实用新型专利说明书

申请日：2001.3.14
授权日：2002.1.9
申请人：中国矿业大学
地址：221008 江苏省徐州中国矿业大学
发明人：葛世荣 张德坤 张世根
刘金龙 李银根 王正友

权利要求书 1 页 说明书 3 页 附图页数 2 页

摘要

一种提升机盘式制动机可靠性液压装置

一种提升机盘式制动机可靠性液压装置，适用于矿山运输提升机械的控制。它包括油箱、电动机、油泵和油压表，采用由精滤器和电液比例溢流阀组成的制动压力调整装置，通过集成块连接制动器的通路管 A 和 B，联通管分别设有双回路安全制动器和具有液压保护功能的电接点压力表，并设有监视功能的非接触式传感器，电控部分利用可程序化控制的可编程控制器（PLC）实现了液压控制调整功能，系统可靠度高，液压装置的性能稳定，其结构紧凑、合理，具有广泛的实用性。
1. 一种提升机盘式制动器可靠性液压装置，它包括内装液压油（15）并设有油
标视窗（14）的油箱（7），油箱出口处设有粗滤油器（3），油箱相连的管路（17）
上设有两套由电动机（1），油泵（2），粗滤油器（3）和油压表（8）组成的动力源
和备用动力源，其特征在于：动力源和备用动力源的管路（21）（23）上设置有由精
滤油器（5）和电液比例溢流阀（4）组成的制动压力调整装置，管路（19）（20）（22）
与集成块（25）相通，管路（20）连通蓄能器（13），集成块（25）联接制动器的A
管、B管，A管、B管分别设有双回路安全制动器和具有残压保护功能的电接点压力
表（10），A管还连有能够切换、调整与稳定一级制动压力的保持器，每个电磁阀均
设有监测功能的非接触式传感器（26），整个电控部份利用可程序化控制的可编程控
制器（PLC）。

2. 根据权利要求1所述的提升机盘式制动器可靠性液压装置，其特征在于：所
述的集成块（25）由动力油转换的液压阀（6）和多个二位二通电磁阀组成。

3. 根据权利要求1或2所述的提升机盘式制动器可靠性液压装置，其特征在于：
所述的集成块（25）的动力油源通过二位二通电磁阀G1、G2通往A管和B管。

4. 根据权利要求3所述的提升机盘式制动器可靠性液压装置，其特征在于：
所述A管的双回油管路安全制动器由二位二通电磁阀G3、G4组成。

5. 根据权利要求3所述的提升机盘式制动器可靠性液压装置，其特征在于：
所述B管的双回油管路安全制动器由二位二通电磁阀G6、G7组成。

6. 根据权利要求1、2、4或5所述的提升机盘式制动器可靠性液压装置，其
特征在于：所述的保持器由具有切换功能的二位二通电磁阀G5、调整一级制动压力
的溢流阀（9）和稳定一级制动压力的单向节流阀（11）、单向顺序阀（12）和蓄能
器（13）组成。
说明书

一种提升机盘式制动器可靠性液压装置

本实用新型涉及一种提升机盘式制动器可靠性液压装置，尤其适用于矿山运输提升机械的控制，也适用于需要运输提升机械的控制。

液压装置作为提升机盘式制动器的外力动力源，以控制油路来实现制动器的各项制动功能。目前提升机制动系统中的液压装置类型很多，功能包括工作制动和安全制动。工作制动大多采用工作手柄控制十字弹簧式的电液调压装置来调节系统油压，产生变化的制动力矩。安全制动一般采用二级制动，如延时继电器控制等。在正常运行时，根据提升机的运动学特性，配合电气控制、调节、控制制动力矩，实现规定的减速停车。在提升机运行过程中，如果提升系统发生故障或其他意外事故，液压装置还必须实现安全制动功能，以满足安全制动减速度为1.5≤a≤5 m/s²的要求。虽然现有的液压装置能够满足工作制动和安全制动的要求，但在实际运行中，由于工作制动调压稳定性不够、安全制动时管路回油不畅、系统残压过高等以及电磁阀故障等原因造成制动力矩不足。

针对已有技术的不足之处，本实用新型的目的是提供一种调压稳定性好，安全制动、可靠性高的提升机盘式制动器可靠性液压装置。

本实用新型提升机盘式制动器可靠性液压装置，它包括内装液压油并设有油标视窗的油箱，油箱出口处设有粗滤油器，油箱相连的管路上设有两套由电机、油泵、粗滤油器和油压表组成的动力源和备用动力源，动力源和备用动力源的管路上设置有由精滤油器和电液比例溢流阀组成的制动压力调整装置，管路与集成块相通，管路速通蓄能器，集成块联接制动器的 A 管、B 管，A、B 管分别设有双回路安全制动器和具有残压保护功能的电接点压力表，A 管还连有能够切换、调整与稳定一级制动压力的保持器，每个电磁阀均设有监测功能的非接触式传感器，整个电控部分利用可程序化控制的可编程控制器（PLC）。

本实用新型提升机盘式制动器可靠性液压装置，所设置的集成块由动力油转换的液动阀和多个二位二通电磁阀组成，集成块的动力油源通过二位二通电磁阀 G1、G2 通往 A 管和 B 管，A 管的双回油管路安全制动器由二位二通电磁阀 G3、G4 组成，B 管的双回油管路安全制动器由二位二通电磁阀 G6、G7 组成，保持器由具有切换功能的二位二通电磁阀 G5、调整一级制动压力的溢流阀和稳定一级制动压力的单向节流阀、单向顺序阀和蓄能器组成。

本实用新型提升机盘式制动器可靠性液压装置，最适用于矿山运输提升机械的控制。采用由精滤油器和电液比例溢流阀组成的制动压力调整装置，通过集成块联接制动器的联通管 A 和 B，联通管分别设有双回路安全制动器和具有残压保护功能的电接点压力表，并设有监测功能的非接触式传感器，电控部分利用可程序化控制
的可编程控制器（PLC）。与现有技术相比，由于增加了安全制动时的多路回油功能、电磁阀故障功能、残压保护功能等安全保护措施，因此，使其系统可靠度大大提高。同时还改进了工作制动的调压功能和电控系统，这也使得液压装置的性能更加稳定、可靠，其结构紧凑、合理，具有广泛的实用性。

附图说明：
图 1 是本实用新型主视结构示意图。
图 2 是本实用新型俯视结构示意图。
图 3 是本实用新型工作原理示意图。
下面结合附图对本实用新型的一个实施例作进一步描述：
本实用新型提升机盘式制动器可靠性液压装置，它主要由油箱 7、电机 1、油
泵 2、集成块 25、蓄能器 13 和油压表 8、10 组成。油箱 7 内装有液压油 15 并设有
油标视窗 14，油箱 7 的出口处设有粗滤油器 3。与油箱相连的管路 17 上设有两套由
电机 1、油泵 2、粗滤油器 3、油压表 8、电液比例溢流阀 4 和集成块 24 组成的动力
源和备用动力源。动力源和备用动力源的管路 21，23 连接由精滤油器 5 和电液比
例溢流阀 4 组成的制动压力调整装置，管路 19，20，22 与集成块 25 连通，管路 23
与电液比溢流阀 4 相连的集成块 24 连通，管路 20 与蓄能器 13 连通。集成块 25 上
设有由动力油转换的联动阀 6。集成块 25 联接制动器的 A 管和 B 管分别装有双回
路安全制动器和具有残压保护功能的电接点压力表 10。当停车信号闭合，如果压力
表 10 中的残压值高于设定的压力值，这时液压装置实施安全制动，并且报警及显示
故障模式。A 管还设有能够切换、调整稳定一级制动压力的保持器，保持器具有
切断功能的二位二通电磁阀 G5，调整一级制动压力的溢流阀 9 和稳定一级制动压
力的单向节流阀 11、单向顺序阀 12 和蓄能器 13 组成。每个电磁阀均设有监测功能
的非接触式传感器 26，传感器 26 用于电液阀检测信号，当电磁阀需要正常工作时，
而阀芯没有到位，检测传感器发出故障信号，并通过可编程控制器（PLC）报警
并显示发生故障的电磁阀，以便对其进行维修。整个电控部分利用可程序化控制的
可编程控制器（PLC）。集成块 25 的动力油源通过二位二通电磁阀 G1、G2 通往 A
管和 B 管，A 管的双回油管路安全制动器由二位二通电磁阀 G3、G4 组成，B 管的
双回油管路安全制动器由二位二通电磁阀 G6、G7 组成。
本实用新型的工作过程主要包括两方面内容：工作制动和安全制动。整个液
压装置采用可编程控制器（PLC）控制，其工作原理根据液压系统动作过程进行编
程。
正常工作制动：从原有的提升电控系统中的电磁放大器提取可变的电压信号，提
升机开机时，给液压装置的电动机 1 供电，油泵 2 启动，同时液压装置中的电磁阀
由可编程控制器（PLC）控制，G1、G2、G3、G4、G5、G6、G7 通电，司机推动
可调闸手柄，这时电磁放大器会发出一个增大的电压值，这个电压进入液压装置电控
柜中的放大板，并控制电液比例溢流阀4来调整系统压力，使系统油压增大到一定值。压力油一部分进入A、B管，打开提升机制动器，提升机即可开车运行；另一部分压力油通过单向顺序阀12进入蓄能器13，为安全制动储备压力能。当提升机停车时，司机拉回可调闸手柄，这时磁放大器会发出一个减小的电压值，使系统油压减小，司机根据提升机减速阶段不同的减速度调节可调闸手柄，使系统产生不同的油压，并最后完全拉回手柄，使油压为零，制动住提升机。

安全制动：安全制动分为两种情况，一种是提升容器运行的井筒中时，提升机出现紧急情况时的井中安全制动；另一种是提升容器已经接近井口时，提升机出现紧急情况的井口安全制动。1）井中安全制动：当提升容器运行在井筒中出现紧急情况时，AC接点信号闭合，液压装置中电动机1断电，油泵2停止供油，电磁阀由可编程控制器（PLC）控制，G1、G2、G6、G7断电，B管中的油压降为零，由B管控制的提升机的一半制动器施闸，产生制动力矩，而控制A管的电磁阀G3、G4、G5依旧通电，这时A管和溢流阀9以及蓄能器13相通，使管路产生和溢流阀9相对应的并维持稳定的油压值，由A管控制的另一半制动器也施闸产生相应的制动力矩，完成一级制动，可编程控制器延时一定时间后断电，所有制动器全部施闸，并使提升机停车，完成二级制动。2）井口安全制动：当提升容器已经接近井口时，提升机出现紧急情况，这时提升容器到位信号已经闭合，AC接点信号闭合，液压装置中电动机1断电，油泵2停止供油，电磁阀由可编程控制器（PLC）控制，G1、G2、G3、G4、G6、G7断电，A管和B管的油压迅速为零，所有制动器全部施闸，制动住提升机，防止提升机继续上冲，撞坏井塔或井架。
图 3