

(19)

(10) **FI 128306 B**
 (12) **PATENTTIJULKAIKU
PATENTSKRIFT
PATENT SPECIFICATION**

SUOMI - FINLAND
 (FI)

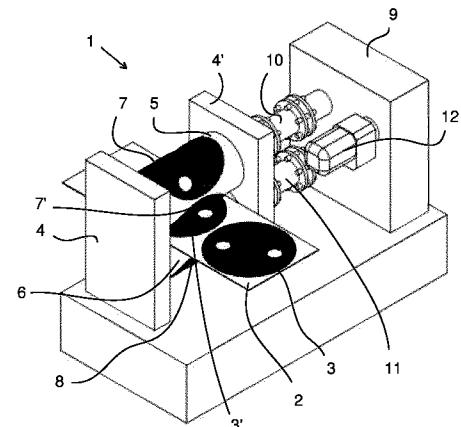
PATENTTI- JA REKISTERIHALLITUS
PATENT- OCH REGISTERSTYRELSEN
FINNISH PATENT AND REGISTRATION OFFICE

(45)	Patentti myönnetty - Patent beviljats - Patent granted	13.03.2020
(51)	Kansainvälinen patenttiluokitus - Internationell patentklassifikation - International patent classification	
	B21D 22/08 (2006.01)	
	F16H 57/12 (2006.01)	
	B23K 26/03 (2006.01)	
(21)	Patentihakemus - Patentansöknning - Patent application	20155287
(22)	Tekemispäivä - Ingivningsdag - Filing date	17.04.2015
(23)	Saapumispäivä - Ankomstdag - Reception date	17.04.2015
(43)	Tullut julkiseksi - Blivit offentlig - Available to the public	18.10.2016

(73) Haltija - Innehavare - Proprietor
 1 •VAHTERUS OY, Uusikaupunki, Pruukintie 7, 23600 KALANTI, SUOMI - FINLAND, (FI)

(72) Keksijä - Uppfintnare - Inventor
 1 •Kontu, Mauri, Kalanti As., SUOMI - FINLAND, (FI)
 2 •PITKÄNEN, Paavo, UUSIKAUPUNKI, SUOMI - FINLAND, (FI)

(74) Asiamies - Ombud - Agent
 Berggren Oy, PL 99, 20521 Turku


(54) Keksiinön nimitys - Uppfinningens benämning - Title of the invention
Menetelmä levyosien valmistamiseksi lämmönsiirtimeen
Förfarande för att framställa plattdelar till en värmeväxlare
Method for manufacturing plate parts for a heat exchanger

(56) Viitejulkaisut - Anfördta publikationer - References cited
 WO 0053355 A1, US 4112722 A, US 3512477 A, EP 2674238 A1, DE 2362711 A1

(57) Tiivistelmä - Sammandrag - Abstract

Esillä oleva keksintö liittyy menetelmään ja laitteeseen levyosa-aihioiden valmistamiseksi lämmönsiirtimeen. Levyrainan muodossa olevaa levymateriaalia (2) työstetään kahden telan (5, 6) välissä, joissa teloissa on vastakkaiset pintakuviot (7, 7', 8), profiloitujen levyosa-aihioiden (3, 3', 3'') muodostamiseksi levymateriaaliin (2) niin, että telat (5, 6) synkronoidaan pyörimään oleellisesti samalla nopeudella ohjaamalla niiden pyörimistä suhteessa toisiinsa yhteisellä synkronointivaihteistolla (9), joka vaihteisto kytketään teloihin (5, 6) akseleiden (10, 11) avulla levypakan tai hammaskytkinten kanssa, ja että kaksi tai useampi levyosa-aihio (3, 3', 3'') muodostetaan levymateriaaliin (2) telojen (5, 6) yhden pyörähdyksen aikana.

The present invention relates to a method and a device for manufacturing plate part blanks for a heat exchanger. A sheet material (2) in the form of continuous sheeting is worked between two rolls (5, 6) with opposite surface patterns (7, 7', 8) to form profiled plate part blanks (3, 3', 3'') into the sheet material (2) so that the rolls (5, 6) are synchronized to rotate at substantially same rate. By controlling the rotation of them in relation to each other with common synchronization gear (9), which gear is coupled to the rolls (5, 6) by means of shafts (10, 11) with disk pack or gear couplings, and that two or more plate part blanks (3, 3', 3'') are formed into the sheet material (2) during one revolution of the rolls (5, 6).

Method for manufacturing plate parts for a heat exchanger

Field of the invention

5

The present invention relates to a method for manufacturing plate part blanks according to the preamble of the independent claim presented below.

10 **Background of the invention**

The plate pack of the plate heat exchangers is usually composed of profiled metal plates. The profile pattern of the plates, i.e. the profile shape and the height of the profile, can vary depending on the desired heat exchange properties. Typically the profiled plates of plate heat exchangers are manufactured by the cold working method by pressing one plate at a time between plane tools. One of the tools is used as a press and the other as a die. Plane tools used for the manufacture of plate parts are very heavy due to the great forces which are needed especially with an increase in the plate size, and also the manufacturing costs of such tools are high.

Previously known is also the manufacture of profiled metal plates of the heat exchangers by the rolling method, in which method continuous sheeting of the sheet material is conveyed through a pair of rolls for forming the profiled plate. A patent publication DE 2116103 discloses a method for manufacturing heat exchange plates. Further, a specification WO 00/53355 discloses a method for manufacturing plate parts of the heat exchanger by the rolling method. In the presented method a continuous sheeting to be worked is fed between two rolls, wherein the plate parts are shaped between two rolls with opposite surface patterns and are cut off to their final shape simultaneously when they are being shaped. In the presented device the rolls are coupled to each other with a gearing fitted at one end of the rolls and the synchronization of the rolls is arranged with roll-specific synchronization motors and an electrical control system. However, there might appear problems relating to the accuracy of the profile pattern of the plates due to the separate driving mechanisms of the rolls since the rotation speed of one of the rolls can change due to the forces appearing in the rolling and then the

rotation speed of the rolls is not synchronized to each other anymore. The height of the profile pattern might also be different in the middle of the plate compared to the edges of the plate due to the bending of the rolls and this will cause by-pass flow to the plate pack to be formed and so affect to the

5 heat exchange properties of the heat exchanger. Thus, there is still a need for a method and a device that makes possible to manufacture plate parts for heat exchangers with accurate profile pattern by the rolling method.

10 The patent publication US4112722 discloses a profiling machine employing a cold formation, which comprises series of two superimposed rolls. The rolls are mounted on the shafts, which are respectively connected through a cardan joint system to drive shafts and to the gear pinions.

Summary of the Invention

15 It is an object of the present invention to present a novel solution for manufacturing plate part blanks for a heat exchanger by the rolling method.

20 The object of the invention is especially to provide a method for manufacturing plate part blanks, which makes possible to manufacture plate parts having more accurate profile pattern in the whole surface area of the plate.

25 In order to achieve among others the objects presented above, the invention is characterized by what is presented in the characterizing part of the enclosed independent claim.

Some preferred embodiments of the invention will be described in the other claims.

30 The embodiments and advantages mentioned in this text relate, where applicable, both to the method, the device as well as to the arrangement according to the invention, even though it is not always specifically mentioned.

35 In a typical method according to the invention for manufacturing plate part blanks for a heat exchanger a sheet material in the form of continuous

sheeting is worked between two rolls with opposite surface patterns to form profiled plate part blanks into the sheet material in such a way that the rolls are synchronized to rotate at substantially same rate by controlling the rotation of them in relation to each other with a common synchronization

5 gear, which gear is coupled to the rolls by means of shafts with disk pack or gear couplings or cardan axels so that the backlash is less than 0.1 mm.

A typical device for manufacturing plate part blanks for a heat exchanger comprises at least

10 - a frame part, and
- two rolls mounted on bearings on the frame part, and which rolls comprises surface patterns opposite to each other to form profiled plate part blanks into a sheet material,
and the device further comprises synchronization gear for controlling the
15 rotation of the rolls in relation to each other, which gear is coupled to the rolls by means of shafts with disk pack or gear couplings or cardan axels so that the backlash is less than 0.1 mm.

A typical arrangement comprises

20 - a device according to the invention for forming the plate part blanks into the sheet material, and
- a laser cutting equipment for cutting plate part blanks from the sheet material, which equipment is synchronized with the device for forming the plate part blanks.

25 The method according to the invention is cold working method for manufacturing profiled plate parts for the plate pack of the heat exchanger. The profiled plate parts refer to the corrugated metal plates of the heat exchanger, i.e. they have the grooves and the ridges between them. The
30 present invention is based on a pair of the rolls of the device which rolls are synchronized and coupled to each other with a common synchronizing means without a backlash or almost without backlash, i.e. the backlash is less than 0.1 mm. Thus, the rolls are arranged to rotate at substantially same rate and thus the profiled pattern of the plates will be geometrically correct
35 and accurate in the whole surface area of the plate. The using of the common synchronizing means according to the invention minimizes a mutual misalignment of the surface patterns of the rolls.

According to the invention the rolls are coupled to each other with common synchronizing means, which comprise a synchronization gear and two shafts with disk pack or gear couplings or two cardan axles for coupling the gear

5 with the rolls. The rotation of the rolls in relation to each other is controlled and adjusted so that they rotate at substantially same rate. The common synchronizing means eliminate the effect of the forces appearing in the rolling to the rolls, and thus the accurate profile pattern is achieved to the plate parts.

10

In a preferred embodiment of the invention the rolls are coupled with the synchronization gear by means of two shafts, a first shaft and a second shaft, with disk pack or gear couplings, so that one ends of the first and the second shafts are fitted in connection with one ends of the rolls and the other ends of

15 the first and the second shafts are arranged in connection with the synchronization gear. A disk pack coupling is a zero backlash coupling which uses a disk pack made of steel as a drive element, in which two metal hubs are connected to the disk pack. A disk pack coupling can be a single disk pack or double disk pack. A gear coupling refers to double joint coupling

20 manufactured from steel using as transmission element two crowned tooth geared hubs which engage two internal straight teeth flanges. In a preferred embodiment of the invention both of the shafts comprise two disk pack couplings. The disk pack or gear couplings are torsionally stiff, but axially and angularly flexible, to compensate shafts misalignments. Alternatively, the rolls

25 are coupled with the synchronization gear by means of two cardan axles. The shafts with disk pack or gear couplings or the cardan axles make possible to adjust the distance between the rolls without affecting to the synchronizing means of the rolls. Thus, the plates with different thickness and with different height of the profile pattern can also be formed by using the same rolls of the

30 device.

In the method according to the invention, plate part blanks are shaped to the continuous sheeting of the sheet material between two rolls; a first roll and a second roll which rolls comprising opposite surface patterns to form profiled

35 plate part blank or blanks into the sheet material. One, two or more plate part blanks are formed into the sheet material during one revolution of the rolls, i.e. the plate part blanks are formed to the continuous sheeting when it has

travelled through a pair of rolls. In an embodiment of the invention the rolls of device are arranged so that two or more plate part blanks are formed during one revolution of the rolls. In a preferred embodiment of the invention two plate part blanks are formed during one revolution of the rolls, which plate

- 5 part blanks have a same size, i.e. the rolls comprises two similar surface patterns arranged to the opposite sides of the roll. One revolution of the rolls refers to a complete revolution of the rolls, wherein the whole length of the rolls' circumference has had in contact with the sheet material. The number of the plate part blanks to be formed during one revolution is dependent on
- 10 the size of the plate parts to be manufactured. The size of the plate part blanks to be formed can be different. It is advantageous to extend the area to be profiled over the whole width of the sheet material and so the amount of the formed plate parts during one rotation is dependent on the size of the plate parts to be profiled. The smaller plate parts can be formed to the areas
- 15 of the sheet material which left out from the plate parts having larger size. The substantially unbending rolls of the device are achieved by this arrangement since the rolling forces can be divided evenly. The bending of the rolls is at most 0.02 mm in relation to the central axis of the rolls, when two plate part blanks are formed during one revolution of the rolls, and thus
- 20 the height of the profile pattern is substantially equal in the whole surface area of the plates to be formed.

The method according to the invention makes possible to manufacture plate parts in different shapes, i.e. rectangular or circular plate parts, or in different sizes, i.e. for example the diameter of the circular plate parts can vary. Typically, the diameter of the circular plate parts is from 150 to 1500 mm. The plate parts can also comprise small openings therein.

- 25
- 30 The surface patterns, or so-called profiling patterns, having opposite shapes on the surfaces of the rolls are either fixed to the surfaces of the rolls in a stationary manner, or detachable, locked onto the surfaces of the rolls in a stationary manner. The profiling pattern refers to the corrugation of the plate part, i.e. the grooves and the ridges between them. In a preferred embodiment of the invention the rolls comprise surface patterns to form two
- 35 or more plate parts during one revolution of the rolls.

In an embodiment of the invention, the rolls comprise surface patterns which form a continuous profile pattern to the sheet material, i.e. continuous rectangular profile pattern. Rectangular plate part blanks with a desired length can be cut off from the sheet material with continuous profile pattern.

5

According to a preferred embodiment of the invention the synchronization gear is equipped with a driving mechanism, such as an electrical motor, which driving mechanism is mutual to both of the rolls. Thus the speed of the rolls can be adjusted in stepless manner.

10

A rotating speed of the rolls can be adjusted on the basis of the material properties and the thickness of the sheet material used as a raw material.

15

The method for manufacturing plate parts according to the invention are used in the following way. The distance of the rolls is adjusted to correspond the thickness of the sheet material used as the raw material. The plate part blanks are shaped between two rolls with opposite shapes, i.e. profiling patterns, for forming profiled plate part blanks and then the blanks are cut off from the sheet material to the final shape of the plates in a separate cutting stage. In a preferred embodiment of the invention the plate part blanks are cut by using a laser cutting device. Typically the sheet material in the form of continuous sheeting comprising profiled plate part blanks is conveyed to the laser cutting equipment directly from the rolling device. The function of the laser cutting equipment is synchronized with the rotation speed of the rolls.

25

The plate part blanks can also be cut off from the sheet material by using any other suitable cutting method.

30

In an embodiment of the invention the plate part blanks are photographed before the laser cutting stage and the position of the plate parts to be cut is determined on the basis of the photographs, i.e. an alignment of the laser cutting equipment is determined and adjusted on the basis of the photographs. According to an embodiment of the invention, the sheet material also comprises separate checking patterns formed by the rolls and on the basis of these checking patterns the laser cutting device can determine the location of the plate blanks to be cut. In a preferred embodiment of the invention camera is arranged to photograph two checking

patterns which are arranged on both side of the plate part blank to be cut and to compare these checking patterns to the reference image and then to adjust alignment of the laser cutting device. In an embodiment of the invention the laser cutting device is arranged to cut off the plate part blanks

5 from the sheet material and also simultaneously to cut openings to the plate part, if needed.

An arrangement according to an embodiment also comprises an instrument for measuring a depth of the profile pattern of the formed plate parts. In a

10 preferred embodiment of the invention the depth of the profile pattern is measured automatically with a laser sensor. The depth of the profile pattern can be easily checked in one, two or more points of the plate part. The measurement can be carried out before or after the laser cutting equipment. If the depth of the profile pattern is incorrect, the rolls of the device can be

15 stopped automatically.

A device and an arrangement also comprise required devices for unwinding the sheet material, which is e.g. on the reel, and roller tracks for purpose of feeding the sheet material to the device and forward to the cutting equipment.

20 The sheet material is typically steel, such as stainless steel or other suitable material for the plates of the heat exchanger. The thickness of the sheet material is typically from 0.5 to 1.5 mm.

25 The method for manufacturing plate parts according to the invention has considerable advantages to methods presently in use. Particularly in the manufacture of larger plate parts, the pressing force required by the rolling is substantially reduced when compared with planar working tools. This smaller need for force is based on the fact that the contact surface between the rolls

30 and the sheet material is, in principle, a line, wherein the area to be worked is small.

35 The method for manufacturing plate parts according to the invention considerably reduce the manufacturing costs of larger plate parts with low profiles. In addition, the quality of the plate parts to be manufactured is improved.

Description of the drawings

5

The invention will be described in more detail with reference to appended drawings, in which

10 Fig. 1 shows the device according to an embodiment useful in the method of the invention for manufacturing plate part blanks,

Fig. 2 shows a laser equipment according to an embodiment useful in the method of the invention, and

15 Fig. 3 shows an arrangement according to an embodiment useful in the method of the invention for manufacturing plate parts for a heat exchanger.

Detailed description of the invention

20 In the method according to the invention, the plate part blanks for a heat exchanger can be manufactured with a device of Figure 1. The device 1 according to an embodiment comprises a frame part 4, 4' and two rolls 5, 6 mounted on bearings on the frame part 4, 4'. The rolls 5, 6 comprise profiling patterns 7, 7', 8 opposite to each other to form profiled plate part blanks 3, 3' into a sheet material 2. The sheet material is conveyed through the rolls 5, 6 in the form of continuous sheeting as illustrated in Figure 1 and the plate part blanks 3, 3' are shaped of the sheet material 2 between the rolls. According to an embodiment of the invention as illustrated in Figure 1, two plate part blanks 3, 3' are formed into the sheet material 2 during one revolution of the rolls 5, 6. The profiling patterns 7, 7', 8 are typically fixed to the surfaces of 25 the rolls 5, 6 in a stationary manner.

30 The rolls 5, 6 of the device 1 presented in Fig. 1 are synchronized to each other with common synchronization gear 9 so that the gear 9 are coupled to the rolls by means of two shafts 10, 11 with disk pack or gear couplings. One 35 end of the shafts 10, 11 is connected to the rolls 5, 6 and other end of the shafts 10, 11 is connected to the synchronization gear 9. The synchronization gear is equipped with a driving mechanism 12, such as an electrical motor.

In the method according to an embodiment of the invention, the plate part blanks 3, 3' are cut off from the sheet material 2, and also the openings 14 of the plate parts are cut off simultaneously by using laser cutting equipment 13,
5 as shown in Figure 2. The laser cutting equipment 13 comprises camera 15 for determining the location of the plate part to be cut.

Figure 3 shows an arrangement 16 according to an embodiment useful in the
10 method for manufacturing plate parts for a heat exchanger, which arrangement comprises a device 1 for manufacturing plate part blanks 3, 3', 3" into the sheet material and laser cutting equipment 13 arranged to the same production line with the device 1 wherein the function of the laser cutting equipment 13 is synchronized with the rotation speed of the rolls 5, 6 of the device 1.

15 Many variations of the present invention will suggest themselves to those skilled in the art in light of the above detailed description. Such obvious variations are within the full intended scope of the appended claims.

CLAIMS

1. A method for manufacturing plate part blanks (3, 3', 3'') for a heat exchanger, in which method a sheet material (2) in the form of continuous sheeting is worked between two rolls (5, 6) with opposite surface patterns (7, 7', 8) to form profiled plate part blanks (3, 3', 3'') into the sheet material (2), **characterized** in that the rolls (5, 6) are synchronized to rotate at substantially same rate by controlling the rotation of them in relation to each other with common synchronization gear (9), which gear (9) is coupled to the rolls (5, 6) by means of shafts (10, 11) with disk pack or gear couplings so that the backlash is less than 0.1 mm, and that two or more plate part blanks (3, 3', 3'') are formed into the sheet material (2) during one revolution of the rolls (5, 6) and the sheet material with profiled plate part blanks (3, 3', 3'') is conveyed to the laser cutting equipment (13), wherein the plate part blanks (3, 3', 3'') are cut off from the sheet material (2) and the position of the plate parts to be cut is determined on the basis of the photographs taken before the laser cutting for determining an alignment of the laser cutting equipment (13).
- 20 2. The method according to claim 1, **characterized** in that the sheet material (2) also comprises separate checking patterns formed on the sheet material, which are photographed.
- 25 3. The method according to claim 2, **characterized** in that the two checking patterns are photographed, which are arranged on both side of the plate part blank to be cut and the photographs of these checking patterns is compared to the reference image for adjusting an alignment of the laser cutting equipment (13).
- 30 4. The method according to any of the preceding claims, **characterized** in that a function of the laser cutting equipment (13) is synchronized with the rotation speed of the rolls (5, 6).
- 35 5. The method according to any of the preceding claims, **characterized** in that the sheet material with a thickness from 0.5 to 1.5 mm.

Patenttivaatimukset

1. Menetelmä levyosa-aihoiden (3, 3', 3'') valmistamiseksi lämmönsiirtimeen, jossa menetelmässä levyrainan muodossa olevaa levymateriaalia (2) työstetään kahden telan (5, 6) välissä, joissa teloissa on vastakkaiset pintakuviot (7, 7', 8), profiloitujen levyosa-aihoiden (3, 3', 3'') muodostamiseksi levymateriaaliin (2), **tunnettu** siitä, että telat (5, 6) synkronoidaan pyörimään oleellisesti samalla nopeudella ohjaamalla niiden pyörimistä suhteessa toisiinsa yhteisellä synkronointivaihteistolla (9), joka 10 vaihteisto (9) kytketään teloihin (5, 6) akseleiden (10, 11) avulla levypakan tai hammaskytkinten kanssa niin, että välys on vähemmän kuin 0,1 mm, ja että kaksi tai useampi levyosa-aihio (3, 3', 3'') muodostetaan levymateriaaliin (2) telojen (5, 6) yhden pyörähdyksen aikana, ja levymateriaali profiloituilla levyosa-aihioilla (3, 3', 3'') johdetaan laserleikkauslaitteistoon (13), jossa 15 levyosa-aihioit (3, 3', 3'') leikataan levymateriaalista (2) ja leikattavien levyosien paikka määritetään ennen laserleikkausta otettujen valokuvien perusteella laserleikkauslaitteiston (13) kohdistamisen määrittämiseksi.
2. Patenttivaatimuksen 1 mukainen menetelmä, **tunnettu** siitä, että 20 levymateriaali (2) käsittää myös levymateriaaliin muodostetun tarkistuskuvion, joka valokuvataan.
3. Patenttivaatimuksen 2 mukainen menetelmä, **tunnettu** siitä, että kaksi tarkistuskuvia valokuvataan, jotka on järjestetty leikattavan levyosa-aihion 25 molemmin puolin ja näiden tarkistuskuvien valokuvaa verrataan referenssikuvaan laserleikkauslaitteiston kohdistamisen säättämiseksi.
4. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, **tunnettu** siitä, että laserleikkauslaitteiston (13) toiminta synkronoidaan telojen (5, 6) 30 pyörimisnopeuden kanssa.
5. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, **tunnettu** siitä, että levymateriaalin paksuus on 0,5 - 1,5 mm.

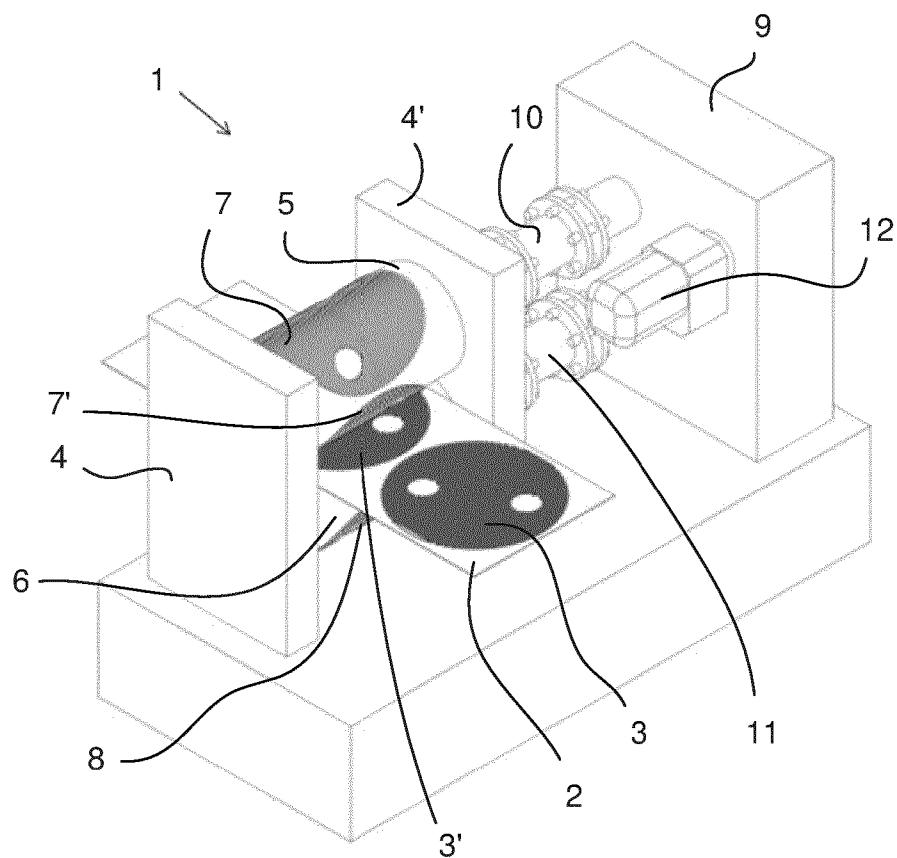


Fig. 1

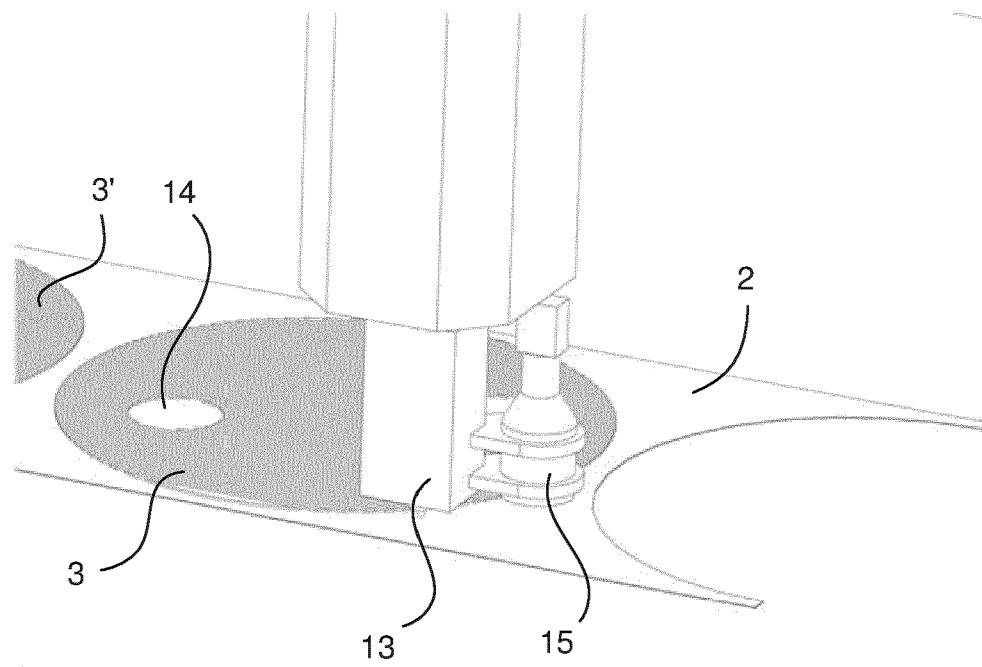


Fig. 2

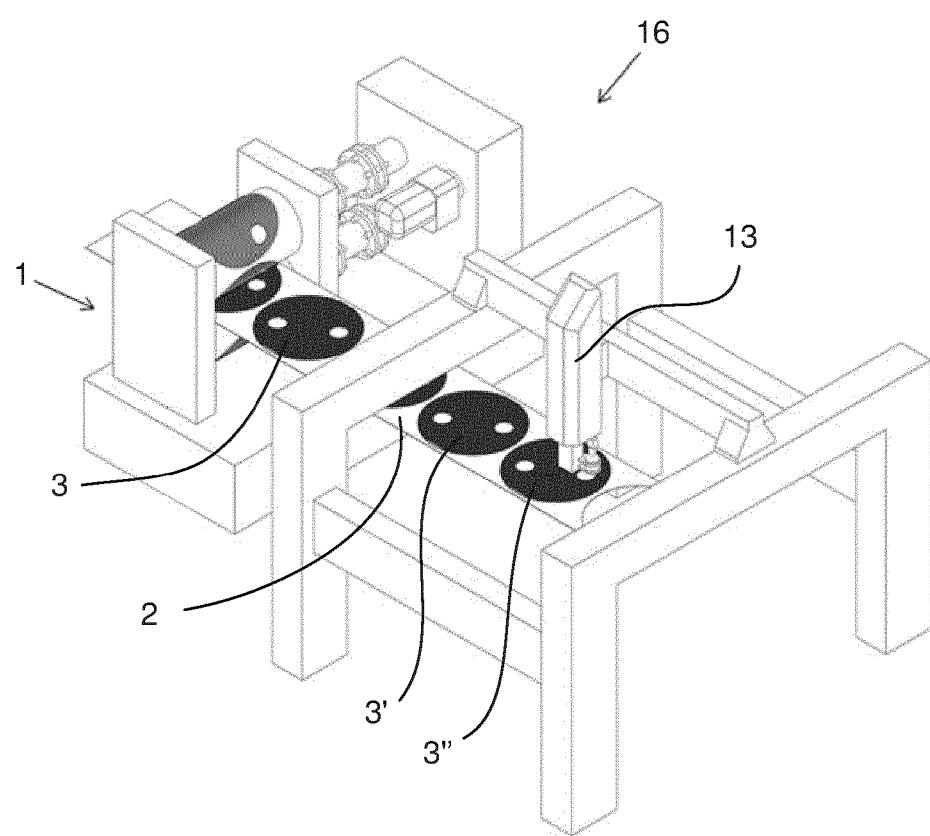


Fig. 3