FORM 25

(12) PATENT granted by

(19)

AP

AFRICAN REGIONAL INDUSTRIAL PROPERTY ORGANISATION (ARIPO)

830

 $(11) \qquad (A)$

(21)	Application Number:	: AP/P/97/00982		(73)	Applicant(s): PFIZER INC 235 East 42nd Street New York New York 10017 United States Of America
(22)	Filing Date:	19970508			
(24) (45)	Date of Grant & Publication	20000503			
				(72)	Inventors:
(30)	Priority Data				DAVID JAMES RAWSON
(33)	Country:	GB			Pfizer Central Research Ramsgate Road
	•	_			Sandwich
(31)	Number:	9609641.7			Kent, CT 13 9NJ
(32)	Date:	19960509			Great Britain
(84)	Designated States:			(74)	Representative GALLOWAY & COMPANY
	BW GM K	KE MW UG	ZM		P O BOX WGT 28 WESTGATE
	ZW				HARARE

(51) International Patent Classification (Int.Cl.7):

C07D209/18; A61K 31/40

(54) Title: Indole Derivatives Useful In Therapy

(57) Abstract:

Compounds of formula I, and their pharmaceutically acceptable derivatives.

$$R^2$$
 R^4
 R^5
 R
 R

wherein

 R^1 and R^2 are optional substituents and independently represent $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl [optionally substituted by CO_2H or $CO_2(C_{1.6}$ alkyl)], $C_{2.6}$ alkynyl, halogen, $C_{1.3}$ perfluoroalkyl, $(CH_2)_mAr^1$, $(CH_2)_mHet^1$, $(CH_2)_mCONR^7R^3$, $(CH_2)_mCO_2R^3$, $O(CH_2)_qCO_2R^3$, $(CH_2)_mCOR^5$, $(CH_2)_mOR^3$, $O(CH_2)_pOR^3$, $O(CH_2)_mNR^7R^3$, $O(CH_2)_qNR^7R^3$, $O(CH_2)_mCN$, $S(O)_nR^3$, $SO_2NR^7R^3$, $CONH(CH_2)_mAr^1$ or $CONH(CH_2)_mHet^1$;

 R^4 represents H or C_{1-6} alkyl:

R⁵ represents H or OH;

R⁶ represents phenyl optionally fused to a heterocyclic ring, the group as a whole being optionally substituted;

R⁷⁻¹⁰ are fully defined herein and may independently represent Ar² or Het²;

Z represents CO₂H, CONH(tetrazol-5-yl), CONHSO₂O($C_{1,4}$ alkyl), CO₂A r^3 , CO₂($C_{1,4}$ alkyl), tetrazol-5-yl, CONHSO- $4r^3$. CONHSO₄(CH₂)₄A r^3 or CONHSO- $4C_{1,4}$ alkyl):

 $Ar^{1/3}$ independently represent phenyl, naphthyl, or an aromatic heterocycle, which groups are optionally fused and optionally substituted; and

Het¹ and Het² independently represent a non-aromatic heterocycle which is optionally substituted:

are useful in the treatment of restenosis, renal failure and pulmonary hypertension.

Inventors Continued

- 2. KEVIN NEIL DACK
- 3. ROGER PETER DICKINSON
- 4. KIM JAMES


ALL OF:

Pfizer Central Research Ramsgate Road Sandwich Kent CT13, 9NJ United Kingdom

5

10

This invention relates to indole derivatives useful in the treatment of a variety of diseases including restenosis, renal failure and pulmonary hypertension, and to pharmaceutical formulations containing such compounds.

International Patent Application WO 94/14434 discloses indole derivatives which are indicated as endothelin receptor antagonists. European Patent Application 617001 discloses a large number of phenoxyphenylacetic acid derivatives which are also indicated as endothelin receptor antagonists.

Bergman *et al*, Tetrahedron, Vol 31, N° 17, 1975, pages 2063-2073, disclose a number of indole-3-acetic acids. Similar compounds are disclosed by Rusinova *et al*, Khim Geterotsikl Soedin, 1974, (2), 211-213 (see also Chemical Abstracts, Vol 81, N° 7, 19

5 August 1974, abstract N° 37455a), and Yarovenko *et al*, J Gen Chem USSR (English translation), Vol 39, 1969, page 2039 (see also Beilstein, Registry Number 431619). These compounds are not indicated in any kind of therapy, and proviso (i) below relates to them.

Julian *et àl*, J Chem Soc, Chemical Communications, N° 1, 1973, disclose an N-p-chlorobenzoylindole derivative as a by-product of a photo-addition reaction. The compound is not indicated in any kind of therapy, and proviso (ii) below relates to it.

Yamamoto *et al*, Japanese Patent N° 70 041 381 (see also Chemical Abstracts, Vol 75, N° 3, 1971, abstract N° 20189v), disclose an N-p-chlorobenzoylindole derivative which is indicated as an anti-inflammatory. Proviso (iii) below relates to it.

According to the present invention, there is provided a compound of formula I,

$$R^{1}$$
 R^{6}
 Z
 R^{2}
 R^{3}

wherein

0

 R^1 and R^2 are optional substituents and independently represent C_{1-6} alkyl, C_{2-6} alkenyl [optionally substituted by CO_2H or $CO_2(C_{1-6}$ alkyl)], C_{2-6} alkynyl, halogen, C_{1-3} perfluoroalkyl, $(CH_2)_mAr^1$, $(CH_2)_mHet^1$, $(CH_2)_mCONR^7R^8$, $(CH_2)_mCO_2R^8$, $O(CH_2)_qCO_2R^8$, $(CH_2)_mCOR^8$, $(CH_2)_mOR^8$, $O(CH_2)_pOR^8$, $(CH_2)_mNR^7R^8$, $CO_2(CH_2)_qNR^7R^8$, $(CH_2)_mCN$, $S(O)_nR^8$, $SO_2NR^7R^8$, $CONH(CH_2)_mAr^1$ or $CONH(CH_2)_mHet^1$; R^3 represents H, C_{1-6} alkyl, $(CH_2)_pNR^9R^{10}$, SO_2R^{10} , $SO_2NR^9R^{10}$, $(CH_2)_mCOR^{10}$, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_mCONR^9R^{10}$, $(CH_2)_mCO_2R^{10}$, $(CH_2)_pCN$, $(CH_2)_pR^{10}$ or $(CH_2)_nOR^{10}$;

10 R⁴ and R⁹ independently represent H or C₁₋₆ alkyl; R⁷ represents H, C₁₋₆ alkyl or C₁₋₆ alkoxy; R⁵ represents H or OH;

R⁶ represents phenyl optionally fused to a saturated or unsaturated 5- or 6-membered heterocyclic ring containing 1 or 2 heteroatoms selected from N, S and O, the group as a whole being optionally substituted by one or more groups selected from C₁₋₆ alkyl, C₁₋₆ alkoxy and halogen, and wherein any members of the heterocyclic ring which are S may be substituted by one or two oxygen atoms;

 R^8 and R^{10} independently represent H, C_{1-6} alkyl, Ar^2 , Het^2 or C_{1-6} alkyl substituted by Ar^2 or Het^2 ;

Z represents CO_2H , CONH(tetrazol-5-yl), $CONHSO_2O(C_{1-4} \ alkyl)$, CO_2Ar^3 , $CO_2(C_{1-6} \ alkyl)$, tetrazol-5-yl, $CONHSO_2Ar^3$, $CONHSO_2(CH_2)_qAr^3$ or $CONHSO_2(C_{1-6} \ alkyl)$; m represents 0, 1, 2 or 3;

n represents 0, 1 or 2;

p represents 2, 3 or 4;

25 q represents 1, 2 or 3;

Ar¹⁻³ independently represent phenyl, naphthyl, or an aromatic heterocycle having 5 or 6 ring members up to 4 of which are selected from N, S and O, which aromatic heterocycle is optionally fused to a benzene ring, and which phenyl group is optionally fused to an aromatic heterocycle as defined immediately above, the group as a whole being optionally

substituted by one or more groups falling within the definition of R¹ above; and

Het¹ and Het² independently represent a non-aromatic heterocycle having 5 or 6 ring

members up to 4 of which are selected from N, S and O, which group is optionally

3

substituted by one or more groups falling within the definition of R¹ above, and is further optionally substituted by =O or =S; provided that:

- (i) when R^1 represents methoxy or is absent, R^2 is absent, R^3 represents H, R^4 represents H, methyl or ethyl, and R^6 represents unsubstituted phenyl, then Z does not represent CO_2H or $CO_2(C_{1-6}$ alkyl);
 - (ii) when R^1 and R^2 are absent, R^3 represents $CO(p-ClC_6H_4)$, R^4 represents H, and R^6 represents unsubstituted phenyl, then Z does not represent $CO_2(C_{1-6}$ alkyl); and
- (iii) when R^1 represents methoxy, R^2 is absent, R^3 represents $CO(p\text{-}ClC_6H_4)$, R^4 represents methyl, and R^6 represents unsubstituted phenyl, then Z does not represent CO_2H ;

or a pharmaceutically acceptable derivative thereof.

Pharmaceutically acceptable derivatives include those compounds in which the functional groups explicitly recited above have been derivatised to provide prodrugs which can be converted to the parent compound *in vivo*. Such prodrugs are discussed in Drugs of Today, Vol 19, 499-538 (1983) and Annual Reports in Medicinal Chemistry, Vol 10, Ch 31 p306-326. In addition, pharmaceutically acceptable derivatives include pharmaceutically acceptable salts, such as alkali metal salts (for example sodium salts) of any acidic groups that may be present.

"Halogen" includes fluorine, chlorine, bromine and iodine.

Alkyl groups which R¹⁻⁴, R⁶⁻¹⁰ and Z represent or comprise may be straight chain, branched or cyclic.

Besides phenyl and naphthyl, specific groups that Ar¹⁻³ may represent or comprise include indolyl, pyridinyl, thienyl, oxazolyl, thiazolyl, isothiazolyl, pyrazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, imidazolyl, thiazolinidyl, isoxazolyl, oxadiazolyl, thiadiazolyl, pyrrolyl and pyrimidinyl.

0

15

20

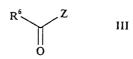
30

Specific groups that Het¹ and Het² may represent or comprise include oxazolidinyl, triazolethione, triazolone, oxadiazolone, oxadiazolethione, imidazolidinyl, morpholinyl, piperidinyl and piperazinyl.

- 5 Preferred groups of compounds which may be mentioned include those in which:
 - (a) R^1 represents halogen, $(CH_2)_mCONR^7R^8$, $(CH_2)_mCO_2R^8$, $(CH_2)_mCOR^8$, $(CH_2)_mCOR^8$ or $(CH_2)_mCN$. In these groups it is preferred that R^7 and R^8 represent H or C_{1-6} alkyl. Preferably, m is 0 or 1. Thus, specific groups which may be mentioned are $CONH_2$, CO_2H ,
- 10 CH₂OH, F or CH₃CO. R¹ is preferably attached to the 6-position of the indole ring.
 - (b) R² is absent (i.e. its place on the indole ring is occupied by H).
 - (c) R^3 represents H, C_{1-6} alkyl or $(CH_2)_pOR^{10}$. Preferably, R^{10} is C_{1-6} alkyl and p is 2. Thus, specific groups which may be mentioned are methyl and $(CH_2)_2OCH_3$.
 - (d) R⁴ represents H.
- 15 (e) R⁵ represents H.

0

- (f) R⁶ represents phenyl fused to a saturated 5-membered heterocyclic ring, for example 3,4-methylenedioxyphenyl.
- (g) Z represents CO_2H or $CONHSO_2Ar^3$. Preferably, Ar^3 is phenyl substituted by one or more groups selected from C_{1-6} alkyl, C_{1-6} alkoxy and C_{1-6} alkyl substituted by carboxy.
- 20 Thus, specific groups which may be mentioned are:

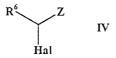

There is further provided a process for the production of the compounds of the invention, comprising:

25 (a) when R⁵ represents H, reaction of a compound of formula IIA.

$$R^1$$
 R^2
 R^3
 R^4
 R^3

wherein R¹⁻⁴ are as defined above, with a compound of formula III,

5


wherein R^6 and Z are as defined above, in the presence of a Lewis acid or trifluoroacetic acid, and a tri(C_{1-6} alkyl)silane;

- (b) when R⁵ represents OH, reaction of a compound of formula IIA, as defined above, with a compound of formula III, as defined above, in the presence of a Lewis acid;
 - (c) when R³ represents H and R⁵ represents H, treatment of a compound of formula IIB,

$$R^1$$
 R^2 R^4 III

wherein R^1 , R^2 and R^4 are as defined above, with a Grignard reagent, followed by reaction with a compound of formula III, as defined above, followed by treatment with a Lewis acid or trifluoroacetic acid, and a tri(C_{1-6} alkyl)silane;

(d) when R³ represents H and R⁵ represents H, treatment of a compound of formula IIB, as defined above, with a Grignard reagent, followed by reaction with a compound of formula IV,

15

25

wherein R⁶ and Z are as defined above, and Hal represents halogen;

- (e) when R⁵ represents H, reaction of a compound of formula IIA, as defined above, with a compound of formula IV, as defined above, in the presence of a hindered, non-nucleophilic base;
- 20 (f) reacting a compound of formula I, in which R¹ represents Br, with CO gas in the presence of a palladium catalyst and a reducing agent, to provide the corresponding compound of formula I in which R¹ represents CHO;
 - (g) reacting a compound of formula I, in which R^1 represents Br, with CO gas in the presence of a palladium catalyst and a C_{1-6} alkanol, to provide the corresponding compound of formula I in which R^1 represents $CO_2(C_{1-6}$ alkyl);
 - (h) coupling a compound of formula I in which Z represents CO₂H with a compound of formula VI,

6

H₂NSO₂Ar³

VI

wherein Ar^3 is as defined above, to provide the corresponding compound of formula I in which Z represents $CONHSO_2Ar^3$; or

(i) reacting a compound of formula I, in which R¹ represents Br, with an alkyl lithium reagent and quenching with dimethylformamide or carbon dioxide, to give a corresponding compound in which R¹ represents CHO or CO₂H respectively;

and where desired or necessary converting the resulting compound of formula I into a pharmaceutically acceptable derivative thereof or vice versa.

In process (a), suitable Lewis acids include boron trifluoride diethyletherate. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example dichloromethane, at a temperature below room temperature, for example -40 to -78°C. A preferred tri(C₁₋₆ alkyl)silane is triethylsilane. Intermediate compounds in which R⁵ represents OH may be isolated from this process.

15

()

In process (b), suitable Lewis acids include boron trifluoride diethyletherate. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example dichloromethane, at a temperature below room temperature, for example -40 to -78°C. The reaction is followed by basic work up.

20

25

30

In process (c), suitable Grignard reagents include methylmagnesium iodide. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example toluene, below room temperature, for example -70°C. Suitable Lewis acids include boron trifluoride diethyletherate. The acid treatment may be carried out in a solvent which does not adversely affect the reaction, for example dichloromethane, at a temperature of 0° C to room temperature. A preferred tri(C_{1-6} alkyl)silane is triethylsilane.

In process (d), suitable Grignard reagents include methylmagnesium iodide. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example toluene, at or around room temperature. The reaction mixture may be worked up with a weak acid such as aqueous ammonium chloride. Hal is preferably Br.

7

In process (e), suitable hindered non-nucleophilic bases include 2,6-dimethylpyridine. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example dimethylformamide, at an elevated temperature, for example 80°C.

- In process (f), suitable palladium catalysts include dichlorobis(triphenylphosphine)-palladium(II). Suitable reducing agents include sodium formate. The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example dimethylformamide, at an elevated temperature, for example 110°C.
- In process (g), suitable palladium catalysts include dichlorobis(triphenylphosphine)-palladium(II). The reaction is preferably carried out in a solvent which does not adversely affect the reaction, for example dimethylformamide, at an elevated temperature, for example the reflux temperature of the reaction mixture.
- In process (h), the reaction may be facilitated by the use of conventional coupling agents, for example N,N-carbonyl diimidazole. When using this agent, the acid is first reacted with the agent (for example in dichloromethane at the reflux temperature of the solvent), and then the product of this reaction is reacted with the amine (preferably in the presence of a strong hindered amine base such as 1,8-diazabicyclo[5.4.0]undec-7-ene, in a solvent such as dichloromethane at the reflux temperature of the solvent). An alternative agent is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide which reacts at room temperature.

In process (i), suitable alkyl lithium reagents include n-butyl lithium. The reaction is carried out by adding the alkyl lithium reagent to the compound of formula I in a solvent such as tetrahydrofuran, at a temperature below room temperature (for example -40 to -78°C), and stirring for about 2 hours. Dimethylformamide or solid carbon dioxide is then added and the reaction mixture allowed to warm to room temperature.

Compounds of formulae IIA, IIB, III, IV and VI are either known or may be prepared by conventional methods well known to those skilled in the art. For example, compounds of formulae IIA and IIB may be prepared by the Fischer, Reissert and Madelung syntheses. In addition, International Patent Application WO 94/14434 discloses a number of routes to

(3)

ρ

2-carboxy indole derivatives (see page 8 onwards) which may be decarboxylated readily (using copper and quinoline) to give compounds of formulae IIA or IIB in which R⁴ is H, or reduced to give compounds of formulae IIA or IIB in which R⁴ is alkyl. Other methods for the preparation of indoles are described by Moyer et al, J Org Chem, 1986, 51, 5106-5110; Wender et al, Tetrahedron, 1983, 39 N° 22, 3767-3776; Uhle, J Am Chem Soc, 1949, 71, 761; Uhle et al, J Am Chem Soc, 1960, 82, 1200; Nagasaka et al, Heterocycles, 1977, 8, 371; Bowman et al, J Chem Soc, Perkin Trans 1, 1972, 1121; Bowman et al, J Chem Soc, Perkin Trans 1, 1972, 1926; and Clark et al, Heterocycles, 1984, 22, 195.

10 Compounds of formula III in which R⁶ is an electron-rich group (for example 1,3-benzodioxole) and Z is CO₂CH₂CH₃ may be prepared by a Friedel-Crafts acylation between a compound of formula R⁶H and the compound of formula ClCOCO₂CH₂CH₃. The reaction is preferably carried out in the presence of a Lewis acid (for example AlCl₃), in a solvent which does not adversely affect the reaction, for example dichloromethane, below room temperature (for example 0°C).

Compounds of formula III in which R⁶ is not an electron-rich group (for example groups substituted by halogen or OH) and Z is CO₂CH₃ may be prepared by reaction of a compound of formula R⁶Li with a compound of formula CH₃OCOCO₂CH₃. The reaction may be carried out in a solvent which does not adversely affect the reaction, for example tetrahydrofuran, below room temperature (for example -40°C to -78°C).

Compounds of formula R⁶Li may be prepared by reacting a compound of formula R⁶Br and butyl lithium. The reaction may be carried out in a solvent which does not adversely affect the reaction, for example tetrahydrofuran, below room temperature (for example -78°C).

Compounds of formula IV may be prepared by halogenating the corresponding alcohol with an agent such as hydrobromic acid. When Z represents $CO_2(C_{1-6} \text{ alkyl})$, compounds of formula $R^6CH(OH)Z$ may be prepared by reacting an aldehyde of formula R^6CHO with bromoform under basic conditions, and treating the crude carboxylic acid intermediate with a C_{1-6} alkanol.

20

30

()