SAD TRAP2

$ REGB>DB>SAD NUD
11/8

tommtommm———- tom——- S B
|FG5] CMDE6 | 3cl | DB |
fomoteteemctontonntetennntenccec et en——— +
| LONG]DATA] 5P| RY] <> T8 |
S Dt Y + -+
“WRITE STACK OLD PC" SUB
AT>AB>>DOB NIL
"pr @ STACK DESCRIPTOR" X
AOB>DB>AU>AOB,SP : X
4>20 X

$ REGB>DB>SAD NONE
TPF

TOAD

11/9

s + + O +

PCT/US85/00735

w

WO 86/00437

bPrcectevvwanae- tecan= teccvcvccvccane L L e +
|FHS| CMDE7 | 3e2 | | oB |
toecemteteenctentncntotccnntecnccncetoanead
| LONGIINST] RX] R!] <W> T8 |
e et T LT +
”WRITE STACK DESCRIPTOR' ADD
AUT>AB>>DOB NIL
“pT @ STACK MDP" X
AOB>DB>AU>AOB X
8>AU X

$ REGB>DB>SAD NONE
TPF

TUD

11/9

bommtemmn e ——— e T - S 3
|F15| cMD@8 | 3e3 | | oB |
toemtetonamctentocntetcnceten + -+
| x]mm] RZ| RY] SPC X SYNC |
S S N — L TP g
”STORE OLD MDP" x
RZ>AB>>DOB NIL
"LOAD NEW MDP" X
DBIN>DB>RZ X
"SYNC TO ENSURE NO STACK" X
"ON MDP" NONE
NF

NUD

11/8

+ + fomme- + - P 4
|FJ5| CMD29 | 3c8 | | DB |
tocmtetmmantentenatat + -+ +
| LONG]IRSTl sp| RY| <w> T8 |
S T - + B
'WRITE STACK 0] -0 - SUB
"pPT @ STACK ARG CNT" NIL
AOB>DB>AU>AOB,SP X
gC>Aun Xt

$ REGADAB>SA X

$ REGB>DB>SAD NONE

' TPF

TUD

11/¢

+ + - T S TP +

PCT/US85/06735

WO 86/00437

4 6=
Poretemmcncccct e e et e e e ccccee et m————t
|FKS| CD18 | 3¢9 | | bB |
tecectetemmntentenn it e et crcccccetcmcaad
| s'zmz]na 1 RX | RZ| . |
tervactanew - e —mewetoeaned

”BUILD ‘.PLSOPLSE:ARG cyt” £
PER>AB>ALUDREGA AND
-1>AL0 : X
REGA>DB>FOQLIT £
$ ATO>DB>SaA X
STPER
T8F
TUD
: 11/8
+ + - et D FPoecwe +
|FLS| C€¥D11 | 3ca | | 0B |
R e e T T + -+
| WORD|DATA| sp| RY| <W> T8 |
et ST TS DTS TR cetmmanat
"WRITE @:ARG CNT" ’ SUB
REGA>DB>>DOB AND
"BUILD TYPE:8:CCR/TYPE: OPL PSW*® X
REGB>AB>ALU>ALUT X
REGADDB>FOOLIT X
-1>ALT NONE
"PT € STACK TYPE:OPL:J:CCR" NF
AOB>DB>AU>A0B,S? NTD
4>A0
¥ AUT>AB>SaA 11/8
e + -—— + +
|FMS| CMD12 | 3cb | | a1 |
R e s s T e S ——tmm——— +
| LONG|INST] RX|" RY| <w> T8 |
et S -— tmam + +
"WRITE TYPE:OPL:PSW" X
ALUT>DB>>DOB NIL
% ATODB>SAA X
$ AUT>AB>SA
coLl
STINS
NT
NUD
11/9

PCT/US85/00735

WO 86/00437

INVALID FORMAT (CHD@3) 4
tometemm—n- I S SR
|FE4| XFEA | 49e | | oB |
tometetercenteatecctetmcovtonccencatewanad
| X|INST| RX| RY| EXL X FORE |
Prmm—- B s Bttt ot -t = tewaaed

"STORE REAL PC" X
PC>AB>AUT NIL

" PSW>REGB, 1>PSWS ,8>PSWT" X
"g>TPEND" X

% ATODB>SA X

% REGA>AB>SAD 8PEND
PCOUT

NUD

tommetmm e ——— ¥ SS— N § S——
|FF4| XFEA2 | 364 | | DB |
tumetetwemnatecateccetatmacetews + 4o
| X|INST| RX| RY| . |
jocmcntencntem————t -+ + +
"CORRECT REAL PC" SUB
AUT>DB>AU>AUT NIL
2>A0 X

% REGADAB>SA X

§ REGB>DB>SAD X
NONE

NF

NUD

12/20

- - o e o e S +

FG4 TRAP2 (1J5)

TYPE = 1 (CMDE3)

FR— + formmcnmcccc——— T S +
|FE6| cMD13 | 79f | DB |
T T L B R S - oo +
| IRSZ|DATA| RX| RY| . (
S S temmm b ——— + -+ + -+

npT @ DESC. NPL" ADD
AUT>DB>AU>AOB coL2
1>AU X
"PEST ARG CNT" X
PER>AB>ALUT X
"PORM STACK PROBE" STPER
PER>AB> ALU>REGB NF!
-1>AL0 NUD |
REGA>DB>FOOLIT :

12/16|

R L e tm——— femmrnccacwea- tomw—— <+

PCT/USS$5/00735

WO 86/00437

4g PCT/US85/00735

|FF6| Cpl4 | 431 | IoBe
+---+-b----+--+---—-+-------------~-----~
| IRsz|INsT| sp! oTY! <> T3 UMK |
+-¢¢-¢+--~—+~—--¢—+-——n--6---- _____ P —— -
®READ DESC. NPL™ X
"STORE NEW MDP" AND
DBIN>AB>ALUT X
"BUILD MMU BASE ADDRESS" X
g>ALU>DTY SBM2
AT>DB>FOOLIT NONE
"STORE STACX PTR" NF
SP>AB>>ACB NUD
1/11
- + -—

FG6 LOCZ -> CMD18 (FHS6)

LOCZ =-> CMD15 (FH7)

ARG CNT <> @ - MARE STACK PROBE (CMD14)

Pt P + - o o e o o
|FH7| cMpl5 | s51]BPMEB (ERS)| DB |
et s b o o b o 0 0 0.0 o o e m Fomwm—t
| WORD|DATA| RX| RY] |
fo o o o - -co+--——----+-----+
"pT @ STACK PROBE® ADDXS
AOB>AB>AU>ACB NIL
REGB>DB>AU X
$ REGADABYSAD X
| X
NONE
NF
NUD
1/11
bmm—be + + +- +
|F17] cxDl6 | 4a7 | | o8 |
bomatod bomtmmatet + - + +
IRSZ]DATA] DT| RY| < T9 |
Pomm—m—t + + R — +
"MAKE STACK PROEE" | X
"PT @ MMU CPL" NIL
DT>DB>A0B X
WSTORE NPL" X
DBINDAB>>REGE X
$ AUT>AB>SAA NONE
NF
NUD
12/186
R tomm——t - A

e

WO 86/00437
PCT/US85/00735

-49-
P R D Ea e T L EL R R L e b - +
|F37| D17 | 52e |CMD37 (Ts®)| DB |
B S N e P L DR D D] ettt
| 1zsz|pata| Re| | © 75 caul |
LA T L L - - om - - - P - - - Powomm- +
"READ HMD CPLY X
"pT @ MMU DEsSC" NIL
AT>DBS>>A038 X
$ AUTD>ABO>SA X
¥ REGB>DB>SAD X
NONE
NF
NUD
1/11
s o s e o > O W WP o @ @n o tmwm~- +

FX7 CMD29 (FJ6)

ARG CNT = § - NO STACK PROBE (CYDI4)

teemtemcn oo Pomma- LT T BT Ll et el bl +
|FH6| cMD18 | 556 |FERIL (AFZ)] DB |
bmemtetwcnatwctenntetecectrccccccetemea-d
| x|pamal mx| pTY| . 1
+ -+ ehowmmmcatemmm—ef aa———-——— bm———— +
"DPT @ MMU CPL" : X
DTY>DB>>A0B NIL

$ REGA>AB>SA X

X

X

NONE

NE

NUD

1/11
LD B Ll Poemwm- ST St Sl Pmmmm- +
|F16| cMDl9 | 483 | | DB |
trmmtetecnnteatecntetreccctacancnes bomm—— +
| IRszinATA] Rx; 321 ¢ m crul |
terncetrmcatmeccncctevecsstevccccc=- Fomaw-
"READ MO CPL7 x|
"PT @ MMU DESCRIPTOR" NIL
AT>DB>ACB X
"STORE NPL™ P
DBIN>DB>>REGE X

3 AUT>AB>SA NONE
NE

NUD

12/16

ot acnccccee Fmawne +

WO 86/00437
PCT/US85/00735

-50-
+---+- - - cotomace e -t +

(F36| crp28 | 489 | | | B |

| LONG|DATA| ~ DT| RY| <W> T0 CPUl |
fo———— R P R + +
'®wRITE DESCRIPTOR ADDRESS" ADD
AUT>AB>>DOB ' NIL
npr @ MMU IPL" X
DT>DB>AU>AQB X
§>AU X
' NONE
NF
NOD
12/16
towetemm—m———— o fommmmen— cmemmteem——t
| FRE | cMD2l | 48b | | DB |
U S P B ———+ +
| IRSZ|DATA| RX| RY| <> T8 CPUL
S S SRR S i L + +
"WRITE NPL TO IPL" SUB
REGB>DB>>DOB NIL
npp @ MMU STATUS" X
AOB>DE>AU>AQB Xl
4>A0 X
$ AUT>AB>SA NONE
NE
NUD
12/16
fomet - bommm— e ————— o +
|FL6| cMD22 | 484 | | bB |
bommtebommntecteentetomemten fomm—— +
IRSZ|INST| sp| DTY| <> T¢ CPUL |
fmmmmmt + fommmn— $= FS—
"pEAD MMU STATUS" X
"BUILD TYPE:CPL:8:¢€" NIL
DBIN>DB>>REGB .. ’ X
"SEUFFLE NEW MDP" INS
ALUT>AB>DTY ' X
"STORE OLD SP" NONE
SP>DRB>AT NF
£ AUT>AB>SAA NUD
12/18

+ne-+ + + -----

+

-+

WO 86/00437

(8]
—t

|EM6| CMD23 | 4al | [DB |
| deccteteccctentmcctetecnctonas + +
| IRSZ|INST| RX| RY| . |
tecemetencntecncnctccnncctoncccenctennnadt
"STORE MMU STATUS" X
DBIN>DB>REGC NIL
DBIN>DB>ALUT X
"SHUFFLE ARG CNT" X
PER>AB>>REGB : SBMS
STPER

NF

NUD

12/16
S S — % S + S S, +
FN6| CMD24 | 4a3 | . | BC |
tecwtetmenetentecnatetecwctcvcncacnctecce=td
| IRSZ]DATA[sp| er |
temmmmtem——t e ——— e YR L +
npe e STACK Ssp" SUB
SP>DB>AUDAOB NIL
4>AU X
"STORE OLD SP" X
AT>AB>>DOB X
"STORE ARG CNT" STPSW
REGB>DB>>IRA NF
"G:CCR IN REGB" STIRA
12/21
trmrrm e c e c e e c——————— -4- +
FO6 WR<>8 -> CMD26 (FP6)

WR=G“CNT<>8 -> CMD27 (FP5)
WR=8"CNT=¢ -> XFEA (FE4)

VALID - SP CHANGE (CMD24)

tmm—dt - te - e = e Fmm——— +
|FP6| CMD26 | 59f | | BC |
trmmtetemnntentenctetencrteccccccctccnaad
| LONG!INST] RX| RY] <> T3 UNK |
tommm et e——— et mcceteccccnaa to———— +
"READ NEW sp" ADD
AUT>DB>AU>AOB NIL
8C>au X
"STORE DESCRIPTOR ADDRESS" X
AUT>DB>ALUT X

t REGA>AB>SA NONE
NF

NUD

12/16
+ -~— - e s cscee— e o—-—— tewnm- +
FQ6 OPT4 -> CMD28 (FRS)

OPTE -> CMD3¢ (FRE)

PCT/US85/00735

WO 86/00437

' ~52-
VALID - NO SP CHANGE (CMD24)
tometmmmm e ——— + + ctmemmnt
|Fps| cMp27 | S%e | | oB |
temetotemmntentocntatacacdt —etomeet
| LONG|DATA| Sp| DTY| <W> T@ |
S it B e toeem- +
"WRITE STACK SP" SUB
"pT @ STACK OLD PC" NIL
AOB>DB>AU>ACB,SP X
8>AU0 ' X
"STORE OLD PC™ X
TP2>AB>AT NOKRE
*pPOSITION NEW MDP" TRAP2
DTY>AB>DBIN NUD
$ REGB>DE>SAD
$=e -- : +
FQ5 CMDE6 (FGS)
NO STACK COPY (CMD26,CHD28)
S + : + +
|FRS| cMp23 | 69¢ | | 0B |
tometmbmmmmtontmentetecnct e e e et e
| X |DATA| x| RY] .]
- + + -+ s ST +
"pT € STACK SP" SUB
DBIN>DB>AU>A0B NIL
4>RU X
$ AUT>AB>SA X
X
NONE
NF
NUD
o o e o - b o i o +

FS5S CHMD27 (FP5)

PCT/US85/00735

WO 86/00437

PCT/US85/00735
STACK COPY (CMD2§) >3
frcntonacccncew toecna brovvaccccvaas whwmome +
|FR6| cép38 | 49¢ | | B |
temeteteccvtevtencteteansteaccena L TP +
| X|INST| SP| RY| . |
Pomwe- b P L tocmowmw- tewom +
"STORE OLD §p" X
SP>AB>>A0B,REGB NIL
SP>AB>AUT X
"SHUFFLE ARG CNT" X
IRADDB>REGC SBMS
NONE
NE
IRAD
1/85
ot rcneccame. L LT PR P w - - v] b - - +
|Fs6| cMp31 | 4a5 | | BC
tecetetennctectenatat + 4= +
| X|DATA| SP| RY| . |
..... b - $ L ik £ T L PR R
"PT € TOP OF NEW STACK" SUB
DBIN>DB>AUDAT,SP ~ NIL
IRADABDAU X
"IRA ZXTD 8->32" X
SBM6
NONE
NF
CLRA
1/85
Prmeccncccwooeane - o - o 2 0 s o o s an L L PN +
FT6 WR<>8 -> CMD35 (FS7)
WR=G“CNT<>E -> CMD37 (Fs8)
WR=@“CNT=8 -> CMD39 (Fs9)
TYPE 1 - COPY LONG (CMD31,CMD36)
tomet - - +- + - - e o +
|FS7| CMD35 | 529 | 4-WAY SHARE | pB |
tommtmtemcctnntannt et ccc bt ccmce e b e ———t
| LONG|DATA| RX | RY| <> 78 |
+ -+ - +w -+ + +
"READ OLD STACK" ADD
"PT & NEW STACK" NIL
AT>DB>>A0B X
"PT € NEXT NEW STACK ENTRY" X
AT>DB>AUDAT X
4>20 NONE
$ REGADAB>SA NF
$ REGB>DB>SAD : NUD
1/85
tocndene- —-—— + -t -

,
B
2 .

WO 86/00437

S . ¥ S +----------E%-+-----+
|FT7| cMD36 | 4a9 | | BC |
$emctetccnctectecetetecosteccccncatecccat
| LONG{DATA] Rx| RY] <W> TO 1
tomenmctemmntcccncetemnncatcnmnecas F S +
"WRITE TO NEW SP" | ADD
DBIN>DB>>DOB NIL
*PT @ NEXT OLD STACK ENTRY" X
AUT>DB>AU>AOB,AUT X
4>A0 | SBM6

% ATOABY>SA NONE
NF

NUD

1/65
+- -— - -—— et +
FU7 WR<>@ -> CMD35 (FS7)

WR=G"CNT<>@ -> CMD37 (FS8)
WR=B“CNT=8 -> CMD39 (Fs9)

TYPE 1 - COPY LAST PIECE (CMD31,CMD36)

T R + - et o———
FS8| CMD37 | 528 | 4-WAY SHARE | DB |
$ommtectmcnetontomatatecnntccacancetecne—t
| SSTZE|DATA| RX | RY} <> T8 '
‘= + += wtommnmatmeccccee s T LT +
"READ OLD STACK" X
"PT @ LAST NEW STACK™ NIL
AT>DB>>A0B X
% AUT>AB>SA . X
$ REGB>DB>SAD X

NONE

NF

NUD

1/85
tommt += Y > S +
|FT8| CMD38 | 4£6 | 2-WAY SHARE | DB |
F U S SN S SR D LT SRR S——
|SSIZE|INST| RX| RY| <W> T¢ |
teemm—t T P " +
"WRITE NEW STACK™ X
DBIN>DB>>DOB NIL

$ AT>DB>SAA X

$ AUT>AB>SA X

X

NONE

NF

NUD

1/85

& om0 90 o e 2 . [S +

FU8 CMD39 (Fs9)

£ S

_ PCT/US85/00735

WO 86/00437

35
TYPE 1 - NCNE LETT TO COPY (CMD31,C
beontmmcacaa—- tmmma S bommmmd
|F59| CMD33 | 428 | 4-WAY SHARE | DB |
9-——+-‘—--—'P--+-—-‘-+----*-¢---——~‘ ————— -
| xjist| mx| vom] . |
trmacweten- - oo ctrrrccctrncccaw —tmmamw- +
"PT @ TOP OF OLD STACK" X
$ ALUT>DBOAT NIL
¥ AUT>AB>VDTI p<
X
- X
NONE
NF
’ NUD
1/85
fomwt + - +
FT9| CMD4G | 4bS | DB |
Pometwtmamwtontrcetetcncctaae +
| BYTE|paTa| sp| Ry . |
Rt L L R + + ——p
"PT € STACK SP" SUB
SP>DB>AU>DAQB NIL
4>A0 X
"SHUFFLE DESCRIPTOR ADDRESS" X
ALUT>AB>ADT X
"STORE OLD SP" STPSW
REGB>DE>DOB NF
NUD
1/18
T o e e o o s e o - e e e o a0 o e e > twmaw-- +
FU9 CMD27 (FPL)
T RY
Al
+ -+ foemwm— + -t -
|Fag| RTMOL | 4aa | | 3 |
+ - LTS LT + - tommmwad
{ LONG|INST| 5P| pTY| © 71 |
tomrcetecnrtencncntec s et mr————— D *+
"READ TYPE:CPL:PSW" X
SP>DB>>A0B NI1L
"STORE DESCRIPTOR ALDRESS" X
REGB>DB>DTY X
"ST=24,EN=31,5C=24" SBM2
$ AUT>AB>SA NONE
NF
NUD
3/31
+ - P ———— + +

PCT/US85/00735

WO 86/00437

37
oy

PCT/US85/96735

B e '

|FB8| RTME2 | 4ab | | oB |

bommtetommmtoctometetemcctemnecceetonment

| BYTE|DATA| DT| RY| .

S-S S A tom——— B tememet
"pT @ STACK ARG CNT" ADD
AOB>DB>AU>AOB AND
4>A0 X
“FORM MMU BASE ADDRESS" X
g>ALU>DT X
REGB>DB>FOOLIT NONE
% AUT>AB>SA NF

NUD

+ + ——— tomm— - +

|Fce| rRTME3 | 4ad | | DB |

bometetementaatecntetennadt + +

| WORD|DATA| RX| RY| <> TO |

B S S jommm—— tommm———— O +
"READ STACK ARG CNT" ADD
"pT @ STACK PC" NIL
AOB>DB>AU>AOB X
8>A0 ZXTD
"STORE TYPE:OPL:PSW" SBM2
DBIN>DB>>REGA NONE
ngT=16,EN=23,5C=16" NF
$ AUT>AB>SA NUD

12/64
fomefommmmem— et e m et ———— - + -
|FD8| RTMB4 | 4ae | | B |

S S e — P | + +

| LONG|DATA| RX | RY| <> T8 |

tom——— Y S A . + +
"READ STACK PC" ADD
"PT € STACK MDP" NIL
AOB>DB>AU>AOB X
4>a0 ZXTD
"STORE ARG CNT" X
DBIN>AB>AT NONE
"LOAD TYPE FOR BRANCH" NE
REGB>DB>>IRA UATOC

2/25

tematecnnceaee Fom——- From e - - teco—- +

WO 86/00437

57

{anl RTMES | daf | | BC |
$ometetencctectecntetecnctemcncccctocanad
| LONG[DATA[Rxl RY] O T8 |
A S S—
"READ STACK xop' ADD
"pPT @ STACK SP" NIL
AOB>DB>AUDAOB X
4>AU X
"STORE NEW PC" x|
DBIN>AB>AOBPT NONE
"SHUFFLE OPL" JMP2
REGB>DB>>DOB NUD
12/21
o o e 0 e > e PR p—— JEp—— +
FF$8 TYPEG -> RTM@6 (FGS)

TYPEl -> RTMO9 (FG9)
ILLEGALFORMAT -> XFEB (FE7)

TYPE § (RTMOS)
VALID TYPE 1 (RTM13)
S S . E Tr—— E P — R S——"
|FG8| RTME6 | 48f | | DB |
tocetotonantectonntatennntenenenneteneead
| BYTB‘INSTI Rx| RY| .]
tomcmmtmm b ————— fmmmmmmt ———tom——— +
"pT e sp APTER STRIP" ADD
AOB>DB>AU>AOB NIL
4>AU X
"RESTORE MDP REG" X
DBIN>AB>RY X
"STORE NEW PSW" LDPSW
REGA>DB>>REGB NF
NUD
formetomccec——- + R Y ket b Fom——— +

gu-”

PCT/US85/00735

WO 86/00437 .

38
temcteenmecentneannetccsneccsneccetecneed
|FH8| RTMET | 62a |JMPL (ES2)| DB |
tometetocantentonctetecvatecconccntecccend
| X|INST| SP| RY| . |
beacnmcctecmneterennetenreestecnnane cotocaned

»pr @ FINAL STACK VALUE" ADDX6
AOB>ABDAUD>SP NIL
AT>DBR>AU X
$ REGA>DAB>SAD X
$ REGB>DB>SAD X
NONE
3PF1
30D1
1/88
+ —-— - et e Pl S S
FI8 DBCCS (EUT) B
TYPE = 1 (RTMES)
bocotommcmwen=t b= + +
|FGS| RTMES | 78f | | DB
D o=t +md + +
| LONG|DATA| DT| RY| <> T8]
+ + -+ T fommmemo= bmmwmad
"READ STACK SP" ADD
“ET @ MMU DPL" NIL
DT>DB>AU>AOB X
GCOAU X
"STORE NEW MDP" X
DRIN>ABD> >REGB NONE
$ AUT>AB>S2A NF
NUD-
o o oe e o o e o toemmmc—can—e——— tmwmen— +
|FES| RTM18 | 4bl | | DB |
+ te-st T $e-t -t o—— +- +
| BYTE|DATA| DT| RY| <W> T¢ CPUL |
+ - S S tormme——- tmemmme +
"WRITE OLP TO DPL" SUB
"STORE NEW SP" , NIL
DBIN>AB>DT X
"pT @ MMU STATUS® X
AOB>DE>AUDAOB X
83AU NONE
$ AUT>AS>SAA NF
¥ REZGE>DB>SAD NUD
T T T T

PCT/US85/00735

WO 86/00437

58

|[FI19] RTM11 | 4b2 | | DB |
tecntetcccctectnertotoccetecccracctecnnat
| BYTE]INST] RX[RY] <> T8 CPUL |
----- -t tovcvcanctcccnecccteccan=d
'READ sTaTus® X

$ AT>DB>SA NIL

$ AUT>AB>SA X

X

X

NONE

NF

NUD
R TR A fom——— e DL toweaa +
|FI9] RTM1I2 | 4b3 | | oB |
tememteteraententecntetencctrcocccccteaansd
| BYTE]INST| RX| RY| . |
--------------- e 1 --------+-----+
“TEST STATUS" X
DEBIN>DB>ALUT NIL

$ AT>DB>SAA X

$ AUT>AB>SA X

X

NONE

NF

NUD
mwmatmm—an———— - e L T +
|FK9| RTM13 | 4b4 | BC |
L T e e Mt Rt R K artandt e - +
] X|INST| DT| RY[|
+ + + temcmmeteccnne. —tmmm—- +
"PT € STACK SP" SUB
DT>DB>AUDAQOB NIL
4>A0 X
"SHUFFLE NEW MDP" X
REGB>2AB>DBIN Xt

$ AUT>OAB>SAA NONE
NF

NUD

12/21
D . — T Y- pp—— temmm- +
FL9 LOCZ -> XFEB (FET)

LOCZ => RTME6 (FG8)

PCT/US85/00735

WO 86/00437

-60-
INVALID TYPE (RTME5)
INVALID STATUS (RTM13)
O SR RR——_
|FE7| XFEB | 48e | i pB |

| x|INsT| RX| RY| EXL X FORE |
tommm= i -t -—- L L - L DL g
“BACK UP PC" SUB
TP2>DB>AU>AUT NIL
2>AU0 - X
"pSW>REGE,1>PSWS,8>PSWT" X
*g>TPEND" X
§ AUT>AB>SA gPEND
¢ REGB>DB>SAD TRAP
NUD
12/21
oo - + -

FE7 TRAP2Z (135)

PCT/US85/00735

WO 86
/00437 PCT/US85/00735

-61-

Claims
1. A data processor adapted to cooperate with an access
controller to control access to a module stored in a storage
device, the data processor comprising:
first means for receiving an instruction which requests
access to said module, said instruction specifying an
address within said storage device containing an
access request;
second means for retrieving said access request from said
storage device;
third means for providing said access request to said
access controller;
fourth means for allowing said reguested access to said
module unless said access request is denied by said
access controller.

2. The data processor of claim 1 further comprising:
fifth means for vectoring to an exception handler if said
access request is denied by said access controller.

3. The data processor of claim 1 wherein the module'specified
by said instruction is a code module, said instruction also
specifing a selected number of arguments to be passed to said
code module, and wherein said fourth means passes said

arguments to said code module before allowing said requested
access.

4. The data processor of claim 1 wherein said fourth means
comprise:
fifth means for receiving a decision from said access
controller to said access request; and
sixth means for allowing said requested access to said
module in response to an affirmative decision from
said access controller, and denying said requested
access to said module in response to a negative
decision from said access controller.

w
0 86/00437 PCT/US85/00735

-5 2=

5. The data processor of claim 4 further comprising:
seventh means for vectoring to an exception handler if
said access request is denied by said access
controller.

6. In a data processor adapted to cooperate with an access
controller to control access to a module stored in a storage
device, a method comprising the steps of:
receiving an instruction which requests access to said
module, said instruction specifying an address within
said storage device containing an access request;
retrieving said access request from said storage device;
providing said access request to said access controller;
allowing said requested access to said module unless said
access request is denied by said access controller.

7. In the data processor of claim 6, the method comprising the
further step of:
vectoring to an exception handler if said access request
is denied by said access controller.

8. In the data processor of claim 6 wherein the module
specified by said instruction is a code module, said
instruction also specifing a selected number of arguments to
be passed to said code module, the step of allowing said
access further comprising passing said arguments to said code
module before allowing said requested access.

9. In the data processor of claim 6, the step of allowing said
access comprising the steps of:
receiving a decision from said access controller to said
access request; and
allowing said requested access to said module in response
to an affirmative decision from said access
controller, and denying said :equestéd access to said
module in response to a negative decision from said
access controller.

WO 86/00437 PCT/US85/00735

-63-

18. In the data processor of claim 9, the method comprising
the further step of:
vectoring to an exception handler if said access request
is denied by said access controller.

11. In a data processor adapted to cooperate with an access
controller to contrel access to a module stored in a storage
device, a method comprising the steps of:
receiving an instruction which requests access to said
module, said instruction specifying an address within
said storage device containing an access request;
retrieving said access request from said storage device;
providing said access request to said access controller;
receiving a decision from said access controller to said
access request; and
allowing access to said module in response to an
affirmative decision from said access controller, and
denying access to said module in response to a
negative decision from said access controller.

WO 86/00437

ADDR
FC

BERR

HALT

VIRTUAL MEMORY DATA PROCESSOR
o
>

—
N

TIMER

WATCHDOG

PCT/US85/00735

30
20

CNTL| LCNTL
.

MMU
MODIFIER

18

DATA

PBUS

DATA

PCNTL

MASS
STORAGE

INTERFACE

- MEMORY

N
s}

MASS
STORAGE

¢

PCT/US85/00735

WC 86/00437

.

Sy344n8 _ sy344ng _
viva 1INN NOILLND3X3 Ssauaav |
ﬁ J | [Q.V\ ﬂ 0s _
z¢ 1(viva anv mon) 1INN (H9IH) yaavl
JOMINOD NOILVISNVL T0NINOD 0L _
NETTSRELY anald | ¥3isioay
11 s | 08 oz |1 <
10NINOD TOUINOD -

mv . [¥S _ W _) d. A
| I ‘ 11 ‘ og
sng qul S a023a | NOLLONYLISNI

() 8 ,u HOLYT N1V
’ SS34AQY OYJIN
HOLV1 1NdALNO WON ONVN f¢ ;
WOM ONVN 2
k.« - *
= $9 , -
=] ‘_ HOLY1 SS33aav O¥DIN
m ¥ 9¢
| fa |
gs] 3 WOY O¥DIN —
- HO1V 1NdL1NO NOY 0MIOIN NOLLONNA
{ A

g

SHOLIVYIN3O

J
9y 09
_ U3 T108LNOD 21901
sng NOLLd30X3 |

T T

A0010

ot
TOHINOD
1dNYYIINI |

e
JOVIMIINI
0089 ‘

INTERNATIONAL SEARCH REPORT
International Application No PCT/US85/00735

f. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3
According to International Patent Classification (IPC) or to both Nationai Classification and IPC 3

INT. CL. G O06F 9/00, G O06F 9/46
U.S. CL. 364/200

il. FIELDS SEARCHED

Minimum Documentation Searched ¢
Classification System | Classification Symbols

] 364/200MS File
l

US 364/900 MS File

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are included in the Fields Searched &

lll. DOCUMENTS CONSIDERED TO BE RELEVANT 14

Category * l Citation of Document, 16 with indication, where apgropriate, of the relevant passages .17 Relevant to Claim No. 18
Y US, 4,434,464 28 February 1984 1-11
Suzuki et al
Y Us, 4,104,721 1 August 1978 1,3-5,7-9,
’ Markstein et al 11-13,15-17§19

A Us, 4,442,484 10 April 1984
Childs, Jr. et al

A Us, 4,366,537 28 December 1982
Heller et al -

A Us, 4,177,510 4 December 1979,
Appell et al

AP

US, 4,488,228 11 December 1984
Crudele et al

Y | US, 4,183,085 8 January 1980 1-11
Roberts et al

* i i i 118 “T" later document published after the international filing date
Special categorxes. of cited documents S or priority date gnd not in conflict with the application but
*A" document defining the genaeral state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention
“E" earlier document but published on or after the international “X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
“L" document which may throw doubts on priority claim(s) or invoive an inventive step
which is cited to establish the publication date of another “y» document of particular relevance; the claimed invention
citation or other speciai reason (as specified) cannot be considered to involve an inventiveh step wri:edn the
“o" i isclosure, , exhibition or document is combined with one or more other such docu-
° g?::rmrgg;;:ferrmg to an oral disclosure, use, exhib ments, such combination being obvious to a person skilled
. R in the art,
“P" document published prior to the international filing date but ! .
later than tphe prioritypdata claimed 9 “&" document member of the same patent family
IV, CERTIFICATION
Date of the Actual Completion of the International Search 2 Date of Mailing of this International Search Report 2

6 JUNE 1985 26 JUN 198~ 7

-~

T
International Searching Authority 1 | Signatura of Author@m C
ISA/US > SN _
Form PCT/ISA/210 (second sheet) (October 1981) [\Q

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

