O 01/39249 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 May 2001 (31.05.2001)

PCT

(10) International Publication Number

WO 01/39249 A2

(51) International Patent Classification’: HO1L

(21) International Application Number: PCT/IL00/00797

(22) International Filing Date:
28 November 2000 (28.11.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/167,684 29 November 1999 (29.11.1999) US
(71) Applicant (for all designated States except US): CELLOT
INC. [US/US]; 701 Renner Road, Wilmington, DE 19810

(US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): OFER, Meged
[IL/IL]; 30 Geva Street, 42384 Netanya (IL).

(74) Agent: REINHOLD COHN AND PARTNERS; PO.B.
4060, 61040 Tel Aviv (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: UNIVERSAL HARDWARE DEVICE AND METHOD AND TOOLS FOR USE THEREWITH

108

‘BLOCK GEL} BLOCK GE[
CELL CELL
MR .
CELL CELL
S 7T
106 e 103
. 107 .
CELCTTTTTY (i L T
CELL S —{cELL
. .
MATRIX MATRIX
- ——+ L rt

MATRIX

105

104

i BLOCK

109

100

(57) Abstract: A universal hardware device (100) consisting essentially of at least one plurality (104, 105, 106, 107) of cells (101)
for storing data; and at least one programmable matrix (102, 108, 109) coupled to said at least one plurality of cells, whereby a
plurality of hardware applications may be implemented by selectively storing data in the cells and selectively programming the
matrix to connect at least one of the cells to at least one of the cells.

10

15

20

WO 01/39249 PCT/IL00/00797

Universal hardware device and method and tools for use therewith

FIELD OF THE INVENTION

This invention relates to circuit design and testing and device architecture.

BACKGROUND OF THE INVENTION

Known design and manufacturing processes of integrated circuits (ICs) and

- modules containing ICs including implementation using DSPs or Application

Specific Integrated Circuits (ASIC) require lengthy development cycles and are
expensive. In particular, the time required to market integrated circuits is long
owing to the length of the development period requiring protracted design,
verification and testing of the application. During verification and testing of the
product, failures in the design may be detected requiring debugging and repair, this
greatly adds to the development cost and time, particularly when design failures are
detected at the end of the process, for example after product delivery.

Hardware products are expensive since the time to market influences
engineering costs, market loss, and so on. Costs must also bear the overhead of
testing equipment used during development, the expense of testing equipment used
during manufacturing, inventory size and the costs relating to employment of
professional engineers.

Simulation accuracy is poor. One simulation is required to simulate the
desired functionality of the application, while another is required to simulate the
run-time operation of the implementation. If simulation of high-resolution delays is
required, simulation becomes cumbersome. Moreover, simulations are very slow,

often hundreds of thousands times slower than real-time.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

2

Yet another drawback of known design and development processes is that
the size of prototypes and non-ASIC electronic cards may exceed practical
dimensions. The ability to test high-end System on a Chip products is limited owing
to the very high density of integrated circuits, making it very difficult to probe
points of interest in the circuit. It is likewise difficult to test finished products
containing high-density integrated circuits, and to verify the complete functionality
of complex circuits.

The adaptation of already designed products to advanced chip production
technologies so as to ensure the compatibility of applications to newer techno-
logies, is poor. This impacts not only on the application developer but also makes it
difficult for the chip manufacturer to employ new geometries whilst enabling
developers to use their existing applications.

ASICs are used to implement an application using a smaller area, where the
application will be sold in sufficient quantity to justify customization. Typically, the
application is first developed using conventional design methods and, after
establishing the integrity of the design, it is converted to an ASIC. This is a time-
consuming and expensive process.

Typically, application speed is enhanced by implementing the application in
hardware at then expense of functional flexibility since most hardware implementa-
tions are dedicated to a specific application and are not amenable to extension or
changes.

Yet another drawback associated with the industry is the relative scarcity of
qualified personnel and the difficulty in breaking down the design and development
so as to be amenable to sharing amongst several engineers in order that the
development cycle may be reduced.

All these limitations combine to increase both the length and the cost of the
development and manufacturing cycle. In order to demonstrate the complexity and
effort associated with conventional design and manufacturing processes for
implementing logic integrated circuits or modules including them, various

implementation methods will now be described.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

~3-

Fig. 1 is a flow diagram showing the conventional process for hardware
implementation of Integrated Circuit (IC) chips on electronic cards. During the
card development process 7 a card is developed for performing a needed
application. After this process, the card is ready for the production activities. The
idea and concept relating to the application are defined during the application
definition 10, after which there follows the interface definition 12. Sometimes the
interface is determined by the system environment; for example in a PC
application card. Sometimes the firm that made the card can choose the interface;
for example in a rack full of cards, most of the cards will have the same interface.
Sometimes the interface is unique and has to be designed in the same process as
the rest of the card.

Technology selection 16 is influenced by real-time needs, flexibility, size
and the number of tasks. Hardware implementation is selected for an application
owing to its superior real-time performance. Hardware implementation is the
fastest (real-time) solution, but it can do only a limited number of tasks, is not
flexible and is large. Time to market is lengthy. The process from development to
manufacturing may take months to more than a year, nine months being
considered a very good result. The development and manufacturing processes are
expensive.

The space available for the application is an important parameter for the
technology selection process. Normally, the smaller the better. If size is critical,
the card can be converted into an ASIC in which case the development period is
extended by several months owing to the need for ASIC conversion. Nine months
is a normal extension time. In practice, ASIC conversion suffers from all the
problems mentioned above.

In most cases, particularly for complex high speed, digital hardware
design, simulation 18 of the application is required. Sometimes the simulation is
considered part of the application definition process, and is not counted as part of
the hardware development process time. The simulation process period may last

from days to a few months, depending on the complexity of the application. The

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—4-

purpose of the simulation is to verify that the idea and the implementation
considered are feasible. For example: if there is an idea to compress voice over
communication links, the compression algorithm will be made using a high level
language such as “C++” and other software tools such as “Matlab” (of
Mathworks, Natick, Massachusetts). There is no simple association between the
simulation and the implementation. Sometimes, more than one simulation is
made and workstations may be needed to increase the simulation speed.

The interface must then be designed 20. If the interface is standard, for
example a PCI interface in a PC card, in most cases there is no need to redesign it
and an “off the shelf” ready-made chip set may be used in the implementation. If
the interface is proprietary, the hardware developer might prefer to separate the
development of the interface from the development of the application so as to be
able to use the interface for other applications as well, such as the interface for a
few cards in the same rack. In such a case, the time to market would not be
influenced by the time needed to develop and implement the interface. Only when
the interface is unique, does it become part of overall implementation
development.

Electronic design 22 is the procedure that converts the solution into a set
of electronic Integrated Circuit devices. The developer keeps in mind a library of
such devices, which can perform certain functions and chooses the needed ICs to
be connected together in order to implement the application. The electronic
design process is complicated, as the engineer has to remember a lot of different
components and the way to use them. As the technology improves, new
components with complicated functions are added. Sometimes the electronics
engineer is left behind. High-Level Design languages have been implemented,
but still most of the designing has to be done in modular fashion. The more
complicated the application, the more time is needed for the design.

Drawings are the interface between the application engineer and the
computerized tools used to manufacture the card. This is the “language” the

engineer uses to “write” his implementation ideas. The drawing process 24

10

15

20

25

WO 01/39249 PCT/IL00/00797

—5—

converts the design into schematic drawings. The more complicated the
application, the more time is needed for the drawings. If a programmable device
is used, High-level Design Language (HDL) may be used to replace part of
Drawings.

When implementation is not trivial, simulation 25 of the design is done
and timing is checked. The designer tries to correlate between the result of the
application simulation 18 and the current simulation. If any mistake is found, the
design is modified, requiring steps 22 and 24 to be repeated.

After the design has been finished, the components 26 are obtained. It
sometimes takes quite a long time to purchase a specific device, thereby delaying
prototype production. The more complex the application, the more components
are used, the longer is the time to production and the bigger is the inventory of
components.

Layout 28 is the process that converts the drawn design into a
manufactured package. The more complex the application, the more components
are used and the longer the layout time.

The board is manufactured 30. For each application a different board must
be manufactured thus increasing the amount of human resources invested and the
need for expensive equipment for card verification and manufacture.

The components are installed on to the manufactured card. Faults in the
layout can cause problems in the installation. For example, the tools for installing
the prototypes are normally different from those used for manufacturing.
Specifically, installation in the development phase uses less automation and the
probability of a faulty card is greater. To shorten the installation period, special
purpose, expensive equipment is used, for example high pitch chip insertion
equipment.

Test and debug 34 are the longest periods in the overall development
process. Fifty to seventy-five percent of the time spent on a complex design goes

into verification. Verification is quickly becoming the biggest technology barrier.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—6—

Errors can be made in each one of the above tasks. For example, narrow
spacing between tracks of a printed circuit can cause a short circuit. It is worse if
this kind of mistake is not discovered in the debugging process, because it may be
found later when it is more expensive to repair. Errors can be made also in card
definition, and so on. That means repetitive processes occur. It is normal to have
three versions of the prototype before the first batch of production. Expensive test
equipment is needed to test the electronic card, for example: signal generators,
noise generators, logic analyzers, scopes, dB meters, adders, line simulators and
others.

In the R&D to production process 36, the documentation with all the
details needed to manufacture the card is created. Although this process can start
before the last version of the prototype is ready, the process extends the time to
market. Automatic tools for card verification (such as bed of nails), and function
verification are created. Automatic component insertion machinery is
programmed, and so on.

The above process causes the development and manufacturing cycle to be
long. The later an error is found the harder and the more expensive is the repair.
Therefore, if an ASIC is needed, considerable effort is made to assure error-free
results. It is normal to manufacture a few batches before converting the
electronics into an ASIC.

Once the card documentation is ready, all the components have been
procured, chip insertion machines have been programmed, and so on, the card
production process 37 can commence. There then follows production card
verification 38 wherein the card is tested with or without its electronics. Function
verification 40 is the process of testing the card for the designed application. It is
quite complicated and time consuming to create automatic equipment for testing
each function of the application. When the result is satisfactory, the card delivery
42 to the client may be performed.

10

15

20

25

WO 01/39249 PCT/IL00/00797

S

If an error is found or an enhancement is needed at the end of the process,
repairs and enhancements 44 are very difficult, expensive and time consuming. In
the worst case, most of the process has to be repeated.

As mentioned above, real-time needs, flexibility, size and number of tasks
influence the choice of technology. A circuit may be implemented as a Digital
Signal Processor when flexibility is needed and/or a large number of tasks are to
be performed, but not at the same time. This solution is slower in real-time than
an equivalent hardware implementation. The DSP implementation is about the
same size as the hardware implementation, but generally DSP implementations
do not allow the option of conversion into ASIC.

Although the above-described hardware development process must also be
implemented for the DSP card, it rarely influences the time to market period for
several reasons. First, the hardware implementation is simple, as the DSP vendors
propose solutions for the hardware design. Only a non-standard interface needs to
be designed. Second, once a card is ready and the interface is fixed, a ready-made
card can be used for the new application. Normally the process of developing the
programming code takes more time than the process of developing the DSP card.
Nevertheless, the card has to be developed at least once. Different problems than
those relating to hardware implementation must also be addressed, such as which
kind of DSP to choose, whether the DSP is going to satisfy the needs of next-
generation applications and so on.

As the industry adheres to Gordon Moore’s Law, doubling the number of
transistors in a die every 18 months by shrinking the feature size (transistors and
interconnects), products are becoming obsolete with each new semiconductor
generation. Therefore new DSP/CPU development is needed frequently. Very
commonly vendors do their best to enable software compatibility, but in practice
conversion time is needed. This conversion process influences the cost as well as

the time to market.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

_8-—

DSP implementation has advantages over hardware implementation in the
simulation stage as both the simulation and the implementation can be written in
a high level language such as “C”. In practice, there is no efficient means of
conversion from the simulation to the DSP code. In other words, the simulation
does not simulate the exact implementation, especially if assembly language is
used in the DSP coding. Also, the cost of R&D is high. The cost calculation has
to consider the development of the card and the development of the software. The
market is short of DSP experts so the wages expense is high.

In production, automatic function verification is still hard to implement,
but if an error or enhancement is discovered after delivery, it still can be fixed by
changing the software at the customer’s premises, although in practice this is far
from trivial. The easy part is loading the revised code into the implementation.

Sometimes a combined implementation is preferred. For example, if a
filter is needed in a DSP implementation, the filter may be implemented in
hardware and the rest of the application will be implemented in the DSP. The
advantages and disadvantages of each part remain.

Programmable Logic Devices (PLDs) allow for flexible implementation
but are limited in the application capability for a given chip area. A simulation
language has been converted into a High-level Design Language (HDL/VHDL)
to enable the designer create implementations. Nevertheless, these software
languages enable the user to create the hardware in modular form: so they are far
behind languages like C++. Simulation is not accurate, debugging is complicated
and the product is expensive. When size is critical, it is most common to
implement the application using a few high-end PLDs as a “fast prototype” and
then to convert the application into ASIC. In this case, it is common to have a
few iterations for the ASIC development, which increases price and time to
market.

The ASIC development process is described, for example, by Texas

Instruments Incorporated, (Dallas, Texas USA, 75380-9066) whose WEB
address: is http://www ti.com/sc/docs/asic/cad/cad htm.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—9_

Reference is also made to http://www.verisity.com/html/spechased html
belonging to Verisity Design, Inc. Mountain View, CA USA. Likewise, further

information relating to Electronic Design Automation may be found by reference
to hitp:/www wsdmag.com/library/penton/archives/wsd/Ianuary 1998/26 1 . htm which
acknowledges that electronic-design-automation (EDA) technology has lagged
behind the rate of progress of semiconductor fabrication.

Some of the drawbacks associated with the design, manufacturing and
verification process have been addressed in the patent literature. US Patent No.
5,815,726 (Cliff; Richard G.) entitled “Coarse-grained look-up table
architecture” published Sept. 29,1998 and assigned to Altera Corporation
discloses a programmable logic device architecture. For interconnecting signals
to and from the logic array blocks, the global interconnection resources include
switch boxes, long lines, double lines, single lines, and half- and partially
populated multiplexer regions. The logic array block includes two levels of
function blocks. In a first level, there are eight four-input function blocks. In a
second level, there are two four-input function blocks and four secondary two-
input function blocks. In one embodiment, these function blocks are implemented
using look-up tables (LUTs). The logic array block has combinatorial and
registered outputs and also contains storage blocks for implementing sequential
or registered logic functions. The logic array block has a carry chain for
implementing logic functions requiring carry bits and may also be configured to
implement a random access memory.

US Patent No. 5,909,450 (Wright; Adam) entitled “Tool to reconfigure pin
connections between a DUT and a tester” published June 1, 1999 and assigned to
Altera Corporation discloses a method of simulating the testing of integrated
circuits is provided. A database of desired connections between a tester unit and a
device under test (DUT) for different downbonds is accessed by a multiplexer
which sets up the desired connections. The system automatically makes the
correct connection for each downbond without manual intervention from the user

as was required in traditional simulator systems.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

-10-

US Patent No. 5,821,773 (Norman; Kevin A. et al.) entitled “Look-up
table based logic element with complete permutability of the inputs to the
secondary signals” published Oct. 13, 1998 and assigned to Altera Corporation
discloses a logic element for a programmable logic device. The logic element
includes a look-up table for implementing logical functions, a programmable
delay block, a storage block configurable as a latch or a flip-flop, and a
diagnostic shadow latch. A plurality of inputs to the logic element and
complements of these inputs are available to control the secondary functions of
the storage block.

US Patent No. 6,018,490 (CIiff; Richard G. et al.) entitled “Programmable
logic array integrated circuits” published Jan. 25,2000 and assigned to Altera
Corporation discloses programmable logic array integrated circuit having a
number of programmable logic modules which are grouped together in a plurality
of logic array blocks. The logic array blocks are arranged on the circuit in a two
dimensional array. A conductor network is provided for interconnecting any logic
module with any other logic module. In addition, adjacent or nearby logic
modules are connectable to one another for such special purposes as providing a
carry chain between logic modules and/or for connecting two or more modules
together to provide more complex logic functions without having to make use of
the general interconnection network. Another network of so-called fast or
universal conductors is provided for distributing widely used logic signals such as
clock and clear signals throughout the circuit. Multiplexers can be used in various
ways to reduce the number of programmable interconnections required between
signal conductors.

US Patent No. 6,058,492 (Sample; Stephen P. et al.) entitled “Method and
apparatus for design verification using emulation and simulation” published
May 2, 2000 and assigned to Quickturn Design Systems, Inc. discloses a method
and apparatus for combining emulation and simulation of a logic design. The
method and apparatus can be used with a logic design that includes gate-level

descriptions, behavioral representations, structural representations, or a

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—11-

combination thereof. The emulation and simulation portions are combined in a
manner that minimizes the time for transferring data between the two portions.
Simulation is performed by one or more microprocessors while emulation is
performed in reconfigurable hardware such as field programmable gate arrays.
When multiple microprocessors are employed, independent portions of the logic
design are selected to be executed on the multiple synchronized microprocessors.
Reconfigurable hardware also performs event detecting and scheduling
operations to aid the simulation, and to reduce processing time.

US Patent No. 5,815,715 (Ku.cedilla.uk et al.) entitled “Method for
designing a product having hardware and software components and product
therefor” published Sept. 29, 1998 and assigned to Motorola, Inc. discloses a
computing system and a method for designing the computing system using
hardware and software components. The computing system includes program-
mable coprocessors having the same architectural style. Each coprocessor
includes a sequencer and a programmable interconnect network and a varying
number of functional units and storage elements. The computing system is
designed by using a compiler to generate a host microprocessor code from a
portion of an application software code and a coprocessor code from the portion
of the application software code. The compiler uses the host microprocessor code
to determine the execution speed of the host microprocessor and the coprocessor
code to determine the execution speed of the coprocessor and selects one of the
host microprocessor or the coprocessor for execution of the portion of the
application software code. Then the compiler creates a code that serves as the
software program.

US Patent No. 6,058,452 (Rangasayee; Krishna) entitled “Memory cells
configurable as CAM or RAM in programmable logic devices” published
May 2, 2000 and assigned to Altera Corporation discloses a programmable logic
device having content addressable memory. The programmable logic device may
include reconfigurable dual mode memory suitable for operating as a content

addressable memory in a first mode and a random access memory in a second

10

15

20

25

WO 01/39249 PCT/IL00/00797

-12-

mode. Mode control switch circuitry may be provided to selectively enable a user
to configure the dual mode memory as either content addressable memory or
random access memory.

US Patent No. 6,078,736 (Guccione; Steven A.) entitled “Method of
designing FPGAs for dynamically reconfigurable computing” published
June 20,2000 and assigned to Xilinx, Inc. discloses a method of designing
FPGAs for reconfigurable computing comprising a software environment for
reconfigurable coprocessor applications. This environment comprises a standard
high-level language compiler (i.e. Java) and a set of libraries. The FPGA is
configured directly from a host processor, configuration, reconfiguration and host
run-time operation being supported in a single piece of code. Design compile
times on the order of seconds and built-in support for parameterized cells are
significant features of the inventive method.

US Patent Nos. 6,031,391 and 6,097,211 (Couts-Martin; Chris et al.) both
entitled “Configuration memory integrated circuit” published Feb. 29, 2000 and
Aug. 1, 2000 respectively and assigned to Altera Corporation disclose a confi-
guration memory for storing information that is in-system programmable. The
programming of the configuration memory may be performed using JTAG (IEEE
Standard 1149.1) instructions. Furthermore, the configuration of a programmable
logic device using the configuration data in the configuration memory may be
initiated with a JTAG instruction. Pull-up resistors are incorporated within the
configuration memory package.

US Patent No. 5,894,228 (Reddy; Srinivas et al.) entitled “Tristate
structures for programmable logic devices” published April 13,1999 and
assigned to Altera Corporation discloses a programmable logic device
architecture including tristate structures. The programmable logic device archi-
tecture provides tristate structures which may be logically or programmably
controlled, or both. Through these tristate structures, the logic elements may be

coupled to the programmable interconnect, where they may be coupled with other

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

~13-

logic elements of the programmable logic device. Using these tristate structures,
the signal pathways of the architecture may be dynamically reconfigured.

US Patent No. 6,026,230 (Lin; Sharon Sheau-Pyng et al.) entitled
“Memory simulation system and method” published Feb. 15,2000 and assigned
to Axis Systems, Inc. discloses a system having four modes of operation: (1)
Software Simulation, (2) Simulation via Hardware Acceleration, (3) In-Circuit
Emulation (ICE), and (4) Post-Simulation Analysis. At a high level, the system
may be embodied in each of the above four modes or various combinations of
these modes. At the core of these modes is a software kernel that controls the
overall operation of this system. The main control loop of the kernel executes the
following steps: initialize system, evaluate active test-bench processes/compo-
nents, evaluate clock components, detect clock edge, update registers and
memories, propagate combinational components, advance simulation time, and
continue the loop as long as active test-bench processes are present. The Memory
Mapping aspect of the invention provides a structure and scheme where the
numerous memory blocks associated with the user’s design is mapped into the
SRAM memory devices in the Simulation system instead of inside the logic
devices, which are used to configure and model the user’s design. The Memory
Mapping or Memory Simulation system includes a memory state machine, an
evaluation state machine, and their associated logic to control and interface with:
(1) the main computing system and its associated memory system, (2) the SRAM
memory devices coupled to the FPGA buses in the Simulation system, and (3) the
FPGA logic devices which contain the configured and programmed user design
that is being debugged.

US Patent No. 6,020,759 (Heile; Francis B.) entitled “Programmable logic
array device with random access memory configurable as product terms”
published Feb. 1, 2000 and assigned to Altera Corporation discloses a look-up-
table-based programmable logic device is provided with memory circuitry which
can be operated either as random access memory (“RAM”) or to perform product

term (“p-term”) logic. Each individual row of the memory is separately

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

14—

addressable for writing data to the memory or, in RAM mode, for reading data
from the memory. Alternatively, multiple rows of the memory are addressable in
parallel to read p-terms from the memory. The memory circuitry of the invention
is particularly useful as an addition to look-up-table-type programmable logic
devices because the p-term capability of the memory circuitry provides an
efficient way to perform wide fan-in logic functions which would otherwise
require trees of multiple look-up tables.

US Patent No. 6,028,809 (Schleicher; James.) entitled “Programmable
logic device incorporating a tri-stateable logic array block” published
Feb. 22, 2000 and assigned to Altera Corporation discloses a programmable logic
that incorporates a multi-function block having a plurality of integrally connected
function units where at least one of the function units within the multi-function
block is a tristate logic unit. The programmable logic device also includes a
tristate bus operatively connected to the tristate logic unit that can supply tristate
logic signals to the tristate bus as well as receive tristate logic signals from the
tristate bus. The tristate bus carries tristate data signals and address select signals
that operate to select a desired one of the tristate logic units within the
programmable logic device.

US Patent No. 6,085,317 (Smith; Stephen J.) entitled “Reconfigurable
computer architecture using programmable logic devices” published July 4, 2000
and assigned to Altera Corporation discloses a method and system for computing
using reconfigurable computer architecture utilizing logic devices. The
computing may be accomplished by configuring a first programmable logic unit
as a system controller. The system controller directs the implementation of an
algorithm in a second one of the programmable logic units concurrently with
reconfiguring a third one of the programmable logic units. In another aspect, the
computing system may include a pair of independent, bi-directional busses each
of which is arranged to electrically interconnect the system controller and the
plurality of programmable logic devices. With this arrangement, a first bus may

be used to reconfigure a selected one of the programmable logic devices as

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

15—

directed by the system controller while the second bus is used by an operational
one of the programmable logic devices.

US Patent Nos. 6,034,536 and 6,091,258 (McClintock; Cameron et al.)
both entitled “Redundancy circuitry for logic circuits” published March 7, 2000
and July 18,2000 respectively and assigned to Altera Corporation disclose
redundant circuitry for a logic circuit such as a programmable logic device. The
redundant circuitry allows the logic circuit to be repaired by replacing a defective
logic area on the circuit with a redundant logic circuit. Rows and columns of
logic areas may be logically remapped by row and column swapping. The logic
circuit contains dynamic control circuitry for directing programming data to
various logic areas on the circuit in an order defined by redundancy configuration
data. Redundancy may be implemented using either fully or partially redundant
logic areas. Logic areas may be swapped to re-map a partially redundant logic
area on to a logic area containing a defect. The defect may then be repaired using
row or column swapping or shifting. A logic circuit containing folded rows of
logic areas may be repaired by replacing a defective half-row with a redundant
half-row.

US Patent No. 6,069,489 (Iwanczuk; Roman et al.) entitled “FPGA having
fast configuration memory data readback” published May 30, 2000 and assigned
to Xilinx, Inc. discloses An FPGA configuration memory is divided into
columnar frames each having a unique address. Configuration data is loaded into
a configuration register, which transfers configuration data frame by frame in
parallel. In a preferred embodiment, an input register, a shadow input register and
a multiplexer array permit efficient configuration data transfer using a larger
number of input bits than conventional FPGAs. A flexible external interface
enables connection with bus sizes varying from a predetermined maximum width
down to a selected fraction thereof. Configuration data transfer is made more
efficient by using shadow registers to drive such data into memory cells on a
frame-by-frame basis with a minimum of delay, and by employing a multiplexer

array to exploit a wider configuration data transfer bus. The speed of

10

15

20

25

WO 01/39249 PCT/IL00/00797

~ 16—

configuration read-back is made substantially equal to the rate of configuration
data input by employing configuration register logic that supports bidirectional
data transfer. Using the proposed FPGA configuration memory, a bit stream
designed for an old device can be used for a new device having additional
configuration memory cells.

US Patent No. 5,477,475 (Sample; Stephen P.) entitled “Method for
emulating a circuit design using an electrically reconfigurable hardware
emulation apparatus” published Dec. 19, 1995 and assigned to Quickturn Design
Systems, Inc. discloses a system for physical emulation of electronic circuits or
systems including a data entry workstation where a user may input data
representing the circuit or system configuration. This data is converted to a form
suitable for programming an array of programmable gate elements provided with
a richly interconnected architecture. Provision is made for externally connecting
VLSI devices or other portions of a user’s circuit or system. A network of
internal probing interconnections is made available by utilization of unused

circuit paths in the programmable gate arrays.

SUMMARY OF THE INVENTION

It is an object of the invention to provide an improved device architecture
particularly suited for the design of digital circuits that allows high flexibility and
reduces the time from design to finished product.

To this end, there is provided in accordance with a broad aspect of the
invention a universal hardware device consisting essentially of:

at least one plurality of cells for storing data; and

at least one programmable matrix coupled to said at least one plurality of
cells, whereby a plurality of hardware applications may be implemented by
selectively storing data in said cells and selectively programming said matrix to
connect at least one of said cells to at least one of said cells.

Such device architecture allows cells to be combined so as to form larger

cells, which can themselves be combined to form larger cells, this process being

10

15

20

25

WO 01/39249 PCT/IL00/00797

—17-

repeated as required; and to configure the combined cell as a hardware application
by downloading data to the constituent cells. Preferably, the cells are configurable
as Look-Up Tables having addressable memory locations, in which the stored data
defines a function implemented by the Look-Up Table. The function can itself be
programmed using a high level programming language and may be formatted
together with code for implementing a desired connectivity of the cells. The
formatted data is then downloaded to the cells in the device. Once downloaded, the
device carries out the pre-programmed functionality in a manner that is no longer
dependent on the high-level program code used to implement the desired function.
As a result, operation of the device is independent of the efficiency of the high-
level program code. Identical code may be used to simulate the device thus greatly
facilitating design and simulation of the device and greatly reducing the time from
design to marketing.

The invention also provides tools for designing, simulating and debugging
the hardware device. These tools can also assist in converting all or part of the
device to an ASIC after establishing that the finished device operates as required,
although the value of such conversion diminishes as the life expectancy of the

product falls.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in
practice, a preferred embodiment will now be described, by way of non-limiting
example only, with reference to the accompanying drawings, in which:

Fig. 1 is a flow diagram showing a conventional process for hardware
implementation of IC chips on electronic cards;

Fig. 2 shows schematically the device architecture according to the
invention;

Figs. 3 and 4 shows schematically alternative configurations of cells for use

in the device shown in Fig. 2;

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 18-

Fig. 5 shows schematically a detail of the cell shown in Fig. 4 including
auxiliary circuitry;

Fig. 6 shows schematically the connectivity required to create a cell formed
from two cells so as to have a larger address bus;

Fig. 7 shows schematically a matrix connecting D cell outputs to A cell
inputs;

Fig. 8 shows schematically a saturated matrix that may be used in the circuit
of Fig. 8;

Fig. 9 shows schematically a non-saturated matrix that may be used in the
circuit of Fig. 7;

Fig. 10 shows schematically a counter using one cell as shown in Fig. 3;

Fig. 11 shows schematically an Up-Down counter using one cell as shown
in Fig. 3;

Fig. 12 shows schematically a shift register using three interconnected cells
as shown in Fig. 3;

Fig. 13 shows schematically a possible topology of a one-cell shift register
used in the shift register shown in Fig. 12;

Fig. 14 shows schematically how two cells of the kind shown in Fig. 5 may
be connected in tri-state;

Fig. 15 shows schematically a RAM-server according to a first embodiment
using two cells of the type shown in Fig. 5;

Fig. 16 shows a possible timing diagram for the RAM-server shown in
Fig.15;

Fig. 17 shows schematically a RAM-server to a second embodiment using
two cells of the type shown in Fig. 5;

Fig. 18 shows a possible timing diagram for the RAM-server shown in
Fig. 17;

Fig. 19 shows schematically a shift register operating in time-sharing

application mode;

10

15

20

25

WO 01/39249 PCT/IL00/00797

19—

Fig. 20 is a timing diagram showing the timing operation for the shift
register shown in Fig. 19;

Fig. 21 shows schematically a RAM-Server combination operating in a
time-sharing application environment;

Fig. 22 shows schematically the connectivity required to create a cell
formed from two cells so as to have a larger data bus;

Fig. 23 shows schematically the connectivity required during loading of the
cells with data;

Fig. 24 shows schematically a device configured to perform an 8-bit
command;

Fig. 25 shows a standalone RAM cell without a latch;

Fig. 26 shows schematically a non-optimized adder using the cell shown in
Fig. 25;

Fig. 27 shows schematically an improved adder using the cell shown in
Fig. 25;

Fig. 28 shows schematically a latch that may be used independently of the
RAM shown in Fig. 25;

Fig. 29 shows schematically a device where a clock enable signal is used to
adjust the effective clock rate;

Fig. 30 shows schematically a multiple MCM architecture allowing fast
switching between different states of the programmable matrix;

Fig. 31 is a flow diagram showing the principal operating steps used by a
first method for deriving construction data for implementing the device according
to the invention;

Fig. 32 is a flow diagram showing the principal operating steps used by a
second method for using a library to extract and store construction data;

Fig. 33 is a flow diagram showing the principal operating steps used by a
third method for deriving construction data for implementing the device according

to the invention;

10

15

20

25

WO 01/39249 PCT/IL00/00797

-20 -

Fig. 34 is a flow diagram showing the principal operating steps used by a
method for implementing the device according to the invention;

Fig. 35 is a flow diagram showing the principal operating steps used by a
method for simulating an application using the device according to the invention,

Fig. 36 is a flow diagram showing the principal operating steps used by a
method for emulating an application using the device according to the invention;

Fig. 37 is a flow diagram showing the principal operating steps used by a
method for using the device according to the invention to facilitate ASIC design;

Fig. 38 is a flow diagram showing the principal operating steps used by a
method for avoiding use of faulty cells in the device during implementation of an
application using the device;

Fig. 39 is a flow diagram showing the principal operating steps used by a
method for fault correction of faulty cells in the device during real-time operation
of an application using the device; and

Figs. 40 and 41 are flow diagrams showing processes according to the

invention for hardware implementation of IC chips on electronic cards.

DETAILED DESCRIPTION OF THE INVENTION

Fig.2 shows schematically the basic architecture of a device 100
according to the invention. The device architecture is a collection of cells 101
interconnected via at least one programmable matrix 102. A cell 103 may be built
out of smaller cells 101. Likewise, each of the cells 101 or 103 together with the
associated matrix 102 may form part of a block such as 104 and 105. Any block
has the same architecture as the whole device 100. Any block can be configured
as a single cell. Although any connection can be made between the output of one
block and the input of the same or another block, a particular interconnection
between the internal cells of two blocks may not always be possible. This allows
a block to be associated with a “level” being the number of blocks containing the
block. Thus, for example, a block of level 0 is the device itself; blocks of level 1

form the device; and blocks of level 2 forms blocks of level 1. In saying this, it

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—21-—

should be noted that Fig. 2 is schematic and whether the programmable matrix
102 is shown within or outside the boundary of the block is immaterial, since in
either case all cells within a block must be connected to at least one
programmable matrix. The connections of a cell that is internal to a block and
enable connection to outside the block, are defined as the port of the block.

It is further to be noted that a block could form a cell or few cells.
Likewise, the device 100 is itself a block containing multiple cells interconnected
by a programmable matrix and any block thus has a similar architecture of the
device 100 and may indeed be regarded as a device. The device 100 thus contains
multiple like devices and may be regarded as a cell formed of multiple like cells.

The name “block” allows distinction to be made between the complete
device 100 and a component thereof having similar architecture: even though this
distinction pertains only to the description for ease of clarity. So far as the claims
are concerned, no distinction is made between the complete device and any
component thereof having similar architecture. Indeed, an essential feature of the
invention resides in the fact that the architecture of a component of the device
may be similar to the architecture of the device as a whole. By the same token,
since a block is itself a device it can be realized in different ways and thus a
device can contain two or more blocks having different structures.

It should be noted that the matrix 102 does not have to be a single entity
but can be split into sections. Likewise, it will be seen that the block 105 contains
multiple groups of cells of which two are identified as 106 and 107, each
containing a possibly different number of cells 101 and both being served by a
single matrix 108. The block 105 together with its constituent cells, and any other
constituent elements, is also served by a second matrix 109 shown external to the
block 105. Each of the matrices 108 and 109 is typically of identical structure to
the matrix 102 and whether it is shown inside the block or external thereto is
merely a matter of convenience. Thus, the manner in which the matrix is depicted
in the figures is schematic for illustration only. It should also be noted that part of

the connections available in one matrix might be duplicated in another matrix.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

22—

Any such duplication will be removed in the implementation. In practice, as will
be explained below with reference to Fig. 8, the matrix is simply a collection of
switches (such as CMOS switches) each controlled by a Flip-Flop, such that by
writing logic “1” or “0” to the corresponding Flip-Flop, the switch may be closed
or opened thereby allowing the cells to be connected according to any required
topology. The Flip-Flops relating to all the switches of the matrix are arranged in
groups and are associated with auxiliary circuitry enabling any one of the Flip-
Flops to be selected for the purpose writing data thereto. Thus, the Flip-Flops and
associated auxiliary circuitry may be realized by a RAM and will be referred to as
“Matrix Control Memory”. Optionally, data in the Matrix Control Memory can
also be read.

The device architecture shown in may bring to mind “fractal” structures
used in mathematics to describe any of a class of complex geometric shapes that
exhibit the property of self-similarity.

The input pins and the output pins of the device are connected to the
programmable matrix: the input pins to the matrix input; the output pins from the
matrix output. In order to access a lower level directly from the input or from the
output, the port of the block should be used.

Fig. 3 shows schematically a cell 110 according to a first embodiment. The
cell 110 comprises a random access memory (RAM) 111 having (n+m) address
lines 112, which are shown as two separate buses although they function a single
address bus whose minimum number of address bits (m+n) can be one. A data
bus 113 allows data stored in addressable memory locations of the RAM 111 to
be read out and accommodates a number of data bits d whose minimum number
is also one. Data appearing on the data bus is latched by a latch 114 whose output
115 constitutes an output of the cell 110. The RAM 111 can be loaded with the
desired data.

Fig. 4 shows schematically a cell 120 according to a second embodiment.
The cell 120 comprises a RAM 121 having (n+m) address lines 122, which are

again shown as two separate buses although they function a single address bus

10

15

20

25

WO 01/39249 PCT/IL00/00797

—23—

whose minimum number of address bits (m+n) can be one. A data bus 123 allows
data stored in addressable memory locations of the RAM 121 to be read out and
accommodates a number of data bits d whose minimum number is also one. In
this case, the data appearing on the data bus 123 constitutes an output of the cell
120. The address appearing on the address buses 122 is latched by a respective
latch 124. The RAM 121 can be loaded with the desired data in a manner
described below. Although two latches 124 are shown at the input of the RAM
121, they are referred to as “the latch” of the cell 120, no distinction being made
to the actual number of latches used to latch the address.

The RAMs 111 and 121 as well as the latches 114 and 124 shown in Fig. 3
and Fig. 4 are part of the device 100 shown in Fig. 2. In a particular embodiment
reduced to practice, the RAM was modeled on IDT6116 of Integrated Device
Technology, Santa Clara, California, USA 95054, and the latch was modeled on
SN74HC374 of Texas Instruments Incorporated, Dallas, Texas USA, 75380-
9066. In both configurations of the cell, the values of n, m and d may be assigned
as required according to an application to be implemented using the device.

Fig. 5 shows schematically the logical cell of Fig. 4 in more detail. The
figure shows a cell 130 comprising a RAM 131 having (m+n)-bit address bus
132 and a d-bit data bus 133. A latch 134a and 134b is used to latch the address
on the address bus 132. Again, it is to be noted that the address bus and the latch
134 are shown split by way of illustration only. Functionally, there is only a

single address bus and the latches may be considered as a single latch. Logic

signals OE and OE are latched by a latch 136 which also can considered as part
of, or extension, to the latch 134 and fed via auxiliary circuitry 137 to the output
enable (OE) of the RAM 131 and may cause the RAM to be in a tri-state

condition. Logic signals CS and CS are also latched by the latch 136 and fed via
the auxiliary circuitry 137 so as to allow the RAM 131 to be selected or

deselected. The number of pairs of the CS and asignals is such to enable

mapping the whole block (or device) into a single cell. A clock is routed to the

10

15

20

25

WO 01/39249

PCT/IL00/00797

—24—

latches 134 and 136 and can be enabled or disabled by a clock enable signal (CE)

that may also be routed via a matrix. The signals OE, ﬁ, CS1, @, CS2,

@, CS3, 65_3, CS4, Cs4 and so on, and CE are such that when not

connected, are set to default values, such that an active low signal is set to LOW

and an active high signal is set to HIGH, i.e. to their enabled states. As against

this, the default value of WE when not connected is set to its disabled state.

When the RAM is not selected (chip select is not active), it is both in tri-state

condition and write disabled.

There will now be described a possible timing implementation for the

device based on the cell of Fig. 5.

(a)
(b)
(©)

(d)

(e)

A single “master clock” is used for all the cells;

There is no “Write” signal as the master clock is the “write” signal.
The write is active or not — depending on the “Write Enable” signal;
As the “Output Enable” signals and the “Write Enable” signal are also
latched by the master clock, therefore is no timing race or conflict
between the “Write” signal and any other signal.

There is no conflict between the latch operation and the write
operation as the beginning of the latch operation is the end of the write
operation. This notwithstanding, it may be desirable to decrease the
pulse width of the write signal slightly in order to increase the safety
margin whilst maintaining the same cycle, which is equivalent to the
time between two continuous clock pulses to the latches.

When a write occurs, data can be routed to the required cell via the
matrix from the input of the device or from other cells. In the latter
case, the respective data buses of the two cells are interconnected. The
output enable of the RAM to which data is being written is in the
output disable state (tri-state), and the output enable of the RAM from

which data is being written is active.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—25—

(f) OE and chip select signals are provided as described above with
reference to Fig. 5. The OE signal may be used for write operation,
multiplexing between the cells, and so on; and the chip select signals
may be used for the creation of bigger cells as is described below with
reference to Fig. 6.

For devices suited for applications where no write operation is needed at
all, the clock cycle can be shorter to create faster (real-time) applications and the
master clock low-to-high transition can occur when the cell output is ready. This
will become clearer from the description of a RAM-Server combinations shown
in Fig.15 and Fig. 17 and the timing diagrams shown in Fig. 16 and Fig. 18.

Fig. 6 shows an example for connecting two cells each having an n-bit
address so as form a composite cell 140 having double the size, i.e. twice the
number of addressable locations addressed by an (n+1)-bit address bus. To the
extent that the components of each constituent cell are identical to those
described above with reference to Fig. 5, similar reference numerals are used in
Fig. 6. Thus, the composite cell 140 contains two RAMs identified as 131a and
131b both having an n-bit address bus 132a and 132b, respectively. Thus, the n
least significant bits of the combined address are fed via respective latches 134a
and 134b to the corresponding RAMs 131a and 131b. By way of illustration, the
(n+1)-bit address fed to the combined cell is derived from a RAM 142 having an
m-bit address bus and an (n+1)-bit data bus, an m-bit address being fed thereto
via an m-bit latch 143. The data buses 133 of the two RAMs 131a and 131b are
connected via the matrix, each data output being tri-state so that only the data on
a selected one of the RAMs is output. The MSB of the (n+1)-bit address bus is
used to control which of the two RAMs 131a and 131b feeds data to the data bus

133. To this end, it is connected to the C_S—linput of the latch 136a controlling the
RAM 131a and to the CS1 input of the latch 136b controlling the RAM 131b.
Operation of the circuit is as follows. If the MSB of the data of RAM 142
that is routed to the MSB of the combined (n+1)-bit address is 0, then the RAM
131a is enabled and the RAM 131b is disabled. Conversely, if the MSB of the

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 26—

data of RAM 142 that is routed to the MSB of the combined (n+1)-bit address is
1, then the RAM 131a is disabled and the RAM 131b is enabled. Referring back
to the auxiliary circuitry 137 shown in Fig. 5, the CS1 input is fed to a first
logical AND-gate 145 whose output is ACTIVE only if all its inputs are enabled.
As noted above, any inputs not connected by the matrix are automatically enabled

so that the output of the logical AND-gate 145 is ACTIVE if CS1 is enabled and is

INACTIVE if CS1 is disabled. Likewise, the CS1 input is fed to a second logical
active LOW AND-gate 146 whose output is ACTIVE only if all its inputs are

enabled (active LOW). Again, since any inputs not connected by the matrix are
automatically enabled, the output of the logical AND-gate 146 is ACTIVE if CS1
is enabled and is INACTIVE if CS1 js disabled. Thus, if the MSB is LOW, then

CS1 of the RAM 131a is enabled and the RAM 131a is operative and if the MSB
is HIGH, then CS1 of the RAM 131b is enabled and the RAM 131b is operative.
So when the RAM 131a is ACTIVE, the RAM 131b is INACTIVE and conversely
when the RAM 131a is INACTIVE, the RAM 131b is ACTIVE,

In exactly the same way, two RAMs 140 can be combined, in which case

the CS2 and CS2 signals are also used for accommodating the two most
significant bits of the address. Such extension can be repeated at will to produce a
RAM having as many addressable memory locations as required by a specific
application. It should also be noted that the two RAMs 131a and 131b are shown
in Fig. 6 as having address buses of equal size. However, this need not be the
case and an application may, and not uncommonly will, dictate a topology where
RAMs having different size address buses are combined.

The “Clock Enable” signal may be considered as an input to the cell,
although it is used mainly during design for debugging purposes.

Fig. 7 shows schematically a matrix 150 connecting D cell outputs 151 to A
cell inputs 152.

Fig. 8 shows schematically a saturated matrix 155 having four input lines

and three output lines that may be used in the circuit of Fig. 7. The matrix 155 has

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—27—

to be able to connect each of the cell output lines 151 to each of the cells input lines
152 in the block. Each cell output 151 is connected to a respective input of the
matrix input 155 designated by alphabetic characters a, b, ¢, d. The matrix 155
serves to allow connection of each cell output 151 to one or more cell input 152
designated by numeric characters 1, 2, 3. There is in practice no reason to have the
ability to connect each cell output 151 to all the possible cell inputs 152, thus
permitting use of a matrix that is not saturated as shown in Fig. 9. However, it
makes the automation simpler to use the saturated matrix 155 as in Fig. 8, and
operation is faster in real-time. Although the cell could be made out of smaller
cells, and in some applications, the bigger cell would not be constructed, the output
and the input of the bigger cell are pre-determined.

Operation of the saturated matrix 155 is as follows. Each of the inputs a,
b, ¢, d is connected to each of the outputs 1, 2, 3 via corresponding switches.
Thus, the inputs a, b, ¢, d are connected to the output 1 via switches al, b1, cl,
d1. Likewise, the inputs a, b, ¢, d are connected to the output 2 via switches a2,
b2, ¢2, d2; and they are connected the output 3 via switches a3, b3, ¢3, d3. In
order to connect input a to output 1, the switch al is closed. In order to connect ¢
to 3, the switch ¢3 is closed. In order to connect b to both 1 and 3, the switches
bl and b3 are both closed. In order to connect both b and d to both 2 and 3 the
switches b2, b3, d2, and d3 are closed, and so on.

Each switch has a control line (not shown) that sets the switch to “closed” or
“open” and is connected to a 1-bit memory that stores the state of the switch. As in
practice there are great many switches, all the bits that store each switch state are
arranged in a memory structure. In other words, there is a memory unit that stores
the switches’ states. Each bit in the memory is connected to one control line, there
being the same number of bits in the memory as the number of switches in the
matrix. By such means, the memory functions as a Matrix Control Memory for
controlling whether the state of each switch is closed or open. In the above
example, the matrix 155 connects a 4-bit data bus to a 3-bit address bus. However,

it will be appreciated that the matrix 155 can equally well be connected with the

10

15

20

25

WO 01/39249 PCT/IL00/00797

—28—

lines a, b, ¢, d forming the output and the lines 1, 2, 3 forming the input so as to
connect a 3-bit data bus to a 4-bit address bus.

Fig. 9 shows schematically an example of a non-saturated matrix 156
comprising a plurality of interconnected saturated matrices 155 as shown in Fig. 8,
each having its own memory to control each switch thereof. All the memories are
organized as one big memory that functions as the Matrix Control Memory.
Programming the matrix is achieved by loading the matrix control memory with the
appropriate data, as described below, and sets the desired topology of the device.

Such a matrix 156 constructed so as to have a limited but sufficient number
of connections is preferred over an equivalent saturated matrix having the same
number of switching connections as it save die space, though the code for choosing
the links (routings) is slightly more complicated. Thus, assuming that each matrix
155 is saturated and denoting:

D = the number of input lines to the matrix,

A = the number of the output lines of the matrix,

X = the number of the input matrices 155,

Y

zZ

the number of the output matrixes 155, and

the number of the middle column matrixes 155,
X, Y and Z are calculated as follows:

2
che,-,,-ng[]

A

Y= ceiling(ﬂ)
D

722
X

where “ceiling” denotes that a non-integer number is rounded up to the next highest
integer.

Each of the input matrices is connected to each of the middle column
matrices. Each of the output matrices is connected to each of the middle column

matrices. To prevent cross connects limitations, it is possible to increase Z. Even

10

15

20

25

WO 01/39249 PCT/IL00/00797

—29_

so, the number of switches and the associated memory will be a lot smaller than the
number of switches and the associated memory in a saturated matrix with the same
number of input pins and output pins. This is particularly important when a single
matrix is used to connect all the cells in all levels. It will be noted that the
likelihood that the end-user will connect two cells in the same block is greater than
the likelihood that he will connect two cells in different blocks, owing to the
tendency to attempt to combine cells to form larger cells. Therefore, when such a
single matrix is used, it is advisable to take into account during design of the device
to which input and output matrices, pins of the cells are connected, since from these
cells the end-user may choose to form larger cells. It should also be noted that if,
instead, separate matrices are provided within each block, the cumulative delay for
some connections is likely to be greater than if a single matrix were used. Account
must also be taken of the need to provide connections in the matrix to the input and
output of the device in addition to the interconnections between the outputs of the
cells to the inputs of the cells.

In order to understand how the device may be used to implement different
hardware applications merely by selecting a required topology and downloading
data into the storage elements of each of the cells, various examples will now be
described. For ease of explanation, some examples are based on the cell 110 shown
in Fig. 3, although the device works in the same manner using the cell 120 of
Fig. 4. In the following examples, components that are common to the cell shown
in Fig. 3 and the matrix shown in Fig. 8 will be referred to by identical reference

numerals.

Example 1 - Counter

Fig. 10 shows schematically a counter 160 using one cell 110 comprising a
RAM 111 having an n-bit data output bus 113 fed to an n-input latch 114, whose
output 115, constituting the cell’s output, is connected to the input of the matrix

155. Each of the cell’s n output lines is connected via the matrix 155 to a respective

10

15

20

25

WO 01/39249 PCT/IL00/00797

~30—

address line of the RAM’s address bus 112. The RAM is loaded with the following
data:
Address Data

0 1
1 2
2 3
K-1 K
K 0

In steady state, there is a “number” at the output 115 of the latch 114 that
defines the “address” of the RAM 111. Therefore, the “data” of the RAM — the
input of the latch — is set by the table. For all addresses apart from the last, the data
in any addressable location of the RAM is equal to one more than the address
thereof and this becomes the new address on the next clock pulse. Thus, each time
the RAM is clocked, the latch 114 latches the address of the next addressable
location whose data is equal to the current data plus 1. After a delay time, the RAM
is ready for a new clock and the cycle repeats and the output is successively

incremented.

Example 2 — Up-Down Counter

Fig. 11 shows schematically an Up-Down counter 165 substantially identical
to the counter shown in Fig. 10, except that the RAM 111 is constructed to store
two tables in respective addressable locations thereof. This, of course, requires that
the RAM be twice as large as that used in the counter of Fig. 10, or that the range
of the counter be half. In either case, one bit of the address is used to set a new area
in the RAM for storing data that, when fed to the remaining bits of the address bus,
will point to a new address the value of whose data is one less than the address. The

new area in the RAM is loaded with the following data:

10

15

20

25

WO 01/39249 PCT/IL00/00797

—-31-

Address Data

0 K

1 0

2 1

3 2
.K-l K-2
K K-1

The Up/Down signal is also routed from the matrix 155, as are all the inputs
of the cells.

Example 3 — Delay

In order to achieve delay, the RAM is redundant. Therefore, the RAM 111
can be coded simply to transfer the address to the data e.g. at address “0” the data is
“0”, at address “1” the data is “1” and so on. On each clock signal, the data at the
input of the cell is latched and routed out directly via the RAM, a delay of one
clock is achieved. The connectivity of such a delay is also used in the Shift Register

described below in Example 4 and shown in Fig. 13.

Example 4 — Shift Register

Fig. 12 shows schematically a shift register 170 using three cells in a block
and comprising respective RAMs 111a, 111b and 111¢ each having an n-bit data
output bus fed to a respective n-input latch 114a, 114b and 114c, whose respective
outputs 115a, 115b and 115¢ combine to form a 3n-bit output data bus 115,
constituting the cell’s output. The matrix 155 is programmed to connect the (n-1)
LSBs of each of the output data buses 115a, 115b and 115c¢ to respective address
bits of the corresponding RAMs 111a, 111b and 111c. Likewise, the MSB of each
of the output data buses 115a, 115b and 115¢ to fed by the matrix 155 to the LSB of
the next RAM except for the MSB of the data bus 115c, which is simply discarded
by the shift register although it may be used by the application. The data in each

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

-3

RAM is coded so as simply to transfer the address to the data e.g. at address “0” the
data is “0”, at address “1” the data is “1” and so on, as is done in the delay
described in Example 3 above. The topology of the shift register is designed to
produce the required shift and the matrix 155 is programmed to achieve the
necessary connectivity.

It will be understood that the connectivity of the matrix 155 is not shown in
Fig. 12 for the sake of clarity. However, in order that operation of the shift register
170 be clear, the connectivity and operation of only the RAM 111a will now be
explained with reference to Fig. 13 where identical reference numerals are used to
denote those components in Fig. 12.

Fig. 13 shows a one-cell shift register 175 including a RAM 111a having an
8-bit address bus (i.e. n=8), and each of whose data bits is latched by a latch 114a
and connected by the matrix (not shown) to the next more significant bit of the
RAM’s address bus. Thus, denoting the address bits by Ay, A1, Az, ... A7 where Ay
is the LSB and A7 is the MSB and the data bits by Dy, D1, D3, ... D7, the least
significant data bit Dy is connected to the address bit Ay, data bit Dy is connected to
the address bit A, and so on. The most significant data bit D5 is discarded or fed to
the next stage of the shift register if several one-cell shift registers are to be
connected in cascade as in Fig. 12.

As noted above, the data in the RAM 111a is coded simply to transfer each
address bit to the corresponding data bit e.g. at address “0” the data is “0”, at
address “1” the data is “1” and so on. By such means the data on each address line
is simply output by the RAM 111a and latched by the latch 114a. On the next clock
pulse, each data bit is now fed by the matrix to the next address line whereby on
successive clock pulses, data fed to the LSB address bit ag ripples through the shift
register.

An alternative approach that may be used to implement a one-cell shift
register is to program the matrix to transfer the lines directly, such that Dy is
connected to the address bit A;, data bit D, is connected to the address bit A, and
so on. In this case, the shift is done by loading the RAM with the following data:

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

33—

Address Data

0 0

1 2

2 4

3 6

4 8

5 An
and so on. If a reverse shift is required then the RAM is loaded with the following
data:

Address Data

0 0

1 0

2 1

3 1

4 2

5 2
and so on.

It will be understood that in both the 3-cell shift register of Fig. 12 and the
one-cell shift register of Fig. 13, the least significant address line is also connected
to the matrix. However, it is shown “detached” in both figures in order to
emphasize the shift operation.

The following points should also be noted. The maximum rate of this shift
register is determined by the clock whose frequency must take into account the
delay of one cell only plus the delay of the matrix. Also, with reference to the
previous discussion relating to “levels”, the input pins and the output pins of the
device are connected to the “level 1” programmable matrix: the input pins to the
matrix input; the output pins from the matrix output. If the application is
implemented in “level 17, the input pin carrying the LSB of the shift register can be
routed from one of the input pins of the device, and the output pins 115 can be

routed to the output pins of the device. If the application is implemented in other

10

15

20

25

WO 01/39249 PCT/IL00/00797

—34—

“level” than “1”, only the pins from the port of the block in that level can be routed
to the I/O pins of the device.

Example 5 — Noise Generator

A noise generator may be constructed based on the shift register illustrated
in Fig. 12. As is known to those skilled in the art, a noise generator may be formed
by XNOR-ing some of the outputs of the shift register and feeding the output of the
XNOR back to the input address LSB so as to ripple through the shift register. The
address-data relation in the RAMs is programmed to achieve the XNOR operation.
In the simple case where two data bits of the same RAM are to be XNOR-ed, it is
straightforward to program the data in the RAM according to the desired truth table
of the device. However, if XNOR has to be performed between data bits of two
separate RAMs, then one of those data bits must be connected by the matrix to
form an input to the other RAM too. Consider, for example, that in the shift register
170 shown in Fig. 12, one of the data bits of the RAM 111a is to be XNOR-ed with
one of the bits of the RAM 111b. The matrix 155 should connect the required data
bit in the output 115b of the RAM 111b to input 112a of the RAM 111a and the
XNOR result must be passed to one of the data output bits 115a of the RAM 111a.
As aresult, the RAM 111a has fewer remaining bits to perform the shift function.

Example 6 — Pattern Generator

A pattern generator/signal generator is another simple application and
typically uses one cell as a counter that is routed to a second cell, whose data is
programmed to generate the required pattern according to the state of the counter.
Thus, considering any function f{#) that can be calculated or plotted, the counter
outputs successive values of ¢, whilst the second cell stores for each value of ¢ fed
to its address bus the value of the function f{?). The second cell can be configured
for storing in different sections of RAM data relating to different functions, these
being selecting as required by a selection code fed to other free address bits of the
cell. The counter cell, being programmable, can set different cycles for the different

signals (patterns). If the amount of data bits in the cell is less than the number of

10

15

20

25

WO 01/39249 PCT/IL00/00797

—35—

bits needed, another cell can be used to generate the other part of the signal: one
generating the MSB part of the signal and the other generating the LSB part.
Various examples will now be presented using the cell 120 illustrated in

Fig. 4.

Example 7 — Tri-state ability of the cell

Fig. 14 shows schematically a pair of cells 180a and 180b comprising two
RAMs 181a and 181b having respective data output buses 182a and 182b both
connected by the matrix (not shown) to a common data bus 182. Each cell output
can be driven into tri-state. It is advisable to use the tri-state ability of the cell
when multiplexers are needed. In a multiplexer implementation, the outputs of
the cells that are to be connected are routed via the matrix to the same point. The
RAM 181a has an (n+m) address bus 183a and 183b whose respective address
lines are latched by a pair of latches 184a and 184b, whilst the RAM 181b has a
k-bit address bus 183c whose respective address lines are latched by a latch 184c.
It should be noted the apparent difference between the latch configurations of the
two RAMs exists only on paper since k may be equal to m+n and the latches
184a and 184b would then operate as single k-bit latch analogous to the latch
184c. The output enable signals applied to the two RAMs 181a and 181b select
which one is active. The output enable signals are routed via the matrix as well.

With reference to Fig. 9, the number Z of the matrices 155 in the middle
column is the critical number to prevent cross-connection limitations. However,
when the output of some cells are to be connected to the same point, lines may be
freed in this middle column. Thus, the cells 180a and 180b can be connected via a
matrix in the first column to a common output thereof, allowing the common
output of this matrix to be connected to an output of the matrix 156 via only a
single matrix in the second column and thus using fewer lines thereof. This is
preferable to connecting each of the cells 180a and 180b to respective lines in the

middle matrix and then effecting the cross-connection.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—36-

As the matrix can connect the output of any cell, e.g. the cell 180a, to the
data of any other RAM in the block e.g. the RAM in the cell 180b (the data of
any RAM is also the output of its cell), if the other cell 180b is in tri-state while
the first cell 180a is active, a write operation can be made to the RAM 181b in
the cell 180b. The write pulse may be activated each cycle, but the write enable

routed from the matrix enables or disables the actual write.

Example 8 - RAM - “Server” combination

Fig.15 shows a “RAM — Server” combination 190 including a Server 191
and a RAM 192 exploiting the write ability described above with reference to
Fig. 14. The Server 191 is a cell that carries out a function while the RAM 192
stores results of the Server to be used in subsequent Server operations. The
required connectivity between the Server 191 and the RAM 192 is effected by the
matrix, which for clarity is not shown in the figure.

An example of the use of the RAM—server combination 190 is as follows.
The RAM-server 191 receives an input stream of bytes and has to count how
many times each byte (of a possible 256 different bytes) appears in a period.
(This example is a part of the Huffman Code application). The input stream 1s
routed to an input 193 of the “RAM — Server” combination 190 which operates as
follows. The RAM 192 stores the results per byte and the Server 191 increments
the old result by one. By such means, the RAM 192 receives a series of 8-bit
numbers (between 0 to 255) and the RAM-Server 190 compiles and stores in the
RAM 192 a histogram showing the frequency of occurrence of each 8-bit
number.

The following operations occur:

(a) The current byte is sampled into the input cell-RAM and the number
stored in the RAM is ready.
(b) This number is latched into the Cell-Server. The Server is program-
med to increase the number (similar to the counter shown in Fig. 10);

(c¢) The increased data is stored in the Cell-RAM.

10

15

20

25

WO 01/39249 PCT/IL00/00797

37—

Fig. 16 shows a possible timing diagram for the above implementation,
showing that the operation can be done in two cycles only, as the “write” cycle
can be done in the same cycle a new byte is latched. Although there is a waste of
real-time in this timing solution as the master clock should be slightly greater to
enable the write operation in two cycles, this may nevertheless be justified since a
“RAM-Server” combination may sometimes simplify the implementation of an
application. All the required signals shown in Fig. 16 can be generated by other
cells configured to perform pattern generation as explained above, and fed via the
matrix.

If the device is designed with a clock cycle that is too short to allow the
above implementation, a three-clock cycle RAM-server combination may be used
as is now described with reference to Fig. 17 and the corresponding timing
diagram shown in Fig. 18. Thus, referring to Fig. 17, there is shown a RAM-
server combination 200 that carries out the same application as that described
above with reference to Fig.15 and includes a Cell-Server 201 coupled to a cell
RAM 202 identical to the cell in Fig. 5. In this case, on the third clock cycle the
data must be held invariant for the write operation so as to remain at the same
value as output of the Cell-Server 201 during the previous clock cycle.
Otherwise, since the output data of the RAM of the Cell-Server 201 is fed back to
the address bus of the Cell-Server 201, it would be incremented again by the
counter therein. Therefore, in this case, on the third cycle the clock signal is
disabled. However, in this case, the clock enable signal is dispensed with and
instead an extra address bit shown as “Add One” in Fig. 17 is fed to the input of
the Cell-Server 201 so as command no change in the third cycle.

A third timing scheme may be based on the fact that the coding of the
RAM address is ready before the write operation, such that the write period is
expected to be shorter then the read period. Therefore, the two cycles operation is
preferred. However, a three cycles operation can be implemented as illustrated in

Fig. 18. The clock “low-to-high” transition can be “moved” to be after the end of

10

15

20

25

WO 01/39249 PCT/IL00/00797

~38—

the read operation, creating faster clock cycle. As noted above, the input signals
can be generated by other cells and connected by the matrix.

It transpires from what has been explained above with reference to Fig. 17,
that the clock enable is not essential for the RAM-Server 201, and therefore even
if no clock enable is provided in the device, the RAM-Server 201 can still be
implemented. The decision as to whether or not to provide clock enable depends
not so much on the need to add one more logical AND gate to each cell for the
clock enable, but rather on the need to increase the size of the programmable
matrix.

Creating faster clock cycle may cause some applications to be executed
faster, but if this is the case in the “RAM — Server” application shown in Fig. 17,
the input has to be synchronized to the 3-cycle clock, so it may be expected to

execute slower.

Example 9 — Time Sharing

To implement an application, normally several cells are needed. In time-
sharing, the same operation is done for several independent inputs that are routed
into the implementation sequentially on the same input port. In order to
implement a time-sharing application easily, the “RAM-Server” combination as
described above with reference to Fig.15 or Fig. 17 should replace any single cell
performing logic where the “Server” is used as the cell performing logic and the
RAM is used to store each slot’s state. The input of each RAM is connected to
one global counter that counts the slots/channels of the application administering
time-sharing. The counter can be one of the cells or a special purpose counter
routed via the programmable matrix to all the RAMs of the “RAM-Sever”
combinations executing the timed-shared implementation. In the preferred archi-
tecture, there is no special purpose counter, so if time-sharing is needed, a
counter application (one cell or a few cells) should be implemented.

Fig. 19 is an example for a shift register 210 operating in time-sharing

mode utilizing a time-sharing counter 211. The shift register 210 comprises two

10

15

20

25

WO 01/39249 PCT/IL00/00797

—39—

RAM-Servers 212, 214 and 213, 215, which perform the low and high parts,
respectively, of the combined shift operation in a similar manner to that described
above with reference to Fig. 12, the MSB of the RAM 214 being fed to the input
of the Server 213. Respective time-sharing cells 214 and 215 are connected to the
Servers 212 and 213 for storing the low and high parts, respectively, in respect of
each slot of the shift register samples. The RAM-Servers 212, 214 and 213, 215
act as explained above with reference to Fig.15 or Fig. 17 and their respective
timing diagrams Fig. 16 and Fig. 18. The time-sharing counter 211 is connected
to the latches in the cells 214 and 215 in a manner similar to the connection of the
input byte of the RAM Servers 190 and 200 shown in Fig.15 and Fig. 17,
respectively. The whole operation has two cycles only if the preferred “two
cycle” operation is chosen as illustrated above with reference to Fig. 16 and as
further demonstrated below with reference to Fig. 20.

Operation of the application is as follows. The two “Server” cells 212 and
213 implement the shift register implementation as explained above. The time-
sharing counter 211 acts as a global counter counting the time-sharing
slots/channels.

Fig. 20 is a timing diagram showing the timing operation, where “N = 1”
symbolizes “shift by 17, showing that the following operations occur:

(a) As the same clock is used for the global counter and for providing the
master clock signal for the rest of the implementation, the global
counter should not route its LSB bit to the time-sharing cells 214 and
215. Thus, the ‘n’ most significant lines on the global counter
represent a two-cycle counter. The LSB can be used to control the
‘OE’ of the time-sharing cells 214 and 215 and the RAM-Servers 212
and 213.

(b) With reference to Fig. 10, more than one cell can be used for
implementing the counter (if the number of data bits is less than the

number of the ‘n+1’ bits needed).

10

15

20

25

WO 01/39249

(c)

(@)

(e)

PCT/IL00/00797

—40 -

On the first cycle, when the old data is to be read, the outputs of the
time-sharing cells 214 and 215 are enabled and the outputs of the
RAM-Servers 212 and 213 are disabled.

On the next cycle, the outputs of the time-sharing cells 214 and 215
are disabled whilst their write enables are enabled and the outputs of
the RAM-Servers 212 and 213 are enabled. As a result, the data
corresponding to the current status of the respective RAM-Servers 212
and 213 are now written to the time-sharing cells 214 and 215 at the
memory locations thereof addressed by the value of the time-sharing
counter 211.

The time-sharing counter 211 serving as the global counter is enabled

in both cycles.

Example 10 — “RAM-Server” in time-sharing environment

Fig. 21 shows a “RAM - Server” combination 220 operating in a time-

sharing environment to implement the example described above with reference to

Fig.15. The RAM-Server combination 220 comprises a Cell-Server 221 and a
Cell-RAM 222 having a RAM 223 and a latch 224, which function as explained

above with reference to Fig.15 of the drawings. A global time-sharing counter

225 is routed to the Cell-RAM only. As an example, time-sharing is added to the

RAM-Server 190 described above with reference to Fig.15 of the drawings to
allow separate areas of the RAM in the Cell-RAM 222 to be dedicated to

respective time-sharing slots.

The following operations occur:

(@)

(b)

The global counter 225 is incremented, its ‘n’ MSBs defining the
current slot, which defines the area (i.e. the ‘n’ most significant bits of
the address) within the RAM 223 from which data is to be read.

The number stored in the RAM 223 at the memory location within the
defined area pointed to by the ‘k’ least significant bits of the address

10

15

20

25

WO 01/39249 PCT/IL00/00797

—4] -

fed by the latch 224 to the RAM 223. The “Server” 221 is program-
med to increment the number.

(¢) The incremented number is stored in the Cell-RAM 222 at the memory
location thereof addressed by the value of the time-sharing counter and
the latch input.

This repetitive operation can be done in two cycles as the write can be

done in the same cycle as a new byte and the time-sharing counter are latched.

Example 11 — Creating cells with a larger amount of data bits

It has been explained above with reference to Fig. 6 how a cell can be
formed from two cells in order to increase the size of the cell’s address bus.
Fig. 22 shows how a cell 230 can be formed from two cells 231 and 232 in order
to increase the size of the cell’s data bus. The address buses of the two cells 231
and 232 are connected in parallel, whereby the address of both cells 231 and 232
is identical. Both cells 231 and 232 are programmed so that the result of a desired
function is divided between the two cells. If necessary, the address buses of more
than two cells can be connected in parallel, each being programmed to handle
different portions of the function output. All the connections are made utilizing
the programmable matrix. Note that if the matrix shown in Fig. 9 is used, there
are many ways to create the required connections utilizing the matrix. If the cells
to be linked are connected to the same saturated matrix in the ‘X’ column, the
connection can be made directly in that matrix, saving matrix resources by not
using switches from the ‘Z’ or Y’ switches. The connection could also be made
in the ‘Z’ column, saving again, or the connection could be made in the ‘Y’
column.

Strictly, it may be argued that adding data bits to a cell all of whose data
bits are already being used cannot be achieved by increasing the cell size since
the data is actually split between more than one cell. However, no distinction is
made between the constituent cells of a composite cell and an equivalent larger

cell.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—42 -

The load Operation

There are several ways to load the code into the cells. For example, the
matrix may be programmed in such a way that the whole device is configured as
one RAM. Data may then be loaded into this RAM by a host computer or other
electronic implementation the same way any memory is to be written into,
whereafter the matrix may be programmed again to effect the required
connectivity.

Fig. 23 shows schematically a device 240 configured for having data
loaded therein in the case where the host computer (not shown) is unable to map
all the address space of the RAM or for debugging purposes. To this end, the
device is broken down into several RAMs of which three are shown denoted 241,
242 and 243 and respective latches 244, 245 and 246 and which are connected to
the host computer via a programmable matrix 250. Auxiliary circuitry 251 is
connected to the latches 244, 245 and 246 and is responsive to logic signals fed
thereto by the host computer for feeding clock-enable (CE) signals to the latches.

The address and data bits of the matrix control memory (not shown) are
connected to the pin-out of the device 240. This connection enables the host
computer to program (control) the matrix 250, such that the host computer maps
the memory of the matrix control memory into its memory range, and downloads
the programmed connectivity data thereto, while the CE signals are used to
“page” between the RAMs.

The pins that are used for the load can be the same pins used for I/0O, for
applications that do not involve switch changes. This is because when there is no
write pulse to the matrix control memory, no change will be made to the
switches’ state. In such a case, the I/O pins must be disconnected during the load
(i.e. switched out).

The auxiliary circuitry 251 is used to enable or disable the clock of the
latches when debugging. If the Clock Enable (CE) signal is connected to the
matrix 250, the auxiliary circuitry 251 is not needed as the Clock Enable (CE)

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 43—

signal can be routed via the matrix, allowing each cell to be clocked separately
and the desirable state to be loaded.

There is no real-time consideration for this logic, as it is not typically
designed to work in real-time. But if a real-time “Clock Enable” signal is needed,

it is recommended integrating this into the “level 1 matrix”.

Considerations for choosing a preferred architecture

The size of the die is the critical parameter. The smaller the cells and the
larger the block, the greater the flexibility, the better the usage and the better the
performance, but the bigger is the matrix. To reduce the size of the matrix, levels
are added. As noted above, a cell can be made out of other cells of lower level,
although it should be noted that not all the cells in a level need to have this
ability.

A first example of a possible architecture for 0.25-micron technology is
300 Cells of 4096 bytes (12 bits address, 8 bits data) in level one, and 64 cells of
512 bytes (9 bits address, 8 bits data) in each block of level 2. A second example
is to form level 2 blocks also from 64 cells of 2048 bytes to 128 cells of 512
bytes. No more than 10 blocks are implemented in level 2. In level 0, all the cells
are converted into one cell (one memory or one look-up table)

A third example of a possible architecture is based on 20 Cells of
64 KBytes in one level only. Again, since in level 0 all the cells are converted
into one cell, in this example, the matrix is small and can therefore be saturated.
These three examples demonstrate some differences between possible archi-
tectures. In these three examples the size of the die is about the same. In the first
two architectures proposed the level 1 can be about 18 memories of 64K byte
cells only, but as there are a lot of smaller cells, the usage is better and the overall

result is expected to be better for most applications.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—44 —

Real Time Calculations utilizing an example for cell connection

In 0.25 micron technology, the cycle time of one cell is expected to be
typically less than 10 nSec, which is thus taken as an example in the following
calculation. All the cells are synchronized and work in parallel. Therefore, in
10 nSec each of the cells in the device performs one command. This means that if
all of the parallel commands performed by the cells are considered as one
instruction, the processing speed is 100 MIPS (100 Million Instructions Per
Second).

Fig. 24 shows schematically a device 260 that operates to perform an 8-bit
command and serves to provide a better reference to the actual processing power
based on commonly used calculations. In this configuration, the device 260 can
perform an 8-bit command, input to a latch 261 and can relate to an 8-bit result of
a previous command. |

Assuming that in a 64Kbyte architecture, 300 cells of size 4Kbyte are
converted to cells having a 16-bit (i.e. 64K) address bus and an 8-bit data bus,
there will be 18 such cells leaving other spare cells that could be used for time-
sharing and other small tasks. Assuming that each of the 18 cells can perform an
8-bit command, the complete device 260 can perform 1800 MIPS, where each
instruction is of 8-bits. In practice, not all the cells are generally so large as
64Kx8, and there will be a larger number of smaller cells also performing
commands in parallel, thus increasing still further the effective number of MIPS.

It should be noted that the higher the rate of operation (MIPS), the larger
the delay may be owing to the larger number of cells. As an example, consider
the noise generator described above with reference to the shift register shown
Fig. 12. Only after 3n-1 cycles (i.e. if n=8, after 23 cycles) is the shift register full
of the input bits, such that its output may be used as the required noise signal.
Thué, assuming that each cycle is of 10ns duration, the total delay is 230ns.
Thereafter, every 10 nSec there will be output a new noise sample. This kind of
delay is normal in hardware and DSP implementations; for example, in an

implementation of a filter.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—45—

Different Cell Configurations

In the foregoing description of the device, all the cells have included both
a RAM and a Latch. Nevertheless, the device architecture may be implemented
using cells of different construction to those described above. For example, if no
feedback is needed, an application running on the device 100 (shown in Fig. 2)

will run faster on the same device without the latches.

Example 12 — Standalone RAM Cell ,

Fig. 25 shows a cell 270 comprising only a RAM 271 and associated
auxiliary circuitry 272 as described above with reference to Fig. 5. Fig. 26 shows
an 8-bit adder 275 using such a cell and having a pair of 8-bit input data buses
276 and 277 for adding two operands A and B and a 9-bit output data bus
carrying the result of the addition. In such an application, no timing is required
since the output simply reflects the state of the two inputs A and B and therefore
no latch is required.

The 8-bit adder 275 shown in Fig. 26 illustrates a basic solution, where the
9-bit sum of two 8-bit inputs are programmed into only a single RAM of the
required size configured by the matrix . The application in such a configuration
uses the equivalent of 64K of 9-Bit words of RAM. The solution can be
optimized to reduce the amount of RAM used.

Fig. 27 illustrates a better-optimized adder 280 that adds two inputs each
of 18 bits, and produces at its output a 19-bit sum. Instead of using a single RAM
as shown in Fig. 26, a plurality of first-stage cells 281, 282, 283 and 284 are
programmed to add the 18-bit inputs which, as is seen, are split into 5-bit and 3-
bit component operands, and to generate one or two carry-out bits. The carries
and the appropriate first stage outputs are then summed using appropriate second
stage cells 285, 286 and 287. In such an arrangement, there is a two-stage delay
between feeding the input operands and outputting the result, owing to the two
stages used to effect the addition. However, LSB is fed directly via the first stage
adder 281 and is not subject to additional delay. If it be required that it be subject

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 46—

to the same two-stage delay as the remaining bits, then it can be fed directly
through the first stage adder 284 in order to subject it to one additional delay, and
thereby match the delay of the remaining output bits.

Such a solution is suitable for both the devices described above with
reference to Fig. 5 and Fig. 25. When the 18-bit adder is configured as shown in
Fig. 27, the application uses the equivalent of less then 7K bytes RAM, i.e.
significantly less then the non-optimized 8-bit adder shown in Fig. 26, albeit that
there is one more delay than in the non-optimized solution for the reasons

explained above.

Example 13 — Device formed of constituent components

In the previous examples of the delay or the shift register shown in
Fig. 12, only the latch within the cell is utilized, there being no need for the
RAM. In contrast to this, as explained above with reference to Fig. 25, there exist
applications that require RAMs but not Latches. Therefore, some of the cells may
be broken into their components so that each component may be used separately.
The original cell construction can still be realized by combining the components
using the matrix. If desired, a cell can include additional constituent components.

Fig. 28 shows an example of a latch 290 that may be used independently
of the RAM 270 shown in Fig. 25 but may be combined therewith, if required, to

realize the cell shown in Fig. 5.

Example 14 - Device having independent clocks

As explained above, a block may be considered as a device. Therefore, it
is not essential to have one clock for the complete device, and each block may
have its own independent clock. As also explained previously, the block may be
converted into a cell, so that each cell may have its own independent clock.

If two blocks of different types are combined in one device, a clock may
be provided for one block but not for the other. Therefore a number of clock
inputs may be routed from the input of the device to any block or cell via the

matrix to provide the full variety of clock responses needed.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—47 -

Example 15 — Single Step Operation

The need for single step operation is for debugging purposes, allowing the
state of the implementation to be traced for any step of operation. Such a feature
allows a hardware application using the device according to the invention to be
debugged in a manner analogous to the way software programs are debugged
using debuggers. In the same way that a software program can be arrested
whenever required, its variables traced and changed, and then restarted either
from where it was arrested or from any other point in the program, the invention
provides tools for debugging the hardware device in an analogous manner.

If a device is of the type that does not have a clock as in the adder shown
in Fig. 27, for example, and the implementation does not have feedback, single
step operation is achieved by single stepping the input. If the implementation
does have feedback, only the steady states can be traced without using additional
tools. Another possibility might be to use an address bit to direct the cells to
another area of memory wherein the current status may be maintained.

If a device has a clock, and a single clock operation is needed, synchroni-
zation between the slow input control and the fast hardware response must be
achieved. One possibility is to use a slower external clock as the clock for the
device.

Fig. 29 shows another solution where the clock cannot be fed externally,
and the clock enable signal (CE) is used to adjust the effective clock rate. The
cell is programmed to have the following states:

in the input (xy): x is the external CE signal, y is the feedback

in the Output (ab): a is the internal CE signal, b=y is the feedback.

Input Output

Xy ab
00 00 noexternal clock enable, causing no internal clock enable
01 00 no external clock enable, causing no internal clock enable

10 11 start external clock enable, causing internal clock enable.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—48 —

11 01 continue external clock enable, causing no internal clock
enable
This will ensure that for each long pulse of an external clock enable, only

one pulse equivalent for a single clock pulse will be generated.

Example 16 — Double Buffer Memory

Most of the real-time applications described above are based on a fixed
matrix cross-connect. The time to change the routing is too great for the
continuous operation in real-time of typical device targets. However, new kinds
of applications can be achieved by utilizing more than one device connected to a
host. Consider, for example, a situation where there are connected to a host three
devices each of which is to be programmed to carry out a required operation. The
host computer has a memory, which stores the code that must be loaded into each
device so as to allow it to operate. While one device is executing the application,
a second is connected to the host as normal memory allowing previous results to
be read therefrom or for new code to be loaded thereto, and at the same time the
code for effecting the required connections and loading the required data may be
loaded into the third device. Upon completion of an application by the currently
running device, the states of each device changes, and the host is connected to the
device that has just finished its task for reading the result and loading a new
implementation. By such means, each implementation may be effected in
hardware which is much faster than can be done in a normal CPU using software,
whilst the downloading of new data to the devices, which is time-consuming, is
done in parallel with the operation of a different device and so represents a
transparent operation not demanding any overhead in real-time.

Although several devices are used in the above implementation, the
implementation could also be done using a few groups of cells inside the same
device. If only two device groups are active, from the perspective of the host,

which “sees” only memoryi, it is like a double-buffer hardware implementation.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—49 —

This technique can be useful if very fast real-time computing is needed (as
in configurable computers). The host computer will change the task to be
implemented as needed on one device, while in the other device it fetches the
result of the previous instruction.

A practical implementation of such an application includes at least one
device each having an active and an inactive state. The host is coupled to each
device and has a memory, which stores therein respective formatted data that
must be loaded into each of the devices so as to allow the respective device to
carry out a required operation when in the active state or to allow the host to load
the respective device when in the inactive state. This allows a configurable
computer to be implemented using at least two devices wherein the host is
adapted to manage at least one task by activating as many of the devices as

required for carrying out each task

Example 17 — Multiple “MCM?” Architecture

In the non-saturated matrix described above with reference to Fig. 9 and
the example discussed above under the heading “Considerations for choosing a
preferred architecture”, there are about 1M switches. This means that the matrix
occupies about 10% of the overall die area. Fig. 30 shows schematically a
multiple MCM architecture that is constructed by providing an additional matrix
control memory so that each switch 295 in the matrix 296 is opened or closed via
a respective pair of switches in the MCM denoted as A;, By, Az, B; up to Ay, By,
which are selected by a respective two-way switches 297 in a switch module 298
all operated by a single control 299 for multiplexing between each of the bits Ay,
By, Az, B; ... An, By of the two matrix control memories. Each of the MCM’s is
loaded with data so as to define a respective connectivity, whereby different pre-
configured connectivities can be implemented substantially instantaneously
simply by operating the control so as to select a desired MCM, thus enabling
faster real-time operation. This architecture also enables the reuse of the same

cells in a device, so that they may be used to implement an application and as a

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 50—

memory of the computer. Timing or host computer instructions or application
instructions (e.g. when the task has finished) may switch between respective
periods when the cells serve the application (“working period”) or serve the host
as its memory. After each “working period”, the host receives permission to
access its memory.

This architecture will increase the collective size of the matrix and the
matrix control components by a factor of about 4. Assuming that 0.25 Micron
technology is employed, and there are 0.18 and 0.13 micron geometries currently
available, this example is a feasible design.

This architecture can achieve the same usage as the double buffer memory
described above in Example 16. Although in both Examples 16 and 17 described
above, use of a host computer is described, a module utilizing the device can

realize the same functionality.

Debugging port

A port that is connected to the programmable matrix can view any cell
output by routing the cell output via the matrix to the port. To view a cell input, a
small free cell can be used (or a dedicated latch that acts as a cell). The data at
that cell is set to transfer the input to the output as explained in the shift register
of Fig. 12, and the output of the cell is then routed to the port.

This port can be set to view, in real-time operation, any input or output of

the entire device.

Notes:

1. In most cases there is no need to view the input of the cell as if this input is
connected to any output, the output can be routed to the port. If the port is
connected to the I/O pins of the device — it can be routed to the port by the
matrix.

2. For lower levels: only the “Ports” of the lower levels can be view in real time

at the I/O pins.

10

15

20

25

WO 01/39249 PCT/IL00/00797

-51—

Single Step

To stop the device from running, all that is needed is to stop the clock to
the cells. If any of the logic manipulation is captured, and the user sets this logic
to stop the operation of the hardware in the In Circuit Emulation mode, the
application stops. If the user wants, the matrix control memory can be changed to
force the matrix to route any cell into the I/O pins. It also can be converted into
memory and be read as a normal memory. In this way, any single logic bit in the
whole device can be viewed. After the test, the matrix control memory can be set
back to its original state and the operation may continue from the same point it

stopped.

Notes:

When the simulation stops, any single logic bit in the whole device can be
viewed, including those in lower levels, as if that level is converted into memory,
all the output cells are connected to the port of the level. The bits to be viewed

are chosen by the address of the newly created memory.

Technology Adaptation
The semiconductor industry’s ability to integrate more and more functions
on one chip increases all the time. The technology of the device is based on cells
and the more cells that are used, the greater is the application’s capability. As the
architecture is such that cells may be combined to form bigger cells, the
following methods assure that any implementation will automatically work on
new technology when greater die utilization is available:
1. Do not decrease the number of cells.
2. Do not increase the cross connection limitation of the matrix (i.e. in the above
example shown in Fig. 9 — do not reduce Z).
3. Small cell size may be replaced with bigger cell size.
4. Lower levels may be added (add levels for smaller cells). It should be noted
that cells in the lower levels can be converted back to higher cells.

5. Do not increase the clock cycle period.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—-52—

6. Blocks of cells may be moved from lower levels to higher levels, thus
requiring that the matrix size be increased.

7. Do not decrease the number of input pins.

8. Do not decrease the number of output pins.

In fact, it transpires from the foregoing that if the technology improves, no
device capability should be reduced. Keeping this in mind ensures that any
application can automatically be compatible with the new technology. It should
also be noted that since, in the simulation the functions are divided into cells, the
simulation itself does not change. However, the loaded program has to be
changed as both the memory structure (of the matrix control memory) and the
“memory image” of the whole device changes. In other words, all that is required

is that the data that is loaded into the cells must be reformatted.

Testing the Hardware.

The implementation does not need to be tested in order to make sure that
the hardware will work properly. To test all the RAMs, the entire device is
converted into one RAM, and all its locations are checked using read/write
operations as is done in conventional memory. For example: “00”, “AA”, “55”,
“FF”, “Address in data” etc. The matrix connections are now checked by
connecting signals via all the possible connections. In the same manner, all the
I/O pins are checked.

The above is an illustration of the ability to test all of the hardware without
the application. There are other ways to do this. For example, the signals could be

generated internally using the pattern generator and tested by the device itself.

Standalone Card
When a standalone card is needed, for example, if no host is available, the

same solutions that are common in the DSP field are good here. For example:

10

15

20

25

WO 01/39249 PCT/IL00/00797

—53_

Erasable Programmable Read Only Memory (EPROM)

1. An EPROM with the data for the matrix control memory and for the cells is
installed on the card. Once the power is turned on, the device copies the
matrix control data from the EPROM to the matrix control memory. The
electronic circuitry implementation to copy from memory to memory is
known in the art.

2. Once the last bit has been copied to the matrix control memory, the device
looks like a single memory. The electronic circuitry now copies from the
EPROM to the newly created memory. The cells are thus loaded with their
data.

3. Finally, the electronic circuitry copies from the EPROM again to the matrix

control memory to set the cross-connects needed for the application.

If the device architecture used is the same as discussed in the above
examples under the heading “Considerations for choosing a preferred archi-

tecture”, the EPROM size is about 10M bits.

Other Solutions

The same way the EPROM is used, other solutions known in the art for
example an EEPROM or a RAM with a back-up battery can be used. Integrating
the EPROM into the device is not recommended as it considerably increases the
device manufacturing cost.

Battery backup, directly for the device can be useful if it is to make sure
that the battery is active only when the device is not active. Otherwise, the power

dissipation is high.

Self-Perpetuating Application Development

As the hardware applications can be stored and reused as software code,
each task that can be reused can be stored and be called when needed. For
example, if a filter has been implemented and debugged, a program could ask for

the filter parameters and generate the device code automatically. This means that

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 54—

the more the device technology is used, the larger will be the number of “off-the-
shelf” task implementations available to work-groups and the shorter the time to
market will be. Furthermore, the library of applications can still be used when the

chip manufacturing technology improves as explained above.

Supplementary components of the device
Supplementary components that are not directly related to the device
architecture may be provided on the device in order to:

1. Generate an internal clock for the synchronized clock and timings,

2. Enable the use of an external clock,

3. Create the timing for the “write cycle”. This is a fixed timing as the write
operation is enabled or disabled by the “Write Enable” coming from the
matrix and the utilization of the Output Enable of the cell. Therefore, it can be
driven from the master clock.

4. Buffer the I/O signals.

It is known in the art how to realize these functions.

Other ways to Implement the device

Some of the benefits of the device architecture are related to the fact that
the cell input signals and the cell output signals such as shown in Fig. 5 are
synchronized. However, some non-synchronized operations can be implemented.
For example: consider that small cells are so fast that their cycle period is half of
the normal cell cycle period. These faster cells could be connected in smaller
blocks with a faster clock. As their cycle period is half of the normal cell cycle
period, the output of these blocks can easily be synchronized to the remaining
blocks.

Faster cells can be implemented on smaller cells at a higher level.
Therefore, this kind of connection can fit into the overall architecture. In fact, in
parts where no feedback is implemented, the latches of the cells are redundant.

Only the last latch at the end of the non-fed-back cells is needed.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—55—

Likewise, there may exist applications where multiple latches can be used
in cascade to provide a specified delay. Therefore, the cell may be realized in part
by RAMs without associated latches and/or latches without associated RAMs.
Where it is nevertheless required to associate a latch directly with a RAM, this
can be done using the matrix as explained above. Although it is more complicated
to use, and it may waste engineering time for the average engineer, it may be
valuable if an expert group working on this kind of architecture is working to

make new libraries for the benefit of all.

Simplicity
As the application is broken into small parts, it directs the application

engineer to a simple solution, which is also simple to implement.

Parallel Exploitation of Human Resources

When one system engineer develops the outline of the solution, he or she
can declare the functions that have to be made inside the function cells. Then
each cell implementation can be coded independently. This means that if time to
market is critical, then each cell implementation’s code can be developed by a

different engineer.

Flow diagrams

Fig. 31 is a flow diagram showing the principal operating steps associated
with a first method for obtaining construction data define a functionality of a
hardware application using the device according to the invention. By
“construction data” is meant that data which represents a topology defining a
connectivity between cells and/or constituent elements and including data for
storage therein. As seen a topology is selected for implementing the desired
application, after which data is formulated for storing in the cells and/or
constituent elements defined by the selected topology.

Fig. 32 shows an alternative approach for obtaining construction data that

defines at least partial functionality of a desired hardware application, using the

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—56—

device according to the invention. A library is accessed storing pre-configured
files each containing construction data relating to a respective functionality, and
one or more files are selected from the library for realizing one or more
functionalities of the application. Optionally, construction data obtained
previously may be saved in the library either adding functionalities not included
in the library or replacing existing construction data therein. The construction
data thus stored in the library in conjunction with the device defines a device
architecture that realizes a desired functionality or partial functionality of the
application. For example, a 12-bit adder might be constructed from a 10-bit adder
whose construction data is stored in the library in combination with the necessary
additional construction data. If required, the construction data of the resulting 12-
bit adder may then be saved in the library so as subsequently to be available as a
standard feature. This allows a library of pre-designed construction data to be re-
used thus obviating the need to create the same construction data repeatedly for
each application. Thus in the above example, the construction data for the 12-bit
adder having been created once may be stored, thus obviating the need for the
designer to re-design this functionality each time a 12-bit adder is required. This
not only saves considerable design time, but also, no less importantly, allows
expert designers to design optimized solutions and to make these solutions
available to a community of designers. This facility is also of use to work-groups
allowing members to swap designs, through the Internet for example.

Fig. 33 shows yet another method for obtaining construction data, where a
computer simulation of the hardware application is run by programming a
computer to implement the at least one cell and/or the at least one constituent
element and to implement a pre-configured topology using the construction data.
The construction data may be changed, as necessary, and the simulation repeated
until the computer simulation is satisfactory. The hardware application may then
be implemented by downloading to the device data derived from the simulation
construction data. As noted above, the computer may be programmed using a

high-level programming language, thus making skills that are conventionally the

10

15

20

25

WO 01/39249 PCT/IL00/00797

—57—

province of expert design engineers now available to programmers. Moreover,
the program merely serves to define the construction data: once a functional
implementation of the application is available, and the data downloaded to the
cells thereof, the manner in which the data was defined is no longer of relevance.
This means, that an operational device will function with equal efficiency
regardless of whether the program code used to construct and download the data
thereto were optimized or not.

When programming the computer to run the simulation, the simulation
construction data may be derived in two ways. According to one approach,
instantaneous samples of at least part of the simulation construction data are
continuously calculated on the fly by the computer. However, according to a
different approach, at least part of the simulation construction data is pre-
configured and stored and instantaneous samples thereof are fetched as required
by the computer. Such an approach avoids the need to calculate the simulation
construction data in real time, since the data is predetermined and fetched thus
significantly reducing the number of computer opcodes required to derive the
construction data.

Fig. 34 is a flow diagram showing the principal operating steps associated
with a method for implementing a hardware application using the device of
according to the invention. At its most basic, formatted data is obtained and is
downloaded to the device. The formatted data may be derived from
predetermined construction data and then formatted for downloading to the
device. The construction data itself may be obtained using either of the

approaches described above with reference to Figs. 31, 32 or 33.

The Simulator and tools
The following examples deal with each synchronized plurality of cells as
standalone entities. The integration of these entities is achieved as is known in the

art.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

_ 58—

The simulator

In a normal implementation, signals are input into the application, the
signals are manipulated and, as a result, signals are output from the application.
In a simulation, “virtual” signals are input into a computer program that simulates
the function of the implementation, and generates “virtual” output signals. It is
quite complex to simulate complicated implementations. The difficult part is to
simulate the delay between the signals as the resolution of the computer “time” is
fixed. The better the resolution of the simulator, the slower the simulation.

Since all the cells are synchronized, there is no problem simulating the
exact function of the hardware the same way it operates in reality. Each cell in an
application constructed using the device according to the invention performs a
task. The task can be implemented as a conversion table (look up table). The task
represented by the table data can be written in a high level programming
language. The collection of all the data stored in the different tables is called the

device code.

Examples:
There now follow several examples using the “C” language as pseudo
code, it being understood that any other programming language could be used.

An example for any task implementation would be:

// Table generation:

#define CELL1_SIZE 256 // (Any available cell size)
int 1Cell1(int iAddress);

int iTableOfCell1[CELL1_SIZE], iAddress;

for (1Address=0; iAddress<CELL1_SIZE; iAddress++)
{

}
// At this point iTableOfCell1[] holds the code for the cell being the data

1TableOfCelll[iAddress] = iCell1(iAddress);

5

10

15

20

25

30

35

WO 01/39249 PCT/IL00/00797

—59—

// stored in the respective storage elements thereof

The data of the cell is implemented separately by the function
int iCelll(int iAddress). For example, the data for the counter described above

with reference to Fig. 10 could be implemented in “C” as follows:

// Cell code generation:

#define MODULO 123

int iCell1(int 1AddressForCelll)

{
int iDataOfCelll;

iDataOfCelll = 1AddressForCell1+1;
if (iDataOfCelll >= MODULO)

{
1DataOfCell1=0;

}

return iDataOfCelll;

As the tasks are performed using software, the same code implementing
cell functionalities can be used in the simulator and in the generation of the data
to be downloaded to the device. Since in each cycle of the hardware implemen-
tation only one operation is done in a cell, the operation can be “one to one”
simulated on the computer. In order to simulate the operations, all the operations
should be included in a loop that simulates one hardware cycle.

For example, the code for the simulator could be:

// Simulation:

#define CELL1_SIZE 256
int iDataOfCelll, 1AddressForCelll;
BOOL bRunning;

1AddressForCell1=0; // Initialization

10

15

20

25

30

35

WO 01/39249 PCT/IL00/00797

— 60—

bRunning=TRUE;
while(bRunning)

{
iDataOfCelll = iCell1(iAddressForCell1l);

// View point. The data is ready and can be manipulated and shown
// on the screen

iAddressForCelll = iDataForCell1 // Matrix operation

The following differences between this code and the previous code should
be noted:

1. The matrix operation has been added; instead of incrementing the “Address”,
the “Address” gets the new value from the data.

2. The data is not collected into a table element. The data only reflects the single
operation, which is done in a cycle.

3. A few cells could be implemented in the same way, and in the same loop. In
this example, the matrix operation for all the cells should be moved to the end
of the loop.

Therefore, it is quite easy to automate the process and make the simulator
generate the loadable data called for by the device code “on the fly”. When the
simulation works in this manner, it is said to operate in “Compiled Mode”.

It is important to note that all the code that has to be changed by the user,
i.e. the code for the cells and for the matrix, is the same for the simulator and the
loaded data. Consequently, not only can the simulator perform a “one to one”
simulation of the application, but moreover, if the simulation works properly, it is
an automatic procedure to create the loaded data without additional human error.

The device code is a table of Address — Data relations. In order to make
the simulator run faster, the device code as represented by the tables, can be pre-

calculated and used as conversion tables by the simulator, thus obviating the need

WO 01/39249 PCT/IL00/00797

-6l -

for the simulator to calculate the table value “on the fly” and saving opcodes.
When the simulation works in this manner, it is said to operate in “Real Mode”.

In this case, the code would be generated like this:

// Simulation:
int iCell1(int iAddressForCell1);

#define CELL1_SIZE 256
int iDataOfCelll, iAddressForCelll;
int iTableOfCell1[CELL1_SIZE];

// Create the celll table before the simulation starts
for (1AddressForCell1=0; iAddressForCell1I<CELL1_SIZE;
iAddressForCell1++)

{
}

iTableOfCell1[iAddressForCelll] = iCell1(iAddressForCelll);

// The simulation

iAddressForCell1=0; // Initialization
while(bRunning)
{
iDataOfCelll = iTableOfCell1[iAddressForCelll]; // A table instead
of function
// View point
iAddressForCelll = iDataOfCelll // Matrix operation

The two simulation approaches may be used in combination. Thus, one
cell can be simulated by calculating the cell data “on the fly”, while another cell
can fetch pre-calculated data. It is easier to debug in the “Compiled Mode” but it

is faster in “Real Mode”.

WO 01/39249 PCT/IL00/00797
—-62—
By way of example, the Cell code generation might appear as follows:

// Cell Size Declaration, file name: “CeliSize.C”:

#define CELL1_SIZE 256 // (Any available cell size)
#define CELL2_SIZE 16384 // (Any available cell size)
#define CELLn_SIZE 4096 // (Any available cell size)

10

15

20

25

30

35

40

// Cell code generation for iCelll, file name: “CelllGeneration.C”:
int iCell1(int iAddressForCelll);

;#include “Cellsize.C”

int iTableOfCell1[CELL1_SIZE], iAddressForCelll;

for (iAddressForCell1=0; iAddressForCell1<CELL1_SIZE;
iAddressForCelll++)

{
}

iTableOfCell1[iAddressForCell1] = iCell1(1AddressForCelll);

// Cell code generation for iCell2, file name: “Cell2Generation.C”:
int iCell2(int iAddressForCell2);
#include “Cellsize.C”

int iTableOfCell2[CELL2_SIZE], iAddressForCell2;

10

15

20

25

30

35

40

WO 01/39249 PCT/IL00/00797

— 63—

for (1AddressForCell2=0; 1AddressForCell2<CELL2_SIZE;
1AddressForCell2++)

{
iTableOfCell2[1AddressForCell2] = iCell2(1AddressForCell2);
}

This code should be implemented for each cell, while the function code
(Celll(int), Cell2(int) ... Celln(int)) is implemented separately.
By way of example, the simulator code generation might appear as

follows:

// Simulation:

// Create the celll table before the simulation starts:
// Cell code generation:

#include “Cell1Generation.C”

#include “Cell2Generation.C”

#include “CellnGeneration.C”

int iDataOfCelll, iAddressForCelll;
int iDataOfCell2, 1AddressForCell2;

int iDataOfCelln, 1AddressForCelln;

BOOL bRunning=TRUE;

// The simulation
1AddressForCell1=0; // Initialization
1AddressForCell2=0; // Initialization

10

15

20

25

30

35

WO 01/39249 PCT/IL00/00797

— 64—

1AddressForCelln=0; // Initialization
while(bRunning)

{
iDataOfCelll = iTableOfCelll[1AddressForCelll]; / REAL mode

iDataOfCell2 = iTableOfCell2[iAddressForCell2]; / REAL mode
iDataOfCell3 = iCell3(1AddressForCell2); // Complied mode

iDataOfCelln = iTableOfCelln(iAddressForCelln); // REAL mode

// View point

iAddressForCelll = iDataForCellk // Matrix operation
(see note)

1AddressForCell2 = iDataForCellm // Matrix operation
(see note)

iAddressForCelln = iDataForCellp // Matrix operation
(see note)

Note:

The iAddressForCelln may be only part of the actual address of the cell.
The matrix may connect part of the data to part of the address (per bit
connection). It is obvious that these matrix lines can be separated to a different
included file, subroutine, or class, to be used by the host converting this matrix

operation into the “Matrix Control Memory” data.

The simulation speed

The following discussion relates to the comparison between the speed of
the device and the speed of the simulation implementing the same functionality.
To remove the speed factor of the computer running the simulator from the speed
estimation, the following discussion will consider that the computer operates at

the same speed as the device.

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 65—

Compiled simulator Mode

To simulate the application, each of the cells dedicated to implementing a
specified function should be simulated for implementing a required algorithm. In
the following, the 300 Cells are selected according to the architecture described
above under the section heading “Considerations for choosing a preferred
architecture”. Therefore, as the device cells are working in parallel and the
simulator is working step-by-step, the simulator works at least 300 times slower
than the device hardware. In the “Compiled Mode” as defined above, the cell data
is calculated by implementing the specified function while the simulator is
running. Even a simple function is implemented using typically at least 30
opcodes, thus slowing the simulation by a factor of at least 9000 relative to the
hardware. Now, add the generation time for the input signal and the manipulation
time of the input and the output viewed signals, and the factor will be higher.
This means that any technique that can increase the simulation speed is important.

In practice, the simulation would run a lot slower, as the computer would
be slower than the hardware and the subroutines called for in the cell functions
would be a lot bigger.

Nevertheless, as there is limited number of operations to simulate (in the
preferred architecture referred to above accommodating 300 cells), the simulator

is expected to run a lot faster than hitherto-proposed simulators.

Real Mode

In “Real Mode” the data to be stored in the cell is calculated prior to
running the simulation and during the simulation is used to carry out the desired
algorithm to be implemented by the cell. By such means, the number of opcodes
required to effect the simulation may be greatly reduced and the simulator runs
much faster. For this reason, running the simulator in “Real Mode” is a lot faster
than the basic factor of 30, since:

1. The bigger the subroutine for the cell function, the greater the speed saving.

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 66—

2. The bigger the cell, the greater the savings. The reason is that bigger cells
combine a number of cells and reduce the total number of cells to be
simulated. It takes the same time to simulate a big cell or a small cell in “Real
Mode”.

3. Although a smaller number of cells increases the simulator speed in compiled
mode too, since in most cases bigger cells utilize more code than smaller
cells, this benefit may be lost.

In conclusion, the “Real Mode” may be expected to work dozens to
several hundreds times faster than “Compiled Mode” in the high-end applications
expected to be run on the device. This number is calculated by the average
number of opcodes in a task of a cell multiplied by the average number of smaller

cells used to create bigger cells in the application.

Emulator Mode
In emulator mode the simulation runs at the clock speed derived by
“virtual signals” generation. The application could run in real time, but the

“virtual signals” generated by the simulator set the maximum speed.

In Circuit Emulator (ICE) Mode

In the In-Circuit Emulation mode the simulator works in real-time.

Simulator Input and Output Signals

Signals are generated by cells in the device as explained above in Example
6 describing pattern generation. Equivalent signals can equally well be generated
and manipulated by the computer and there is no difference between the manner
in the signals may be generated or used in either case. Nevertheless, the
computerized signals will be referred to as “virtual” signals and thus can be
viewed on a display monitor coupled to the computer.

There are some advantages the user can achieve viewing the “virtual”
signals:
1. Show the signals as they are (logic analyzer style).

10

15

20

25

WO 01/39249 PCT/IL00/00797

—67 -

2. Show the list of the data (list mode).

3. Convert the signals before viewing. For example, in Pulse Code Modulation
(PCM), “A Law” (one of the PCM conventions) signal is such that each
second bit is inverted. The user can invert the inverted bits before viewing, so
it is easier to understand the result. The user may convert the PCM code into
linear code, thereby rendering it even easier to understand.

4. The user can convert bytes or words into their “analog” shape and show them
on the screen (scope mode).

The output signals are generated by the application. They can be
manipulated the same way as the input signals.

— Fig. 35 is a flow diagram summarizing the principal operating steps
associated with a method for simulating a hardware device according to the
invention. An emulation module that is adapted for stepwise running is
constructed including the device and an I/O interface. Formatted data is
downloaded to the device within the emulation module in order to create a
desired hardware application, and the I/O interface is connected to a computer,
which constitutes a control device and also participates in the emulation. An input
sample is generated by the computer and loaded via the I/O interface to the
emulation module. An output sample is collected for analysis from the emulation
module via the I/O interface. In accordance with one approach, since the
emulation module is setup for stepwise running, it awaits a subsequent input
sample, which is authorized by the computer after the previous output sample has
been analyzed and found correct. In accordance with another approach, the
device in the emulation module will use some unused cells (possibly in another
device dedicated to this purpose) to analyze the output sample in a manner
identical to that for in-circuit emulation as is described below with reference to
Fig. 36 of the drawings. The whole process is repeated as required, sample by
sample. In an alternative configuration, a logic analyzer can replace the computer

and a signal generator can generate the input sample.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—-68 -

Stepwise running of the emulation is required in order that the computer or
other logic analyzer may have time to analyze the current output sample, and
possibly abort further operation in the event of a fault, before the subsequent
input sample is applied. The desired stepwise running can be achieved by
externally feeding a clock enable signal so as to feed the clock signal to the
application, and internally disabling the clock enable signal so as to prevent

feeding of the clock signal pending override by the application.

The Emulators

A general-purpose emulator PC card with one or more universal hardware
device(s) is implemented. The code is loaded into the device. The “virtual” input
signals generated by the computer are transferred via the PC Bus (e.g. PCI Bus)
to the card’s inputs. A free part of the device or another device is programmed to
capture a desired Logic State; being the same logic as for the logic analyzer, but
as flexible as the user wants. The output is sampled back via the PC Bus and
viewed on the user screen. The clock of the emulation card can be manipulated,
slowed down, stopped or single stepped, if needed, to view the signal on the
screen. The clock signal can be injected from the PC controlled by the software
into the device external clock signal to have maximum speed and flexibility.

If long duration real signals that can last hours or more need to be input,
then In Circuit Emulator should be used. The same general-purpose emulator PC
card is used, but a port for the PC card should be implemented on the user card.
This port will transmit the I/O signals into the emulator card. The emulator will
store the input signals and perform logic manipulations on the output and input
signals. Once the results of this logic manipulation is captured, the process stops
(by disabling the clock) and the user can inject the stored signals into the
simulator/emulator in order to debug the application.

Fig. 36 is a flow diagram summarizing the principal operating steps
associated with an in-circuit emulation method for testing the device in the

emulation module during real-time operation of the device. At least one of the

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—69 —

I/O interfaces of the module under test is connected to a control unit, and the
device is configured to port out samples at specific points of the device via at
least one of the interfaces. The samples are sampled in the control unit so as to
obtain in real time a history of samples of the device, and the control unit is used
to analyze at least a subset of most recent samples. If necessary, operation of the
device under test is arrested so as to allow any or all of the following:

(i) examination of the history of samples of the device,

(ii) examination of an instantaneous current state of the arrested

device,
(iii) download of a different state to the arrested device,
(iv) continuation of the real time operation of the device, and

(v) restarting real time operation of the device.

A Single Development Environment

The same development environment is used from the beginning of the
process to the manufacturing stage. The development environment can replace
expensive test equipment, as it is very easy to manipulate “virtual” signals in the
PC software environment as explained under the heading “Simulation”. It can be
used as the simulator, emulator, and in-circuit emulator and it can be used as the

program that checks the card in the manufacturing department.

Quality of the Customer’s Code

The application engineer defines the solution, namely: what is to be
programmed in each cell, and what should be the connectivity between the cells.
Then, the code for the cells is written. The quality of the code, in matter of real-
time, is not important to the quality of the “code” loaded into the device. For
example, suppose the counter implementation shown in Fig. 10 uses the
following code:

int iCell1(int 1Address)
{

int iData;
iData = iAddress+1;

10

15

20

25

30

35

WO 01/39249 PCT/IL00/00797

— 70—

if (iData >= MODULO)
{

1Data=0;
}

return iData;

and is changed to:

int iCell1(int iAddress)
{

int iData;
if (iData != iAddress+1) /1 7?7 Inefficient!!
}

iData = iAddress++;

}

if (iData >= MODULO)

{
if (iData != 0) // 7? Inefficient!!
{

}
}

return iData;

iData=0;

Although the code in the second implementation is much slower, identical
data would be loaded into the device. Thus, the product released to the end-
customer is not influenced by a novice programmer.

The above feature may serve to increase the availability of designers since
both software engineers and hardware engineers can perform the implementa-
tions. The systems engineer — the one who develops the solution — can be
checked easily by using the simulation.

It should be noted that although the simulator would work more slowly in
“compiled mode” with poorer code, the difference would not be noticed in
combined mode as there is no difference in that part of the device utilizing the

“real mode” (since the time to produce the tables is negligible).

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—-71-

Fig. 37 is a flow diagram showing the principal operating steps associated
with a method for designing an application-specific hardware device having a
desired functionality. Formatted data is obtained, which in conjunction with the
device according to the invention, defines a device architecture that realizes the
desired functionality. The programmable matrix or matrices of the device archi-
tecture are replaced by fixed connections that realize the connectivity of the
programmable matrix or matrices, and the storage elements in at least some of the
cells in the device architecture are replaced by respective fixed drive levels for
realizing the data stored therein. By such means, the architecture is rendered
suitable for direct implementation of the application-specific hardware device.

Such an approach allows fast development of application-specific
integrated circuits (ASICs), which may be preferred to the programmable device
in order to reduce chip area for hardware applications that intended to be mass-
manufactured. On the other hand, the device according to the invention is used
only as an agent for designing the ASIC and obtaining the required formatted
data, which is then modified. The ASIC is not itself a universal hardware device
and is not programmable.

Thus, in ASIC conversion, each bit in each RAM that is used as
application RAM is replaced with a “1” or a “0” driver. This will reduce the size
of the RAM and convert the RAM to a non-programmable table. Any RAM that
is used for storage is left intact. Although more savings can be achieved, it is
usually recommended to do only as above, as the extra savings will increase the
“time to ASIC” and will be more expensive. The above may be implemented as
an automatic tool.

The following gives an example of the extra savings that can be achieved
by using as ASIC to implement part of an application’s functionality. An 8-bit
Up-Down counter can be implemented using conventional methods with eight
flip-flops and some logic. The same 8-bit counter Up-Down according to the
invention is implemented in a 9-bit address and an 8-bit data cell requires 4096

bits of RAM. Notwithstanding the fact that superficially it may appear from this

10

15

20

25

WO 01/39249 PCT/IL00/00797

—72 -

example that the invention is highly wasteful of memory, in fact, in a complicated
application, the overall implementation achieved by the invention is a “die
saver”; a counter conversion may save about 0.3 percent of the overall ASIC die
size. As an example, it is estimated that the “Huffman Code” can be implemented
for a full E1 communication line implementing the TX and the RX algorithm for
each one of the 32 channels holding the adaptive tables per channel. This
application may be implemented on about a 250mm’ die in 0.25 micron
technology. Another example is an 8-bit, 8-tap FIR filter consuming less than 3
percent of the complete device. It should further be noted that the method of
ASIC conversion according to the invention may be extended to allow some basic
functionalities of the ASIC, such as the counter mentioned above, to be made
available using conventional methods in the form of a library. In such case, by
using pre-converted functionalities, the user can implement a better conversion
without wasting the ASIC non-recoverable expense (NRE) time.

It may be desired to combine the flexibility of the universal hardware
device with the advantages of ASICs, when an ASIC is to be mounted on a series
of different circuit boards each having a different functionality. In this case, only
part of the programmable matrix or matrices of the device architecture is replaced
by fixed connections that realize the connectivity of the replaced connections, and
the storage elements in only some of the cells in the device architecture are
replaced by respective fixed drive levels for realizing the data stored therein.

Such a technique may be desirable for designing critical parts or for
accommodating differences between implementations. For example, if telephony
signaling is implemented — there are small differences between different

countries.

Utilization of Faulty Chips
As the price of the chip is related to the size of the die, and about 250 mm’
is considered quite large, the following method can reduce the chip price. As the

device is cell-based and it is not relevant to the application which cell is being

10

15

20

25

WO 01/39249 PCT/IL00/00797

-73 =

chosen to implement any given task, a device test will be performed. If a cell is
found to be faulty the cell can be marked as faulty so as not to be used.

Then the matrix is tested. If a link is found to be faulty, that link should
not be used. It should be noted that sometimes a faulty connection path will cause
the loss of a cell, and sometimes the link can be spared.

As there are only a few hundred cells, and the switches of the matrix are
sorted in the “matrix control memory order”, it is quite simple to generate a short
piece of code to mark the faulty part. This code is made out of the matrix control
memory faulty address and data, and the faulty cell number.

If the timing is faulty then the entire device is faulty. Although the I/O
could be checked in the same way;, it is not recommended to use the device if the

I/O is faulty.

Utilization to Achieve Higher Reliability
The idea is to have a spare cell or a few spare cells in the device and to use
them instead of a faulty cell. The matrix already has “spare links”. For example:
If there is a host connected to the device, the above-described method can
be used in an application:
1. One or several spare cells are be left out.
2. A Built-In Test program checks those free cells via a port (similar to a RAM
check).
3. That cell is loaded with the task of another cell capable of assuming the same
connectivity as the free cell.
4. The input of the cell is routed to the same input of the other cell.
5. The output of the cell is routed to the same output of the other cell. Now both
cells are working in parallel so no collision will occur (if there is no error).
6. The other cell is routed to be a spare cell.
A matrix error may “look like” a cell error. To test it, another link path

may be used. If there is no other such link, the cell is marked as “faulty”. A

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

— 74—

“Cell-RAM” in time-sharing configuration can be switched off only after a full
cycle.

Fig. 38 is a flow diagram summarizing the principal operating steps
associated with the above method when implementing a hardware application
using the device according to the invention. Prior to downloading the formatted
data to the device, the formatted data is used to create device-specific extended
formatted data, which includes the formatted data and a fault list of any faulty
cells and/or connections. Prior to testing, the fault list is empty. Thus, an empty
fault list may indicate the absence of fault cells or connections, but may mean
simply that the device has not yet been tested. The device-specific extended
formatted data may include other device specific information, if required. Cells
and connections in the device are tested and the fault list updated accordingly,
and the formatted data within the device-specific extended formatted data is
changed, if necessary, so as to avoid using any tested cells or connection that
were found faulty.

Fig. 39 is a flow diagram showing the principal operating steps associated
with a method for real time automatic fault detection and correction of a device
according to the invention. Device-specific extended formatted data, as explained
above with reference to Fig. 38, is used in order to locate an unused cell that is
not in the fault list. If such an unused cell is located, then the unused cell and its
connections are tested and, if the unused cell and/or any of its connections are
faulty, the device-specific extended formatted data is updated and a further
unused cell that is not faulty is located. When a free cell is located that is tested
and found to be operational, the device-specific extended formatted data is used
to select a used cell for testing, capable of assuming the same connectivity as the
unused cell. The device-specific extended formatted data is used to duplicate the
selected cell and its connections on to the operational free cell. The selected cell
is now disconnected and the device extended formatted data is updated
accordingly. By such means, the definition of the used cell to be tested is copied

to a free cell that has been established as operational. As a result, the free cell

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

75—

now operates as the original used cell, which is now disconnected. Prior to the
disconnection, both cells work in parallel but the time during which this allowed
to occur is negligible. If the original cell or any of its connections were faulty, the
act of copying their functionality to the free cell, will correct the fault since the
free cell is known to be operational. The whole cycle may be repeated as
required.

Fig. 40 is a flow diagram that summarizes the process for first time
production of a circuit card bearing a hardware device according to the invention,
in the absence of an available pre-designed card or when a new interface is needed.
The application definition (which also is part of the card development process) will
rarely influence the design since once the interface is ready, the resulting card can
be used for many different applications.

Thus, application definition 300 defines the application in general terms
and is followed by simulation 301. The simulation process requires the
application simulation to be generated as described in detail above with reference
to Fig. 33. The purpose of the simulation is to make sure the idea is feasible and
to generate the code for running on the device. For example, if a device must be
designed to compress voice over communication links, the compression
algorithm will be written using a high level language such as “C++” or using
tools supplied for this purpose as described above. If desired, these tools can be
used in combination with known tools such as “Matlab” referred to above. Once
the simulation is satisfactory, the code for the device is ready. The simulation is a
“one-to-one” simulation, by which is meant that besides the ability to simulate the
function, it simulates the exact way the code runs on the device. Therefore, if the
application works on the simulator, the application will work on the board; if the
application does not work on the simulator, it will not work on the board.

The “one-to-one” simulation capability derives from the device archi-
tecture that enables the creation of an exact virtual copy of the device in the
computer performing the simulation. Therefore, “synthetic” or recorded “virtual”

signals that enter the input of the copy of the device in the compute will generate

10

15

20

25

30

WO 01/39249

PCT/IL00/00797

—~76 —

the exact “virtual” output signals as would be produced by the device. These

“virtual” signals can be manipulated and tested.

The simulator can be operated in the following modes:

Compiled mode, whereby the simulation is executed utilizing
subroutines that are written in high-level language for carrying out the
desired algorithm to be implemented by the cell.

Real mode, whereby the data to be stored in the cell is calculated prior
to running the simulation and during the simulation is used to carry out
the desired algorithm to be implemented by the cell. By such means,
the number of opcodes required to effect the simulation may be greatly
reduced and the simulator runs much faster.

A combination of the above. The part of the application that is under
test will run in the high-level language compiled mode, while the rest
is in real mode. This mode is intended to achieve the maximum speed
for debugging.

Emulation mode: the simulator is accelerated by the hardware device.
In the emulation mode, the simulator uses cells in the device and has
abilities similar to a logic analyzer. In other words, the emulation can
stop on any logic pattern or sequence and show the result of each
connection inside the device on the screen. It can work in a single step
as well. This is a hardware analog to the ability to trace through a
software program using a debugger.

Using “In Circuit Emulation” (ICE) Mode, the emulation is combined
with abilities to sample input signals. The card works in real time

using the processing power of its in-circuit device.

As the simulator implements a “one-to-one” simulation, most of the test

and debugging is performed in the simulation stage. Test and Debug 302 is

required to test real long duration signals that may last hours or days, therefore

requiring that the ICE mode be used. This impacts on the simulation speed, as

explained above.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

77—

Debugging is carried out as follows part of the device is programmed to
capture any logic state, typically indicative of an error whose cause is to be
analyzed and corrected. At the same time, another part of the device captures
successive samples of the input into a circular buffer. When an error is found, the
emulation stops, and the recorded input signals that caused the error can be
injected into the simulator in order to solve the problem. More than one cell may
be needed to capture the input signal: at least one for the counter of the circular
buffer and others for the buffer.

According to another debugging method, the virtual device on the
computer generates any desired state, which is loaded into the device and the test
continued from this point forward in emulation or ICE mode.

Once testing and debugging is complete, the R&D to Production stage 303
may commence. In the case of application generation processes using pre-
designed, multi-purpose device-based cards, the R&D to Production process
requires nothing more than delivering the device code, generated by the simulator
301, from R&D to the Production department. |

Card Production 304 follows. In the case of application generation
processes using pre-designed, multi-purpose device-based cards, card production
is an independent process that can start before the application is finished. This is
shown schematically in Fig. 41, which is otherwise identical to Fig. 40 except for
the absence in Fig. 41 of the card development process 305. Following card
production 304, a verification process 306 is performed. Card verification is the
process of testing the card with the electronics. The new device architecture is
such that the card can be tested to assure that the application can run on it without
the application code. Therefore, there is no link between the termination of the
work in the R&D group and the beginning/termination of the card verification
process in the Production department.

Card delivery 307 to the client can be carried out before the application is
ready. At a later stage, when the application is ready, device code in the form of

suitably formatted data can be sent to the customer for downloading to the device.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—78 —

Any errors found after the delivery stage can be fixed using the simulation
and debugging tools described above, and new code can be delivered to the
customer. The Enhancements or Bugs stage 308 is shown in Fig. 40 as part of the
development process, indicating that the developer can decide at which stage the
product should be delivered, taking into account that changes may be made after
delivery.

The development process according to the invention is a so-called “spiral”
development process models as opposed to the more common “waterfall” process
currently employed. The spiral model and its advantages are described for
example in the web site http://www cstp umke. edu/personal/cjweber/spiral html.

The “card development” stage 305 shown in Fig. 40 similar to that
described above with reference to Fig. 1. The only difference is that there is no
application to be implemented, so the implementation is easier and takes less
time. Therefore only the interface needs to be designed, and the pin-out of the
device(s). In most cases, the card creation process should not influence the time
to market for the following reasons:

o The implementation is simple, as only the interface needs to be
designed (if non-standard), the number of devices (usually one) and
the pin-out. In other words

e Once a card is ready and the interface is fixed, a ready-made card (or
ready-made card design) can be used for the new applications.

Nevertheless, if a new application is to be made with a non-standard
unique interface, it is to be expected that the card manufacturing process will take
longer than the implementation process, and the time-to-market saving will be
reduced. Therefore, an effort should be made to prepare universal multi-purpose,
off-the-shelf, ready-made cards for the known interfaces, to be ready for different
applications.

The invention thus provides a highly flexible re-programmable device
architecture, amenable to implementation of a vast number of different

applications and allowing easy expansion and mixed architectures. Reliability and

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—-79 —

simplicity of design is assured by “one-to-one” simulation whereby identical data
is used during computer simulation of an application as is downloaded to the
device to implement the application. Simulation and emulation may be carried
out using a common personal computer using well-known high-level
programming techniques, obviating the need for expensive, special purpose
workstations. As a result of the unique device architecture, the hardware design
and application can be sub-divided for parallel operation as described and lends
itself to a modular work-group approach. Such flexibility is enhanced by the
ability to access libraries of pre-constructed construction and formatted data.

Whilst various embodiments have been described, it will be apparent to
those skilled in the art that a particularly advantageous feature of the invention
resides in its flexibility and method of use. Thus, the examples are illustrative
only and the scope of the invention is intended to encompass all variations, which
fall within the scope of the claims.

Likewise, while the invention has been described with particular regard to
the design of digital electronic circuits, it will be appreciated by persons skilled in
the art that the invention may also find application to create biological hardware,
pneumatic hardware, mechanical hardware in which the basic components of the
invention, the cells and the programmable matrices, are implemented using the
appropriate technology. Therefore, in the claims, the term “hardware” is used to
include electronic hardware, biological hardware, pneumatic hardware,
mechanical hardware and any other hardware in which cells having data storage
capability can be implemented and in which programmable matrices can be
implemented.

It will also be understood that the system according to the invention may
be a suitably programmed computer. Likewise, the invention contemplates a
computer program being readable by a computer for executing the method of the
invention. The invention further contemplates a machine-readable memory
tangibly embodying a program of instructions executable by the machine for

executing the method of the invention.

WO 01/39249 PCT/IL00/00797

— 80—

In the method claims that follow, alphabetic characters used to designate
claim steps are provided for convenience only and do not imply any particular

order of performing the steps.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—81-

CLAIMS:

1. A universal hardware device (100) consisting essentially of:
at least one plurality (104, 105, 106, 107) of cells (101) for storing data; and
at least one programmable matrix (102, 108, 109) coupled to said at least

one plurality of cells, whereby a plurality of hardware applications may be
implemented by selectively storing data in said cells and selectively programming
said matrix to connect at least one of said cells to at least one of said cells.
2. The device according to Claim 1, wherein one or more of said cells is a
device according to Claim 1.
3. A universal hardware device (100) comprising:

a cell (103, 106, 107) formed from a plurality of like cells (101) for storing
data; and

at least one programmable matrix (102, 108, 109) coupled to at least some
of said cells, whereby a plurality of hardware applications may be implemented by
selectively storing data in said cells and selectively programming said matrix to
connect at least one of said cells to at least one of said cells.
4, The device according to Claim 3, wherein at least one of said like cells is a
device according to Claim 3.
5. The device according to Claim 3, wherein at least one plurality of said like
cells is a device according to Claim 1 or 2.
6. The device according to any one of Claims 1 to S, further including a
memory for storing therein a control setting of the at least one programmable
matrix.
7. The device according to any one of Claims 1 to S5, further including at least
two memories, each for storing therein a respective setting of the at least one
programmable matrix and

a controlled multiplexer for selecting between the at least two memories;

whereby the topology of the device can be rapidly changed by a single

control.

10

15

20

25

WO 01/39249 PCT/IL00/00797

_82—

8. The device according to Claim 7, wherein one of said settings pre-
configures at least a subset of the cells as a single cell allowing convenient access
to data stored therein.

9. The device according to any one of Claims 1 to 8, having an input
connected to the at least one programmable matrix.

10. The device according to any one of Claims 1 to 9, having an output
connected to the at least one programmable matrix.

11. The device according to any one of Claims 1 to 10, wherein at least some
of said cells are synchronized by at least one clock signal each of which may be
independently enabled or disabled via the at least one programmable matrix.

12. The device according to Claim 11, wherein the at least one clock signal is
connected to the at least one programmable matrix.

13. The device according to any one of Claims 1 to 12, wherein said cells are
connected by a pre-selected topology and are loaded with data to implement a
desired hardware application.

14. The device according to any one of Claims 1 to 10, wherein at least some
of said cells are formed from constituent elements (270, 290) that are
interconnected via the programmable matrix and which may be used independently.
15. The device according to Claim 11 or 12, wherein at least some of said cells
are formed from constituent elements (270, 290) that are interconnected via the
programmable matrix and which may be used independently.

16. The device according to Claim 14, further including additional ones of at
least some of said constituent elements.

17. The device according to Claim 15, further including additional ones of at
least some of said constituent elements.

18. The device according to any one of Claims 1 to 10 or 14 or 16, wherein
said cells and/or said constituent elements are connected by a pre-selected topology

and are loaded with data to implement a desired hardware application.

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

—83—

19. The device according to any one of Claims 11, 12, 15 or 17, wherein said
cells and/or said constituent elements are connected by a pre-selected topology and
are loaded with data to implement a desired hardware application.

20. The device according to any one of Claims 1 to 12 or 14 to 17, wherein
said cells and/or said constituent elements are connected by a pre-selected topology
and are loaded with data to implement a desired hardware application.

21. The device according to any one of Claims 1 to 20, wherein at least some
of said cells (130) comprise:

a random access memory (RAM) (131) having an address bus (132) for
feeding thereto a required address so as to output on a data bus (133) of said RAM
a respective data value stored in a respective memory location of the RAM
addressed thereby,

a respective latch (134a, 134b) coupled to each RAM for latching either
the address bus such that an input to the latch constitutes an input to the respective
cell and an output of the RAM constitutes an output of the respective cell or for
latching the data bus of said RAM such that an address to the RAM constitutes an
input to the respective cell an output to the latch constitutes an output of the
respective cell, and

auxiliary circuitry (137) for modifying an operating characteristic of the
RAM and the latch;

whereby said at least some of said cells at least partially operate as a
lookup table.

22, A method for designing a hardware application using the device of any one
of Claims 1 to 21, said method comprising:

(a) obtaining construction data representing a topology defining a
connectivity between cells and/or constituent elements and including
data for storage therein so as to define a functionality of the hardware
application, and

(b) deriving formatted data from said construction data being formatted for

downloading to the device.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—84 —

23. The method according to Claim 22, wherein step (a) includes:

(i) selecting said topology, and

(ii) formulating data for storing in the cells and/or constituent
elements defined by said topology.

24. The method according to Claim 22, wherein step (a) includes:

(i) accessing a library of pre-configured files each containing
construction data relating to a respective functionality, and

(i) selecting one or more of said files for realizing one or more
functionalities of the application.

25. The method according to Claim 22, wherein step (a) includes:

(i) running a computer simulation of said hardware application by
programming a computer to implement the at least one cell and/or
the at least one constituent element and to implement a pre-
configured topology using said construction data, and

(i) changing the construction data and repeating step (i) as necessary
until the computer simulation is satisfactory.

26. A method for obtaining construction data representing a topology defining
a connectivity between cells and/or constituent elements and including data for
storage therein so as to define a functionality of a hardware application using the
device of any one of Claims 1 to 21, said method comprising the steps of:

(a) selecting said topology, and

(b) formulating data for storing in the cells and/or constituent elements

defined by said topology.

27. A method for obtaining construction data representing a topology defining
a connectivity between cells and/or constituent elements and including data for
storage therein so as to define a functionality of a hardware application using the
device of any one of Claims 1 to 21, said method comprising the steps of:

(a) accessing a library of pre-configured files each containing construction

data relating to a respective functionality, and

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 85—

(b) selecting one or more of said files for realizing at least partial
functionality of the application.

28. The method according to Claim 26 or 27, further including:

(c) adding said constructed data to a library of pre-configured files each
containing construction data relating to a respective functionality.

29. The method according to any one of Claims 24, 27 or 28 the library is
stored remotely and the step of accessing the library is effected via a
communication channel.

30. The method according to Claim 26 or 27, further including:

(¢) running a computer simulation of said hardware application by
programming a computer to implement the at least one cell and/or the at
least one constituent element and to implement a pre-configured
topology using said construction data, and

(d) changing the construction data and repeating step (c) as necessary until
the computer simulation is satisfactory.

31. The method according to Claim 23 , wherein step (a) includes program-
ming the computer using a high-level programming language.

32, The method according to Claim 26, wherein steps (a) and (b) include
programming the computer using a high-level programming language.

33. The method according to Claim 25 or 30, wherein instantaneous samples
of part of the simulation construction data are continuously calculated on the fly by
the computer.

34, The method according to Claim 25 or 30, wherein at least part of the
simulation construction data is pre-configured and stored and instantaneous
samples thereof are fetched as required by the computer.

35. The method according to any one of Claims 22 to 34, wherein at least part
of said simulation construction data is pre-configured and recalled from storage.

36. A method for implementing a hardware application using the device of any

one of Claims 1 to 21, said method comprising;:

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

— 86—

(a) obtaining formatted data that is derived from predetermined simulation
construction data and is formatted for downloading to the device, and
(b) downloading said formatted data to the device.
37. The method according to Claim 36, wherein prior to performing step (a)
there are included the steps of:
(i) designing the hardware application according to any one of Claims
22 to 35 so as to produce the simulation construction data, and
(ii) formatting the simulation construction data so as to produce said
formatted data.
38. A module including at least one hardware device of Claim 18 and at least
one I/O interface.
39. A module including at least one hardware device of Claim 19 and at least
one I/O interface.
40. A method for simulating the hardware application of Claim 20 intended for
implementation on the module of Claim 38 or 39 and being adapted for stepwise
running, said method comprising:
(a) downloading said data into at least one device in an emulation module
according to Claim 38 or 39,
(b) routing an input sample generated by a control unit via the at least one
I/O interface to the emulation module,
(¢) collecting an output sample for analysis from the emulation module via
the at least one I/O interface, and
(d) receiving an authorization signal for authorizing input of a subsequent
input sample to the emulation module,
(e) repeating steps (b) to (d), as required.
41. The method according to Claim 40, wherein the control unit is a computer.
42, The method according to Claim 41, wherein the computer receives the
output signal for performing analysis thereof.
43. A method for stepwise running an application using the module of Claim

39, said method comprising the steps of:

5

10

15

20

25

WO 01/39249

(@)

(b)

PCT/IL00/00797

_ 87—

externally feeding a clock enable signal so as to feed the at least one
clock signal to the application, and
internally disabling the clock enable signal so as to prevent feeding of

the at least one clock signal pending override by the application.

44, A method for testing a device included within the module of Claim 38 or

39 during real-time operation of the device, said method comprising the steps of:

(@

(b)

(©)

(@)
(¢

connecting at least one of the interfaces of the module under test to a

control unit,

configuring the device under test to port out samples at specific points

of the device via at least one of the interfaces,

storing said samples in the control unit so as to obtain in real time a

history of samples of the device,

using the control unit to analyze at least a subset of most recent samples,

if necessary arresting operation of the device under test so as to allow:

(i) examination of the history of samples of the device,

(ii) examination of an instantaneous current state of the arrested
device,

(iii) download of a different state to the arrested device,

(iv) continuation of the real time operation of the device, and

(v) restarting real time operation of the device.

45. The method according to Claim 44, wherein the control unit is a computer

having coupled thereto via the at least one I/O interface the module of Claim 38 or

39.

46. A method for designing an application-specific hardware device having a

desired functionality, said method comprising:

(@

obtaining formatted data which in conjunction with the device of Claim
20 or 21 defines a device architecture that realizes said desired

functionality,

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 88—

(b) replacing the at least one programmable matrix of said device
architecture by fixed connections that realize the connectivity of the at
least one programmable matrix, and

(¢) replacing storage elements in at least some of the cells in said device
architecture by respective fixed drive levels for realizing the data stored
therein,;

whereby the architecture is rendered suitable for direct implementation of
the application-specific hardware device.
47, A method for designing a hardware device having a desired functionality
part of which is fixedly implemented by an application-specific hardware device
and part of which is re-programmable, said method comprising:

(a) obtaining formatted data which in conjunction with the device of Claim
20 or 21 defines a device architecture that realizes said desired
functionality,

(b) replacing a part of the at least one programmable matrix of said device
architecture by fixed connections that realize the connectivity of said
part of the at least one programmable matrix, and

(c) replacing some storage elements in at least some of the cells in said
device architecture by respective fixed drive levels for realizing the data
stored therein.

48. The device according to Claim 21, wherein at least some of said cells are
used to provide timesharing capability.
49. The device according to Claim 48 wherein at least one of the at least some
of said cells is used as a timesharing counter and remaining ones of the at least
some of said cells are used to store an instantaneous state of a respective
implementation of the device.
50. An assembly comprising:

at least one device according to any one of Claims 1 to 21 each having an

active and an inactive state, and

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 89—

a host coupled to the at least one device and having a memory which stores
therein respective formatted data that must be loaded into each of said at least one
device so as to allow the respective device to carry out a required operation when in
said active state or to allow the host to load the respective device when in said
inactive state.

S1. The assembly according to Claim 50, wherein the host is a device
according to any one of Claims 1 to 21.

S2. The assembly according to Claim 50 or 51, including at least two devices
wherein the host is adapted to manage at least one task by activating as many of
said devices as required for carrying out the at least one task.

53. The method according to Claim 36, wherein prior to downloading the
formatted data to the device of Claim 20 or 21 there are further included the steps
of:

(i) using the formatted data to create device-specific extended formatted
data which includes the formatted data and a fault list of any faulty
cells and/or connections,

(ii) testing cells and connections in the device and updating the fault list
accordingly, and

(ili) changing the formatted data within the device-specific extended
formatted data, if necessary so as to avoid using any tested cells or
connection that were found faulty.

. A method for real time automatic fault detection and correction of a device
of Claim 20 or 21, comprising the steps of:

(a) using device-specific extended formatted data which includes the
formatted data and includes a fault list of any faulty cells and/or
connections in order to locate an unused cell that is not in said fault list,
and if such an unused cell is located:

(i) testing said unused cell and its connections,

10

15

20

25

WO 01/39249 PCT/IL00/00797

—90—

(i) if the unused cell and/or any of its connections are faulty, updating
the device-specific extended formatted data and repeating from
step (a) until an unused cell that is not faulty is located,

(iii) using the device-specific extended formatted data to select a used
cell for testing,

(iv) using the device-specific extended formatted data to duplicate the
selected cell and its connections on to said unused cell,

(v) disconnecting the selected cell and updating the device extended
formatted data accordingly, and

(vi) repeating from step (a) as required.

55. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
designing a hardware application using the device of any one of Claims 1 to 21,
said method comprising:

(a) obtaining construction data representing a topology defining a
connectivity between cells and/or constituent elements and including
data for storage therein so as to define a functionality of the hardware
application, and

(b) deriving formatted data from said construction data being formatted for
downloading to the device.

56. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for designing a
hardware application using the device of any one of Claims 1 to 21, said computer
program product comprising:

computer readable program code for causing the computer to obtain
construction data representing a topology defining a connectivity between cells
and/or constituent elements and including data for storage therein so as to define a

functionality of the hardware application, and

10

15

20

25

30

WO 01/39249 PCT/IL00/00797

-9] -

computer readable program code for causing the computer to derive
formatted data from said construction data being formatted for downloading to the
device.
57. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
obtaining construction data representing a topology defining a connectivity
between cells and/or constituent elements and including data for storage therein so
as to define a functionality of a hardware application using the device of any one of
Claims 1 to 21, said method comprising the steps of:
(a) selecting said topology, and
(b) formulating data for storing in the cells and/or constituent elements
defined by said topology.
58. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for obtaining
construction data representing a topology defining a connectivity between cells
and/or constituent elements and including data for storage therein so as to define a
functionality of a hardware application using the device of any one of Claims 1 to
21, said computer program product comprising:
computer readable program code for causing the computer to select said
topology, and
computer readable program code for causing the computer to formulate
data for storing in the cells and/or constituent elements defined by said topology.
59. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
obtaining construction data representing a topology defining a connectivity
between cells and/or constituent elements and including data for storage therein so
as to define a functionality of a hardware application using the device of any one of
Claims 1 to 21, said method comprising the steps of:
(a) accessing a library of pre-configured files each containing construction

data relating to a respective functionality, and

10

15

20

25

WO 01/39249 PCT/IL00/00797

-9

(b) selecting one or more of said files for realizing at least partial
functionality of the application.
60. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for obtaining
construction data representing a topology defining a connectivity between cells
and/or constituent elements and including data for storage therein so as to define a
functionality of a hardware application using the device of any one of Claims 1 to
21, said computer program product comprising:
computer readable program code for causing the computer to access a
library of pre-configured files each containing construction data relating to a
respective functionality, and
computer readable program code for causing the computer to select one or
more of said files for realizing at least partial functionality of the application.
61. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
implementing a hardware application using the device of any one of Claims 1 to 21,
said method comprising:
(a) obtaining formatted data that is derived from construction data and is
formatted for downloading to the device, and
(b) downloading said formatted data to the device.
62. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for implementing a
hardware application using the device of any one of Claims 1 to 21, said computer
program product comprising:
computer readable program code for causing the computer to obtain
formatted data that is derived from construction data and is formatted for
downloading to the device, and
computer readable program code for causing the computer to download

said formatted data to the device.

10

15

20

25

WO 01/39249 PCT/IL00/00797

—93—

63. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
simulating the hardware application of Claim 20 during implementation on the
module of Claim 38 or 39 and being adapted for stepwise running, said method
comprising:
(a) downloading said data into the device,
(b) routing an input sample generated by a control unit via the at least one
I/0O interface to the emulation module,
(c) collecting an output sample for analysis from the emulation module via
the at least one I/O interface,
(d) receiving an authorization signal for authorizing input of a subsequent
input sample to the emulation module, and
(e) repeating steps (b) to (d), as required.
64. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for simulating the
hardware application of Claim 20 during implementation on the module of Claim
38 or 39 and being adapted for stepwise running, said computer program product
comprising:
computer readable program code for causing the computer to download
said data into the device,
computer readable program code for causing the computer to route an
input sample generated by a control unit via the at least one I/O interface to the
emulation module,
computer readable program code for causing the computer to collect an
output sample for analysis from the emulation module via the at least one I/O
interface, and
computer readable program code for causing the computer to receive an
authorization signal for authorizing input of a subsequent input sample to the

emulation module.

10

15

20

25

WO 01/39249 PCT/IL00/00797

— 94—

65. A program storage device readable by machine, tangibly embodying a
program of instructions executable by the machine to perform method steps for
testing a device included within the module of Claim 38 or 39 during real-time
operation of the device, where at least one of the interfaces of the module under test
is connected to said machine, said method comprising the steps of:
(a) configuring the device under test to port out samples at specific points
of the device via at least one of the interfaces,
(b) storing said samples in the control unit so as to obtain in real time a
history of samples of the device,
(c) using the control unit to analyze at least a subset of most recent samples,
and
(d) responding to the device under test being arrested so as to allow:
(i) examination of the history of samples of the device,
(ii) examination of an instantaneous current state of the arrested
device,
(iii) download of a different state to the arrested device,
(iv) continuation of the real time operation of the device, and
(v) restarting real time operation of the device.
66. A computer program product comprising a computer useable medium
having computer readable program code embodied therein for testing a device
included within the module of Claim 38 or 39 during real-time operation of the
device, where at least one of the interfaces of the module under test is connected to
said machine, said computer program product comprising:
computer readable program code for causing the computer to configure the
device under test to port out samples at specific points of the device via at least one
of the interfaces,
computer readable program code for causing the computer to connect at

least one of the interfaces of the module under test to a control unit,

WO 01/39249 PCT/IL00/00797

—95—

computer readable program code for causing the computer to configure the
device under test to port out samples at specific points of the device via at least one
of the interfaces,
computer readable program code for causing the computer to store said
5 samples in the control unit so as to obtain in real time a history of samples of the
device,
computer readable program code for causing the computer to use the
control unit to analyze at least a subset of most recent samples,
computer readable program code for causing the computer to examination
10 of the history of samples of the device,
computer readable program code for causing the computer to examination
of an instantaneous current state of an arrested device,
computer readable program code for causing the computer to download of
a different state to the arrested device,
15 computer readable program code for causing the computer to continuation
of the real time operation of the device, and
computer readable program code for causing the computer to restart real

time operation of the device.

WO 01/39249 PCT/IL00/00797

CARD DEVELOPMENT

BUGS OR
ENHANCEMENTS

34 l< YES
/

TEST & DEBUG

VY VY

BACK TO EACH
10-32

TO 36

1 FROM 34
| 2 6 l

./ 2| b

! | APPLICATION ELECTRONIC R&D TO

' | DEFINITION DESIGN PRODUCTION
N B, e |
. | INTERFACE DRAWING i CARD

' | DEFINITION | ' | PRODUCTION
e B .

-/ / |

! | TECHNOLOGY IMPLEMENTATION | CARD /38
i | SELECTION SIMULATION | | VERIFICATION
18 l l

i X I |

| | APPLICATION 78 || FUNCTION | 40
{ | SIMULATION LAYOUT 26 ' | VERIFICATION

L 20 /v i 42

. 30 COMPONENTS | | /

INTERFACE \ v DELIVERY

| DESIGN MANUFACTURING ;

| 32

| N |

5 INSTALLATION ;

PCT/IL00/00797

WO 01/39249

2/32

b - A i " "
' 1O “ 'O i i
¥ @ | AT X " "
! — i ! - 0 o ! "
L — | “ " " 1)
"“L _m_.UL [) ﬁ_._w) L) ﬂ [N] a ' —A|H /_/2 1
3 ! ! " _ "
M “ 12 =1 = = "
L N @ _ : " m
I ---/m " n
e " |
_L)]
o Y U "// M |
o m

' N

o 9 NO)

O /7 g
' " o !
“ ! S
S — - S~ N S _ . L7
¥ s | 0N " m m
i =L _ % - m
' - | " -] o “ ;
o (e @ *® L |@lee |z |E LE “
g O ol < O ol s “ = “
b , [| ' //8 '
1O . _% ' NS !
AR i i -:-7% (Bt : !
) - ! !
__mu_ , '
3 : !
L auren ' K"

C../O

o =

g v
o .

ll

WO 01/39249 PCT/IL00/00797

3/32
111
/
RAM
114
N/ __ ADD Z
- OUTPUT
INPUT DATA kd’/ O ﬂd;&
13 | 2 115
m
o). ADD
112
A
110
FIG. 3
121
/
RAM
I
/ 5 /
d
INPUT DATA b
123
I
m O m
1/ s 1L ADD
122
J
124 ’\120

FIG. 4

WO 01/39249

130

OE
OE

C$S1
CS2
CS3

CS1

CS2 —
CS3 —

WE —

132
\ N/

4/32

PCT/IL00/00797

ADD

132
ALY

LATCH

136

LATCH

146

145

CLOCK

ENABLE

AUXILIARY CIRCUITRY

ADD

- OE

-

WR

RAM

DATA —D7LC

CLOCK

N\

137

FIG. 5

WR

131

133

PCT/IL00/00797

WO 01/39249

5/32

9 9Old

qlel

™~

dM

aM

SO
SO

elel

jed

N N

HOLV1

4
D

PPV
WVH

dM

aM

SO
SO

eyeq
PPY
NVH

HOLV']

egel

HO1V1

ovi

ra43

aav

HOLV'

JREISR-EX-L1A

l+U

viva

NWvH

evi

N\

HOLV'1 e

WO 01/39249

PCT/IL00/00797

6/32

150

162

151
D MATRIX A

FIG. 7

199

FIG. 8

WO 01/39249 PCT/IL00/00797

7/32
156
/
D X z v A
M M
AV 1/
y / Y "
/1-55 /— 155
N %
M M "

FIG. 9

PCT/IL00/00797

8/32

110

WO 01/39249

165
L

MATRIX
MATRIX

HOL1VY'1

CLOCK

FIG. 10

n,
/

FIG. 11

DATA

RAM
111
RAM

ADD

ADD

UP /DOWN

PCT/IL00/00797

WO 01/39249

¢l 9Oid

330[D
o611 — aav
N o B iva y
ﬂ 7 Q| ‘u
T
- vy
1Nd1NO 5 7
142 oLLL
33010
— aav <
2 / V / 7 u
0 —© - o 7 iva
=2 CITH A - -
— vy
XI4LVIN nvi\ ~
qaiLil
%900
c aav——=;
- — p—r—v1va
/7 @) u
a esll T aav
indu
0Ll Wvd
/
343" /

el

WO 01/39249

10/32

111a
/
RAM

A0 DO
A1 D1
A2 D2
A3 D3
A4 D4
A5 D5
A6 D6
A7 D7

114a

PCT/IL00/00797

175

LATCH

FIG. 13

PCT/IL00/00797

WO 01/39249

11/32

q0si azsl
_ oeg|

(N
QQY = \M

A T

\m viva < 1NdNI
ov8L
AL TN
/
ecgl avgl
c8l qegl

(>
aav < |_ “
\ W g "

7= vivd — 1NdNI
P aqy [=—= 2 <
08l u fm) “u
N WYY €8l L
el \\ \\
081 e|Lgl =3742]"

PCT/IL00/00797

WO 01/39249

12/32

1 'Ol 061

L6l o
Z61
/
MD01D
v_ooJio SO0 v_ooid
UM UM
aIMm _ Im
d
30 v_\ IllT wO|JQr| JNII
307« e 0|2« B2
— c 3 — /d S d
3 3
Q >
T €6l
/ / /
aav—ryg Ty 1NdNI
v1va L L @ —/——\v1va
aavyl, / 7 7w
wl w
VY NYY
YIAY3S - 1130 VY - 1130

PCT/IL00/00797

WO 01/39249

13/32

(LNVAT13Y

N\
N
=
+
=
7

ONINIL FLIIM WYY

JA19VN3
1Nd1NO "Y3AE3S

379¥N3 1LNd1NO WvY

J79VYN3 A LIIM WYY

1Nd1NO Y3AHIS

X____-NON) (L+N) sz

HOLVY1 H3Ad3S

. X 0

1Nd1LNO AVY

X

HOL1V1AVY

N~ M0010

av3yd

d31SYIN

PCT/IL00/00797

WO 01/39249

14/32

(074

Ll Old

M201D
M v
IMN
V4
40 v
40 L
V1vad Vi
aay], /
wi
VY

HOLVT

002
k\\
202
/
Y2010 MO0T1D
MD0T1D _
UM
IM
d
— 50 |92 —d—
| 302« B
3 — /d N d
I_
o
T €61
/ / \
aavi—/ /u 1NdNI
/
~ v1va
w
3INO aav
VY
Y¥3IAN3S - 113D WY - 773D

PCT/IL00/00797

WO 01/39249

15/32

81 ©Old

................................

_ _ _

INO dav

ONINIL FLIIM NWVYH

319VN4
1Nd1NO "Y3AAG3S

L 37gVN3 1NdLNO WYY

F19VYN3 I LIHM NV

> ...vC+zv XV 1Nd1NO YIAN3S
ﬁ | HOLV1
X X X :izv X(NJ .\,x H3IAYIS
X X7 k H 1Nd1NO WvY

N | ™
HOLVY1 VY

[\/] /

—]] _QJ | : [M0010
M avay HILSVYIN

PCT/IL00/00797

WO 01/39249

16/32

61 Old

MOO10 S1Z
/
M201D c 012
_ aav—<4 d e
u u
v T
aav C —/—v1vd
\ .| 3 5
v ARE 7 o
N A | I WYY
Wy WYY - 1130 11z
Y¥3IAY3AS - 17130 v
/
€1z o1z ¢
/ 12
~ o 5904
NIOJOR [0
M0010 5
/
aav — 7 3 e vivd
I._ > u T u
, L | 5 &———v1va
V1vd e o 7
U w | F w vy
¥3LNNOD
VY
Wvd induj ONIYVHS INIL
JBAIBS - |I9D NV - 1180

PCT/IL00/00797

WO 01/39249

17132

(LNVA313Y

i

\

N
|)—

X_-NON) (L €N) K

ONINWIL FLIIM NVH

319VN3
1Nd1NO "Y3IAE3S

379VN3 LNdLNO WVY

J19VYN3 LM NVH

1Nd1LNO "Y3AHLES

HOL1VY'1

(N

. X

N——X

l<ENY-ES

1Nd1ino VY

X HOLV1WVYH

Z/——

d31INNOD SL

\

] AD01D

pesay

H431SVYIN

PCT/IL00/00797

WO 01/39249

18/32

L¢ Old

ONIYVHS JNIL

022
e
czz 0010
MO0T1D
— aav—=< — [~ 1NdNI
2 £ iva g > g2z
aav V4 O .\ Vv o \
w | T w T
4V 1¥a .
w VY 7
MOOT1D
Wvd VY - 1130 A
HIAYIS - 173D Nmm _
/ 5
122 aAavl—x< N e
u +U
v.1va b+ |t
VS
H3LINNOD

PCT/IL00/00797

WO 01/39249

19/32

¢¢ 9Ol

gs71-1Nd1Nno

7

0€c

dSW - 1Nd1NO

M0010
—
L=
aqv— a
u | x
Z
v V1va
wl
WvYd
yd as1-1130
zee
M0010
—
| =
aav— 3
u | x
/
v V1va
b
WvYd
/
Kord dSIN - 1140

1NdNI

PCT/IL00/00797

WO 01/39249

20/32

€ 9Old

374

TOH1INOD
01 019071

1SOH
JH1 WOd4 v1ivd

F719VYNI XD01D =30

e

ove 057

S < +

1SOH
JdH1 WOd¥4 JI901

30
1SOH 3HL
NOYH4 SS3HAav —
v1vd Wv_
mvN\ vd
W
40 .
V1vd _ulv
IR I—
aav %
NvN\ NVY
[30
—
<._.<AM_D< Wv_
O
yd T
LyZ NWVvd

WO 01/39249 PCT/IL00/00797

21/32

261 260
/ x
I RAM
INPUT 8,) 8/
7/ E 7 ADD
— OUTPUT
8 N
CLOCKl DAT. // //
I
8, |o | 8
v :: // ADD
-
CLOCK

FIG. 24

WO 01/39249

271
\

OF’

22/32

270

PCT/IL00/00797

RAM

ADD DATA

N

271

AUXILIARY CIRCUITRY

OE

OE1

OE2

OE3

OET

OE2’

OE3’

WE

‘“}_ OE
} WR

O

272

WR

FIG. 25

WO 01/39249

23/32

PCT/IL00/00797

/275
A 276 8 CELL
9
277
B 8
FIG. 26
281
A A 280
o 5 2 5 &
5 1
282 3 Vs 3 BITS2-4
A
B 5 5 5 BITS59
S —
2
R /283 /286
5 BITS 10-14
. g_ 5 5
A 284 /287
3 BITS 15-18
B 3 4
a 9 LSB(0-1)

FIG. 27

WO 01/39249 PCT/IL00/00797

24/32
L
A
T
C
H
N N, FIG. 28
&\\\\-290
CLOCK
ENABLE
EXTERNAL
K
cLoc CLOCK ENABLE (X) (a) TO CLOCK ENABLE
FIG. 29
'YX N
295 206
FIG. 30
/_)) oo)
HILE] —
297 1 1 1 208
Y
\\‘299
Bi|| B2 Bn
Al A Ay

WO 01/39249 PCT/IL00/00797

25/32

DEFINE CONNECTIVITY
BETWEEN CELLS
AND/OR CONSTITUENT
ELEMENTS

v

FORMULATE DATA
FOR STORING IN THE
CELLS AND/OR CON-
STITUENT ELEMENTS FIG. 31

ACCESS LIBRARY OF
PRE-CONFIGURED
FILES CONTAINING

CONSTRUCTION DATA

ADD
SELECT CONFIGURE FILE
FILE AND ADD TO
LIBRARY

C e > FIG. 32

WO 01/39249

26/32

6

SIMULATE HARDWARE
APPLICATION BY PRO-
GRAMMING A COMPUTER
TO IMPLEMENT THE AT
LEAST ONE CELL AND/OR
THE AT LEAST ONE
CONSTITUENT ELEMENT
AND TO IMPLEMENT A
PRE-CONFIGURED
TOPOLOGY USING THE
CONSTRUCTION DATA

o>

YES

FIG. 33

0

OBTAIN FORMATTED
DATA

v

DOWNLOAD
FORMATTED DATATO
DEVICE

FIG. 34

U}

PCT/IL00/00797

DOWNLOAD FORMATTED
DATA TO DEVICE IN THE
EMULATION MODULE
HAVING I/O INTERFACE
AND ADAPTED FOR
STEPWISE RUNNING

y

CONNECT TO
COMPUTER

k

GENERATE INPUT
SAMPLE AND LOAD TO
EMULATION MODULE

VIA 1/0 INTERFACE

v

COLLECT OUTPUT
SAMPLE AND ANALYZE

OK ? YES

NO

ABORT

FIG. 35

WO 01/39249 PCT/IL00/00797

27/32

CONNECT DEVICE TO
EMULATION MODULE
HAVING /0 INTERFACE

y

CONNECT TO
COMPUTER

& 5

CONFIGURE DEVICE TO
PORT OUT SAMPLES AT
SPECIFIC POINTS OF
DEVICE VIA INTERFACE

v

COLLECT AND STORE
SAMPLE HISTORY

v

ANALYZE SUBSET OF
MOST RECENT
SAMPLES

FIG. 36

OK 2 YES

NO

ARREST AND
EXAMINE AND YES
CHANGE
STATE IF
REQUIRED

NO

WO 01/39249 PCT/IL00/00797

28/32

OBTAIN FORMATTED
DATA DEFINING
REQUIRED DEVICE
ARCHITECTURE

y

REPLACE MATRIX BY
FIXED CONNECTIONS
THAT REALIZE THE
CONNECTIVITY OF
MATRIX CONNECTIONS

’

REPLACE STORAGE
ELEMENTS OF CELLS IN
DEVICE ARCHITECTURE

BY RESPECTIVE FIXED
DRIVE LEVELS FOR
REALIZING THE DATA
STORED THEREIN

FIG. 37

WO 01/39249 PCT/IL00/00797

29/32

USE THE FORMATTED
DATA TO CREATE
DEVICE-SPECIFIC

EXTENDED FORMAT-
TED DATA WHICH

INCLUDES THE
FORMATTED DATA AND
A FAULT LIST OF ANY
FAULTY CELLS AND/OR
CONNECTIONS, OR
OTHER DEVICE
SPECIFIC INFORMATION

y

TEST CELLS AND
CONNECTIONS IN THE
DEVICE AND UPDATE

THE FAULT LIST

ACCORDINGLY

I

CHANGE THE
FORMATTED DATA
WITHIN THE DEVICE-
SPECIFIC EXTENDED
FORMATTED DATA, IF
NECESSARY SO AS TO
AVOID USING ANY
TESTED CELLS OR
CONNECTION THAT
WERE FOUND FAULTY

FIG. 38

WO 01/39249 PCT/IL00/00797

30/32

USE DEVICE-SPECIFIC EXTENDED
FORMATTED DATA WHICH
INCLUDES THE FORMATTED DATA
AND INCLUDES A FAULT LIST OF
ANY FAULTY CELLS AND/OR
CONNECTIONS IN ORDER TO
LOCATE AN UNUSED CELL THAT IS
NOT IN THE FAULT LIST

o> oo >

YES

TEST UNUSED CELL AND
ITS CONNECTIONS

NO

YES UPDATE THE FAULT
LIST ACCORDINGLY

NO

USE DEVICE-SPECIFIC
EXTENDED FORMATTED
DATA TO SELECT A USED

CELL FOR TESTING

v

USE DEVICE-SPECIFIC
EXTENDED FORMATTED DATA
TO DUPLICATE THE SELECTED

CELL AND ITS CONNECTIONS
ON TO THE UNUSED CELL

v

DISCONNECT THE SELECTED

CELL AND UPDATE THE DEVICE >

EXTENDED FORMATTED DATA
ACCORDINGLY

FIG. 39

WO 01/39249

300

31/32

APPLICATION
DEFINITION

301 l‘

SIMULATION

302 l

TEST & DEBUG

303

A 4

R&D TO
PRODUCTION

PCT/IL00/00797

FIG. 40

305 |
\ 4
CARD
DEVELOPMENT
304 l
CARD
PRODUCTION
306 l
CARD
VERIFICATION
307 'i
DELIVERY
308 l
ENHANCEMENTS
OR BUGS

WO 01/39249

300
/

APPLICATION
DEFINITION

32/32

301 f

SIMULATION

302 l

TEST & DEBUG

303
A 4

R&D TO
PRODUCTION

PCT/IL00/00797

304

CARD
PRODUCTION

306 l

CARD
VERIFICATION

—7

DELIVERY

308 l

FIG. 41

ENHANCEMENTS
OR BUGS

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

