AT 006 351 U1

Repub1ik
sterreich
Patentamt

[

(10) Nummer: AT 006 351 Ul

a GEBRAUCHSMUSTERSCHRIFT

(21) Anmeldenummer: GM 8055/02
(22) Anmeldetag: 17. 5.2001
(42) Beginn der Schutzdauer: 15. 7.2003

Langste mbgliche Dauer: 31. 5.2011
(45) Ausgabetag: 25. 8.2003

s1) mt.c1.” : GO6F 13/00

(67) Umwandlung aus Patentanmeldung: 790/2001

(73) Gebrauchsmusterinhaber:

ERICSSON ENTERPRISE GMBH
A-1121 WIEN (AT).

(72) Erfinder:

BEDA ENDRE

WIEN (AT),

GRUY PETER .

MAUERBACH, NIEDEROSTERREICH (AT),
TODOROV VALENTIN

WIEN (AT).

(54) VERFAHREN ZUR PROGRAMMIERUNG BZW. ZUM MANAGEMENT VON KOMMUNIKATIONSNETZEN

(57) Verfahren zur Programmierung bzw. zum Management
von Kommunijkationsnetzen, insbesondere von
Nebenstellenanlagen (1), in einer Umgebung, welche
abstrakte Datentypen (52), insbesondere Managed Objects
(27) als Abstraktion der Ressourcen (6) = des

Kommunikationsnetzes bereitstellt, die vorzugsweise in

einer Sammlung, insbesondere in einer Management

Information Base (MIB) vorliegen, wobei die Datentypen

(62) bzw. die Managed Objects (27) {iber ein Management

Interface mit dem Kommunikationsnetz kommunizieren bzw.

Funktionsdaten (25) austauschen konnen, und wobei die

Datentypen (52) bzw. die Managed Objects (27) in einer

Programmiersprache implementiert sind und

Managementkommandos (52°) fir den Zugriff auf die

Datentypen (52) bzw. die Managed ~Objects (27)

bereitstellen, ~ wobei ein Interpretierer und

Zugriffskommandos (51) auf die‘Datent{?en (52) bzw. die

Managed Objects (27) bereitgestellt werden, die

Zugriffskommandos (51) an den Interpretierer (bergeben

werden, die Zugriffskommandos (51) durch = den

Interpretierer automatisch in ein bzw. mehrere

Managementkommandos (51°) (bersetzt werden und die

entsprechenden Managementkommandos (51’) an den

Datentypen (52) bzw. den Managed Objects (27)

automatisch ausgefiihrt werden.

DVR 0078018

meriacer>
Tplewtd
tomdrabs

AT 006 351 U1

Die Erfindung betrifft eine Programmlogik zur Programmierung bzw. zum
Management von Kommunikationsnetzen, insbesondere von Nebenstellenanlagen, in einer
Umgebung, welche abstrakte Datentypen, insbesondere Managed Objects als Abstraktion der
Ressourcen des Kommunikationsnetzes bereitstellt, die vorzugsweise in einer Sammlung,
insbesondere in einer Management Information Base (MIB) vorliegen, wobei die Datentypen
bzw. die Managed Objects iiber ein Management Interface mit dem Kommunikationsnetz
kommunizieren bzw. Funktionsdaten austauschen konnen, und wobei die Datentypen bzw.
die Managed Objects in einer Programmiersprache implementiert sind und Management-
kommandos fiir den Zugriff auf die Datentypen bzw. die Managed Objects bereitstellen.

Eine solche Programmlogik ist insbesondere im Bereich von Nebenstellenanla-
gen bekannt. Die Programmierung erfolgt iiber den Zugriff auf die Managed Objects, d.h.
iiber den Zugriff auf ein im Computer gespeichertes Abbild der Funktionsdaten der Neben-
stellenanlage. Der Zugriff erfolgt iiber eine Benutzeroberfliche, die die unmittelbare Eingabe
bzw. Verinderung des Abbildes der Funktionsdaten erlaubt.

Nachteilig bei der bekannten Programmlogik erweist sich die Schwierigkeit,
ofters anfallende Programmier- bzw. Konfigurationsarbeiten automatisch durchzufiihren. Die
im Stand der Technik bekannte Methode, wiederkehrende Benutzereingaben auf der Benut-
seroberfliche in Form von Makros abzuspeichern, stoft insbesondere bei Anderungen in der
Struktur der Benutzeroberfliche auf ihre Grenzen, da dann éltere Makros nicht mehr verwen-
det werden kénnen. Dies macht die Programmierung dem raschen technologischen Fortschritt
und somit hiufigen Anpassungen unterworfener Telekommunikationsanlagen duBerst kom-
pliziert und zeitlich aufwendig.

Es ist Aufgabe der vorliegenden Erfindung, eine Programmlogik der eingangs
angefiihrten Art anzugeben, welche diese Nachteile beseitigt und die automatische, von einer
bestimmten Benutzeroberfliche unabhingige Programmierung von Telekommunikationsan-

lagen erméglicht.

ErfindungsgemiB wird dies dadurch erreicht, daB ein Interpretierer und Zu-
griffskommandos auf die Datentypen bzw. die Managed Objects bereitgestellt werden, die
Zugriffskommandos an den Interpretierer iibergeben werden, die Zugriffskommandos durch
den Interpretierer automatisch in ein bzw. mehrere Managementkommandos iibersetzt werden
und die entsprechenden Managementkommandos an den Datentypen bzw. den Managed Ob-
jects automatisch ausgefiihrt werden.

Dadurch ergibt sich die Méglichkeit, das Kommunikationsnetz ausschlieBlich
iiber die Zugriffskommandos und somit unabhéngig von einer Benutzeroberfliche zu pro-
grammieren. Die Zugriffskommandos konnen in jedem Texteditor erstellt werden. Dies er-
laubt die schnelle Anpassung bestehender Konfigurationsprogramme an neue Hardware-
Einheiten des Kommunikationsnetzes bzw. der Nebenstellenanlage. Die Zugriffskommandos
konnen auch nach Integration neuer Ressourcen in das Kommunikationsnetz oder nach der
Erstellung einer vollig neuen Benutzeroberflache weiter verwendet werden. Zusitzlich ergibt

2

AT 006 351 U1

sich beim erfindungsgemifen Zugriff auf die Managed Objects der Vorteil, daB die Hard-
ware-Struktur des Kommunikationsnetzes eine Entsprechung in der Struktur des Datenmo-
dells findet. Die Konfiguration der Ressourcen wird so erheblich tibersichtlicher. Dies erlaubt
eine einfachere und schnellere Entwicklung von Konfigurationsprogrammen. Durch den ob-
jektorientierten Ansatz konnen beispielsweise Fehler in der Programmierung leichter gefun-
den werden. Weiters stellen die objektorientierten Datenmodelle eine betrichtliche Erleichte-
rung bei der Erstellung neuer und bei der Wartung bestehender Konfigurationsprogramme
dar, sodaB das Kommunikationsnetz leichter und schneller programmiert werden kann. Der
ZusammenschluB aller die Ressourcen darstellenden Datenmodelle in einer Sammlung erlaubt
das einfache und schnelle Auffinden der Datenmodelle und somit die schnellere Ausfiihrung
der Zugriffskommandos. Desweiteren ergibt sich die dadurch Méglichkeit, dem Benutzer eine
Auswahl aller derzeit Kommunikationsnetz integrierter Hardware-Einheiten anzuzeigen. Dies
triigt zu einer iibersichtlicheren und einfacheren Benutzung bei.

GemiB einer weiteren Variante der Erfindung kann vorgesehen sein, daB bei
der Ubersetzung der Zugriffskommandos zusitzliche Benutzerangaben eingelesen werden
und diese bei der Ubersetzung in die Managementkommandos beriicksichtigt werden. Dies
ermoglicht es, Zugriffskommandos abhingig von den realen Ressourcen anzupassen und ab-
hingig von der individuellen Situation unterschiedlich auszufithren. Damit ergibt sich die
Maoglichkeit einer bedeutend flexibleren Programmierung des Kommunikationsnetzes.

Nach einer anderen Ausfiihrungsform der Erfindung kann vorgesehen sein, da3
mehrere Zugriffskommandos in ein Kommandoskript zusammengefat werden. Dies erlaubt
die schnelle, automatische Abarbeitung einer groBen Anzahl von Zugriffskommandos bei
ofters anfallenden Konfigurationsarbeiten.

GemiB einer weiteren Variante der Erfindung kann vorgesehen sein, daB
Kommandoskripts in ein Skriptdepot geladen bzw. aus diesem abgerufen werden. Dadurch
kénnen haufig verwendete Kommandoskripts schneller aufgefunden werden.

Nach einer anderen Ausfithrungsform der Erfindung kann vorgesehen sein, daf3
Zugriffskommandos zunéchst automatisch durch Auslesen der Datentypen bzw. der Managed
Objects eines bereits programmierten Kommunikationsnetzes erzeugt werden und in einem
speziellen Kommandoskript, einem sogenannten Template zusammengefat werden und die-
ses Template zur Programmierung eines weiteren Kommunikationsnetzes verwendet wird.
Dadurch kann ein neu installiertes Kommunikationsnetz, z.B. eine neue Nebenstellenanlage
in einem Schritt durch Ubernahme der Programmstruktur einer bestehenden Anlage automa-
tisch programmiert werden. '

In Weiterbildung der Erfindung kann vorgesehen sein, daB die Ubersetzung der
Zugriffskommandos und die Ausfilhrung der Managementkommandos durch einen Server-
Prozess umgesetzt werden und Benutzereingaben von einem Client-Prozess eingelesen wer-
den, wobei der Client-Prozess und der Server-Prozess iiber eine Schnittstelle miteinander
kommunizieren. Dadurch wird erreicht, da8 der Client-Prozess und Server-Prozess auf drtlich
getrennten Computern laufen kénnen. Dies ist besonders bei der Fernwartung von Telekom-

3

AT 006 351 Ul

munikationsanlagen vorteilhaft, da die Wartung einer ortlich entfernten Telekommunikations-
anlage iiber einen lokal laufenden Client-Prozess erfolgen kann, der mit einem auf einem mit
der Telekommunikationsanlage verbundenen Computer laufenden Server-Prozess kommuni-
ziert.

Nach einer anderen Ausgestaltung der Erfindung kann vorgesehen sein, daf
der Client-Prozess und der Server-Prozess iiber ein Netzwerkprotokoll, insbesondere tiber das
im Internet relevante TCP/IP Protokoll miteinander kommunizieren. Dies bietet den Vorteil,
daB die Verbindung der Computer, auf denen der Client-Prozess und der Server-Prozess lau-
fen iiber ein Datennetzwerk wie das Intemnet erfolgen kann.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, dafl die Kom-
munikation zwischen dem Client-Prozess und dem Server-Prozess iiber einen Web-Server
erfolgt. Dies erlaubt es, die Fernwartung einer Telekommunikationsanlage iiber einen bei-
spielsweise als Browser-Applikation laufenden Client-Prozess durchzufiihren.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, daf} der Status
des Server-Prozesses regelmiBig vom Client-Prozess abgefragt wird. Damit kann der Benut-
zer auch bei Einwegverbindungen, bei denen keine Anfrage des Server-Prozesses an den Cli-
ent-Prozess moglich sind, sofort iiber den Status des Server-Prozesses informiert werden und
gegebenentfalls zur Eingabe entsprechender Anweisungen aufgefordert werden.

Die Erfindung betrifft weiters ein Verfahren zur Programmierung bzw. zum
Management von Kommunikationsnetzen, insbesondere von Nebenstellenanlagen, in einer
Umgebung, welche abstrakte Datentypen, insbesondere Managed Objects als Abstraktion der
Ressourcen des Kommunikationsnetzes bereitstellt, die vorzugsweise in einer Sammlung,
insbesondere in einer Management Information Base (MIB) vorliegen, wobei die Datentypen
bzw. die Managed Objects iiber ein Management Interface mit dem Kommunikationsnetz
kommunizieren bzw. Funktionsdaten austauschen kénnen, und wobei die Datentypen bzw.
die Managed Objects in einer Programmiersprache implementiert sind und Management-
kommandos fiir den Zugriff auf die Datentypen bzw. die Managed Objects bereitstellen.

Solche Verfahren sind insbesondere im Bereich von Nebenstellenanlagen be-
kannt. Die Programmierung erfolgt iiber den Zugriff auf die Managed Objects, d.h. iiber den
Zugriff auf ein im Computer gespeichertes Abbild der Funktionsdaten der Nebenstellenanla-
ge. Der Zugriff erfolgt iiber eine Benutzeroberfliche, die die unmittelbare Eingabe bzw. Ver-
anderung des Abbildes der Funktionsdaten erlaubt. '

Nachteilig bei den bekannten Programmierverfahren erweist sich die Schwie-
rigkeit, 6fters anfallende Programmier- bzw. Konfigurationsarbeiten automatisch durchzufiih-
ren. Die im Stand der Technik bekannte Methode, wiederkehrende Benutzereingaben auf der
Benutzeroberfliche in Form von Makros abzuspeichem, stoft insbesondere bei Anderungen
in der Struktur der Benutzeroberfliche auf ihre Grenzen, da dann #ltere Makros nicht mehr
verwendet werden konnen. Dies macht die Programmierung dem raschen technologischen

AT 006 351 U1

Fortschritt und somit hiufigen Anpassungen unterworfener Telekommunikationsanlagen 4u-
Berst kompliziert und zeitlich aufwendig.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs ange-
fiihrten Art anzugeben, das diese Nachteile beseitigt und die automatische, von einer be-
stimmten Benutzeroberfliche unabhingige Programmierung von Telekommunikationsanla-
gen ermoglicht.

Erfindungsgemi wird dies dadurch erreicht, da ein Interpretierer und Zu-
griffskommandos auf die Datentypen bzw. die Managed Objects bereitgestellt werden, die
Zugriffskommandos an den Interpretierer iibergeben werden, die Zugriffskommandos durch
den Interpretierer automatisch in ein bzw. mehrere Managementkommandos iibersetzt werden
und die entsprechenden Managementkommandos an den Datentypen bzw. den Managed Ob-
jects automatisch ausgefiihrt werden.

Dadurch ergibt sich die M6glichkeit, das Kommunikationsnetz ausschlieSlich
iiber die Zugriffskommandos und somit unabhéngig von einer Benutzeroberfliche zu pro-
grammieren. Die Zugriffskommandos kénnen in jedem Texteditor erstellt werden. Dies er-
laubt die schnelle Anpassung bestehender Konfigurationsprogramme an neue Hardware-
Einheiten des Kommunikationsnetzes bzw. der Nebenstellenanlage. Die Zugriffskommandos
kénnen auch nach Integration neuer Ressourcen in das Kommunikationsnetz oder nach der
Erstellung einer vollig neuen Benutzeroberfliche weiter verwendet werden. Zusitzlich ergibt
sich beim erfindungsgemiBen Zugriff auf die Managed Objects der Vorteil, daB die Hard-
ware-Struktur des Kommunikationsnetzes eine Entsprechung in der Struktur des Datenmo-
dells findet. Die Konfiguration der Ressourcen wird so erheblich iibersichtlicher. Dies erlaubt
eine einfachere und schnellere Entwicklung von Konfigurationsprogrammen. Durch den ob-
jektorientierten Ansatz kénnen beispiclsweise Fehler in der Programmierung leichter gefun-
den werden. Weiters stellen die objektorientierten Datenmodelle eine betriichtliche Erleichte-
rung bei der Erstellung neuer und bei der Wartung bestehender Konfigurationsprogramme
dar, sodal das Kommunikationsnetz leichter und schneller programmiert werden kann. Der
Zusammenschluf} aller die Ressourcen darstellenden Datenmodelle in einer Sammlung erlaubt
das einfache und schnelle Auffinden der Datenmodelle und somit die schnellere Ausfiihrung
der Zugriffskommandos. Desweiteren ergibt sich die dadurch Méglichkeit, dem Benutzer eine
Auswahl aller derzeit Kommunikationsnetz integrierter Hardware-Einheiten anzuzeigen. Dies
trégt zu einer iibersichtlicheren und einfacheren Benutzung bei.

GemiB einer weiteren Variante der Erfindung kann vorgesehen sein, da8 bei
der Ubersetzung der Zugriffskommandos zusitzliche Benutzerangaben eingelesen werden
und diese bei der Ubersetzung in die Managementkommandos beriicksichtigt werden. Dies
ermdglicht es, Zugriffskommandos abhingig von den realen Ressourcen anzupassen und ab-
hingig von der individuellen Situation unterschiedlich auszufiihren. Damit ergibt sich die
Moglichkeit einer bedeutend flexibleren Programmierung des Kommunikationsnetzes.

Nach einer anderen Ausfiihrungsform der Erfindung kann vorgesehen sein, da3
mehrere Zugriffskommandos in ein Kommandoskript zusammengefat werden. Dies erlaubt

5

AT 006 351 U1

die schnelle, automatische Abarbeitung einer groBen Anzahl von Zugriffskommandos bei
ofters anfallenden Konfigurationsarbeiten.

GemiB einer weiteren Variante der Erfindung kann vorgesehen sein, daB
Kommandoskripts in ein Skriptdepot geladen bzw. aus diesem abgerufen werden. Dadurch
konnen hiufig verwendete Kommandoskripts schneller aufgefunden werden.

Nach einer anderen Ausfiihrungsform der Erfindung kann vorgesehen sein, dafl
Zugriffskommandos zunichst automatisch durch Auslesen der Datentypen bzw. der Managed
Objects eines bereits programmierten Kommunikationsnetzes erzeugt werden und in einem
speziellen Kommandoskript, einem sogenannten Template zusammengefalt werden und die-
ses Template zur Programmierung eines weiteren Kommunikationsnetzes verwendet wird.
Dadurch kann ein neu installiertes Kommunikationsnetz, z.B. eine neue Nebenstellenanlage
in einem Schritt durch Ubernahme der Programmstruktur einer bestehenden Anlage automa-
tisch programmiert werden.

In Weiterbildung der Erfindung kann vorgesehen sein, da8 die Ubersetzung der
Zugriffskommandos und die Ausfihrung der Managementkommandos durch einen Server-
Prozess umgesetzt werden und Benutzereingaben von einem Client-Prozess eingelesen wer-
den, wobei der Client-Prozess und der Server-Prozess iiber eine Schnittstelle miteinander
kommunizieren. Dadurch wird erreicht, daB der Client-Prozess und Server-Prozess auf ortlich
getrennten Computern laufen konnen. Dies ist besonders bei der Fernwartung von Telekom-
munikationsanlagen vorteilhaft, da die Wartung einer ortlich entfernten Telekommunikations-
anlage iiber einen lokal laufenden Client-Prozess erfolgen kann, der mit einem auf einem mit
der Telekommunikationsanlage verbundenen Computer laufenden Server-Prozess kommuni-
ziert.

Nach einer anderen Ausgestaltung der Erfindung kann vorgesehen sein, dafl
der Client-Prozess und der Server-Prozess iiber ein Netzwerkprotokoll, insbesondere iiber das
im Internet relevante TCP/IP Protokoll miteinander kommunizieren. Dies bietet den Vorteil,
daB die Verbindung der Computer, auf denen der Client-Prozess und der Server-Prozess lau-
fen iiber ein Datennetzwerk wie das Internet erfolgen kann.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, dafl die Kom-
munikation zwischen dem Client-Prozess und dem Server-Prozess iiber einen Web-Server
erfolgt. Dies erlaubt es, die Fernwartung einer Telekommunikationsanlage iiber einen bei-
spielsweise als Browser-Applikation laufenden Client-Prozess durchzufiihren.

In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, dal3 der Status
des Server-Prozesses regelmiBig vom Client-Prozess abgefragt wird. Damit kann der Benut-
zer auch bei Einwegverbindungen, bei denen keine Anfrage des Server-Prozesses an den Cli-
ent-Prozess moglich sind, sofort iiber den Status des Server-Prozesses informiert werden und
gegebenenfalls zur Eingabe entsprechender Anweisungen aufgefordert werden.

AT 006 351 U1l

Weiters sind Computer und ein Computerprogramm bekannt, das auf einem
computergeeigneten Medium gespeichert ist bzw. das in den internen Speicher eines Compu-
ters geladen werden kann.

Diese Computer und Computerprogramme sind im Zusammenhang mit der
Programmierung von Telekommunikationsanlagen aus dem Stand der Technik bekannt, wei-
sen aber allesamt die weiter oben im Zusammenhang mit einer bekannten Programmierlogik
genannten Nachteile bei der automatischen Ausfithrung von Konfigurationsarbeiten auf.

Es ist folglich eine weitere Aufgabe der Erfindung, ein Computersystem der
angefiihrten Art vorzustellen, das diese Nachteile beseitigen und das die automatische, von
einer bestimmten Benutzeroberfliche unabhingige Programmierung von Telekommunikati-
onsanlagen erméglicht.

In diesem Zusammenhang betrifft die Erfindung ein Computersystem auf wel-
chem eine Anwendung lduft. Die der Erfindung zugrunde liegende Aufgabe wird dadurch
gelost, da es die Anwendung die Programmierung bzw. das Management eines Kommuni-
kationsnetzes gemiB einer Programmlogik nach einem der Anspriiche 1-9 umsetzt.

In weiterer Folge betrifft die Erfindung ein Computersystem, auf welchem ein
Client-Prozess lauft, der mit einem, vorzugsweise auf einem anderen Computersystem lau-
fendem Server-Prozess iiber eine Schnittstelle kommuniziert. Die der Erfindung zugrunde
liegende Aufgabe wird dadurch gelost, daB der Server-Prozess die Ubersetzung der Zugriffs-
kommandos und die Ausfiihrung der Managementkommandos zur Programmierung bzw. zum
Management eines Kommunikationsnetzes gemiB einer Programmlogik nach einem der An-
spriiche 6-9 umsetzt.

In weiterer Folge betrifft die Erfindung ein Computersystem auf welchem ein
Server-Prozess lduft, der mit einem, vorzugsweise auf einem anderen Computersystem lau-
fendem Client-Prozess iiber eine Schnittstelle kommuniziert. Die der Erfindung zugrunde
liegende Aufgabe wird hier dadurch geldst, daB der Server-Prozess die Ubersetzung der Zu-
griffskommandos und die Ausfilhrung der Managementkommandos zur Programmierung
bzw. zum Management eines Kommunikationsnetzes gemiB einer Programmlogik nach ei-
nem der Anspriiche 6-9 umsetzt.

Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen,
in welchen besonders bevorzugte Ausfiihrungsbeispiele dargestellt sind, ndher beschrieben.
Dabei zeigt:

Fig. 1 eine Prinzip-Skizze der Hardware-Struktur eines typischen Kommuni-
kationsnetzes bzw. einer typischen Nebenstellenanlage 1;

Fig. 1a den Aufbau einer typischen Nebenstellenanlage 1;

Fig. 1b den Aufbau einer typischen Hardware-Einheit 6;

Fig. 2 eine Prinzip-Skizze des Aufbaus der Steuerungssoftware einer typischen
Nebenstellenanlage 1;

AT 006 351 Ul

Fig. 3 eine weitere Prinzip-Skizze der Software-Struktur einer typischen Ne-
benstellenanlage 1 beim Anschluf3 an ein externes Computersystem 24.

Fig. 3a die Struktur einer im Stand der Technik bekannten Programmierumge-
bung fiir Kommunikationsnetze;

Fig. 4 die Struktur eines erfindungsgemifen Datentyps 52;

Fig. 4a eine vereinfachte Skizze der hierarchischen Struktur mehrerer erfin-
dungsgemaBer Datentypen 52;

Fig. 5 die Struktur einer weiteren im Stand der Technik bekannten Program-
mierumgebung fiir Kommunikationsnetze;

Fig. 5a eine weitere Skizze der hierarchischen Struktur mehrerer erfindungs-
gemiBer Datentypen 52;

Fig. 6 die Struktur einer erfindungsgemiflen Programmierumgebung fiir
Kommunikationsnetze;

Fig. 7 ein Objekt-Netz einer erfindungsgemaBen Skript-Umgebung fiir die Pro-
grammierung von Kommunikationsnetzen;

Fig. 8a den zeitlichen Ablauf bei der Abarbeitung eines erfindungsgemiBen
Kommandoskripts 50;

Fig. 8b den Ablauf der Wechselwirkung mit einem Benutzer 41 fiir den Fall,
daB eine Eingabe des Benutzers 41 erforderlich ist; und

Fig. 8¢ den Ablauf der Wechselwirkung mit einem Benutzer 41 fiir den Fall,
daB ein Fehler bei der Ausfiihrung eines Kommandoskripts 50 aufgetreten ist.

1 Einleitung

1.1 Kommunikationsnetze

Die Erfindung steht im Zusammenhang mit der Wartung von Kommunikati-
onsnetzen wie z.B. Telekommunikationsanlagen bzw. Nebenstellenanlagen 1 in Firmennet-

Zen.

Mit Telekommunikationsanlage wird dabei ein Zusammenschlu3 von mehreren
Hardware-Einheiten bzw. Ressourcen 6 zu einem zentral steuerbaren System in der Tele-
kommunikation bezeichnet. Solche Telekommunikationsanlagen sind in den verschiedensten
Bereichen der Telekommunikation eingesetzt. Als Beispiel seien hier genannt die Integration
von Telefondiensten mit Computerdiensten (engl: Computer Telephony Integration, CTI), die
mobile Kommunikation im Haus, die Bereitstellung von Nebenstellenfunktionen in UMTS
Netzen (Mobile Enterprise Projekte), oder die Sprachiibertragung iiber Datenkanile (engl:
Voice over IP) in lokalen Netzen (engl: Lokal Area Network, LAN). In diesen Féllen umfas-
sen die Hardware-Einheiten auch die einzelnen Server und Zugriffsknoten (engl: access
nodes).

AT 006 351 U1

Der Begriff Kommunikationsnetz ist noch etwas weiter und bezeichnet im fol-
genden jedweden Zusammenschlufl von mehreren Ressourcen 6 zu einem zentral steuerbaren
System. In diesem Sinn sind auch allgemeine Systeme von miteinander kommunizierenden
Ressourcen 6 wie z.B. ein Computernetz oder auch ein einzelner Computer als Kommunikati-
onsnetz im Sinn der Erfindung zu verstehen. Als Ressourcen 6 sind in diesem Sinn sowohl
physikalische Gegenstéinde wie beispielsweise Hardware-Einheiten oder Teile einer Kommu-
nikationsausriistung als auch logische Gegenstinde wie z.B. Programme oder Kommunikati-
onsverbindungen zu sehen.

1.2 Nebenstellenanlagen

Als ein spezielles Beispiel eines Kommunikationsnetzes, das in den Anwen-
dungsbereich der Erfindung fillt, sollen im folgenden Nebenstellenanlagen 1 niher beschrie-
ben werden. Diese stellen jedoch nur eines von vielen méglichen Beispielen fiir ein Kommu-
nikationsnetz dar. Das erfindungsgemiBe Verfahren kann zur Programmierung bzw. zum
Management von allgemeinen Kommunikationsnetzen verwendet werden.

Im allgemeinen umfassen Nebenstellenanlagen 1 Hardware-Einheiten bzw.
Ressourcen 6 unterschiedlicher Kategorien. So umfassen typische Nebenstellenanlagen neben
den eigentlichen Telefonapparaten bzw. sonstigen Endgeréten wie Displays, Kameras, Mikro-
fone oder sonstigen Ein-/Ausgabegeriten im allgemeinen noch weitere, fiir den Betrieb der
Nebenstellenanlage 1 wichtigen Anlagen, wie z.B. Computeranschliisse, etc.

Dabei existieren Nebenstellenanlagen 1 in sehr verschiedenen GréSenordnun-
gen. Angefangen von kleinen Anlagen mit etwa zehn Anschliissen flir den Gebrauch in Woh-
nungen und Einfamilienhiusern, iiber firmeninterne Anlagen, wie z.B. die ASB 150 02 Busi-
nessPhone Systeme der Ericsson GmbH mit bis zu etwa 300 Teilnehmern, existieren Neben-
stellenanlagen 1 bis hin zu groBen, im folgenden als Corporate Network bezeichneten, Anla-
gen mit bis zu 10000 in unterschiedlichen Netzen verteilten Ressourcen 6.

1.2.1 Hardware

Im allgemeinen weisen Nebenstellenanlagen 1 eine Hardware-Struktur auf, die
der in Fig. 1 skizzierten dhnlich ist. Dabei erfolgt die Steuerung der Anlage liber eine zentrale
Funktionskarte, welche unter anderem einen zentralen Prozessor CPU 2, die Systemuhr 5,
einen Bus-Controller 7 und die Stromversorgung 8 enthilt. Ein weiteres Kemnstiick der zen-
tralen Hardware ist das Koppelfeld 7' (engl. switch), welches das Durchschalten der einzelnen
Einginge und Ausginge der Nebenstellenanlage 1 kontrolliert.

Diese zentrale Hardware kommuniziert iiber ein Bussystem 3 mit der regiona-
len Hardware bzw. den einzelnen Ressourcen 6. Als regionale Hardware kénnen unterschied-
liche Funktionskarten bzw. Ressourcen 6 mit dem System verbunden werden. Sie enthalten
meist einen regionalen Prozessor 2' zur Steuerung der Funktionskarte sowie Schnittstellen zu
Nebenstellen, Ubertragungskanélen etc.

AT 006 351 U1

Fig. 1a zeigt etwas ausfiihrlicher die typische Struktur eines BusinessPhone
Systems. Die Nebenstellenanlagel umfaBt neben einer zentralen CPU 2 mehrere Hardware-
Einheiten bzw. Ressourcen 6. Fig. 1a zeigt dabei lediglich die Anschluflbelegung. Den unter-
schiedlichen Anschliisse zur CPU-D4 entspricht eine reale zentrale CPU 2. Die Hardware-
Einheiten sind insbesondere durch Funktionskarten wie z.B. gedruckten Schaltkreisen, Leiter-
platten etc. gebildet. Die Funktionskarten weisen Anschliisse bzw. Schnittstellen zu den un-
terschiedlichen Endgerdten wie Fax- und Telefonapparaten oder auch zu Ubertragungskanilen
wie ISDN-Abschliissen oder Ethernet-Anschliissen auf.

Die Hardware-Einheiten bzw. Ressourcen 6 sind im allgemeinen unterschied-
lich ausgestaltet und weisen je nach Verwendungszweck unterschiedliche Funktionsumfinge
auf, wobei mehrere Ressourcen 6 der selben Kategorie in einer Nebenstellenanlage 1 inte-
griert werden konnen. Beispielsweise konnen mehrere gleichartige Funktionskarten fiir den
Anschluf} analoger Telefonapparate vorgesehen sein. Weiters kénnen Zwischenknoten vorge-
sehen sein, die die Steuerung von weiteren Hardware-Einheiten bzw. Ressourcen 6 gewihr-
leisten und somit eine physikalische und logische Baumstruktur der Nebenstellenanlage defi-
nieren.

Die einzelnen Hardware-Einheiten bzw. Ressourcen 6 kommunizieren in Fig.
1a iiber das Bussystem 3. Das Bussystem 3 umfaft beispielsweise einen Synchronisationsbus
(Clock-Bus), einen Funktions-Kontrollbus (FC-Bus), einen System-Kommunikationsbus (SC-
Bus) und einen PCM-Bus zur Sprachiibertragung.

Die Verbindung der Hardware-Einheiten bzw. Ressourcen 6 zu weiteren End-
geriiten erfolgt iiber allgemeine Leitungen 4. Als Leitungen 4 gelten in diesem Sinn gew6hn-
liche analoge Telefonleitungen, ISDN Leitungen oder auch spezielle Steuerleitungen. Die
Steuerleitungen fiir O&M Aufgaben bzw. fiir Applikationen konnen beispielsweise iiber be-
kannte V.24 Verbindungen realisiert sein. Bei digitalen Netzen kommt vorzugsweise die X.21
Empfehlung zur Anwendung. Dariiberhinaus sind andere Leitungen 4 wie Glasfaserkabel
bzw. Lichtwellenleiter etc. moglich.

Statt {iber ein Bussystem 3, bzw. zusitzlich dazu kann auch die Verbindung der
einzelnen Hardware-Einheiten untereinander iiber die Leitungen 4 erfolgen. Die Verbindung
zwischen den Hardware-Einheiten bzw. Ressourcen 6 bzw. zwischen gréfleren Gruppen von
Hardware-Einheiten bzw. Ressourcen 6 in Corporate Network Umgebungen kann auch iiber
Funk bzw. Satelliteniibertragungssysteme erfolgen. Weiters kann die Verbindungsstruktur
ringférmig (Token-Ring) mit fest vorgegebener Umlaufrichtung oder sternformig sein. Es
koénnen unterschiedliche Busstrukturen vorgesehen sein. Insbesondere bei verteilten Systemen
stellt die Verbindungsstruktur der Nebenstellenanlage 1 fiir gewéhnlich eine Mischstruktur
aus mehreren Topologien dar.

Fig. 1b zeigt den Aufbau einer Hardware-Einheit des weiter oben beschriebe-
nen BusinessPhone Systems. Die skizzierte Karte ELU-A 61 erlaubt die Verbindung mit bis
zu 16 analogen Telefonapparaten 8. Die Karte enthilt neben einem Bus-Controller fiir das
Bussystem 3 einen regionalen Prozessor 2' sowie RAM und EPROM Speicherbausteine 9, 10.

10

AT 006 351 U1

Weiters ist ein analog/digital PCM Dekoder (DSLAC) 11 bzw. eine Codek-Funktion und ein
DTMF Empfinger 12 vorgesehen.

1.2.2 Software

Die Struktur der Systemsoftware einer Nebenstellenanlage ist in Fig. 2 skiz-
ziert. Die Systemsoftware ist in Abstimmung mit der Hardware strukturiert. Ein zentrales
Programm 13 kontrolliert die Schaltlogik und libernimmt die allgemeinen Steuerungsaufga-
ben der Anlage. Dieses zentrale Programm 13 ist in kleinere Programm-Einheiten 14 mit ei-
genen Datenbereichen 15 unterteilt, welche jeweils fiir sich klar definierte Aufgaben iiber-
nehmen, wie. z.B. die Steuerung der Telefonanschliisse oder der Anschliisse zu den externen
Ubertragungswegen, die Auswertung der Gesprachsstatistiken etc.

Die Funktionalitit der Hardware-Einheiten bzw. Ressourcen 6 wird jeweils von
einem oder mehreren regionalen Programmen 16 gesteuert, welche ebenfalls wieder in regio-
nale Programm-Einheiten 17 mit eigenen Datenbereichen 18 unterteilt sein kénnen.

Die Kommunikation der Programm-Einheiten 14, 17 untereinander erfolgt iiber
den Austausch von Nachrichten 19 (Signalen). Dabei iibernimmt ein zentrales Betriebssystem
20 die Verteilung der Nachrichten 19 und gegebenenfalls die Bereitstellung und Uberwa-
chung einer oder mehrerer Warteschlangen 21 fiir die Nachrichten 19.

Es sind aber auch Strukturen méglich, bei denen der Datenaustausch unabhén-
gig von einem zentralen Betriebssystem 20 erfolgt. Die fiir den Signalaustausch erforderliche
Logik ist in diesen Fillen in allen regionalen Programm-Einheiten 17 mit implementiert.

Besonders vorteilhaft ist es, wenn die Kommunikation der Programm-
Einheiten 14, 17 untereinander iiber genau definierte, offene Schnittstellen 23' erfolgt. Dies
erméglicht die Integration von neuen Hardware-Einheiten bzw. Ressourcen 6 unterschiedli-
cher Hersteller in die Telekommunikationsanlage 1 (Multi-Vendor), wobei die Schnittstelle
23' die Kommunikation mit den auf den neuen Hardware-Einheiten bzw. Ressourcen 6 lau-
fenden regionalen Programm-Einheiten 17 erméglicht.

2 Programmierung von Kommunikationsnetzen

2.1 Zugriff auf die Funktionsdaten

Zunichst soll der Begriff der Programmierung naher erldutert werden. Unter
Programmierung ist auf keinen Fall die Erstellung der eben beschriebenen Systemsoftware
einer Nebenstellenanlage 1 zu verstehen. Vielmehr wird mit Programmierung eines Kommu-
nikationsnetzes der Zugriff auf die Funktionsdaten des Kommunikationsnetzes bzw. der ein-
zelnen Ressourcen 6 zur Definition bzw. Verinderung der Funktionalitit einzelner Ressour-
cen 6 oder des gesamten Kommunikationsnetzes bezeichnet. Im Sinne des weiter unten be-
schriebenen OSI System Management ist unter Programmierung somit auch das Management
bzw. das System Management des Kommunikationsnetzes zu verstehen.

Il

AT 006 351 U1

Der Begriff Funktionsdaten 25 steht dabei sowohl fiir Programme, welche in
die verschiedenen Hardware-Einheiten bzw. Ressourcen 6 geladen werden kénnen, beispiels-
weise zentrale und regionale Programme 13, 16 und Programm-Einheiten 14, 17, als auch fir
sonstige, die Funktionalitit der Hardware-Einheiten bzw. Ressourcen 6 beeinflussende Varia-
blen, wie z.B. die zentralen und regionalen Datenbereiche 15, 18. Der Begriff programmierba-
re Funktionsdaten 25 gibt an, daB diese Daten softwaremifig gedndert werden kénnen.

Bei gingigen Nebenstellenanlagen 1 ist die Systemsoftware transparent, d.h.
die Nebenstellenanlage 1 bietet ein Interface bzw. eine Schnittstelle 23 an, iiber welches die
Ressourcen 6 bzw. die Funktionsdaten 25 iiber ein bestimmtes Protokoll angesprochen wer-
den konnen.

Dieser aus Sicht des Anwenders unmittelbare Zugriff auf die Ressourcen 6
stellt die einfachste Form der Programmierung in der Terminologie der Erfindung dar. Bei
diesem einfachsten Verfahren zur Programmierung der Nebenstellenanlage 1 mull der An-
wender nicht iiber die interne Datenverarbeitung der Nebenstellenanlage informiert sein, was
eine von der Systemsoftware unabhingige Programmierung der Kommunikationsanlage er-
laubt.

Nachteilig bei diesem einfachen Verfahren zur Programmierung ergibt sich
unter anderem, daB der Anwender sehr eng an die physikalische Struktur der einzelnen Res-
sourcen 6 gebunden ist. Weiters kann die Programmierung der Nebenstellenanlagen 1 nur
online, d.h. bei unmittelbar angeschlossener Nebenstellenanlage 1 erfolgen.

2.2 Zugriff auf ein externes Abbild der Funktionsdaten

Aus diesem Grund erfolgt die Programmierung gingiger Nebenstellenanlagen
1 meist nicht unmittelbar, sondern iiber den Zugriff auf ein externes Abbild 26 der Funktions-
daten 25. Bei diesem in Fig. 3 skizzierten Verfahren werden die Ressourcen 6 nicht direkt
angesprochen. Bei der Programmierung wird in einem ersten Schritt das externe Abbild 26
der Funktionsdaten 25 verindert und dieses Abbild 26 in einem spéteren Schritt liber die
Schnittstelle 23 auf die Nebenstellenanlage 1 iibertragen.

Auf diese Weise kann die Programmierung auch offline, d.h. ohne unmittelbare
Verbindung mit der Nebenstellenanlage 1 anhand des Abbildes 26 erfolgen. Die Funktions-
daten 25 konnen zu einem spiteren Zeitpunkt,, wenn die Nebenstellenanlage 1 angeschlossen
ist, iibertragen werden. Ein weiterer Vorteil ergibt sich aus dem wesentlich einfacheren Zu-
griff auf die Daten. Da simtliche Funktionsdaten 25 in Form des Abbildes 26 vorliegen, kann
der Zugriff iiber geeignete Datenbankroutinen oder bekannte Oberflachen erfolgen und somit
wesentlich einfacher und schneller als iiber das von der Schnittstelle 23 bereitgestellte Proto-
koll. Der Zugriff wird somit gegentiber der direkten Programmierung wesentlich erleichtert.

Die Bereitstellung eines eigenen Abbildes 26 aller programmierbaren Funkti-
onsdaten 25 fiir die Nebenstellenanlage 1 auf dem externen Computersystem 24 ist fiir die
Programmierung aber auch z.B. fiir die Sicherung der Funktionsdaten 25 vorteilhaft.

AT 006 351 U1

Besonders vorteilhaft fiir die Durchfiihrung des eben beschriebenen Verfahrens
ist es, wenn die Funktionsdaten 25 fiir die einzelnen Hardware-Einheiten bzw. Ressourcen 6
wie in Fig. 3 skizziert in einem oder mehreren zentralen Speicherbereichen 22 abgelegt sind.
Uber die Schnittstelle 23 konnen diese Funktionsdaten 25 von einem externen Computersy-
stem 24 somit besonders einfach gelesen bzw. neue Funktionsdaten 25 von dem externen
Computersystem 24 auf die Nebenstellenanlage 1 iibertragen werden. Die Abbildung der
Funktionsdaten 25 in einem zentralen Speicherbereich 22 innerhalb der Telekommunikations-
anlage 1 ist aber nicht zwingend. Es ist beispielsweise auch méglich, dafl die Funktionsdaten
25 unmittelbar von den Speicherbausteinen, z.B. von RAM oder EEPROM Speicherbaustei-
nen 9, 10 der Hardware-Einheiten bzw. Ressourcen 6 auf das externe Computersystem 24
libertragen bzw. von diesem auf die Hardware-Einheiten bzw. Ressourcen 6 der Nebenstel-
lenanlage 1 tiberspielt werden.

Das externe Computersystem 24 ist iiblicherweise eine Datenverarbeitungsan-
lage bzw. ein Computer, GroBrechner, Notebook, etc. Es kann sich aber auch lediglich um ein
System programmierbarer Logikbausteine, wie eine speicherprogrammierbare Steuerung,
oder aber lediglich um ein Speichersystem wie eine externe Festplatte oder dhnliches handeln.

Die Schnittstelle 23, iiber die die gespeicherten Funktionsdaten 25 mit dem
externen Computersystem 24 ausgetauscht werden, erlaubt, da die Telekommunikationsan-
lage mit unterschiedlicher Software kommuniziert.

Die zentrale Programmierung erfolgt gemiB dem eben beschriebenen Verfah-
ren iiber den Zugriff auf das Abbild 26 der programmierbaren Funktionsdaten 25. Die in ei-
nem zentralen Speicherbereich 22 gespeicherten Funktionsdaten 25 werden zunéchst auf ei-
nen externen Datentriger iibertragen. Das externe Abbild 26 der programmierbaren Funkti-
onsdaten 25 kann anschliefend modifiziert werden. Die Programmierung der Hardware-
Einheiten bzw. Ressourcen 6 erfolgt dadurch, dafl einzelnen Variablen, d.h. Speicherberei-
chen innerhalb des Abbilds 26 der programmierbaren Funktionsdaten 25, bestimmte Werte
zugewiesen werden. In einem néchsten Schritt kann das modifizierte Abbild 26 der program-
mierbaren Funktionsdaten 25 in den zentralen Speicherbereich 22 zuriick geladen werden.

Der Zugriff auf das Abbild 26 erfolgt, wie in Fig. 3a skizziert, beispielsweise
tiber eigene Benutzeroberflichen 30. Mit Hilfe dieser Benutzeroberfliche 30 kann jeder Va-
riable der gewiinschte Wert zugewiesen werden.

Diese dialoggesteuerte Dateneingabe ist bei kleinen Systemen durchaus ausrei-
chend. Bei Systemen mit einer grofen Anzahl an Hardware-Einheiten bzw. Ressourcen 6 ist
die Zuweisung der entsprechenden Werte fiir alle Variablen aller Hardware-Einheiten bzw.
Ressourcen 6 jedoch zu umsténdlich. Insbesondere bei Nebenstellenanlagen mit mehreren
hundert Hardware-Einheiten bzw. Ressourcen 6 wie im BusinessPhone Bereich bzw. im Cor-
porate Network Bereich mit bis zu 10000 untereinander vernetzten Hardware-Einheiten bzw.
Ressourcen 6 ist eine effizientere Methode der Dateneingabe unumgénglich.

13

AT 006 351 U1

Aus diesem Grund existieren bei bekannten Systemen Benutzeroberflichen 30
mit Aufnahmefunktionen, die simtliche Aktionen des Benutzers aufzeichnen. Das Funkti-
onsprinzip dieser dialogbasierten Programmierung ist ebenfalls in Fig. 3a skizziert. Das Ab-
bild 26 aller programmierbaren Funktionsdaten 25 der Telekommunikationsanlage 1 wird in
der Datenbank TS verwaltet, welche iiber eine graphische Benutzeroberfliche (GUI) 30 ange-
sprochen wird. Die vom Benutzer durchgefilhrten Kommandos und Eingaben kénnen von
einem Makrorecorder (MR) 29 aufgezeichnet werden. Durch das Vorsehen dieses Makrore-
corders 29 ist es moglich, die Eingaben des Benutzers, die wihrend der Konfiguration einer
Hardware-Einheit 6 getitigt worden sind, aufzuzeichnen und als Makro abzuspeichern. Fiir
die Bereitstellung der Funktionsdaten 25 fiir eine andere Hardware-Einheit der selben Katego-
rie kann das gespeicherte Makro abgerufen werden. Dabei gibt das Makro genau an, in wel-
ches Feld des Dialogs bzw. der Benutzeroberfliche 30 welcher Wert eingetragen wird. Wei-
ters werden sonstige Aktionen des Benutzers, beispielsweise das Driicken einer bestimmten
Funktionstaste auf der Tastatur, aufgezeichnet.

Bei diesen im Stand der Technik bekannten Methoden zur Automatisierung
haufig vorkommender Programmierarbeiten werden Sitzungen (engl: sessions) von der Be-
nutzeroberfliche 30 aufgezeichnet, wihrend die betreffenden Aktionen vom Benutzer ausge-
fiihrt werden. Diese Sitzungen werden in einer Datei gespeichert und kénnen spiter abgerufen
und ausgefiihrt werden.

Ein typisches Makro fiir die weiter oben beschriebene Nebenstellenanlage 1 ist
beispielsweise im folgenden angegeben.

! AUSTRIA: Trunk session: 2 wire tieline
! .comments .
trunk:1990:0000:F=ENTER
IDBOX:Identity:0000:8=
1600:1607:0000:M=12 kHz
1600:1609:0000:M=6
1600:1610:0000:M=-7
1600:1611:0000:M=0
1600:1612:0000:M=3
1600:1613:0000:M=0
1600:0000:0000:F=FN6

Nachteilig bei dieser bekannten Methode der Makroprogrammierung ist, daf3
die Makros sich ausschlieBlich auf die Dialogmaske der Benutzeroberflache 30 beziehen. Bei
einer Anderung der Dialogmaske, was beispielsweise bei der Bereitstellung einer neuen
Hardware-Einheit mit neuen Funktionen notwendig sein kann, kénnen die alten Makros nicht
mehr verwendet werden.

14

AT 006 351 Ul

2.3 Abstraktion der Funktionsdaten

Als besonders vorteilhaft fiir die Programmierung von gréeren Kommunikati-
onsnetzen erweist sich die Reprisentation jeder Ressource 6 in Form eines eigenen abstrakten
Datentyps 52. Dabei wird ein eigener Datentyp 52, beispielsweise in Form einer Klassendefi-
nition fiir jede Kategorie der verwendeten Hardware-Einheiten bzw. Ressourcen 6 bereitge-
stellt. Fiir jede reale Ressource 6 wird anschlieBend ein Exemplar 53 des Datentyps 52 er-
zeugt.

Diese Vorgehensweise erlaubt eine einfache Strukturierung der Funktionsdaten
25 aller Hardware-Einheiten bzw. Ressourcen 6 des gesamten Kommunikationsnetzes. Insbe-
sondere wird der Zugriff auf die Hardware-Einheiten bzw. Ressourcen 6 durch die eindeutige
Zuordnung zwischen der Kategorie der Hardware-Einheiten bzw. Ressourcen 6 und dem zu-
gehorigen Datentyp 52 deutlich erleichtert.

Fiir die oben beschriebene Nebenstellenanlage 1 kann beispielsweise ein Da-
tentyp 52 fiir alle Hardware-Einheiten bzw. Ressourcen 6 der Kategorie "analoger Anschiu
einer Nebenstelle" auf den unterschiedlichen analogen karten ELU-A 61 bereitgestellt wer-
den. Fiir den Zugriff auf eine reale Nebenstelle mufl ein Exemplar 53 des Datentyps 52 er-
zeugt werden (Fig. 4).

Ublicherweise folgt die Reprisentation des Datentyps 52 einer objektorientier-
ten Klassenvereinbarung. Dies bietet den Vorteil, da die Prozedurvereinbarungen fiir die
Operationen mit den Objekten in die Typvereinbarung gelegt werden koénnen. Die Klassen
umfassen eine Attributvereinbarung und eine Methodenvereinbarung. Diese formale Definiti-
on eines Datentyps 52 dient als Vorlage, aus der ein Exemplar 53 des Datentyps 52 zur Lauf-
zeit erzeugt wird. Die Klasse definiert die Eigenschaften des Datentyps 52 und die Methoden,
die zur Steuerung des Objektverhaltens verwendet werden. Vorzugsweise sind die einzelnen
Klassendefinitionen in Klassenbibliotheken zusammengefait und in Klassenbibliotheksdatei-
en abgespeichert.

Fiir gewShnlich sind die Datentypen 52 weiters in einer Klassenhierarchie zu-
sammengefaBt. Damit konnen gemeinsame Eigenschaften dhnlicher Datentype 52 leicht zu-
sammengefaft werden und es kénnen Codeverdopplungen zwischen dhnlichen Klassen weit-
gehend vermieden werden. So sind beispielsweise die Gemeinsamkeiten aller Klassen in einer
Wurzelklasse zusammengefaBt, weitere Hauptklassen umfassen beispielsweise die Gemein-
samkeiten aller Kontroller, Telefonkarten etc. (Fig. 4a).

Die Reprisentation der Kategorien der Hardware-Einheiten 6, d.h. die Bereit-
stellung geeigneter Datentypen 52, kann durch die erwihnte Definition objektorientierter
Klassen oder aber auch durch die Definition anderer abstrakter Datentypen géngiger modula-
rer Programmiersprachen erfolgen. In modularen Programmiersprachen kénnen die abstrakte
Datentypen 52 durch Module, beispielsweise {iber struct oder typedef Anweisungen, realisiert
werden. Auch in diesem Fall wird fiir jede reale Ressource 6 ein Exemplar 53 des abstrakten
Datentyps 52 erzeugt.

15

AT 006 351 Ul

2.3.1 MO Managed Objects

Besonders im Telekombereich geht die Entwicklung in die Richtung einer
moglichst umfassenden Standardisierung der Programmierung bzw. des Managements der
Netze und der Dienste. Dabei sollen Managementsysteme mdéglichst interoperable Software-
Werkzeuge bereitstellen, die es ermdglichen, heterogene Multivendorsysteme einfach und
zentral zu verwalten. Insbesondere im Corporate Network Bereich mit bis zu 10000 unterein-
ander vernetzten Hardware-Einheiten bzw. Ressourcen 6 ist fiir die zentrale Konfiguration der
Hardware-Einheiten bzw. Ressourcen 6 eine einheitliche Managementumgebung von grofler
Bedeutung. Im Zuge dieser Bemiihungen nach Vereinheitlichung wurde in den ITU-T Emp-
fehlungen der X.700-Reihe die OSI Systems Management Norm definiert, welche Verfahren
und Mechanismen fiir das Management von Kommunikationsnetzen festlegt. Die OSI-
Managementumgebung stellt dabei die Mittel zur Kontrolle, Koordination und Beobachtung
der Ressourcen 6 zur Verfiigung. In diesem Zusammenhang wird insbesondere auf den Inhalt
der Dokumente ITU-T X.700, ITU-T X.720 und ITU-T X.722 bezug genommen.

Dem OSI Systems Management liegt eine objektorientierte Betrachtungsweise
zugrunde, die auf sogenannten Managed Objects 27 (MO) aufbaut. Diese MOs 27 sind ganz
allgemein als Abstraktion einer physikalischen oder logischen Ressource 6 zu verstehen, also
beispielsweise von bestimmten Speicherbausteinen als auch von Softwaremodulen etc. Ein
Managed Object 27 wird durch seine Attribute, die Operationen, die an ihm ausgefiihrt wer-
den, die von ihm ausgesendeten Meldungen und durch die Relationen zu anderen MOs 27
beschrieben. Somit ist ein dem OSI Systems Management entsprechendes MO 27 als eine
spezielle Form eines weiter oben beschriebenen Datentyps 52 zu sehen, durch welchen physi-
kalische oder logische Ressourcen 6 einer bestimmten Kategorie dargestellt werden konnen.

Fiir die beschriebene Nebenstellenanlage 1 existiert beispielsweise ein eigenes
MO 27 fiir alle Ressourcen 6 der Kategorie "analoger Anschluf} einer Nebenstelle". In diesem
einfachsten Fall reprisentiert ein MO 27 alle Managementaspekte einer physikalischen Res-
source 6. Es kénnen aber auch iibergeordnete Hierarchien, wie z.B. eine gesamte ELU-A
Karte, durch ein MO 27 Objekt représentiert sein.

Besonders vorteilhaft erweist sich im Sinne der obigen Uberlegungen die Defi-
nition der einzelnen MOs 27 als objektorientierte Klassen, insbesondere als Java-Klassen,
welche eine weitgehende Unabhingigkeit vom verwendeten Betriebssystem ermdglichen. Die
MOs 27, welche der weiter oben genannten vorzugsweise verwendeten Klassenhierarchie
folgen, teilen sich beispielsweise in ein Wurzel-MO, mehreren Hauptbereichs-MOs (engl:
top-level) fiir die Controller, die Directorys, Extension Manager, Funktionskarten etc. und
einer Anzahl von Betriebsmittel-MOs auf.

2.3.2 Managementkommandos

Der Zugriff auf die MOs 27 erfolgt iiber eigene Managementkommandos 51'.
Die Definitionen der Managementkommandos 51' werden vorzugsweise in die objektorien-
tierte Definitionen der Datentypen 52 bzw. der MOs 27 integriert, beispielsweise iiber eine

16

AT 006 351 U1

Methodendefinition der Java-Klassen der MOs 27. Es ist aber auch mdglich, die Manage-
mentkommandos 51' iiber eine allgemeine Schnittstellendefinitionssprache (IDL) zu definie-
ren.

2.3.3 Instanz

Fiir jede reale Ressource 6 wird ein Exemplar 53 bzw. eine Instanz des ent-
sprechenden Datentyps 52 bzw. MO Objektes 27 erzeugt. Die Exemplare 53 reprisentieren
die Hardware-Einheiten bzw. Ressourcen 6 der Nebenstellenanlage 1. Beispielsweise wird fiir
jede ELU-A Karte 61 ein Exemplar 53 des ELU-A Datentyps 52 bzw. des ELU-A MOs 27
erzeugt. Somit kann iiber das entsprechende Exemplar 53 auf jede Ressource 6 der Neben-
stellenanlage 1 zugegriffen werden. Damit sind auch siamtliche Funktionsdaten 25 einer Res-
source 6 liber das entsprechende Exemplar der der Kategorie der Ressource 6 entsprechenden
objektorientierten Klasse zugénglich.

Bei der Verwendung anderer abstrakter Datentypen 52 wird das Exemplar 53
auf entsprechende Weise durch die Deklaration einer dem Datentyp 52 entsprechenden
Struktur erzeugt.

234 Management Interface

Die den einzelnen Ressourcen 6 zugeordneten Exemplare 53 der Datentypen
52 bzw. der MOs 27 miissen von speziellen Ubersetzungsprogramme zur Ubersetzung des
abstrakten Abbildes 26 der Funktionsdaten 25 in geeignete, durch die Nebenstellenanlage 1
lesbare Daten, ansprechbar sein. Nur so ist gewihrleistet, daB3 die durch Zugriff auf die MOs
27 gednderten Funktionsdaten 25 in die Nebenstellenanlage 1 iibertragen werden konnen.
Diese Ubersetzungsprogramme bilden das sogenannte Management Interface und stellen eine
Verallgemeinerung der Schnittstelle 23 dar. Die Ubertragung zwischen MO 27 und Kommu-
nikationsnetz bzw. Nebenstellenanlage 1 erfolgt fiir den Benutzer transparent. Somit kann die
MIB im wesentlichen als ein Proxy angesehen werden, welcher den proprietiren Datenaus-
tausch mit dem Kommunikationsnetz verbirgt.

Die Kommunikation zwischen den MO Objekten 27 und den realen Betriebs-
mittel in den Hardware-Einheiten bzw. Ressourcen 6 ist dabei sowohl fiir den Programmierer
der Nebenstellenanlage 1 als auch fiir den Anwendungsprogrammierer transparent. Wihrend
die Sitzungen bei bekannten Systemen mit den Datenstrukturen in den Hardware-Einheiten
bzw. Ressourcen 6 eng verbunden sind, macht das MO Objekt 27 bzw. die mit ihm verbunde-
nen Zugriffskommandos 51 diese Strukturen fiir den Programmierer transparent.

2.3.5 MIB ‘

Sémtliche MO Objekte 27 sind in einem mit Management Information Base
(MIB) bezeichneten Objektkatalog 28 bzw. einer Sammlung zusammengefallt. Wenn eine
Hardware-Einheit bzw. Ressource 6 geladen wird, wird das ihr zugerechnete Managed Objekt
27 in dem Objektkatalog MIB 28 gespeichert. Dies kann online oder offline erfolgen, d.h.
unabhingig davon, ob die Telekommunikationsanlage 1 mit dem externen Computersystem

17

AT 006 351 U1l

24 verbunden ist oder nicht. Damit sind simtliche programmierbaren Funktionsdaten 25 der
Telekommunikationsanlage 1 in dem Objektkatalog MIB 28 wiedergegeben. Dieser Objekt-
katalog MIB 28 stellt somit ein abstraktes Abbild 26 der programmierbaren Funktionsdaten
25 dar.

Fig. 5 zeigt die Prinzip-Skizze eines Programmierverfahrens mit Hilfe der be-
schriebenen Abstraktion der Ressourcen 6 durch zugehérige Datentypen 52 bzw. MOs 27.
Die Management Information Base MIB stellt dabei ein abstraktes Abbild aller physikali-
schen und logischen Ressourcen 6 des Kommunikationsnetzes bereit. Gleichzeitig werden die
méglichen Managementkommandos 51' auf die MOs 27 bereitgestellt.

Der Zugriff auf die MOs 27 erfolgt iiber eine graphische Oberfliche 30', wobei
vorzugsweise eine eigene Zwischenschicht zur Kommunikation zwischen der graphischen
Oberfliche 30'und der MIB vorgesehen ist. Diese im folgenden mit Presentation Layer be-
zeichnete Zwischenschicht ist fiir die Ausfiihrung der Managementkommandos 51" zusténdig.

Wie im Fall der Makroprogrammierung konnen auch hier Makrorekorder vor-
gesehen sein, welche die Eingaben des Anwenders, d.h. der fiir die Programmierung der Ne-
benstellenanlage 1 verantwortlichen Person aufzeichnen und somit die Automatisierung von
wiederkehrenden Programmieraufgaben erlauben.

Nachteilig aus der Sicht des Anwenders, ergibt sich aber auch hier, da durch
eine Anderung der MIB, beispielsweise durch die Bereitstellung neuer MOs und somit eine
Anderung der graphischen Benutzeroberfliche 30' vorhandene Konfigurationsmakros nicht
mehr benutzt werden kdnnen.

Als Beispiel fiir die Struktur einer MIB ist in Fig. 5a eine MIB fiir die weiter
oben beschriebene Nebenstellenanlage 1 skizziert. Das Datenmodell fiir die BusinessPhone
Nebenstellenanlage 1 ist durch die BPMIB (BusinessPhone MIB) dargestellt. Es basiert auf
der allgemeinen MIB Umgebung. Das in Fig. 5a gezeigte Klassendiagramm kann allgemein
als Beispiel fiir die Implementierung einzelner MIBs innerhalb der generischen MIB Umge-

bung gesehen werden.

Alle die Nebenstellenanlage 1 beschreibenden MOs 27 sind von BPMO 60
oder BPListMO 61 abgeleitet, welche wiederum von MOClassInstanceImpl abgeleitet sind.
MOC]lassInstancelmpl stellt die notwendige allgemeine Funktionalitét bereit wie die Struktur
des MIB Baumes, die Navigation im Baum, Suchverfahren, allgemeine Attribute und Zu-
griffsmethoden bzw. Managementkommandos 51' (set()/get()).

BPMO 60 stelit die der Nebenstellenanlage 1 eigene Funktionalitdt bereit,
hauptsichlich die Wechselwirkung mit den unteren Schichten des OSI Modells, insbesondere
dem Data Layer und Methoden fiir den direkten Zugriff auf diese Schichten. BPListMO 61 ist
eine weitere Spezialisierung von BPMO 60 und umfaft hauptséchlich Funktionen fiir die Lei-
stungsoptimierung. Dieses MO fiigt spezielle Funktionen zur Modellierung von Ressourcen
hinzu, welche Attributsammlungen wie Tabellen etc. aufweisen und welche durch ein BMPO
60 nicht effektiv beschrieben werden kénnen.

AT 006 351 Ul

Alle MOs 27, welche Ressourcen 6 der Nebenstellenanlage 1 reprisentieren,
sind entweder von BPMO 60 oder BPListMO 61 abgeleitet. Das Beispiel zeigt die MOs fiir
unterschiedliche Kategorien von Nebenstellen. Die Basisklasse ExtensionMO 62 ist unterteilt
um verschiedene MOs, hier DigitalExtensionMO 63 und AnalogueExtensionMO 64 zu defi-
nieren, welche die unterschiedlichen Kategorien der Nebenstellen - digital oder analog -
reprisentieren. Auf dhnliche Art kann eine kabellose Nebenstelle modelliert werden.

Das ExtensionMgrMO 65 und seine Unterklassen sind MOs welche die Wech-
selwirkung zwischen Nebenstellen und Hardwarekarten, Directory und anderen Komponenten
des Systems darstellen.

Die allgemeine MIB Umgebung ist fiir Anwendungen in verteilten Systemen
entworfen, mit mehreren Kommunikationsnetzen, welche jeweils eine MIB bereitstellen. Aus
Griinden der Rechenleistung und des Speicherplatzbedarfes definieren gédngige Nebenstellen-
anlagen 1 die sie reprisentierenden MIBs nicht selbst sondern stellen lediglich Schnittstellen
23 bereit um die einzelnen Ressourcen 6 anzusprechen. Die MIB wird dementsprechend auf
einem von der Nebenstellenanlage 1 getrennten Rechner 24 bereitgestellt.

Es ist aber auch mdglich, die MIB unmittelbar innerhalb der Nebenstellenanla-
ge 1 bzw. innerhalb des Kommunikationsnetzes zu integrieren. Das Management bzw. die
Programmierung kann dann {iber ein Netzwerk (LAN, WAN) mit Hilfe eines standardisierten
Protokolls erfolgen. Besonders vorteilhaft ist in diesem Zusammenhang die Verwendung des
Inter-ORB Protokolls (IIOP), da dieses die Verwendung von Industrie Standards wie CORBA
(Common Object Request Broker Architekture) in verteilten Systemen ermdoglicht. Mit dem
Protokoll IIOP, kann ein CORBA basiertes Programm, welches in einer beliebigen Sprache
geschrieben ist und auf einem beliebigen Computer, unter einem beliebigen Betriebssystem
lduft, mit einem anderen CORBA basierten Programm auf einem anderen Computer, Be-
triebssystem etc. kommunizieren. Dadurch kénnen Programme auf MOs 27 zugreifen, wobei
Programm und MOs 27 in unterschiedlichen Sprachen implementiert sind.

3 Configuration Script Language

Die vorliegende Erfindung hat zur Aufgabe, den weiter oben im Zusammen-
hang mit der Makroprogrammierung beschriebenen Nachteil zu beseitigen und eine Umge-
bung zu schaffen, die dem Anwender die grotmogliche Flexibilitit bei der Programmierung
gewihrt. Dabei sind zwei Aspekte zu beachten.

Der Anwender soll einerseits bei der Programmierung des Kommunikations-
netzes nicht mit den Details der Implementierung der MIB konfrontiert sein. Die MOs 27 sind
in einer Programmiersprache definiert und bieten beispielsweise Objektklassen in Java oder
C++ an. Es ist dem Programmierer eines Kommunikationsnetzes nicht zuzumuten, auf die
einzelnen MOs 27 in den entsprechenden Programmiersprachen zuzugreifen und entspre-
chende Programme in Java, C++ oder sonstigen Programmiersprachen zu erstellen. In diesem

19

AT 006 351 U1

Sinn ist -in diese Richtung gehen auch die bekannten graphischen Oberflichen- dem Anwen-
der eine Umgebung zur Verfiigung zu stellen, die die Ebene der Programmiersprachen fiir ihn
abschirmt.

Andererseits soll eine groBtmégliche Unabhingigkeit von notwendigerweise
Verinderungen unterworfenen graphischen Oberflichen 30' gegeben sein und der Anwender
die groBtmagliche Flexibilitat bei der Programmierung des Kommunikationsnetzes erhalten.

Diesen beiden Anforderungen wird durch die Bereitstellung einer Skriptspra-
che Rechnung getragen, welche beim erfindungsgemafien Programmierverfahren verwendet
wird.

3.1 Zugriffskommandos

Hierfiir werden zunichst eigene Zugriffskommandos 51 auf die MOs 27 zur
Verfiigung gestellt, welche unabhingig von der Programmiersprache sind, in welcher die
MOs 27 definiert sind. Durch diese Unabhingigkeit der Zugriffskommandos 51 von der Pro-
grammiersprache der MOs 27 kann der Programmierer die Nebenstellenanlage 1 besonders
einfach und ohne genaue Kenntnis der Implementierung der einzelnen MOs 27 konfigurieren.
Diese kénnen in Java, C++ oder anderen Programmiersprachen definiert sein; fiir den Pro-
grammierer erfolgt der Zugriff auf die MOs 27 immer tiber die Zugriffskommandos 51.

Der Zugriff auf das abstrakte Abbild 26 der Funktionsdaten 25 einer Ressource
6 einer bestimmten Kategorie erfolgt somit beim erfindungsgemiBen Verfahren nicht unmit-
telbar iiber Managementkommandos 51' sondern mittelbar iiber Zugriffskommandos 51 auf
ein MO Objekt 27 bzw. auf ein Exemplar 53 des dieser Kategorie entsprechenden Datentyps
52.

Fig. 6 zeigt ein Blockbild eines erfindungsgeméen Verfahrens zur Program-
mierung der Nebenstellenanlage 1, welche den Unterschied zu dem in Fig. 5 skizzierten be-
kannten Verfahren verdeutlicht.

Unterschiedlich zum bekannten Verfahren, existiert bei dem in Fig. 6 skizzier-
ten Verfahren ein Interpretierer bzw. ein Script-Engine 31 als eigenes Programmodul, welche
dem Programmierer Zugriffskommandos 51 zur Verfligung stellt. Diese Zugriffskommandos
51 erlauben gegeniiber dem in Fig. 5 skizzierten Verfahren eine flexible Programmierung des
Kommunikationsnetzes und die Erstellung von Kommandoskripts, welche unabhéngig von
der graphischen Oberfliche 30' sind. Dieses einfache und effiziente Verfahren zur Program-
mierung bietet insbesondere bei der Eingabe der Funktionsdaten bei einem neuen System oder
einer neu installierten Nebenstellenanlage 1 entscheidende Vorteile fiir den Anwender.

Das Script-Engine 31 bildet in Fig. 6 eine vom restlichen System getrennte
Umgebung, welche die Zugriffskommandos 51 bereitstellt und die Managementkommandos
51" ausfiihrt.

20

AT 006 351 U1

Aufgrund der vom Programmierer eingegebenen Zugriffskommandos 51 wer-
den die entsprechenden Managementkommandos 51' durchgefiihrt. Die Zugriffskommandos
51 lehnen sich deshalb vorzugsweise eng an die Managementkommandos 51' an. Zugriffs-
kommandos 51 kénnen beispielsweise bereitgestellt werden zum Erzeugen oder Vernichten
einer Instanz bzw. eines Exemplars 53 eines MOs 27, zum Setzen oder Abfragen bestimmter
Werte der Exemplare 53, zum Kopieren oder Verschieben der Werte eines Exemplars 53 ei-
nes MOs 27 zu einem anderen Exemplar etc.

Das erfindungsgemiBe Verfahren erlaubt es, die Zugriffskommandos 51 un-
mittelbar, beispielsweise tiber eine graphische Benutzeroberfliche (GUI) 30" einzugeben. Die
interaktive Programmierung eines bestimmten Parameters bzw. die Bereitstellung der pro-
grammierbaren Funktionsdaten 25 einer Hardware-Einheit 6 besteht beispielsweise darin, das
der Hardware-Einheit zugehorige MO Objekt 27 zu finden, dessen Attribute auszulesen, und
diese in einer graphischen Benutzeroberfliche 30' anzuzeigen. Je nach den Eingaben des Be-
nutzers kénnen anschlieBend Attribute des MO Objekts 27 gedndert oder Methoden ausge-
fiihrt werden.

Unterschiedlich zu bekannten Systemen der Makroprogrammierung bewirken
die MO Objekte 27 aber eine vollstindige Unabhangigkeit der Zugriffskommandos 51 von
der Benutzeroberfliche 30'. Die Implementierung einer vllig neuen Benutzeroberfléche 30'
dndert vorhandenen Zugriffskommandos 51 nicht.

Eine Online-Verbindung mit der Telekommunikationsanlage 1 bzw. mit den
Hardware-Einheiten bzw. Ressourcen 6 ist nicht notwendig, um die Zugriffskommandos 51
ausfiihren zu kénnen. Auch wenn das System offline ist, werden die Zugriffskommandos 51
an dem Abbild 26 der programmierbaren Funktionsdaten 25 ausgefiithrt. Die Funktionsdaten
25 konnen spiter zu den Hardware-Einheiten bzw. Ressourcen 6 iibertragen werden.

Fiir das erfindungsgemiBe Verfahren zur Programmierung eines Kommunika-
tionsnetzes, sind somit die folgenden Schritte wesentlich: Ein erster Schritt besteht in der Be-
reitstellung geeigneter abstrakter Datentypen 52, insbesondere von Managed Objects 27 als
Abstraktion der Ressourcen 6 des Kommunikationsnetzes. Jedes Datentyp 52 représentiert die
Art der programmierbaren Funktionsdaten 25 einer Kategorie von Hardware-Einheiten bzw.
Ressourcen 6. Unter Bereitstellung ist in diesem Zusammenhang sowohl das zur-Verfiigung-
stellen bereits implementierter Datentype 52 als auch die Neuimplementierung geeigneter
Datentype 52 fiir neu in das Kommunikationsnetz aufgenommene Kategorien von Hardware-
Einheiten bzw. Ressourcen 6 zu verstehen. Die Datentypen 52 bzw. die Managed Objects 27
miissen iiber ein Management Interface mit dem Kommunikationsnetz kommunizieren bzw.
Funktionsdaten 25 austauschen kénnen und in einer Programmiersprache implementiert sind
und Managementkommandos 51' fiir den Zugriff auf die Datentypen 52 bzw. die Managed
Objects 27 bereitstellen. Ein weiterer Schritt besteht in der Erzeugung eines Exemplars 53 des

21

AT 006 351 Ul

Datentyps 52 fiir jede Hardware-Einheit 6 der durch das Datentyp 52 reprisentierten Katego-
rie. In weiterer Folge erfolgt der Zugriff auf die Funktionsdaten 25 der Hardware-Einheiten
bzw. Ressourcen 6 einer Kategorie durch Zugriffskommandos 51 auf ein Exemplar 53 des
dieser Kategorie entsprechenden Datentyps 52. Hierfiir werden erfindungsgemif ein Inter-
pretierer und Zugriffskommandos 51 auf die Datentypen 52 bzw. die Managed Objects 27
bereitgestellt, die Zugriffskommandos 51 an den Interpretierer iibergeben, die Zugriffskom-
mandos 51 durch den Interpretierer automatische in ein bzw. mehrere Managementkomman-
dos 51' tibersetzt und die entsprechenden Managementkommandos 51' an den Datentypen 52
bzw. den Managed Objects 27 automatisch ausgefiihrt.

3.2 Kommandoskripts

Bei einer besonders bevorzugten Programmiermethode werden mehrere Zu-
griffskommandos 51 in Kommandoskripts 50 zusammengefafit. Dies erlaubt die schnelle,
automatische Abarbeitung einer groflien Anzahl von Zugriffskommandos 51 bei 6fters anfal-
lenden Konfigurationsarbeiten.

Auch die automatische Abarbeitung der Zugriffskommandos 51 eines Kom-
mandoskripts 50 erfolgt bei der in Fig. 6 skizzierten Skript-Umgebung durch den Interpretie-
rer, das Script-Engine (SE) 31.

Vorzugsweise handelt es sich bei der durch die Zugriffkommandos 51 gebil-
deten Skriptsprache um eine objektbasierte Skriptsprache, die Klassen in der weiter oben be-
schriebenen Form anbietet. Die Skriptsprache basiert somit auf der verwalteten Objektdar-
stellung der programmierbaren Funktionsdaten 25 der Hardware-Einheiten 6. Das erfindungs-
gemiBe Verfahren weist durch die Bereitstellung der Skriptsprache den zusitzlichen Vorteil
auf, dafl das die Funktionsdaten 25 automatisch und unmittelbar aus den Kommandoskripts

50 erzeugt werden konnen.

Dadurch, daf} die erfindungsgeméaBe Darstellung der Hardware-Einheiten bzw.
Ressourcen 6 durch MO Objekte 27 die vollstindige Unabhéngigkeit von der Benutzerober-
flache 30" gewihrleistet, kann selbst die Implementierung einer v6llig neuen Benutzeroberfla-
che 30' existierende Kommandoskripts 50 nicht beeinflussen.

Vor allem die Integration neuer Hardware in bestehende Telekommunikations-
anlagen wird durch das erfindungsgemifle Verfahren bedeutend erleichtert. Es ist lediglich
die Erstellung eines neuen MOs 27 bzw. eines neuen Datentyps 52 fiir die Kategorie der neu
verwendeten Hardware-Einheit 6 notwendig. Bestehende Kommandoskripts 50 kénnen weiter
verwendet werden. Weiters konnen neue Zugriffskommandos 51 zur Verwaltung der neuen
Hardware-Einheiten bzw. Ressourcen 6 in die bestehenden Kommandoskripts 50 aufgenom-
men werden. Insbesondere im Bereich groBerer Anlagen, bei denen oft Endgerite bzw. Hard-
ware-Einheiten bzw. Ressourcen 6 verschiedener Hersteller zusammengeschlossen sind
(Multi-Vendor Anlagen) stellt dies einen bedeutenden Vorteil gegeniiber den im Stand der
Technik bekannten Programmierverfahren dar. Im Unterschied zum bekannten Stand der

22

AT 006 351 U1

Technik ist die Programmstruktur erweiterbar, d.h. neue Objektarten konnen in bestehenden
Kommandoskripts 50 verwendet werden. '

Eine Online-Verbindung mit der Telekommunikationsanlage 1 bzw. mit den
Hardware-Einheiten bzw. Ressourcen 6 ist auch hier nicht notwendig, um die Komman-
doskripts 50 ablaufen lassen zu konnen. Wenn das System offline ist, kann das gesamte
Kommandoskript 50 mit dem Abbild 26 der programmierbaren Funktionsdaten 25 ausgefiihrt
werden.

Besonders vorteilhaft ist weiters, da8 die Skriptsprache nicht nur fiir Neben-
stellenanlagen 1 sondern auch fiir anderen Kommunikationsnetze auf besonders einfache Art
verwendet werden kann. Einzige Voraussetzung fiir die Verwendung mit anderen Kommuni-
kationsnetzen ist, daBl geeignete, die Hardware représentierender Datentypen 52 bzw. in einer
MIB zusammengefaBte MO Objekte 27 bereitgestellt sind, die Datentypen 52 bzw. MOs 27 in
einer Programmiersprache implementiert sind, und die MOs 27 iiber ein Management Inter-
face mit dem Kommunikationsnetz kommunizieren kénnen.

Das erfindungsgeméfe Verfahren kann im Prinzip zur Programmierung belie-
biger Telekommunikationsanlagen dienen. Beispielsweise kann bei der Uberspielung der
Software auf alle Mobiltelefone eines Netzbetreibers filir jede Bauart der Mobiltelefone ein
eigenes Managed Objekt 27 und fiir jedes Mobiltelefon ein entsprechendes Exemplar 53 er-
zeugt werden. Die Verbindung zwischen den einzelnen Hardware-Einheiten - in diesem Fall
den Mobiltelefonen - und der zentralen Steuerung erfolgt iiber Funk iiber definierte Schnitt-
stellen 23'.

Bei der in Fig. 6 skizzierten Skript-Umgebung kénnen verschiedene Komman-
doskripts 50 in einem zentralen Archiv bzw. in dem Skript-Depot 32 verwaltet werden. Das
Archiv hat vorzugsweise eine Verzeichnisstruktur zum Speichern von unterschiedlichen
Skript-Typen. So konnen z.B. die folgenden Skript-Typen existieren: Werk-Skripts, welche
vom Benutzer weder gedndert noch geldscht werden konnen, benutzerdefinierte Skripts, und
Templates, eine spezielle Art von Skripts, welche aufgrund der bestehenden Programmierung
einer Hardware-Einheit 6 automatisch generiert werden koénnen und zur Installation einer
neuen Hardware-Einheit 6 verwendet werden kénnen. Bei der dargestellten Verwendung ei-
nes Kommandoskripts 50 zur Durchfiihrung einer Programmieraufgabe kann ein Komman-
doskript 50 von dem mit Skript-Depot 32 bezeichneten Datenverbund geladen und anschlie-
end vom Script-Engine 31 ausgefiihrt werden.

Das Skript-Depot 32 bietet hierfiir beispielsweise die Methoden view, edit, de-
lete, export, install zur Manipulation der Kommandoskripts 50 an. Die Umsetzung des Kom-
mandoskripts 50 besteht wieder darin, die notwendigen MO Objekte 27 zu finden und an Ih-
nen die Programmkommandos 51 des geladenen Kommandoskripts 50 auszufiihren.

Das erfindungsgemiBe Verfahren bzw. die erfindungsgemiBe objektorientierte
Skriptsprache erlaubt somit die einfache Wiederverwendung von bereits bestehenden Pro-

23

AT 006 351 U1l

grammen und Programmteilen. Dadurch kann der Entwicklungsaufwand reduziert und die
Entwicklungszeit verkiirzt werden. Durch die Wiederverwendung von Code werden Dupli-
kate vermieden. Wartungsarbeiten kénnen daher auf kleine Teile, beispielsweise einzelne
Datentypen 52, beschrénkt werden und wirken sich dann auf alle Kommandoskripts 50 aus, in
denen diese Teile verwendet werden.

Der Aufbau eines erfindungsgemiBen Kommandoskriptes 50 soll nun an einem
Beispiel genauer erldutert werden. Im folgenden ist als Beispiel ein dem weiter oben genann-
ten Makro entsprechendes erfindungsgemées Kommandoskript 50 fiir die weiter oben be-
schriebene Nebenstellenanlage 1 angegeben.

// [DESC)] AUSTRIA : Trunk session 2 wire tieline
// . comments .

TrunkMO aa;

aa.userDIRentry();

aa.set (1607, "1", // allowed 12=1 or 16=0
1609, "106", // range 98 - 125
1610, "1n, // range -12.0 - +6.0 in steps of 0.1
1611, "1i", // range -12.0 - +6.0 in steps of 0.1
1612, "1", // range 0 - 7
1613, "1v, // no comment

)
aa.mark2copy(1607,1609,1610,1611,1612,1613)

Die Kommandoskripts 50 sind in einer sehr einfachen Skriptsprache geschrie-
ben und als Volltext Dateien gespeichert. Dadurch sind sie jederzeit leicht und schnell mit
jedem Texteditor editierbar.

Allgemein umfaBt ein Kommandoskript 50 die folgenden Schritte bzw. Zu-
griffskommandos 51:

Ein erster Schritt besteht in der Erzeugung eines Exemplars 53 eines Managed
Objekts 27. Alle Hardware-Einheiten bzw. Ressourcen 6 wie z.B. Nebenstellen (engl: exten-
sions), Amtsleitungen oder Querverbindungen (engl: trunks) und Betriebsmittel
(engl:facilities) werden als MO Objekte 27 modelliert. Fiir die Arbeit mit einer Amtsleitung
geniigt die Erzeugung eines Exemplars 53 eines Amtsleitung-Objektes (engl: TrunkMO), bei-
spielsweise durch das Zugriffskommando 51 "TrunkMO aa;". Alle weiteren Operationen
werden an diesem Exemplar 53 aa des Amtsleitung-Objektes ausgefiihrt. In einem Komman-
doskript kénnen mehrere Exemplare 53 von unterschiedlichen MOs 27 definiert werden.

In einem nichsten Schritt konnen Eingaben des Benutzers eingelesen werden.
Die zusitzlichen Benutzerangaben werden bei der Ubersetzung der Zugriffskommandos 51

24

AT 006 351 U1

eingelesen und bei der Ubersetzung in die Managementkommandos 51' beriicksichtigt. Bei-
spielsweise sind vom Benutzer die Verzeichnisnummer und die Nummer der Amtsleitung
einzugeben. Dies wird durch die Verwendung des Zugriffskommandos 51 userDIRentry()
bewirkt. Nach der Definition eines Amtsleitung-Exemplars aa kann die entsprechende
userDIRentry() Funktion durch das Zugriffskommando 51 "aa.userDIRentry()" aufgerufen
werden.

In einem néchsten Schritt kdnnen einzelnen Variablen der Exemplare 53 der
MO Objekte 27 bestimmte Werte zugewiesen werden. Dies erfolgt iiber den Aufruf der
Funktion set() des entsprechenden Exemplars 53. Der Aufruf hat eine Liste der Kommandos
und der entsprechenden Werte zu enthalten. Alle relevanten Kommandos eines MO Objektes
27 sind auf diese Weise ansprechbar.

Ublicherweise werden die Daten zu weiteren Nebenstellen oder Amtsleitungen
kopiert. Zu diesem Zweck kann die Funktion mark2copy() verwendet werden. Die der Funk-
tion {ibergebenen Parameter stellen die Liste der zu kopierenden Daten dar. Beispielsweise
kann zum Kopieren bestimmter konfigurierten Funktionsdaten 25 der Befehl das Zugriffs-
kommando 51 "aa.mark2copy(1607,1608)" verwendet werden. Dieser Befehl kopiert die Da-
ten der Variablen /607 und 1608. Die copy() Funktion kann sinnvollerweise nur auf Exempla-
re 53 von MOs 27 desselben Typs angewendet werden. Ein Auswahlfenster zeigt beispiels-
weise alle moglichen Amtsleitung-Objekte an, zu denen die Daten kopiert werden kénnen.
Die notwendigen Objekte konnen selektiert und die Daten durch Driicken eines Submit-
Buttons kopiert werden.

3.3 Templates

Bei einer besonders bevorzugten Ausfiihrungsform des erfindungsgeméBen
Programmierverfahrens ist vorgesehen, ausgehend von einer bereits programmierten Neben-
stellenanlage 1 den aktuellen Wert sidmtlicher programmierbarer Funktionsdaten 25 der Ne-
benstellenanlage 1 bzw. des Kommunikationsnetzes auszulesen. Dies geschieht ganz einfach
durch das automatische Auslesen simtlicher in den Exemplaren 53 der Datentypen 52 bzw.
der MOs 27 gespeicherten Werte der Funktionsdaten 25.

Fiir jedes Exemplar 53 und jeden Wert wird ein entsprechendes Zugriffskom-
mando 51 generiert, welches das entsprechenden Exemplare 53 generiert und den entspre-
chenden Wert wie bei der bereits programmierten Nebenstellenanlage 1 setz.

Dies ermdglicht beim Vorhandensein einer fertig programmierten Nebenstel-
lenanlage 1, automatisch ein Kommandoskript 50, ein sogenanntes Template, zu erstellen,
welches alle Informationen iiber die programmierbaren Funktionsdaten 25 der Nebenstellen-
anlage 1 beinhaltet. Das erzeugte Template kann durch das Script-Engine 31 abgearbeitet
werden und so zur Programmierung einer weiteren Nebenstellenanlage 1 verwendet werden.

25

AT 006 351 Ul

Dies stellt einen bedeutenden Vorteil bei der Programmierung einer neuen Ne-
benstellenanlage 1 dar. Der Programmierer erstellt ein Template aufgrund einer bereits fertig
programmierten Nebenstellenanlage 1. Dies geschieht automatisch durch die Skript-
Umgebung. Zur Programmierung der neuen Nebenstellenanlage 1 muB lediglich das erstellte
Template auf der neuen Nebenstellenanlage 1 ausgefiihrt werden.

Dieses Verfahren kann sowohl bei gleichartigen als auch bei unterschiedlichen
Nebenstellenanlagen 1 verwendet werden.

3.4 Implementierung

Im folgenden wird die Implementierung des Interpretierers bzw. der Zugriffs-
kommandos 51 niher beschrieben.

Die Grammatik der Skriptsprache selbst kann in iiblicher Weise durch eine
kontextfreie Grammatik definiert werden, d.h. durch die Angabe von Regeln zur Konstruktion
syntaktischer Gruppierungen aus Einzelelementen. Die Regeln werden zweckmﬁBigerweise in
der iiblichen "Backus-Naur Form" (BNF) angegeben.

Vorzugsweise werden getrennte Grammatiken fiir einen lexikalischen Analy-
sator (engl: lexical analyser) und einen syntaktischen Analysator (engl: parser) in BNF defi-
niert. Die BNF Form fiir die Lexer und die Parser Grammatik einer erfindungsgeméfen
Skriptsprache lauten beispielsweise:

3.441 Lexer Grammar
COMMENT : n/" (SL COMMENT | ML COMMENT) ;
protected
SL_CK)"]MENT: n/n ("[DESC]"I) (ES&'I"!)* SI? ;
protected
SLC2: v\nl l v\rv;
protected
ML___(I»’MEN'I': nAn
({ LA(2)1='/' }? Tk
l\rl I\nl
|\rv
l\nl
__(l*vll\nrln\rr)l 1
)*
n*/n;
WS: (v
'\t'
l\nl
"\r');
LPAREN: (o
RPAREN : N
LCURLYPAREN : '
RCURLYPAREN: "}
STAR: v,
MINUS: -t
PLUS: '+1;
SEMI: P
ASSIGN: = .,

26

AT 006 351 U1

COMMVA: o
DOT': L
CHAR_LITERAL: |\n (ESC'-"\") |\n| ;
STRING LITERAL: i (ESC2)* 'm0
DIGIT: '0r..'9;
protected
HEX DIGIT: (‘or..'9 AT F rar. L)
INT: (DIGIT) + ;
protected
ESC: "\W\!
(Inl
lrl
ltl
lbl
|fl
(BN}
|\v|
|\\|
('u')+ HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT
(lol .. |3|)
(
(10:_. 177)
l(ol.. l7l
)?
)?
| (ar.ovem)
(
('or..'9")
)?
)i
protect
ESC2: ‘al. .tz AL g o, 1
,l#l T RNY I:IIU;TIII'II.I'I+III_
ill%lll*l'l/lll\\l||=lll(l|l)|ll[ll|]lll ||u\tu
new,
IDENTIFTER
options {
} testLiterals = true;
s (lau._lzullAvulzr‘v_l)
(val__lzlllAt“vzl||_|||0|”19t)* ;
3.4.2 Parser Grammar
programm: programm block ECF;
programm_block: (build block SEMI)*
build block: decl
| statement;
R ——
Z Declarations
type IDENTIFIER;
decl var_decl;
var_decl type var list;
var list variable
(COMVA variable) *;
e R
// Statements
== e
statement : statement assign
statement_with
statement_func;
lvalue: variable;
statement assign: 1lvalue ASSIGN expression;
statement with: "with" LPRREN variable RPAREN LCURLYPAREN! programm block
RCURLYPAREN;
statement func: function call;

27

AT 006 351 Ul

/- =mmmm oo ooooonnooesosoossneooos
// Expressions
/A
value: STRING LITERAL

lvalue

INT

function call;
variable: IDENTIFIER;
function call: basic_func call (DOT (basic_func call

variable)) *

variable (DOT(basic func call|variable))+;
basic_func_call: IDENTIFIER LPAREN! expresion list RPAREN!;
expresion list: (expression (COMA expression)*)?;
expression: value;

Die Umsetzung der Grammatiken in lauffahige Analysatoren kann beispiels-
weise durch das bekannte Software-Werkzeuge antlr erfolgen, welches ein Werkzeug zur
Analyse von LL(k) Sprachen ist, und die Generierung von Analysatoren in unterschiedlichen
Sprachen ermdglicht. Insbesondere kdnnen die fiir den Analysator notwendigen Java Klassen
sehr einfach durch antlr generiert werden. Zur Erzeugung der notwendigen Klassen aus den
Grammatiken kénnen aber auch andere gingige Klassen-Generatoren, insbesondere Generato-
ren fiir Java-Klassen, verwendet werden.

7usitzlich ist die Definition einer eigenen Grammatik fiir den Analysator der
hierarchischen Struktur der MOs 27 bzw. der Datentypen 52 vorteilhaft. Auch hier kann der
schon angesprochene antlr Generator flir Analysatoren (engl: translator generator) verwendet

werden.

3.4.3 Script-Tool

Der Interpretierer bzw. das Script-Engine 31 ist vorzugsweise in einer objekt-
orientierten Programmiersprache wie Java oder C++ implementiert.

Fig. 7 zeigt das Objektnetz eines erfindungsgemifBen Interpretierers in einer
Skript-Umgebung. Das Diagramm verdeutlicht die Struktur der Skript-Umgebung. In dem
dargestellten Objektnetz deutet die Raute eine Zusammenfassung an. Die Zahlen driicken aus,
wie viele Objekte an einer Beziehung beteiligt sind. Die Pfeile zeigen Spezialisierungen an.

Die Script-Factory (ScFactory) 35 erzeugt und verwaltet alle aktiven Script-
Engines 31 (ScEngine). Es existiert nur eine aktive Script-Factory 35. Die Script-Factory 35
folgt dem Singleton Muster. Jeder Befehl zum Laden oder Ausfithren eines Kommandoskripts
50 fordert von der Script-Factory 35 ein neues Exemplar eines Script-Engines 31 an. Durch
diese Architektur konnen mehrere Script-Engines 31 gleichzeitig erzeugt werden und so bei-
spielsweise mehrere Nebenstellenanlagen gleichzeitig programmiert werden.

Das Script-Engine 31 arbeitet die Kommandoskripts 50 ab. Die zwei Haupt-
methoden sind load() und run() fiir das Laden und Ausfiihren von Kommandoskripts 50. Die
load() Methode bedingt die Interaktion mit dem -hier nicht dargestellten- Skript-Depot 32.

28

AT 006 351 U1

Das entsprechende Kommandoskript 50 wird im Skript-Depot 32 lokalisiert und in den Spei-
cher geladen. Die run() Methode erlaubt es, ein im Speicher befindliches Kommandoskript 50
abzuarbeiten. Weiters erlaubt das Script-Engine 31 den Status des Prozesses abzufragen und
weiterzugeben, Benutzereingaben zu verlangen, wenn dies notwendig ist, und beim Auftreten
von Fehlern die entsprechenden Fehlermeldungen weiterzugeben.

Der Skript-Datahandler (ScDataHandler) 36 erlaubt den Zugriff des Script-
Engines 31 auf die verfiigbaren Script-Typen und stellt auf Anfrage des Script-Engines 31 ein
Exemplar eines bestimmten Script-Typs 37 (ScType) zur Verfiigung. Alle in der Skriptspra-
che verfiigbaren Typen (Integer, String, MOs, spezialisierte MOs wie ExtensionMO und
TrunkMO) erben die Attribute von Skript-Type 37. Die Skript-Typen sind durch ihre Typen-
Kommandos characterisiert, d.h. fiir jede Methode eines Skript-Typs existiert eine von SCTy-
peCMD 38 abgeleitete Klasse Cmd 39, welche die einzelnen Zugriffskommandos 51 defi-
niert.

Das Script-Engine 31 und die Zugriffskommandos 51 kénnen natiirlich in einer
beliebigen Programmiersprache implementiert sein. Vorzugsweise sind die Zugriffskomman-
dos 51 jedoch in derselben Programmiersprache wie die die Nebenstellenanlage 1 représentie-
renden MOs 27 bzw die Management Information Base implementiert, also beispielsweise in
Java oder C++. Dadurch wird die Implementierung wesentlich vereinfacht.

Bei einer besonders bevorzugten Ausfiihrungsform erfolgt die Definition des
Script-Engines 31 iiber eine Schnittstellendefinitionssprache (engl: Interface Definition Lan-
guage IDL) fiir die Verwendung des erfindungsgemiBen Programmierverfahrens in verteilten
Systemen. Beispielsweise kann hierfiir der Industriestandard CORBA verwendet werden. Die
einzelnen Klasse werden hierbei in IDL definiert und die entsprechenden Java Klassen bzw.
Stubs iiber einen sprachspezifischen Priprozessor generiert. Damit ergibt sich der weiter oben
genannte Vorteil der Interoperabilitit von in verschiedenen Programmiersprachen geschriebe-

nen Programmen.

3.5 Ablauf

Das in Fig. 8a gezeigte Diagramm illustriert den zeitlichen Ablauf der Interak-
tion zwischen den einzelnen Klassen bei der Abarbeitung eines Kommandoskripts 50 durch
ein Ausfithrungsmodul der eben beschriebenen Skript-Umgebung.

SkriptMO 40 ist eine statische Klasse, welche dazu dient, die Nebenstellenan-
lage 1 zu identifizieren, fiir welches das Kommandoskript 50 ausgefiihrt werden soll. Das
Managed Objekt SkriptMO 40 représentiert ein bestimmtes Softwaremodul, die Skript-
Umgebung. ScriptMO 40 ist jedoch kein erfindungsgemiBer Datentyp 52, welcher eine Res-
source 6 des Kommunikationsnetzes darstellt. ScriptMO 40 stellt vielmehr die Schnittstelle
der Skript-Umgebung zur Auflenwelt dar.

29

AT 006 351 U1

SciptMO 40 fordert von Script-Factory 35 ein neues Script-Engine 31 an. An-
schlieBend wird die load() Methode des Script-Engines 31 aufgerufen und der Name des
Kommandoskripts 50 iibergeben. Das Script-Engine 31 greift auf das Script-Repository bzw.
das Skript-Depot 32 (hier nicht gezeigt) zu, um die gesuchte Skript-Datei zu finden und in den
Speicher zu laden.

Wenn das Kommandoskript 50 erfolgreich in den Speicher geladen werden
konnte, wird die run() Methode des Script-Engines 31 aufgerufen, wodurch die eigentliche
Ausfithrung des Kommandoskripts 50 gestartet wird und die einzelnen Zugriffskommandos
51 ausgefiihrt werden. Die Ubersetzung (Interpretierung) des Kommandoskripts 50 geschieht
in Zusammenwirken mit dem Objektkatalog der Management Information Base (MIB) 28.
Das Script-Engine 31 lddt die notwendigen MOs 27 aus der MIB 28 und fiihrt die ihnen zuge-
ordneten spezifizierten Methoden aus, beispielsweise die set() Methode fiir einzelne Parame-
ter.

Wenn die Ausfiihrung des Kommandoskripts 50 vollendet ist, gibt das Script-
Engine 31 eine Nachricht an das ScriptMO 40 weiter, welches wiederum den Benutzer 41
benachrichtigt.

Die beschriebene Architektur stellt lediglich eine von vielen méglichen Reali-
sierungen eine erfindungsgeméBen Skript-Umgebung dar. Es sind beispielsweise auch sehr
viel einfachere Strukturen mdglich. Das Vorsehen der statischen klasse SkriptMO 40 erweist
sich allerdings als besonders vorteilhaft, weil das Laden und die Ausfiihrung der einzelnen
Kommandoskripts 50 fiir den Benutzer 41 transparent erfolgt.

Die beschriebene Struktur bzw. Architektur der Skript-Umgebung bewirkt, dal3
die Skriptausfiihrung nicht unmittelbar mit der Benutzeroberfliche 30' zusammenhingt. Dies
ermoglicht es insbesondere, die Skriptausfithrung und die Bereitstellung der Benutzeroberfla-
che 30' in zwei voneinander getrennten Programmodulen zu implementieren. Dadurch wird
eine Client-Server Struktur erreicht, wobei der Server-Prozess 55 die Ausfithrung der Kom-
mandoskripts 50 kontrolliert und ein oder mehrere Benutzer 41 sich jeweils iiber einen Client-
Prozess 56 mit dem Server-Prozess 55 verbinden kénnen.

Somit ist es moglich, daB der Server-Prozess 55 die Ausfiihrung der Zugriffs-
kommandos 51 umsetzt und Benutzereingaben lediglich iiber einen Client-Prozess 56 erfol-
gen. Der Client-Prozess 56 und der Server-Prozess 55 kommunizieren dabei iiber eine defi-
nierte Schnittstelle 57 miteinander.

Client-Prozess 56 und Server-Prozess 55 konnen auf dem selben oder auf ort-
lich getrennten Computern laufen. Dies ist besonders bei der Fernwartung von Telekommuni-
kationsanlagen 1 vorteilhaft. Beispielsweise kann der Client-Prozess 56 durch ein Java-Applet
oder eine sonstige Browser-Application bereitgestellt sein. Der Benutzer 41 kann iiber den
Client-Prozess Eingaben durchfiihren, die den Server-Prozess 55 dazu veranlassen, bestimmte
Kommandoskripts 50 zur Wartung der Telekommunikationsanlage 1 auszufiihren.

30

AT 006 351 U1

Vorzugsweise erfolgt die Verbindung zwischen Client-Prozess 56 und Server-
Prozess 55 iiber das Internet und die dafiir gingigen Protokolle wie TCP/IP. Es ist aber auch
moglich, lokale Netzprotokolle wie NetBui oder Protokolle fiir verteilte Dateisysteme wie
beispielsweise NFS zu verwenden. Bei einem besonders bevorzugten Verfahren erfolgt die
Kommunikation zwischen dem Client-Prozess 56 und dem Server-Prozess 55 iiber einen
Web-Server 34.

Die Computerprogramme fiir den Client-Prozess 56 und den Server-Prozess 55
bzw. fiir die gesamte Skript-Umgebung konnen lokal im Speicher des Computers abgelegt
sein, oder auf einem computergeeigneten Medium wie Disketten oder CD-Roms gespeichert
sein, bzw. bei Bedarf iiber Datentriger oder Datenleitungen, insbesondere iiber Internet,
tibermittelt werden. Die letzte Variante ist besonders vorteilhaft, weil es dadurch maglich ist,
das Programm fiir den Client-Prozess 56 bzw. fiir die Benutzeroberfliche 30' erst auf Anfrage
eines Benutzers 41 auf den Computer des Benutzers 41, beispielsweise in Form eines Java-
Applets, zu tibertragen. Dem Benutzer 41 steht somit stets die neueste Version der Benut-
zeroberfldche 30' zur Verfiigung.

Wie bereits erwihnt ist es weiters moglich, die die Nebenstellenanlage 1 repri-
sentierende MIB direkt in die Nebenstellenanlage 1 zu integrieren. in diesem Fall umfaBt der
Server 55 lediglich den Interpretierer, bzw. im Diagramm in Fig. 8a die Module ScriptMO 40
Script-Factory 35 und Skript-Engine 31.

Fig. 8b skizziert einen moglichen Ablauf der Wechselwirkung des Benutzers
41 mit der Skript-Umgebung. In dem meisten Fillen ist die Wechselwirkung mit dem Benut-
zer 41 unbedingt notwendig um wesentliche Parameter fiir die Ausfiilhrung der Komman-
doskripts 50 zur Verfiigung zu stellen. Die Skriptsprache erlaubt beispielsweise parametri-
sierte Kommandoskripts 50. Die Zugriffskommandos 51 in dem Kommandoskript 50 kénnen
beispielsweise an einem mit einer eindeutigen Identifikationsnummer gekennzeichneten MO
Objekt 27 ausgefiihrt werden. Weiters benétigt die copy() Anweisung Angaben iiber die
Hardware-Einheiten, zu denen die Daten kopiert werden sollen.

Bei der gingigen Zugangsform iiber das Internet ist keine Anfrage an den Be-
nutzer 41 durch die Skript-Umgebung méglich. Aus diesem Grund muB der Client-Prozess 56
regelmiBig den Status des Server-Prozesses 55 abfragen und bei einer Eingabeaufforderung
entsprechend antworten. In Fig. 8b wird der Status des ScriptMO 40 Objekts regelmiBig vom
Client-Prozess 56 abgefragt. Die Abarbeitung des Kommandoskripts 50 wird vom Script-
Engine 31 durchgefiihrt. Sobald eine Benutzereingabe verlangt wird, verstindigt das Script-
Engine 31 hiervon das ScriptMO Objekt 40. Dies bewirkt eine Statuséinderung im SkriptMO
Objekt 40, welche bei der nichsten Abfrage des Client-Prozesses 56 registriert wird. Darauf-
hin stellt der Client-Prozess 56 dem Benutzer 41 die entsprechende Eingabemaske zur Verfii-
gung, nimmt die Benutzereingabe an und leitet diese an SkriptMO 40 weiter.

31

AT 006 351 Ul

Die Fehlerbehandlung erfolgt auf analoge Weise (Fig. 8c). Beim Aufiritt eines
Fehlers wihrend der Ausfiilhrung eines Kommandoskripts 50 wird dieses angehalten und der
Benutzer 41 tiber den Fehler informiert. Die Ubertragung, z.B. auf einen Webbrowser, erfolgt
durch regelmiBige Abfrage des Status des Script-Engines 31. Der Status kann beispielsweise
sein:
- 1dle: Das Kommandoskript 50 ist noch nicht gestartet.
. Running: Das Kommandoskript 50 wird ausgefiihrt.

- Input required: Das Kommandoskript 50 forderte eine Eingabe vom Benutzer an. Der Cli-
ent-Prozess 56 kann daraufhin abfragen, um welche Art der Benutzereingabe es sich han-
delt, dem Benutzer 41 eine entsprechende Eingabemaske présentieren, und die Daten dem
Server-Prozess 55 bzw. dem Script-Engine 31 zur Verfiigung stellen. Daraufhin wird die
Ausfiihrung des Kommandoskripts 50 wieder aufgenommen.

- Error: Ein Fehler ist aufgetreten. Die Ausfiihrung des Kommandoskripts 50 wird unterbro-
chen. Der Client-Prozess 56 kann zusitzliche Informationen iiber die Art des Fehlers an-
fordern und diese dem Benutzer 41 anzeigen.

Auch die Fehlerbehandlung kann somit iiber einen Web Client erfolgen. Wei-
ters kann der Zugriff auf andere Elemente der Skript-Umgebung wie beispielsweise auf das
Skript-Depot 32 iiber eine Weboberflache erfolgen. Die Verwaltung der Kommandoskripts 50
ist vorzugsweise ebenfalls web-basiert, d.h. die Verwaltung kann iiber eine Benutzerschnitt-
stelle, welche beispielsweise in einem Webbrowser lduft, tiber das Internet erfolgen. Die
Schnittstelle zwischen Skript-Umgebung und Benutzeroberflache 30" wird dabei vorzugswei-
se iiber ein eigenes Programmodul, den Presentation Layer 33 gebildet.

Bei Fernwartung von sensiblen Telekommunikationsanlagen 1 stellt die Daten-
sicherheit einen besonders wichtigen Aspekt dar. Ubliche Sicherheitskonzepte beinhalten in
diesem Zusammenhang die Méglichkeit sicherer Dateniibertragung iiber das Internet, weiters
die Moglichkeit des geschiitzten Zugriffs auf das Skript-Depot 32, die Vergabe von Berechti-
gungen fiir das Ausfiihren von Kommandoskripts 50, und von Berechtigungen fiir das Aus-
fiihren einzelner Zugriffskommandos 51.

Das erfindungsgeméfe Verfahren kann zur Programmierung von Nebenstel-
lenanlagen 1 aber auch von anderen Kommunikationsnetzen, wie Rechnernetzen, oder dem
weiter oben genannten Verbund von Mobiltelefonen oder auch einzelnen Computern dienen.
Die Vorteile der erfindungsgemiBen objektorientierten Skriptsprache konnen somit fir die
Wartung von unterschiedlichen Kommunikationsnetzen ausgenttzt werden.

32

AT 006 351 U1

ANSPRUCHE

1. Programmlogik zur Programmierung bzw. zum Management von Kommunikationsnetzen,

insbesondere von Nebenstellenanlagen (1), in einer Umgebung, welche

abstrakte Datentypen (52), insbesondere Managed Objects (27) als Abstraktion
der Ressourcen (6) des Kommunikationsnetzes bereitstellt, die vorzugsweise in einer
Sammlung, insbesondere in einer Management Information Base (MIB) vorliegen,

wobei die Datentypen (52) bzw. die Managed Objects (27) iiber ein Manage-
ment Interface mit dem Kommunikationsnetz kommunizieren bzw. Funktionsdaten (25)
austauschen kénnen,

und wobei die Datentypen (52) bzw. die Managed Objects (27) in einer Pro-
grammiersprache implementiert sind und Managementkommandos (51') fiir den Zugriff
auf die Datentypen (52) bzw. die Managed Objects (27) bereitstellen,
dadurch gekennzeichnet, daB:

ein Interpretierer und Zugriffskommandos (51) auf die Datentypen (52) bzw.
die Managed Objects (27) bereitgestelit werden,

die Zugriffskommandos (51) an den Interpretierer libergeben werden,

die Zugriffskommandos (51) durch den Interpretierer automatisch in ein bzw.
mehrere Managementkommandos (51') iibersetzt werden und

die entsprechenden Managementkommandos (51') an den Datentypen (52)
bzw. den Managed Objects (27) automatisch ausgefiihrt werden.

2. Programmlogik nach Anspruch 1, dadurch gekennzeichnet, daB bei der Ubersetzung der
Zugriffskommandos (51) zusitzliche Benutzerangaben eingelesen werden und diese bei

der Ubersetzung in die Managementkommandos (5 1") berticksichtigt werden.

3. Programmlogik nach Anspruch 1 oder 2, dadurch gekennzeichnet, daB mehrere Zu-
griffskommandos (51) in ein Kommandoskript (50) zusammengefaBt werden.

33

10.

AT 006 351 U1

Programmlogik nach Anspruch 3, dadurch gekennzeichnet, dal Kommandoskripts (50)
in ein Skriptdepot (32) geladen bzw. aus diesem abgerufen werden.

Programmlogik nach Anspruch 3 oder 4, dadurch gekennzeichnet, da} Zugriffskom-
mandos (51) zunéchst automatisch durch Auslesen der Datentypen (52) bzw. der Managed
Objects (27) eines bereits programmierten Kommunikationsnetzes erzeugt werden und in
einem speziellen Kommandoskript (50), einem sogenannten Template zusammengefafit
werden und dieses Template zur Programmierung eines weiteren Kommunikationsnetzes
verwendet wird.

Programmlogik nach einem der Anspriiche 1-5, dadurch gekennzeichnet, daB die Uber-
setzung der Zugriffskommandos (51) und die Ausfiihrung der Managementkommandos
(51") durch einen Server-Prozess (55) umgesetzt werden und Benutzereingaben von einem
Client-Prozess (56) eingelesen werden, wobei der Client-Prozess (56) und der Server-
Prozess (55) iiber eine Schnittstelle (57) miteinander kommunizieren.

Programmlogik nach Anspruch 6, dadurch gekennzeichnet, da} der Client-Prozess (56)
und der Server-Prozess (55) iiber ein Netzwerkprotokoll, insbesondere i{iber das im Inter-
net relevante TCP/IP Protokoll miteinander kommunizieren.

Programmlogik nach Anspruch 6 oder 7, dadurch gekennzeichnet, dafl die Kommunika-
tion zwischen dem Client-Prozess (56) und dem Server-Prozess (55) iiber einen Web-
Server (34) erfolgt.

Programmlogik nach einem der Anspriiche 6 bis 8, dadurch gekennzeichnet, daf} der
Status des Server-Prozesses (55) regelmiBig vom Client-Prozess (56) abgefragt wird.

Verfahren zur Programmierung bzw. zum Management von Kommunikationsnetzen, ins-
besondere von Nebenstellenanlagen (1), in einer Umgebung, welche
abstrakte Datentypen (52), insbesondere Managed Objects (27) als Abstraktion der
Ressourcen (6) des Kommunikationsnetzes bereitstellt, die vorzugsweise in einer Samm-
lung, insbesondere in einer Management Information Base (MIB) vorliegen,
wobei die Datentypen (52) bzw. die Managed Objects (27) iiber ein Management In-
terface mit dem Kommunikationsnetz kommunizieren bzw. Funktionsdaten (25) austau-
schen konnen,
und wobei die Datentypen (52) bzw. die Managed Objects (27) in einer Pro-
grammiersprache implementiert sind und Managementkommandos (51') fiir den Zugriff
auf die Datentypen (52) bzw. die Managed Objects (27) bereitstellen,
dadurch gekennzeichnet, daf:

34

11.

12.

13.

14.

15.

16.

17.

18.

AT 006 351 U1l

ein Interpretierer und Zugriffskommandos (51) auf die Datentypen (52) bzw.
die Managed Objects (27) bereitgestellt werden,

die Zugriffskommandos (51) an den Interpretierer iibergeben werden,

die Zugriffskommandos (51) durch den Interpretierer automatisch in ein bzw.
mehrere Managementkommandos (51') {ibersetzt werden und

die entsprechenden Managementkommandos (51') an den Datentypen (52)
bzw. den Managed Objects (27) automatisch ausgefiihrt werden.

Verfahren nach Anspruch 10, dadurch gekennzeichnet, daB bei der Ubersetzung der Zu-
griffskommandos (51) zusdtzliche Benutzerangaben eingelesen werden und diese bei der
Ubersetzung in die Managementkommandos (51') beriicksichtigt werden.

Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dal mehrere Zugriffs-
kommandos (51) in ein Kommandoskript (50) zusammengefafit werden.

Verfahren nach Anspruch 12, dadurch gekennzeichnet, daB Kommandoskripts (50) in
ein Skriptdepot (32) geladen bzw. aus diesem abgerufen werden.

Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daB Zugriffskommandos
(51) zunéchst automatisch durch Auslesen der Datentypen (52) bzw. der Managed Objects
(27) eines bereits programmierten Kommunikationsnetzes erzeugt werden und in einem
speziellen Kommandoskript (50), einem sogenannten Template zusammengefaBt werden
und dieses Template zur Programmierung eines weiteren Kommunikationsnetzes verwen-
det wird.

Verfahren nach einem der Anspriiche 10 bis 14, dadurch gekennzeichnet, daB die Uber-
setzung der Zugriffskommandos (51) und die Ausfiilhrung der Managementkommandos
(51" durch einen Server-Prozess (55) umgesetzt werden und Benutzereingaben von einem
Client-Prozess (56) eingelesen werden, wobei der Client-Prozess (56) und der Server-
Prozess (55) iiber eine Schnittstelle (57) miteinander kommunizieren.

Verfahren nach Anspruch 15, dadurch gekennzeichnet, da3 der Client-Prozess (56) und
der Server-Prozess (55) iiber ein Netzwerkprotokoll, insbesondere iiber das im Internet
relevante TCP/IP Protokoll miteinander kommunizieren.

Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, da3 die Kommunikation
zwischen dem Client-Prozess (56) und dem Server-Prozess (55) iiber einen Web-Server

(34) erfolgt.

Verfahren nach einem der Anspriiche 15 bis 17, dadurch gekennzeichnet, daf3 der Status
des Server-Prozesses (55) regelmiBig vom Client-Prozess (56) abgefragt wird.

35

19.

20.

21.

AT 006 351 U1

Computersystem (24) auf welchem eine Anwendung lduft, dadurch gekennzeichnet, dall
die Anwendung die Programmierung bzw. das Management eines Kommunikationsnetzes
gemiB einer Programmlogik nach einem der Anspriiche 1-9 umsetzt.

Computersystem (24') auf welchem ein Client-Prozess (56) 1duft, der mit einem, vorzugs-
weise auf einem anderen Computersystem (24) laufendem Server-Prozess (55) iiber eine
Schnittstelle (57) kommuniziert, dadurch gekennzeichnet, daB der Server-Prozess (55)
die Ubersetzung der Zugriffskommandos (51) und die Ausfithrung der Managementkom-
mandos (51') zur Programmierung bzw. zum Management eines Kommunikationsnetzes
gemiB einer Programmlogik nach einem der Anspriiche 6-9 umsetzt.

Computersystem (24) auf welchem ein Server-Prozess (55) luft, der mit einem, vorzugs-
weise auf einem anderen Computersystem (24') laufendem Client-Prozess (56) iiber eine
Schnittstelle (57) kommuniziert, dadurch gekennzeichnet, da der Server-Prozess (55)
die Ubersetzung der Zugriffskommandos (51) und die Ausfiihrung der Managementkom-
mandos (51'") zur Programmierung bzw. zum Management €ines Kommunikationsnetzes
gemiB einer Programmlogik nach einem der Anspriiche 6-9 umsetzt.

36

CENTRAL
2 Central
T~ Processor
S
5 Clock
Board and
7 .- Bus Control
Communi-
cation o
8
p=
Switch -
7 '/_f E’
[72]
>
@
Power
8 ——1 supply

AT 006 351 U1

37

REGIONAL
= 2
Regional |~
Processor
Extensions
6~J Trunks
6 ~N| Regional D!
Processor -1 |
v Device Units

AT 006 351 U1

Operator’s console || BTU-D {308+ with CAS or ISDN Digital
[—) t'rur-lksl
z f = ELU-D3 | [BTU-B|'SON 28+D Bublic, Tie lines
22 = N | arg SNz Private
Operator Suite (see 3rd Party CTI)
| - Analogue
- y BTU-A trunks
PC-Operator | =55 |HE
& A —BTU-C1
ﬂ 2 7] -
Voice over
7 IPli
L = ELU-D3 [BTU-C3 lines
7 Data network
CPU-D4H
/ 7 /\/,PU b4 BTU-E2 (Intranet)
4’ . 10BaseT/100BaseTX
— IPU 5 4
AL oy
otel computer
—|CPU-D4 > Call Center Supervisior
V.24 Businessl nk 3rd Party CTI
or Novell = l’; E .
g Novell NetWare LAN ¢ emg; m&g‘g
J‘__'_\ @
i) cacpeie
Operator Suite
BackStage
TAPI Bridge
g 1st party CTl
> ISDN telephone - BackStage
r {ELU-D3 =1 Personal Link
Analogue telephones =l MFU Desktop Adapter
Ericsson telephones = 6\7 6 Qé[——] Voice Mail system
of telephones ofolhe'r vendors, \E LU-A Certified products
Fax, Modems -
§ s ~ L ==
GAP cordless telephones 6 —CPU-D4 Operation &
‘2% "\ Maintenance
ic-Lu H tc-cuz2H | VMU-HD
- MFU
(
/
)

FIG., 1A

38

6¢

ELU-A

Ring

generator| |

FiG. 1B

L0 1S€ 900 LV

oy

Communication
with messages
between
program units.

{{Program unit |2
i [Program unit
Program unit
Signal input

75

14

Program unit
Program unit
21 _{Program unit

Signal input
e .

RV ReOANAG il e 0 S
ata (local]

External O&M o4 Central 22 Regional

25
{
applicatibn [application 25
[
Data |/] Data
copy » copy
maintenance ‘
< -' L

1N 18€ 900 LV

30

AT 006 351 U1

26
5 /
GUI ka—2> TS BP

ﬂ V.24 od.)
Modem 7

MR

FIG, 34

41

AT 006 351 U1

52
ELU-A o 53
Variablen /
.’
/-\
Attribute |
Methoden
FiG. 4
2 ELU
5 R Variablen
Attribute
FIG. 4A
Methoden -

52 52) N\ %2
/[

ELU-A 1 VELU-B ELU-C

42

AT 006 351 U1l

GUI

Y

30'

Presentation

Layer

execute

management

commands

Y

- 57

BP

28

MIB

30

)

BP

Y

T

277

/

7
26

43

FiG. 5

AT 006 351 U1l

<<qderface >
TopLeweTHD
- (o mbpmd)

Diztn B hErhD A Srakeue EAbgr D
| 2
PuddBemsim) < / 7 %uddBeemsin])
¥4 ddBiens om() created urkdeld gates l ety s.avod EEZtes _:add_Emysim()

2 2 — N) . NS
’ cremlﬁmrsm() {’_;:4 Beters iondhgr0 _,} x a-emE:mrnm()
| I |
mmt,ge s BT 60 mm‘Tg‘!S
I [rom dpmi} I
W §3 % ' o
. . Lawlogue Biters i
ialRitere imhD {:} EtensieliD o
.
BERecord Al thtry
(fpm u2handbx) o mbpmd)
hi P // _‘H N
- ~
N ~
ProgheyhD BPLstND hdSrorttolid
(fom bpmh} |

i

44

FIG. 54

30'

GuUt

AT 006 351 Ul

INT| ERNET/)

SE

L~

3T T

34
,/
WEB Server / 3 3 7
Presentation f)
Layer N
' execute
5 1~ management ep
run script commands
execute y
management
57\ y commands /
\ MiB

BP

|
Y
Y

load script \ 57, / A\\\ 28

7 1
50 T sr 27

24

N

45

9

ScriptTool - Class Plagram

35 ~

S cFactory

37
]

T

o

|.ScDaiaHandier

ScEngine

39

2

1
|
|
|
|

e

e

-

36

37

»

A M)
hortwe -‘—v-*v‘"r-?ﬁ-?r---"yggf-mn-:." canit

i

"_ScTypeCurd ~— 38

FiG. 7

1N TS€ 900 LV

Ly

56 55
= — —

— m— e mm— tnt— ——— o—— Smt——— s Gy m—

!
] 40 Execute a Script /35 3\7 28 ?7
}“‘.V"_'(;ML)]l N ScrlnMO {ScrlntFacmry ! §.grlnggg|gg_’ MiB t | f ',“""»E',_Q‘__'". Z’:"
) . : e v = :
| 47 | _romine | ‘ l | !
| [l l >U create l l | |
' AT freae L | [
| ' I) relorence . J] !
| e ' R
I) [Thq.ScrlptEngln‘ﬂ" e !
| o | | et hadengt |
- T nigegeting’ with 1 e .o
| | 57 I _fosdiame) | .-...._..__5,[11 fn:fﬁ:}%?fg[?k"asa =l
I I s { c4 l
| | .ll__. i & beaion s ||
oMM OXAC Ut i
l 1] l |
8IMO.
| o | e ”
| l | st rlTl
I [l | I WTI
tr" roady < s - I |
. | | |
| 7| | | |
| | | (| |
l | T | i | !
| l | ! | | | [
. } I |] I
L I

TN TS€ 900 LV

8P

s6l 55 - o

/N | RN
40
41 User Interaction /40 37 41 N E"‘-"" Handling 37
e — i Rl K arpery o~ o AR P
= Cllent ‘Senio “ SeipiEngne 1 [\ gen! ij MJ MLE.mh_E’i
r un(name) ’l- R —-IJ--_-—-— mn(iﬁ rIB))[f} I
e ‘
s ' The slcnpt I | flanarror occuns
] exgcution rins now. auring the laxical
| | | a useroniy s, ! I ! analysis of
| tsme | maukedbe - | oottt | :,”fﬂ’c';;ff&‘ o .
The Cllert pols] byma scnptsnglno" : Tbe Cientpoisly [aning | ScriptMO'fs nolified .
the atatue of the funning ol |thestatusotthe '| || bytheScnptEnglne
ScriptMOnSer . | S L SeriptMOaSs et l] PR
pEnghe - ! plEngine | |
’ l 1 f : -
'IJ | | T v geiStatus { |
... etStats : BN - i
! ' > uger eniry req mo.us m:Renw() | >u k< - iemr Ot::ursd\)
——— : P PTR. S : .
If & user entry Luser entry rag . [l{ anemor \ | cance_
& er?twed e " gota ‘ 'g‘m’;’d tha [L it |
L] . + HIG ' .
displayes the = g S giescpelzzg; the ; , ——- :
necessary)
draloques, . | f &rror message : ’ ll
accepts the - : | s+ 3 sormsem e e
user input and I ; | 1
pasaes 10 T | | ' | [
ScriptMO | | |] ' |
- l l . ! !
| |

FiG. 88 FlGc. 8C

10 19€ 900 LV

AT 006 351 U1

OSTERREICHISCHES PATENTAMT
Recherchenbericht zu GM 8055/2002

Klassifikation des Anmeldungsgegenstands gemaB [PC”:

G 06 F 13/00, G 06 F 15/16

Recherchierter Prifstoff (Klassifikation):

Konsultierte Online-Datenbank:

Dieser Recherchenbericht wurde zu den am 12. Juni 2002 eingereichten Ansprichen erstelit.

Die in der Gebrauchsmusterschrift veroffentlichten Anspriche kénnten im Verfahren gedndert worden sein (§ 19 Abs. 4 GMG), sodass
die Angaben im Recherchenbericht, wie Bezugnahme auf bestimmte Anspriiche, Angabe von Kategorien (X, Y, A), nicht mehr
zutreffend sein missen. In die dem Recherchenbericht zugrundeliegende Fassung der Anspriche kann beim Osterreichischen Patentamt
wihrend der Amtsstunden Einsicht genommen werden.

Kategorie*) | Bezeichnung der Vertffentlichung: Betreffend Anspruch
Landercode”, Veroffentlichungsnummer, Dokumentart (Anmelder),
Verdffentlichungsdatum, Textstelle oder Figur soweit erforderlich
Y US 5 317 742 A (Bapat) 1,10
31. Mai 1994 (31.05.94)
Beschreibung, Spalte 1, Zeilen 26-30,35-37,38-46, Fig. 1
A 2-9,11-21
Y EP 0909 058 A1 (SUN MICROSYSTEMS INC) 1,10
14. April 1999 (14.04.99)
Beschreibung Spalte 1, Zeilen 59-63 und Spalte 2, Zei-
len 11-20
A 2-9,11-21
Datum der Beendigung der Recherche: Priifer:
23. Juli 2002 Dr. MAYER

") Bitte beachten Sie die Hinweise auf dem Erlduterungsblatt!
[J Fortsetzung siehe Folgeblatt

Recherchenb&ticht — Blatt 1

AT 006 351 U1
OSTERREICHISCHES PATENTAMT

Erlauterungen zum Recherchenbericht

Die Kategorien der angefiihrten Dokumente dienen in Anlehnung an die Kategorien der Entgegenhaltungen
bei EP- bzw. PCT-Recherchenberichten nur zur raschen Einordnung des ermittelten Stands der
Technik. Sie stellen keine Beurteilung der Erfindungseigenschaft dar:

"A" Verdffentlichung, die den aligemeinen Stand der Technik definiert.

"Y" Verdffentlichung von Bedeutung: der Anmeldungsgegenstand kann nicht als auf erfinderischer
Tétigkeit beruhend betrachtet werden, wenn die Verdffentlichung mit einer oder mehreren weiteren
Verbffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung fiir einen

Fachmann naheliegend ist.

"X" Verdffentlichung von besonderer Bedeutung: der Anmeldungsgegenstand kann allein aufgrund
dieser Druckschrift nicht als neu bzw. auf erfinderischer T#tigkeit beruhend betrachtet werden.

"P" Dokument, das von besonderer Bedeutung ist (Kategorie ,,X*), jedoch nach dem Prioritétstag der
Anmeldung verdffentlicht wurde.

"&" Verdffentlichung, die Mitglied derselben Patentfamilie ist.

Lindercodes:

AT = Osterreich; AU = Australien; CA = Kanada; CH = Schweiz; DD = ehem. DDR; DE = Deutschland,;
EP = Europiisches Patentamt; FR = Frankreich; GB = Vereinigtes Kdnigreich (UK); JP = Japan;

RU = Russische Foderation; SU = Ehem. Sowjetunion; US = Vereinigte Staaten von Amerika (USA);
WO = Veroffentlichung gem. PCT (WIPO/OMPI); weitere Codes siche WIPO ST. 3.

Die genannten Druckschriften kénnen in der Bibliothek des Osterreichischen Patentamtes wihrend der
Offnungszeiten (Montag bis Freitag von 8 bis 12 Uhr 30, Dienstag von 8 bis 15 Uhr) unentgeltlich
eingesehen werden. Bei der von der Teilrechtsfihigkeit des Osterreichischen Patentamts betriebenen
Kopierstelle kénnen Kopien der ermittelten Verdffentlichungen bestellt werden.

Auf Bestellung gibt die von der Teilrechtsfahigkeit des Osterreichischen Patentamts betriebene
Serviceabteilung gegen Entgelt zu den im Recherchenbericht genannten Patentdokumenten allfillige
veroffentlichte "Patentfamilien” (den selben Gegenstand betreffende Patentverdffentlichungen in anderen
Landern, die iber eine gemeinsame Priorititsanmeldung zusammenhéngen) bekannt.

Auskiinfte und Bestellméglichkeit zu diesen Serviceleistungen erhalten Sie unter der Telefonnummer

01/534 24 - 738 bzw. 739;

Schriftliche Bestellungen:

per FAX Nr. 01/ 534 24 — 737 oder per E-Mail an Kopierstelle@patent.bmvit.gv.at

Erlsuterungsblatt zugoRecherchenbericht

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

