

US 20140371040A1

(19) United States

(12) Patent Application Publication Vasquez et al.

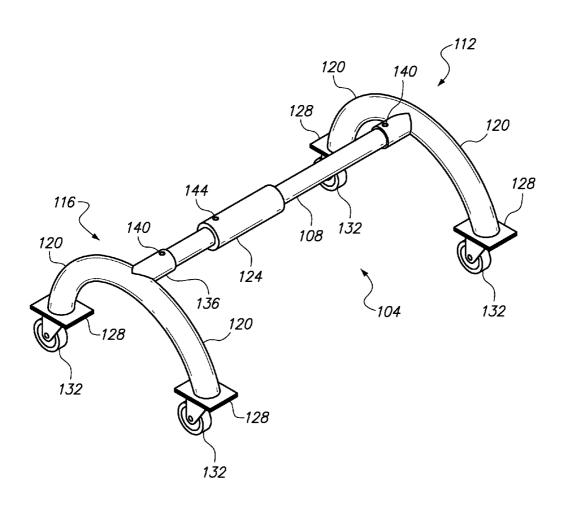
(43) **Pub. Date:** Dec. 18, 2014

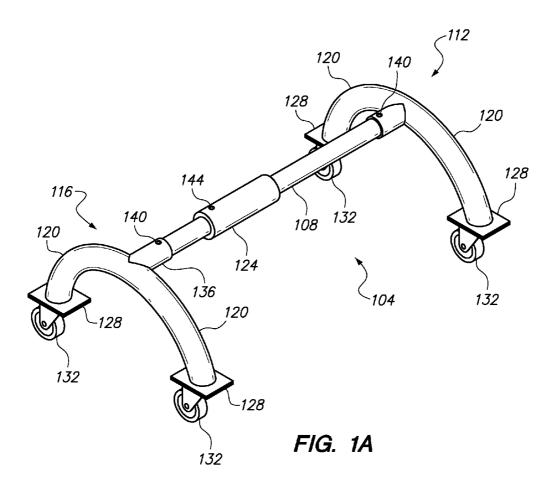
(54) UPPER BODY WORKOUT APPARATUSES AND ASSEMBLY THEREOF

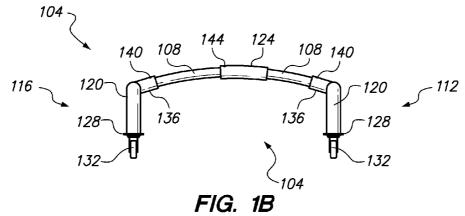
- (72) Inventors: Nick Vasquez, Las Vegas, NV (US);
 David Vasquez, Las Vegas, NV (US);
 Justin Vasquez, Las Vegas, NV (US)
- (21) Appl. No.: 13/918,916
- (22) Filed: Jun. 15, 2013

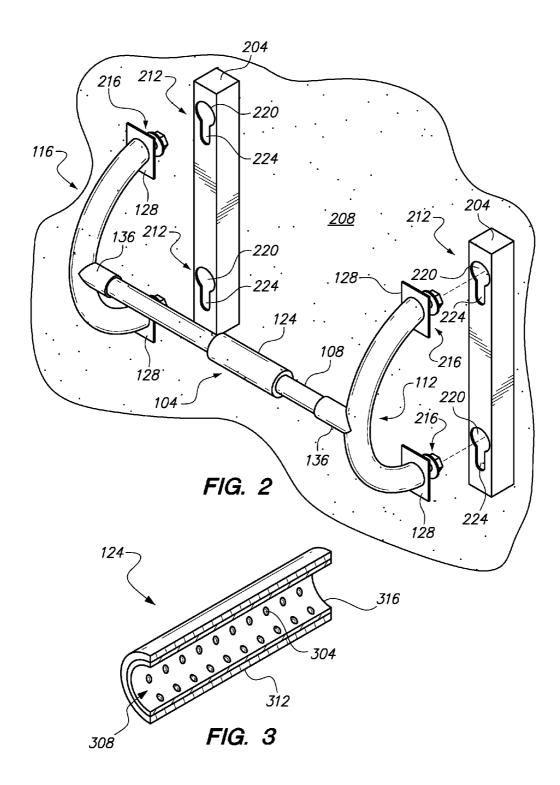
Publication Classification

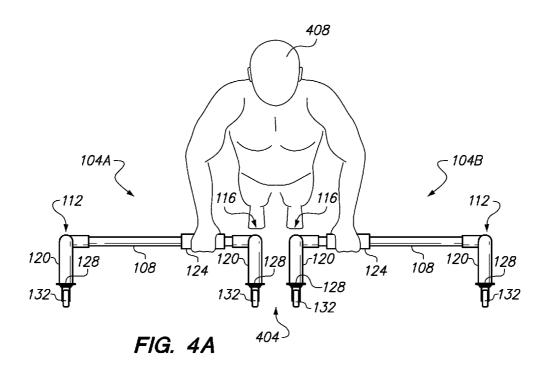
(51) **Int. Cl.**A63B 1/00 (2006.01)

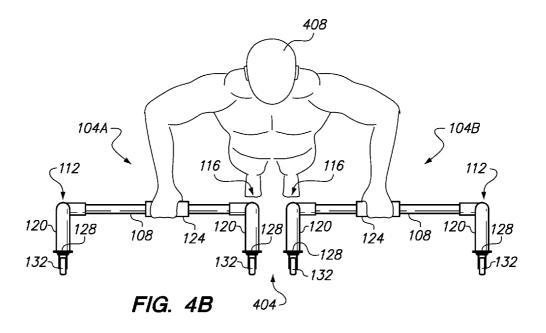

A63B 21/00 (2006.01)

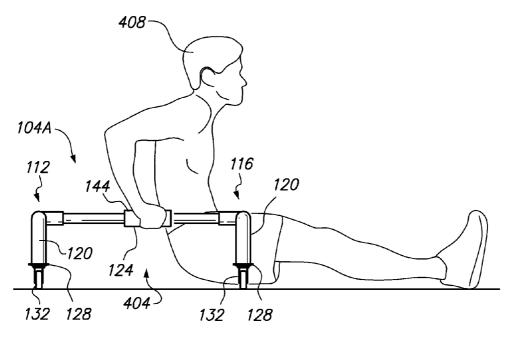
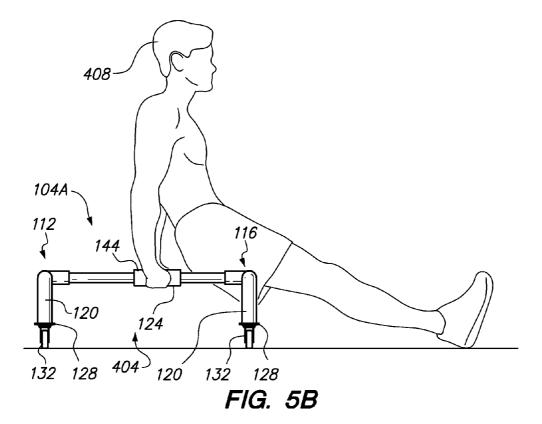



(10) Pub. No.: US 2014/0371040 A1


(57) ABSTRACT


An upper body workout apparatus assembly comprises two upper body workout apparatuses for each side of a user's body. Each apparatus may have a support bar supported by a plurality of lateral supports. A sliding handle is configured to rotate about each support bar as well as sliding along the length of the support bar. The user may grasp each sliding handle with one of the user's hands to perform push-up, dip, pull-up, abdominal or other exercises, whereby each sliding handle is moved between a distal and proximal position relative to its support bar. One or more anchor mounts secure each apparatus to a wall or ceiling during pull-up type exercise. The apparatuses are positioned adjacent one another as part of the assembly.



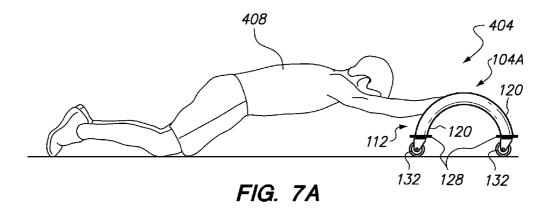


FIG. 5A

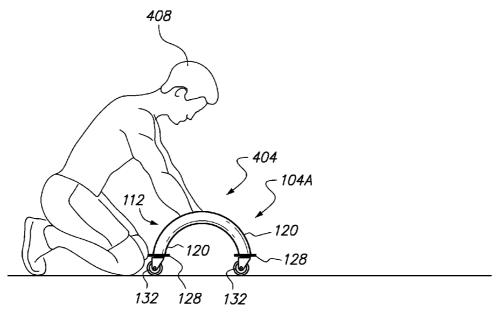


FIG. 7B

UPPER BODY WORKOUT APPARATUSES AND ASSEMBLY THEREOF

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates to systems and methods for toning and strengthening the upper body, and in particular to an upper body workout apparatus.

[0003] 2. Related Art

[0004] Upper body training is highly beneficial to strengthening and toning the muscles and other body structures of the arms and chest as well as core muscles and body structures. A number of traditional upper body training exercises exist, including push-ups, pull-ups, pull-downs, bench presses, and curls, where a user positions him or herself in a position relative to a weight or supporting surface in order to perform an upper body exercise. Though considerable effort and time may be expended during such exercise, the user may not be maximizing the effect of upper body training through use of traditional upper body exercises and equipment.

[0005] From the discussion that follows, it will become apparent that the present invention addresses the deficiencies associated with the prior art while providing numerous additional advantages and benefits not contemplated or possible with prior art constructions.

SUMMARY OF THE INVENTION

[0006] Various upper body workout apparatuses and assemblies thereof are disclosed herein. The apparatus assembly is beneficial in that it provides an upper body workout that also can strengthen and tone other parts of a user's body. The individual upper body apparatuses of the assembly guide the user's hands and arms while supporting at least the user's upper body weight resulting in consistent upper body motion to reduce the risk of injury. A number of configurations are disclosed herein to allow various types of upper body workouts to be performed.

[0007] As will be described below, the upper body workout apparatuses and assembly thereof may have various configurations. For instance, in one exemplary embodiment an upper body workout apparatus assembly may comprise, in combination, a first upper body workout apparatus and a second upper body workout apparatus.

[0008] The first upper body workout apparatus may comprise a first lateral support comprising one or more legs, a second lateral support comprising one or more legs, and one or more rollers mounted to the legs of the first and second lateral supports. A support bar having a proximal and distal end is supported in a horizontal position by the first and second lateral support, with the proximal end of the support bar being attached to the first lateral support while the distal end is attached to the second lateral support. A sliding handle comprising a tubular body with a channel therethrough is mounted on the support bar via the channel, with the sliding handle being rotatable about the support bar and slidable along the support bar; and

[0009] Similarly, the second upper body workout apparatus may comprise a first lateral support comprising one or more legs, a second lateral support comprising one or more legs, and one or more rollers mounted to the legs of the first and second lateral supports. A support bar having a proximal and distal end is supported in a horizontal position by the first and second lateral support, with the proximal end of the support

bar being attached to the first lateral support and the distal end being attached to the second lateral support. A sliding handle comprising a tubular body with a channel therethrough is mounted on the support bar via the channel, with the sliding handle being rotatable about the support bar and slidable along the support bar;

[0010] In the assembly, the first upper body workout apparatus and the second upper body workout apparatus are typically positioned adjacent one another such that the sliding handle of the first upper body workout apparatus is graspable by a left hand of a user performing one or more push-up or dip type exercises and the sliding handle of the second upper body workout apparatus is configured to be graspable by a right hand of the user.

[0011] The upper body workout apparatus assembly may also include a plurality of anchor mounts configured to secure the first upper body workout apparatus and the second upper body workout apparatus to a wall to allow the user to perform one or more pull-up type exercises using the upper body workout apparatus assembly.

[0012] It is noted that the rollers of the first upper body workout apparatus and the second upper body workout apparatus may be locked to prevent movement of the first upper body workout apparatus and the second upper body workout apparatus. In addition or alternatively, the rollers of the first upper body workout apparatus and the second upper body workout apparatus may be removable. Also, the support bar of the first upper body workout apparatus and the second upper body workout apparatus and the second upper body workout apparatus may be curved.

[0013] A fastener configured to attach the first upper body workout apparatus to the second upper body workout apparatus may be provided as well. The sliding handle of the first upper body workout apparatus and the second upper body workout apparatus typically comprises an inner layer having a plurality of spherical bearings to allow the sliding handle to rotate and slide on its support bar.

[0014] In another exemplary embodiment, an upper body workout apparatus assembly may comprise, in combination, a first support bar having a first sliding handle mounted thereon with the first sliding handle configured to rotate about the first support bar and slide along the first support bar's length, and a second support bar having a second sliding handle mounted thereon with the second sliding handle configured to rotate about the second support bar and slide along the second support bar's length.

[0015] A first plurality of lateral supports are configured to hold the first support bar at an elevated position, while a second plurality of lateral supports are configured to hold the second support bar at an elevated position. One or more anchor mounts are configured to hold the first plurality of lateral supports and the second plurality of lateral supports to a wall or ceiling structure. The first support bar and second support bar are secured to the wall or ceiling structure via the anchor mounts for a user to perform one or more pull-up type exercises, and the first support bar and second support bar are supported on a floor for the user to perform one or more push-up or lateral type exercises.

[0016] Similar to the above embodiment, the first support bar and the second support bar may be positioned adjacent one another such that the first sliding handle is configured to be graspable by a left hand of a user and the second sliding handle is configured to be graspable by a right hand of the user. In addition, the first support bar and the second support bar may be positioned in linear alignment with one another.

Alternatively or in addition, the first support bar and second support bar may be arranged at an angle with one another.

[0017] A plurality of locking rollers may be attached to at least one base of the first plurality of lateral supports and the second plurality of lateral supports to allow the first support bar and second support bar to be independently movable. It is contemplated that the first sliding handle and the second sliding handle may comprise a tubular body having a plurality of spherical bearings on an inner layer therein.

[0018] Various methods relating to the upper body apparatuses and assemblies therefor are disclosed herein as well. For example, in one embodiment a method of upper body exercise using an upper body workout apparatus assembly is disclosed. Such method may comprise providing a first upper body workout apparatus comprising a first support bar and a first sliding handle that is rotatable about the first support bar and slidable along the first support bar, and providing a second upper body workout apparatus comprising a second support bar and a second sliding handle that is rotatable about the second support bar and slidable along the second support bar.

[0019] The first support bar is supported on a floor at an elevated position above the floor with at least one first support while the second support bar is supported on a floor at an elevated position above the floor with at least one second support. A user hand's can then engage the first sliding handle and the second sliding handle. For example, the user may be engaged by engaging the user's left hand with the first sliding handle and engaging the user's right hand with the second sliding handle.

[0020] The first sliding handle is subsequently moved between a distal position and a proximal position on the first support bar, while simultaneously moving the second sliding handle between a distal position and a proximal position on the second support bar, while the first support bar and the second support bar are supported by the floor. One or more push-up or dip type exercises may be performed in this manner.

[0021] The method also includes engaging one or more anchor mounts attached to a wall or ceiling with the first support and the second support to secure the first support bar and second support bar to the wall or ceiling. The first sliding handle is then moved between a distal position and a proximal position on the first support bar, while simultaneously moving the second sliding handle between a distal position and a proximal position on the second support bar, while the first support bar and the second support bar are secured to the wall or ceiling. One or more pull-up type exercises may be performed in this manner. The first support and at least one second support may subsequently be removed from the anchor mounts when push-up or dip type exercises are desired.

[0022] The first sliding handle may be rotated about the first support bar while the second sliding handle may be rotated about the second support bar while the first sliding handle and the second sliding handle are moved between the distal position and proximal position on the first support bar and the second support bar. This provides for a natural range of motion of the user's hands reducing the risk of injury. At least a user's upper body weight is typically supported with the first support bar and the second support bar during a workout. It is noted that one or more rollers of the first support and the second support may be locked to prevent movement relative to the floor.

[0023] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.

[0025] FIG. 1A is a perspective view of an exemplary upper body workout apparatus;

[0026] FIG. 1B is a side view of an exemplary upper body workout apparatus;

[0027] FIG. 2 is a perspective view of an exemplary upper body workout apparatus;

[0028] FIG. 3 is a cross section perspective view of an exemplary sliding handle of an upper body workout apparatus:

[0029] FIGS. 4A-4B are front views illustrating operation of an exemplary upper body workout apparatus assembly during push-up type exercises;

[0030] FIGS. 5A-5B are side views illustrating operation of an exemplary upper body workout apparatus assembly during dip type exercises;

[0031] FIGS. 6A-6B are front views illustrating operation of an exemplary upper body workout apparatus assembly during pull-up type exercises; and

[0032] FIGS. 7A-7B are side views illustrating operation of an exemplary upper body workout apparatus assembly during abdominal type exercises.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0033] In the following description, numerous specific details are set forth in order to provide a more thorough description of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.

[0034] In general, the upper body workout apparatus herein provides a complete upper body workout by allowing a user to move freely as he or she performs one or more repetitions with the upper body workout apparatus. This freedom reduces the risk of injury but also causes the user to exert more effort in stabilizing him or herself when performing upper body exercises on the upper body workout apparatus. The upper body workout apparatus also allows a number of distinct exercises to be performed therewith, as will be discussed further below.

[0035] Typically the upper body workout apparatus will be provided as part of an assembly comprising two upper body workout apparatuses, as will be describe further below. To aid in understanding, individual upper body workout apparatuses will first be described. FIGS. 1A-1B and FIG. 2 illustrate perspective views of an individual exemplary upper body workout apparatus 104. As can be seen, the upper body workout apparatus 104 may comprise a support bar 108 held by a

pair of lateral supports 112, 116 at its ends. A sliding handle 124 configured to slide along the length of the support bar 108 may be secured to the support bar.

[0036] Typically, the lateral supports 112, 116 are configured to hold the support bar 108 at an elevated position above the ground or other surface. In addition, the lateral supports 112, 116 hold the support bar 108 in a horizontal orientation, such as shown in FIGS. 1A-1B. Typically, the lateral supports 112, 116 will hold the support bar 108 substantially parallel to the ground (i.e., hold each end of the support bar 108 at the same or similar height). In one or more embodiments, the lateral supports 112, 116 may be the same or a similar height. [0037] The support bar 108 may be attached to the lateral supports 112, 116 in various ways. As shown in FIGS. 1A-1B and FIG. 2 for example, each lateral support 112, 116 comprises a mount 136 in the form of a sleeve, which accepts an end of the support bar 108. The mount 136 may have a shape that conforms to the shape of an end of a support bar 108 and be sized such that the end of the support bar can fit snugly therein. One or more fasteners 140, such as setscrews, pins, or the like may be used to secure the support bar 108 in a sleeve 136. Such as fastener may extend inward from the sleeve 136 to engage the end of the support bar 108 therein, thereby securing the support bar in the sleeve.

[0038] In the exemplary embodiments of FIGS. 1A-1B and FIG. 2, the mount 136 is at a top end of the lateral supports 112, 116. It is contemplated that the mount 136 may be positioned between the bottom end and top end of a lateral support 112, 116 in one or more embodiments. In addition or alternatively, a plurality of mounts 136 may be provided on a single lateral support 112, 116. In this manner, the support bar 108 may be moved higher or lower as desired. For instance, a user may wish to lower the support bar 108 to perform dip exercises, and raise the support bar for push-up type exercises.

[0039] Though illustrated as a sleeve, it is contemplated that various mounts 136 may be used with the upper body workout apparatus 104. For example, in one embodiment, a sleeve may be formed at the end of a support bar 108. A mount 136 in the form of a pin or other protrusion may extend from a lateral support 112, 116. The sleeve of the support bar 108 would then accept the mount 136 of the lateral support 112, 116 to attach the support bar to the lateral support. In another embodiment, a threaded assembly may be used to attach a support bar 108 to a lateral support 112, 116. For instance, a threaded rod extending from an end of the support bar 108 may be rotated into a mount 136 comprising a threaded opening in a lateral support 112, 116 (or vice versa) to attach the two structures together. It is contemplated that other mounts 136 may be used as well to attach the support bar 108 to the lateral supports 112, 116.

[0040] As alluded to above, the support bar 108 may be removable. For instance, with reference to the exemplary embodiments of FIGS. 1A-1B and FIG. 2, the support bar 108 may be removed by releasing or removing the fastener 140 securing the support bar 108 and lateral support 112, 116, and the removing the support bar from the mount 136. This effectively disassembles the upper body workout apparatus 104, such as for storage or maintenance purposes. For example, disconnecting the support bar 108 would allow the sliding handle 124 to be removed and/or replaced, such as for maintenance purposes.

[0041] The support bar 108 or a different support bar may be re-attached to the mount 136 thereafter by inserting engag-

ing the mount with an end of the support bar. It is contemplated that various support bars 108 may be provided with the upper body workout apparatus 104 for different training exercises. In typical embodiments, a straight support bar 108, such as shown in FIG. 1A and FIG. 2, is used. Optionally, a curved support bar 108 may be provided, such as shown in FIG. 1B. A curved support bar 108 that is arched upward, such as shown in FIG. 1B, increases resistance as a sliding handle 124 is moved inward because the user must apply sufficient force to move the sliding handle upward as well.

[0042] It is also contemplated that support bars 108 of different lengths may be used with the upper body workout apparatus 104. For example, a support bar 108 having sufficient length to accept two or more sliding handles 124, while providing space for each of the sliding handles to slide along the support bar, may be provided in some embodiments.

[0043] As shown in FIGS. 1A-1B and FIG. 2, each of the lateral supports 112, 116 may comprise one or more downward extending legs 120. Typically, each lateral support will comprise at least two legs 120. It is contemplated that a single leg 120 may be used at a lateral support 112, 116 provided that such single leg has an extended base to support the remainder of the lateral support in an upright position. Though shown in FIGS. 1A-1B and FIG. 2, with two legs 120 having a curved shape extending downward from a central apex, it is noted that a leg may be straight, angled, or comprise one or more other shapes. In addition, though shown as being constructed with rigid tubular material having a circular cross sectional shape, it is contemplated that such material may have square, rectangular or other cross sectional shapes.

[0044] Similarly, the support bar 108 may be constructed with a rigid tubular material of circular or other cross sectional shape. One benefit of a circular cross sectional shape is that it allows the sliding handle 124 to rotate about the axis of the support bar 108. It is contemplated that to limit or prevent such rotation, a support bar 108 having a square or other non-circular shape may be provided. In such case, the sliding handle 124 would have a corresponding non-circular shape to allow it to accept and slide along the support bar 108. It is noted that a variety of rigid materials, such one or more metals, alloys, composite materials, plastics, or various combinations thereof may be used in the construction of the upper body workout apparatus 104.

[0045] As disclosed above, the upper body workout apparatus 104 allows a number of upper body training exercises to be performed therewith. Typically, the upper body workout apparatus 104 will be reconfigurable for various training exercises. For example, as shown in FIGS. 1A-1B and FIG. 2, the lateral supports 112, 116 of the upper body workout apparatus 104 may comprise at least one base 128. In FIGS. 1A-1B and FIG. 2, each lateral support 112, 116 has two bases 128 at the distal ends of its two legs 120. A base 128 may be configured to engage the ground or other surface or structure. [0046] For example, a base 128 may be a planar structure configured to engage the ground or floor where the upper body workout apparatus 104 is being used. In such embodiments, a base 128 would generally be configured to secure the upper body workout apparatus 104 in place during use. It is contemplated that a tread or grip may be at the underside of a base 128 to prevent the upper body workout apparatus 104 from moving when placed on the ground or other surface.

[0047] Alternatively, a base 128 may have one or more wheels 132, casters, rollers, or the like mounted thereto. To illustrate, the bases 128 of the lateral supports 112, 116 of

FIGS. 1A-1B each have a wheel 132 mounted thereto. In this manner, the upper body workout apparatus 104 is made capable of rolling or moving on the ground or other surface. As will be described further below, this is beneficial in that it causes a user to exert more effort to stabilize him or herself during a workout, leading to a more complete workout. It is noted that each wheel 132 may have a brake or stop so as to prevent the upper body workout apparatus 104 from rolling if desired. For example, a user just beginning to use the upper body workout apparatus 104 may wish to utilize the upper body workout apparatus at a set location to acclimate him or herself with the upper body workout apparatus. Later one, the user may release the brake or stop at the wheels 132 to allow the upper body workout apparatus 104 to move during a training exercise.

[0048] It is contemplated that a wheel 132 may have a fixed or swiveling mount that attaches it to a base 128. A swiveling mount would allow the wheel 132 to swivel while the wheel rolls or rotates about its axel, while a fixed mount would prevent such swiveling thus causing the wheel 132 to roll along a particular path. This correspondingly limits the motion of an upper body workout apparatus 104 having one or more wheels 132 attached by fixed mounts.

[0049] FIG. 2 illustrates an exemplary upper body workout apparatus 104 reconfigured for a different type of upper body training exercises. As can be seen, the wheels 132 of the upper body workout apparatus 104 are removed in this configuration. The wheels 132 may be replaced with different attachments for different upper body training exercises. As shown in FIG. 2 for example, the wheels 132 may be replaced with one or more anchor mounts 204 that secure the upper body workout apparatus 104 to a fixed position. Typically, anchor mounts 204 will be used to secure the upper body workout apparatus 104 at an elevated position, such as on a wall or ceiling, or other standing structure 208. In general, the elevated position will be around shoulder height or higher or at a height sufficient to allow a user to perform pull-up type exercises. In FIG. 2, the upper body workout apparatus 104 is attached to a standing structure 208 in the form of a wall. If attached to a ceiling, the upper body workout apparatus 104 would typically be hung or secured by its one or more bases 128 to the ceiling.

[0050] The anchor mounts 204 will typically be secured to a wall or ceiling by one or more fasteners, such as screws or bolts. It is contemplated that an anchor mount 204 may be permanently affixed to such wall, ceiling or other structure. In this manner, the upper body workout apparatus 104 can be easily and conveniently used on the ground as well as at a wall, ceiling or other elevated structure. To illustrate, a user may configure the upper body workout apparatus 104 in a first configuration where its wheels 132 are attached to its lateral supports 112, 116, such as shown in FIG. 1. The user may then configure the upper body workout apparatus 104 for pull-up type exercises by engaging the upper body workout apparatus with one or more anchor mounts 204 attached to a wall or ceiling, such a shown in FIG. 2. It is contemplated that the anchor mounts 204 may be configured to secure the upper body workout apparatus 104 to a wall, ceiling, or the like without removing the wheels 132 in one or more embodi-

[0051] To illustrate, each anchor mount 204 may be configured to engage a portion of a lateral support 112, 116. As shown in FIG. 2 for example, an anchor mount 204 may comprise one or more slotted openings 212 that engage a base

128 of the lateral support 108. Typically, such engagement secures the lateral support 112, 116 (and thus the upper body workout apparatus 104) to an anchor mount 204.

[0052] In the exemplary embodiment of FIG. 2, the base 128 comprises an engagement member 216 that is received in a slotted opening 212 of an anchor mount 304. The slotted opening 212 may have an asymmetric shape, such as the keyhole shape shown, to secure the lateral support 112, 116 to the anchor mount 204. To illustrate, the slotted opening 212 of FIG. 2, comprises an enlarged portion to accept an engagement member 216 therein. The engagement member 216 may then be moved from the enlarged portion 220 to a narrowed portion 224 (e.g., the slot) of the slotted opening 212. Because the head 228 of the engagement member 216 is enlarged, the engagement member cannot be removed when positioned at the narrowed portion 224 of the slotted opening 212. Positioning the engagement member 216 at the enlarged portion 220 of the slotted opening 212 will allow the engagement member to be removed therefrom however. In this manner, the upper body workout apparatus 104 can be removably attached to a standing structure 208, such as a wall or ceiling, via its one or more anchor mounts 204 quickly and conveniently.

[0053] It is contemplated that the lateral supports 112, 116 of an upper body workout apparatus 104 may be removably attached to one or more anchor mounts 204 in various other ways. For instance, one or more threaded fasteners may be used. For example, a threaded rod, screw or bolt may extend from the base 128 of lateral support 112, 116 into a threaded opening of an anchor mount 204, or vice versa. In such case, a slotted opening need not be provided. It is contemplated that each leg 120 of a lateral support 112, 116 may be removably secured to an anchor mount 304 in different ways. For example, a first leg 120 may be secured by a slotted opening 212 and corresponding engagement member 216, while a second leg (of the same lateral support 112, 116) is secured via a threaded rod, screw or bolt or other removable fastener. Some exemplary removable fasteners include one or more screws, pins, clips, clamps or the like.

[0054] FIG. 3 illustrates a cross sectional view of an exemplary sliding handle 124. As can be seen, the sliding handle 124 comprises a tubular body 312 that forms a channel 308, which is configured to accept the support bar of an upper body workout apparatus. The sliding handle 124 is able to slide along a support bar in this manner. To reduce resistance to movement of the sliding handle 124 caused by friction, one or more spherical bearings 304 (i.e., ball bearings) may be provided at the inner surface of the sliding handle 124. In operation the spherical bearings 304 rotate within their individual bearing pockets thus allowing the sliding handle 124 to move freely along the length of a support bar. In addition, the spherical bearings 304 allow the sliding handle 124 to rotate about the axis of a support bar. This is highly beneficial during a workout, as will be described below. The bearing pockets may be formed or secured in an inner layer 316 of the sliding handle 124, such as shown.

[0055] It is contemplated that resistance to the movement of the sliding handle 124 may be reduced in other ways. For instance, in one embodiment, the inner layer 312 may be formed from or be coated with a low friction material, such as TeflonTM or low friction plastics, polymers, and/or resins. In some cases, the spherical bearings 304 need not be provided if such low friction materials are used. It is noted that the

support bar may also be formed from or be coated with a similar low friction material as well.

[0056] Operation of the upper body workout apparatus 104 will now be described with regard to FIGS. 4A-4B, which illustrate an exemplary upper body workout apparatus in use. Typically, the upper body workout apparatus 104 will be used in an assembly comprising a pair of upper body workout apparatuses (and one or more anchor mounts 304 as will be described further below).

[0057] FIGS. 4A-4B illustrate a front view of an upper body workout apparatus assembly 404 comprising a pair of upper body workout apparatuses 104A, 104B. As can be seen, the upper body workout apparatuses 104A, 104B are positioned adjacent one another such that their support bars 108 are generally in linear alignment with one another. It is contemplated that the upper body workout apparatuses 104A, 104B may be positioned at an angle relative to one another. As will be described further below, the positioning of the upper body workout apparatuses 104A, 104B controls movement of the user's arms during an upper body exercise. In this manner, the positioning of the upper body workout apparatuses 104A, 104B relative to one another controls which muscles and body structures are toned and strengthened. It is noted that a fastener or connector may be provided to connect the upper body workout apparatuses 104A, 104B together at their lateral supports 112, 116. If provided, such fastener or connector would typically removably attach the upper body workout apparatuses 104A, 104B.

[0058] FIGS. 4A-4B illustrate a user 408 performing pushup type exercises with the upper body workout apparatus assembly 404. As can be seen, the user 408 may raise and lower his or her body one or more times to perform such exercises. Typically, a user 408 will engage the sliding handles 124 of each upper body workout apparatus 104A, 104B to being an exercise, such as shown in FIGS. 4A-4B. During push-up type exercises, the user's body is positioned such that he or she is facing the ground or floor with the user's weight being supported by the user's arms and feet.

[0059] In FIG. 4A, the user 408 is shown in a first position with his or her arms extended outward laterally, while grasping the sliding handles 124. To perform a single repetition of a push-up type exercise, the user 408 moves his or her arms inward while continuing to grasp the sliding handles 124, such as shown in FIG. 4B. As can be seen, the action of moving the arms inward moves the user's body to a second position where the user's body is raised upward. In addition, this moves the sliding handles 124 from a distal position to a proximal position on its individual upper body workout apparatus 104A, 104B. The user 408 may then continue the exercise by once again extending his or her arms outward to the first position shown in FIG. 4A.

[0060] The low sliding resistance at the sliding handles 124 allows the user to freely move his or her arms while guiding the path along which the user's arms move during an exercise. As can be seen, positioning the upper body workout apparatuses 104A, 104B at an angle relative to one another would change this path, thus changing which portions of a user's body are toned and strengthened.

[0061] As stated above, an upper body workout apparatus 104A, 104B may include one or more wheels 132 to allow the upper body workout apparatus to move or roll along the ground or other surface. If attached, the wheels 132 can increase the difficulty and effectiveness of a workout using the upper body workout apparatus assembly 404. This is

because the user 408 would have to exert considerable effort in maintaining the position of each upper body workout apparatus 104A, 104B while raising and lowering his or her body. In this manner, the user can strengthen and tone his or her entire body. If wheels 132 are not attached, the user 408 would not need to expend effort stabilizing the position of each upper body workout apparatus 104A, 104B. It is contemplated that a user 408 may attach or remove wheels 132 as desired.

[0062] FIGS. 5A-5B provide a side view of an dip type exercise being performed on the upper body workout apparatus assembly 404. Each upper body workout apparatus 104A, 104B may be spaced laterally apart to accommodate the user's body therebetween when performing dip type exercises. With reference to FIGS. 5A-5B, a first upper body workout apparatus 104A is at the user's right side while a second upper body workout apparatus 104B (not shown) is at the user's left side. The motions of the user's body will typically be symmetrical between the user's left and right side. During a dip type exercise, the upper body workout apparatuses 104A, 104B may be oriented parallel rather than perpendicular to the user's body, such as shown in FIGS. 5A-5B.

[0063] Similar to above, the dip type exercise may be performed with wheels 132 attached or removed from the upper body workout apparatuses 104A, 104B. With the wheels 132 attached, the user 408 would be required to expend effort to maintain the position of the upper body workout apparatuses 104A, 104B, as described above. Alternatively, the user 408 may lock the wheels 132 to prevent an upper body workout apparatus 104A, 104B from rolling during exercise.

[0064] As can be seen, the user 408 may move between a first position and a second position while performing dip type exercises. Dip type exercises are performed with the user's body bent at the waist as though the user is sitting. The user 408 may support his or her weight with his or her arms and feet, such as shown.

[0065] Typically, the first position will be a position where the user's body is lower as compared to the second position where the user's body is raised, such as shown in FIGS. 5A-5B respectively. To perform a single repetition on the upper body workout apparatus assembly 404, a user 408 will typically lock or secure the sliding handles 124 of the upper body workout apparatuses 104A, 104B in position, such as by tightening a setscrew 144 or engaging another locking mechanism at the sliding handles. The user 408 can then grasp the sliding handles 124 of the upper body workout apparatus assembly, as shown in FIG. 5A.

[0066] As can be seen, the user 408 may then raise his or her body to a second position by pushing downward to extend his or her arms, such as shown in FIG. 5B. This moves the sliding handles 124 from the distal position to a proximal position along their respective support bars 108. The user may return to the first position by contracting his or her arms. This may be repeated as desired. It is contemplated that the sliding handles 124 need not be secured in position to perform an dip type exercise. In such case the user 408 would exert additional effort to maintain the position of the sliding handles 124 during a workout.

[0067] FIGS. 6A-6B illustrate a pull-up type exercise being performed on the upper body workout apparatus assembly 404. Similar to above, the individual upper body workout apparatuses 104A, 104B of the upper body workout apparatus assembly 404 are positioned adjacent to one another. It is

contemplated that the upper body workout apparatuses 104A, 104B may be spaced apart to accommodate the user's head and/or upper body while a pull-up type exercise is being performed. Such spacing need not always occur however as the user 408 may perform pull-up type exercises while avoiding contact with the upper body workout apparatus assembly 404.

[0068] As can be seen from FIGS. 6A-6B, the upper body workout apparatuses assembly 404 may be attached to a standing structure, such as a wall 208 via one or more anchor mounts 204. As described above, an upper body workout apparatus 104A, 104B may be secured to an anchor mount 204 at one or more of its bases 128. It is noted that the upper body workout apparatuses 104A, 104B of the upper body workout apparatus assembly are shown from a top view in FIGS. 6A-6B while a front view of the wall 404 is provided. [0069] The attachment to one or more anchor mounts 204 affixes the upper body workout apparatus assembly 404 at an elevated position allowing pull-up type exercises to be performed, as will now be described. A pull-up type exercise is performed with the user in an upright position. Similar to the above exercises performed on the upper body workout apparatus assembly 404, the user 408 moves between a first position and a second position while performing pull-up type exercises, with the first position typically being lower than the second position.

[0070] Referring to FIG. 6A, in the first position, the user 408 may grasp the sliding handles 124 of each upper body workout apparatus 104A, 104B. As can be seen, the sliding handles 124 are at a distal position on their respective support bars 108, when in the first position. Accordingly, the user's arms are extended laterally outward. To perform a single repetition of a pull-up type exercise, the user 408 moves his or her arms inward, thus also moving the sliding handles 124 inward to a proximal position, such as shown in FIG. 6B. The user 408 will typically also contract his or her arms at the elbows when moving his or her arms inward. This raises the user's body, such as shown by the second position of FIG. 6B. The user may then lower him or herself by extending his or her arms outward laterally to return to the first position shown in FIG. 6A. This may be repeated one or more times as desired by the user 408.

[0071] FIGS. 7A-7B are side views illustrating an abdominal type exercise being performed on the upper body workout apparatus assembly 404. During an abdominal type exercise, each upper body workout apparatus 104A, 104B may be positioned at the user's left and right side, similar to above. With reference to FIGS. 7A-7B for example, a first upper body workout apparatus 104A is at the user's right side while a second upper body workout apparatus 104B (not shown) is at the user's left side. The motions of the user's body will typically be symmetrical between the user's left and right side. The sliding handles 124 of each upper body workout apparatus 104A, 104B may be secured in position, such as by a setscrew or other locking mechanism at the sliding handles. This prevents their motion during the workout. Alternatively, a user 408 may elect to allow the sliding handles to move freely and exert additional effort to maintain the position of the sliding handles during the workout.

[0072] Similar to the above exercises, a user 408 will typically move between a first position and a second position when performing abdominal type exercises on the upper body workout apparatus assembly 404. As can be seen in FIG. 7A for example, the user may begin by grasping a sliding handle

of each of the upper body workout apparatuses 104A, 104B with the user's right and left hand. The user 408 may begin in the outstretched first position of FIG. 7A, where his or her body and arms are extended. The wheels 132 of the upper body workout apparatus assembly 404 will be unlocked to allow the upper body workout apparatus assembly roll freely. [0073] The user 408 may then contract his or her body to arrive at the second position shown in FIG. 7B, where the user's upper body is raised upward as the user pulls the upper body workout apparatus assembly 404 towards his or her body. The user 408 may then return to the first position of FIG. 7A to continue the abdominal exercise. Typically, the user's abdominal muscles will exert most of the force in accomplishing movement between the first and second positions. Movement between the first and second positions may be repeated as desired.

[0074] It is contemplated that various other exercises may be performed on the upper body workout apparatus assembly 404. For example, the above push-up, dip, pull-up, and abdominal type exercises may be performed with or without moving the sliding handles 124 between a proximal and distal position if desired. To illustrate, the user 408 may hold the sliding handles 124 at a proximal position or a distal position while performing these exercises. It is noted that the sliding handles 124 may also rotate about the axis of the support bar 108 during exercise. This allows the user's arms and hands to move freely during exercise, reducing the risk of strain and injury.

[0075] Typically, the upper body workout apparatus assembly 404 will be used for a plurality of exercises during a particular workout, such as the push-up, dip, abdominal, and pull up type exercises described above. In one typical embodiment for example, the user may perform one or more push-up and/or dip type exercises, and then attach the individual upper body workout apparatuses 104A, 104B of the upper body workout apparatus assembly 404 to one or more previously hung anchor mounts 204 to perform one or more pull-up type exercises. It is noted that a user 408 may begin a workout with pull-up type exercises and then remove the upper body workout apparatuses 104A, 104B from their anchor mounts 204 to perform one or more push-up or dip type exercises. The user 408 would place the upper body workout apparatuses 104A, 104B on the floor to perform push-up, dip, or abdominal type exercises. Between the various types of exercises, it is contemplated that a user 408 may add or remove wheels 132 to the upper body workout apparatuses 104A, 104B to respectively increase or decrease the difficult of the workout.

[0076] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.

What is claimed is:

- 1. An upper body workout apparatus assembly comprising, in combination:
 - a first upper body workout apparatus comprising:
 a first lateral support comprising one or more legs;
 a second lateral support comprising one or more legs;
 one or more rollers mounted to the one or more legs of
 the first and second lateral supports;

- a support bar having a proximal and distal end, the support bar supported in a horizontal position by the first and second lateral support, wherein the proximal end of the support bar is attached to the first lateral support and the distal end is attached to the second lateral support; and
- a sliding handle comprising a tubular body with a channel therethrough, the sliding handle mounted on the support bar via the channel, wherein the sliding handle is rotatable about the support bar and slidable along the support bar; and
- a second upper body workout apparatus comprising:
 - a first lateral support comprising one or more legs;
 - a second lateral support comprising one or more legs;
 - one or more rollers mounted to the one or more legs of the first and second lateral supports;
 - a support bar having a proximal and distal end, the support bar supported in a horizontal position by the first and second lateral support, wherein the proximal end of the support bar is attached to the first lateral support and the distal end is attached to the second lateral support; and
 - a sliding handle comprising a tubular body with a channel therethrough, the sliding handle mounted on the support bar via the channel, wherein the sliding handle is rotatable about the support bar and slidable along the support bar;
- wherein the first upper body workout apparatus and the second upper body workout apparatus are positioned adjacent one another such that the sliding handle of the first upper body workout apparatus is graspable by a left hand of a user performing one or more push-up or dip type exercises and the sliding handle of the second upper body workout apparatus is configured to be graspable by a right hand of the user.
- 2. The upper body workout apparatus assembly of claim 1 further comprising a plurality of anchor mounts configured to secure the first upper body workout apparatus and the second upper body workout apparatus to a wall to allow the user to perform one or more pull-up type exercises using the upper body workout apparatus assembly.
- 3. The upper body workout apparatus assembly of claim 1, wherein the one or more rollers of the first upper body workout apparatus and the second upper body workout apparatus may be locked to prevent movement of the first upper body workout apparatus and the second upper body workout apparatus
- **4**. The upper body workout apparatus assembly of claim **1**, wherein the one or more rollers of the first upper body workout apparatus and the second upper body workout apparatus are removable.
- 5. The upper body workout apparatus assembly of claim 1, wherein the support bar of the first upper body workout apparatus and the second upper body workout apparatus is curved.
- 6. The upper body workout apparatus assembly of claim 1 further comprising a fastener configured to attach the first upper body workout apparatus to the second upper body workout apparatus.
- 7. The upper body workout apparatus assembly of claim 1, wherein the sliding handle of the first upper body workout apparatus and the second upper body workout apparatus comprises an inner layer having a plurality of spherical bearings.
- **8**. An upper body workout apparatus assembly comprising, in combination:

- a first support bar having a first sliding handle mounted thereon, the first sliding handle configured to rotate about the first support bar and slide along the first support bar's length;
- a second support bar having a second sliding handle mounted thereon, the second sliding handle configured to rotate about the second support bar and slide along the second support bar's length;
- a first plurality of lateral supports configured to hold the first support bar at an elevated position;
- a second plurality of lateral supports configured to hold the second support bar at an elevated position; and
- one or more anchor mounts configured to hold the first plurality of lateral supports and the second plurality of lateral supports to a wall or ceiling structure;
- wherein the first support bar and second support bar are secured to the wall or ceiling structure via the one or more anchor mounts for a user to perform one or more pull-up type exercises, and the first support bar and second support bar are supported on a floor for the user to perform one or more push-up or lateral type exercises.
- 9. The upper body workout apparatus of claim 1, wherein the first support bar and the second support bar are positioned adjacent one another such that the first sliding handle is configured to be graspable by a left hand of a user and the second sliding handle is configured to be graspable by a right hand of the user
- 10. The upper body workout apparatus of claim 1, wherein the first support bar and the second support bar are positioned in linear alignment with one another.
- 11. The upper body workout apparatus of claim 1, wherein the first support bar and second support bar are positioned at an angle with one another.
- 12. The upper body workout apparatus of claim 1 further comprising a plurality of locking rollers attached to at least one base of the first plurality of lateral supports and the second plurality of lateral supports to allow the first support bar and second support bar to be independently movable.
- 13. The upper body workout apparatus of claim 1, wherein the first sliding handle and the second sliding handle comprise a tubular body having a plurality of spherical bearings on an inner layer therein.
- **14**. A method of upper body exercise using an upper body workout apparatus assembly comprising:
 - providing a first upper body workout apparatus comprising a first support bar and a first sliding handle that is rotatable about the first support bar and slidable along the first support bar;
 - providing a second upper body workout apparatus comprising a second support bar and a second sliding handle that is rotatable about the second support bar and slidable along the second support bar;
 - supporting the first support bar on a floor at an elevated position above the floor with at least one first support;
 - supporting the second support bar on a floor at an elevated position above the floor with at least one second support; engaging a user with the first sliding handle and the second sliding handle;
 - moving the first sliding handle between a distal position and a proximal position on the first support bar, and simultaneously moving the second sliding handle between a distal position and a proximal position on the second support bar, while the first support bar and the second support bar are supported by the floor;

Dec. 18, 2014

engaging one or more anchor mounts attached to a wall or ceiling with the at least one first support and the at least one second support to secure the first support bar and second support bar to the wall or ceiling; and

moving the first sliding handle between a distal position and a proximal position on the first support bar, and simultaneously moving the second sliding handle between a distal position and a proximal position on the second support bar, while the first support bar and the second support bar are secured to the wall or ceiling.

- 15. The method of claim 14, wherein the user is engaged by engaging the user's left hand with the first sliding handle and engaging the user's right hand with the second sliding handle.
- 16. The method of claim 14 further comprising rotating the first sliding handle about the first support bar and rotating the second sliding handle about the second support bar while the first sliding handle and the second sliding handle are moved between the distal position and proximal position on the first support bar and the second support bar.
- 17. The method of claim 14 further comprising supporting at least a user's upper body weight with the first support bar and the second support bar.
- 18. The method of claim 14 further comprising locking one or more rollers of the at least one first support and the at least one second support to prevent movement relative to the floor.
- 19. The method of claim 14 further comprising securing the one or more anchor mounts to the wall or ceiling.
- 20. The method of claim 14 further comprising removing the at least one first support and at least one second support from the one or more anchor mounts.

* * * * *