UK Patent Application . GB 2414308 .. A

(12)
(43) Date of A Publication 23.11.2005
(21) Application No: 0410986.4 (51) INTCL”:
GO6F 9/38
(22) Date of Filing: 17.05.2004
(52) UK CL (Edition X):
G4A AJR APX
(71) Applicant(s):
ARM Limited (56) Documents Cited:
{Incorporated in the United Kingdom) US 5057837 A
110 Fulbourn Road, Cherry Hinton,
CAMBRIDGE, CB1 9NJ, United Kingdom (58) Field of Search:
UK CL (Edition W) G4A
(72) Inventor(s): INT CL7 GO6F
Jan Guffens Other: Online:WPI,EPODOC,PAJ/JAPIO,TDB, INSPEC,
Ludwig Callewaert XPESP
Koenraad Van Nieuwenhove
(74) Agent and/or Address for Service:
D Young & Co
120 Holborn, LONDON, EC1N 2DY,
United Kingdom
(54) Abstract Title: Program instruction compression
(57) A processor is described including a plurality of data path elements 2, 4, 6, 8 (Fig.1) which independently

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

perform in parallel different data processing operations. Program instructions are provided which are
decoded to generate control signals for controlling the data path elements. Multiple instruction sets are
supported with the same data processing operation to be performed by the same data path element
being differently encoded within different instructions of different instruction sets. This enables code
compaction when little parallelism may be achieved and full parallelism to be specified when this is

possible.
24
One DPE active
LIDO remainder NOPs
¥ﬁ/‘——/
MUL
26 28
/
| ID1 [|
Hf'_/ %,_/
ADD MUL/SHIFT "\ Instruction
sets with
32 30 / subsets of
possible
l ID2 l I operations
—— S
MUL SHIFT
34 Full operations
/ on all DPEs
D3] I o
—__--_=
VLIW control MUL ADD

FIG. 4

VY 80€EvLy ¢ 99

Original Printed on Recycled Paper

1/6
Execution
_——— portion of
VLIW system
From instruction
decoder RFT 10| RF2 12
817
Control Signals Configurable Buses ~—14
Lﬁr_/ é e Ve A
~—2 ~—4 6 —~—8
\ 4 | DPE1 DPE 2 DPE 3 DPE4 | _.....
7 3 7 3 y 3 7 3
Ac‘t‘ive Parallel operation possible
DPE 6 ¢ X X
DPE 5+ X X X
DPE 4 + X X X
DPE 3+ X X X
DPE 2+ X X X X X X X X X X X
DPE 1+ X X X X X

Instruction cycles

FIG. 2

2/6

.
e
seee

XX
.
Cece

20 18
p ad
Instruction Program control and DPE instruction field(s)
set ID
n 22 R
N* M Bits
»/2 !
One DPE active
IDO »/ remainder NOPs
. — —
MUL
26 28
'
ID1
H_/ ;W_/
ADD MUL/SHIFT \ Instruction
20 sets with
32 subsets of
e e / possible
ID2 operations
- N~———
MUL SHIFT
Full operations
’/34 v~ on all DPEs
ID3
VLIW control MUL ADD

3/6

Input

instruction
field MUL 1| ADD | SHIFT

Decoding
Tree

Instruction word

Y

Instruction set and
field identification
1 48

Control word

FIG. 6

> Jut &q Mux Mux
8 40
36 \ 4 .
44~ NoOP operation |46
7 1T
\ 4
> lut Mux

42

-y ..

reen

4/6

LSB

MSB

Sk

FIG. 7

5/6
720
Controller <
A 4
™ Program counter 50
y
~—52
M
Instruction memories
y
> FIFO instruction
register ~54
y
Rotator 56
58

v

Controller instruction

Instruction decoder

4

V

Control register

s
<
<
<

64

Data path
element 1
Data path
element 2

\ 4 \ 4

<
<

Data path
element i

<
<

Status register

Condition flags

FIG. 8

6/6

6 Old

SI lapoda(|
dwn{ s ‘
exnw ol ¢+ ZXnw 104\ zZ+ LxnwjoiH L+ ox:Eﬁ/ll
o160] s|qeus
jueq Aaud
a|qeus
2= [4=] 21 0)=1]
si [
EW3IN AL EN NI OW3N
Zlosod < L1osod L< E 0<
ssalppe
1N HHEd _ u
| -
ybus| uononsu od
e
— PP a|qeus” dwn(
0L

ssaippedwn(

H,_J

14°]

[AY]

10

15

20

25

30

L 2414308

PROGRAM INSTRUCTION COMPRESSION

This invention relates to the field of data processing. More particularly, this
invention relates to data processing systems having a plurality of data path elements
operable independently to perform in parallel respective data processing operations
specified by a program instruction, such as, for example, so called very long
instruction word (VLIW) processors and measures to reduce program code size for

such systems..

The known TMS3206xx processor produced by Texas Instruments is designed
for high-speed operation (e.g. 1 GHz) and consequently contains a simple instruction
decoder. This processor uses 32-bit instructions. Instructions are loaded from a
memory in a 256-bit fetch packet containing eight 32-bit instructions. Each
instruction contains a bit (the P bit) that indicates if the next instruction in the fetch
packet can be executed in the same clock cycle. Instructions that execute in the same
clock cycle are called the execute packet. Since an execute packet cannot cross a
fetch packet boundary, the P bit of the last instruction in the fetch packet must be
cleared. If a functional unit within the processor is not addressed by an instruction

within the execute packet, then it performs a default operation, such as a Nop.

The SC140 Processor produced by StarCore builds its instruction words up out
of 16-bit words. Most instructions consist of a single 16-bit instruction word. Some
instructions need two instruction words. An instruction prefix word (16 or 32 bits)
can be specified. This prefix is used to extend the number of addressable regiaster
fields, conditionally execute instructions (guarded execution), or to specify the
number of instructions to be executed in one clock cycle. If no prefix word is used,
then the instructions are linked together using a bit in the instructions in a similar way

to the TMS320C6xx processor discussed above.

Within the SC140 processor, instructions are fetched from the memory in 128-

bit units (8*16-bit words). Up to six functional units can be controlled in one clock

10

15

20

25

30

cycle. The instructions that execute in one clock cycle can span a 128-bit boundary.
An instruction alignment circuit performs necessary alignment operations when the

instructions span such a boundary.

The Thumb enabled scalar processors produced by ARM Limited are able to
execute either 32-bit ARM code or 16-bit Thumb code. The Thumb instruction set

does not provide all instructions that can be specified within the ARM instruction set.

VLIW processors such as the TMS320C6xx and SC140 processors are
advantageous in providing for highly parallel execution of data processing operations.
However, as the complexity of processing operations to be performed steadily
increases, the high program memory storage requirements associated with these

VLIW processors become a significant disadvantage.

Viewed from one aspect the present invention provides apparatus for
processing data, said apparatus comprising:

an instruction decoder operable to decode one or more instruction fields within
a program instruction to generate at least control signals; and

a plurality of data path elements responsive to said controls signals
independently to perform in parallel respective data processing operations specified
by said program instruction, at least some program instructions decoded by said
instruction decoder allowing control signals for respective data path elements to be
independently specified; wherein

said instruction decoder is operable such that a given data processing operation
to be performed by a data path element can be specified using differently encoded

instruction fields in different program instructions.

The present technique recognises that in many real life processing applications
to be performed, the high levels of parallelism provided by the very long instructions
supported by VLIW processors are not exploited. As an example, whilst high degrees
of parallelism may be achieved within a tight program loop performing digital signal

processing type operations upon a large number of independent data values, such as

10

15

20

25

30

pixel values, significant amounts of time will be spent executing control code and
other code types in which there is little potential for parallelism. Having recognised
these differing types of real life operation, the present technique provides multiple
instruction encodings whereby the different instruction encodings that specify the
same data processing operation can be targeted at different operational regimes. As
an example, within control flow types of operation, it may be apparent that it is very
common for only a single data path element to be active at any given time and
accordingly smaller compressed program instructions can be used which only allow a
single data path element to be active. Considerable program memory space can be
saved by the assumption that all the other data path elements will take some specified
default behaviour when a program instruction does not indicate a data processing
operation which they are to perform. Conversely, when a portion of a computer
program is encountered in which high degrees of parallelism may be exploited, then a
different program instruction encoding may be used to enable a wider range of the
data path elements to be simultaneously controlled and a wider range of data
processing operations upon each of those data path elements to be specified. It is also
possible that some intermediate length encodings will provide for the commonly used
operations (e.g. add) of certain datapath elements, but not the less commonly used
operations (e.g. bitwise invert).

Whilst it will be appreciated that the differently encoded respective instruction
fields for the independent data path elements could vary their encoding in a variety of
different manners, particularly useful ways of varying the encoding to improve code
compression are to vary the bit lengths used for the instruction fields and the bit

positions within the program instructions of the instruction fields.

In preferred embodiments the program instructions are divided into a plurality
of instruction sets and the instruction decoder is responsive to an instruction set
identifying field within the program instructions to determine which bits within the
program instruction correspond to respective instruction fields for different data path
elements. Accordingly, a plurality of different instruction sets may be provided suited
to different operational regimes, such as a full functionality instruction set with large

instructions suitable for highly parallel operation, a highly compressed instruction set

10

15

20

25

30

in which only one data path element may be operative at any one time suited to highly
non-parallel operation and intermediate instruction sets in which forms parallelism
commonly encountered is supported but not the full level of potential parallelism.

The instruction set decoder is advantageously responsive to the instruction set
identifier to determine program instruction length in order to deal with variable

program instruction lengths within the system.

The differently encoded instruction fields serve to represent different sets of
data processing operations that can be performed by the respective data path elements.
Desireably some of these sets are subsets of others and include the most commonly

occuring processing operations which it is desired to specify.

Another preferred way of improving program instruction compression is to
support reduced operand ranges within the smaller instructions, such as a reduced
range of register specifiers, a reduced range of jump addresses for program branches,
a reduced set of functionality (e.g. fewer supported operation types) or a reduced

range of immediate values.

An instruction field may relate to only a single possible data path element.
Alternatively, improved compression can be achieved in some circumstances when an
instruction set identifier itself specifies which data path element it controls. This
effectively yields a form of tree encoding/decoding structure which may be readily

adapted to the particular circumstances of the processors operation.

It will be appreciated that with different program instructions, differing
numbers of data path elements will be active and inactive. Data path elements which
are not specified a particular processing operation by a given program instruction will
perform a default operation, such as a Nop, or some pending operation, such as a

multicycle operation that was previously initiated.

The efficiency with which the program may be stored within memory is

improved in embodiments in which the program instructions are readable in fixed

10

15

20

25

30

length memory accesses which contain at least portions of a plurality of program
instructions and a rotating and address incrementing mechanism is used to align
program instructions for supply to the instruction decoder. The degree of alignment
required can be determined from the instruction set identifiers which themselves
specify or imply an instruction length. Furthermore, it is possible to split the memory
into different banks with the program spread across those banks such that only those
banks which require reading to replace portions of program instructions that have

been consumed need be powered thus saving power.

Viewed from another aspect the present invention provides a method of
processing data, said method comprising the steps of:

decoding one or more instruction fields within a program instruction to
generate at least control signals; and

in response to said controls signals controlling a plurality of data path
elements independently to perform in parallel respective data processing operations
specified by said program instruction, at least some program instructions allowing
control signals for respective data path elements to be independently specified;
wherein

a given data processing operation to be performed by a data path element can
be specified using differently encoded instruction fields in different program

instructions.

Viewed from a further aspect the present invention provides a computer
program product for controlling an apparatus for processing data having an
instruction decoder operable to decode one or more instruction fields within a
program instruction to generate at least control signals and a plurality of data path
elements responsive to said controls signals independently to perform in parallel
respective data processing operations specified by said program instruction; said
computer program product comprising:

at least one program instruction including an instruction field with a first
encoding specifying a given data processing operation to be performed by a data path

element; and

10

15

20

25

30

at least one different program instruction including a differently encoded
instruction field with a second encoding different to said first encoding and specifying

said given data processing operation to be performed by said data path element.

Viewed from a complementary aspect the present technique may also be
considered to be a compiler program for producing computer programs in accordance
with the above described features. The compiler effectively has a plurality of
instruction sets from among which it may select program instructions to perform the

data processing operations for which it is attempting to compile code.

Embodiments of the invention will now be described, by way of example only,
with reference to the accompanying drawings in which:

Figure 1 schematically illustrates the data pathof a VLIW processing system;

Figure 2 schematically illustrates the degree of parallelism which may be
achieved at different instruction cycles within data processing system operation;

Figure 3 schematically illustrates a generic program instruction for controlling
a VLIW processor that is suitable for use with the current techniques;

Figure 4 illustrates four example program instructions having four respective
differently encoded instruction fields used to specify a given data processing
operation to be performed by a given data path element;

Figure 5 schematically illustrates a decoding/encoding tree which may be used
as part of an instruction compression technique;

Figure 6 schematically illustrates a portion for one control wordof an
instruction decoder;

Figure 7 schematically illustrates one example of the layout of program
instructions within a memory which is read with fixed width memory accesses;

Figure 8 schematically illustrates a VLIW processor supporting multiple
instruction sets, some of which are decoded to decompress them; and

Figure 9 schematically illustrates the circuit for fetching and aligning program

instructions from a memory.

10

15

20

25

30

Figure 1 shows a portion of a VLIW processor including a plurality of
independently controllable data path elements 2, 4, 6, 8, which may, for example, be
elements such as an adder, a multiplier, a shifter, an alu, a floating point unit, or other
functional unit. These data path elements 2, 4, 6, 8, are connected to the register files
10, 12 via a controllable bus network 14. Control signals stored within a control
signal register 16 configure the data path elements 2, 4, 6, 8, the register files 10, 12
and the controllable bus network 14 to perform a desired data processing operation or
parallel set of operations in a given processor clock cycle. It will be appreciated that
typically a large number of control signals are needed to control all these circuit
elements and accordingly the control signal register 16 is comparatively wide. Simply
storing the control signals within an instruction memory as a program whilst possible
is highly inefficient in terms of program memory storage requirements. The control
signals within the control signal register 16 are in Figure 1 derived from an instruction
decoder. This instruction decoder, as will be described later, decompresses program
instructions that represent desired behaviour in a compact form to yield the full set of

control signals needed to control the circuit element illustrated in Figure 1.

Figure 2 is a diagram schematically illustrating different possible independent
data processing operations which can be performed with different program
instructions. As will be seen, in the first section of the instruction cycles of Figure 2
parallelism is not generally possible with each program instruction being dependent
upon completion of a previous instruction, either through a data dependency or by
virtue of requiring the same resource. In the middle section of Figure 2 a portion of
code is encountered in which highly parallel operation is possible, such as the parallel
processing of pixel or other independent signal values. Within this regime, the full
flexibility and complexity of data processing operations which may be specified by
full width VLIW instruction words is desirable and advantageous. In the final portion
of Figure 2 the system again returns to a regime in which parallel operation is not

exploitable.

Figure 3 schematically illustrates a generic program instruction according to

one example of the present technique. This program instruction 18 includes an

10

15

20

25

30

instruction identifier field 20 and a section 22 which includes bits specifying control
of the VLIW controller itself as well as instruction fields relating to one or more data
path elements which it may be desired to use. In this example embodiment, the
memory system which stores the program instructions is accessible in N-bit blocks
with M such blocks being accessible in parallel. Accordingly, the maximum width of
any program instruction 18 is M*N bits. In practice it is convenient to constrain the
program instructions to the multiples of N bits in length these all being less than or

equal to M*N bits in length.

Figure 4 schematically illustrates four different program instructions from
respective different instruction sets which each include an instruction field that can
specify a given data path element operation to be performed using different
encodings. In program instruction 24, the instruction set is one in which only a single
data path element may be addressed by a single program instruction. The program
instruction includes within its single instruction field a specifier of which data path
element is being addressed as well as the necessary opcodes and operands to control
that data path element. The remaining data path elements are either inactive and
perform Nops or perform some other default operation, such as continuing a
previously started multi-cycle processing operation or responding to some previously

established state.

The second program instruction 26 is longer and allows multiple data path
elements to be addressed within a single instruction. The bit position and bit length of
the instruction field 28 which relates to the multiplier varies compared to that in
program instruction 24 and the other instruction. The instruction field length is less
and accordingly only a subset of data processing operations of which the multiplier is
capable may be specified within this shortened instruction field. The register specifier
range may be reduced and/or the immediate value range may be reduced in order to
facilitate this shortening of the instruction field length. The more commonly required
instructions are chosen to be supported with the subset. In other example instructions,
a particularly preferred type of variable for restriction to enable better compression is

the jump specifier range since full address space jumps are rare and it is much more

10

15

20

25

30

common to have relatively short jumps within the program instruction flow. Within
this second instruction 26, the instruction field 28 is not dedicated to the multiplier
and includes bits which specify whether either the multiplier or the shifter is being

addressed by the instruction field concerned.

In the third program instruction 30, a dedicated instruction field 32 is provided
which only addresses the multiplier. This dedicated instruction field 32 is smaller still
than the instruction field 28 and is at a different bit position.

Finally the fourth illustrated program instruction 34 fully addresses all of the
data path elements with individual instruction fields as well as including a VLIW

control field which specifies control parameters for the VLIW controller itself.

Figure 5 is a diagram schematically illustrating a decoding tree that may be
used to decode an input instruction field within a program instruction. At each node
the decoding branches to either a definitely specified data path element which is being
addressed or a further node at which some further branching can take place.
Ultimately, as the decoding tree is traversed the branches will terminate at a specified

data path element.

Figure 6 schematically illustrates an instruction decoder slice for one dath path
element within the processor which serves to decode/decompress the program
instructions to form the required control signals. The instruction set identifier and
field identification is supplied to two respective look-up-tables 36, 38 which in turn
generate multiplexer controlling signals. The block within the decoder comprising the
multiplexer 42 serves as an instruction extractor and extracts an appropriate
instruction field from within the program instruction concerned. It will be appreciated
that the bit position of the instruction field for a given data path element varies for the
different encodings and the different instruction sets and accordingly the multiplexers
40, 42 select from across the full span of the program instruction word to pick out the

desired instruction field.

10

15

20

25

30

10

The second portion of the instruction decoder takes the selected instruction
field and expands it as required to form the full set of control signals required for that
data path element. It may be that the multiplexer 42 directly provides this full set of
control signals, or alternatively if default Nop operation is required then these signals
may be generated by the circuit element 44. In the case of an instruction field which
is representing a subset of possible data path element operations using a compressed
encoding of the control signals, then the circuit element 46 can expand this
compressed representation to form the full set of control signals which are then
selected by the multiplexer 48.

Figure 7 schematically illustrates a memory for storing program instructions
implemented as a set of M memories with a width of N bits each. These M memories
can all be read in parallel. Between one and M words are read from the memories for
every program step. The words that are read are stored in the instruction register 54
(illustrated in Figure 9). The instruction register acts as a FIFO for code words. The
instruction extraction then consists of a read of program words from the instruction
register and using a rotator to align these for instruction decoding. Figure 7 is an

example of the distribution of program words over the different memories.

The decoding flow for the instructions shown in Figure 7 is:
1. cyclel:

a. Read 3 code words of instruction 1 and 1 word of instruction 2 into the

instruction register.
2. cycle2:

a. Read 2 code words of instruction 2 and 1 code word of instruction 3
into the instruction register.

b. Use the rotator to MSB align instruction 1 at the input of the
instruction decoder by rotating it over 1 word and decode it (this is an
example with one endianess, but the technique is not limited to such
systems).

3. cycle3:
a. Read 2 additional code words of instruction 3 and one code word of

instruction 4 into the instruction register.

10

15

20

25

30

11

b. Use the rotator to MSB align instruction 2 at the input of the
instruction decoder by rotating it over 2 words and decode it.
4. cycled:
a. Read 2 code words of instruction 4 and instruction 5 into the
instruction register.
b. Use the rotator to MSB align instruction 3 at the input of the

instruction decoder by rotating it over 3 words and decode it.

5. cycleS:
a. Read 3 code words of instruction 6 into the instruction register.
b. Decode instruction 4.
6. cycleS:
a. Read the last code word of instruction 6 into the instruction register.
b. Use the rotator to MSB align instruction 5 at the input of the
instruction decoder by rotating it over 3 words and decode it.
7.

Figure 8 is a schematic high level diagram illustrating an example embodiment
of the VLIW processor using the present techniques. A program counter 50 is used to
address an instruction memory 52 storing the variable length program instructions.
These variable length program instructions are read out as fixed length memory
access words into a FIFO instruction register 54 from which the individual program
instructions are extracted and aligned by a rotator 56 before being supplied to an
instruction decoder 58. The instruction decoder 58 decompresses, as appropriate,
these program instructions to produce control signals stored within a control register
60. The control signals configure the different data path elements 62, 64, 66 to
perform a desired processing operation with the results being used to update a status
register 68 which in turn feeds back to a VLIW controller 70. The VLIW controller
70 controls the program counter to increment appropriately through the program

stored within the memory 52.

Figure 9 schematically illustrates one example structure of the controller 70. It

will be seen that both the current program counter value and an incremented version

10

15

20

25

30

12

of this are maintained such that appropriate memory addresses to address the different
memories may be generated when a desired access is unaligned and wrapped around
the different memories. Instruction length derived by the instruction set decoder 58 is
used to control the program counter advance as well as any required jump commands

forcing a jumping program flow control.

The following is an example illustrative of the possible subsets of Alu data
path element controls which it may be desired to support within different instruction
sets. Other data path elements may have their instruction sets selected/configured in a

similar way.

- This Alu has 4 control ports that can be independently controlled: cmd0, cmd]1,
cmd2 and cmd3.When only parts of the ALU are used in an application it doesn’t
make sense driving all of its parts from the microcode. The user can use instruction

set definitions for this purpose.

The alu consists of multiple independent units controlled by a separate commando
busses. For each of these commando busses independent an operation set must be
defined. The ‘full’ instruction set of an ALU is generated for ALU “alu_1" as follows

when the user has not specified any instruction sets:

299

operation_set(“full”,”alu_1:cmd0”,[“add”,”’sub”, ’passx”, ’passy”,

bR a4

“incx”,”incy”,”decx”,”’decy”,

3% 23

aslx”,

29 93 7 9, % 2

“asly”,”’rsub”, negx”,’negy”,” ’exor”,

‘Gexnor’,,,,or”’,’and’9,,’absx””’absy,,’

29 9, % 2% 9 3% 9

“min”,”max”,”’comx”,”’comy”, varshiftright”,
“varshiftleft”,”const”,”default”)); 15
bits

2 9

operation_set(“full”,”alu_1:cmd1”,[“zero”,”one”, two”, ’three”,

‘(four” ,’ﬁve’, 2, l ”,”Seven”’”eight”,

73 293,

“nine”,”ten”,

29

eleven”,’twelve”, ’thirteen”,

10

15

20

25

30

13

“fourteen”,”fifteen”, thirtyone”,’sixtythree”, fgt”,
“f1t”,’fge”,"fle”, ’feq”, fne”,
“fgtz”, "Itz fgez”,"flez”, feqz”,
“fnez”,’rslt”, " <#------ > >default™]); 116
bits
operation_set(“full”,”alu_1:cmd2”,[“upsh”,”downsh”, ’pass”, immediate”]); // 2 bits

operation_set(“full”,”alu_1:cmd3”,[“signed”, unsigned”,”X”,”Y”, default™]); // 1 bits

The code width of an operation set is determined by the number of instruction in the

set. E.g. ceil(log2(#instructions in set)).

control_group(“CG_alu_1”,[“reg_dx_alu_1:ar0:full”,
“reg _dy_alu_1:ar0:full”,
“alu_1:cmd0:full”,
“alu_l:cmdl:full”,
“alu_l:cmd2:full”,
“alu_1:cmd3:full”),

So, the full instruction set of an ALU is represented by a single control_group
“CG_alu_1” which consists of the read addresses of the registers connected to the
input pins of the ALU, and of the ‘full’ operation sets of all control ports of the ALU.

The width of a control group is the sum of the widths of the contained operation sets.

In order to be able to define instruction sets with restricted functionality on the ALU

new operation sets and control groups need to be defined. Before this can be done, the

user needs to determine which part of the functionality he wants in a specific

instruction set,

Example 1: When the ALU is only used as a flag control unit, the following

definitions should be used:

10

15

20

25

30

14

9 3% ¢¢ 39 9

operation_set(“fcu”,”alu_1:cmd0”,[“passx”,’passy”, “exor”, exnor”,

<

or”,”and”,”comx”,”comy”]); // 3 bits

operation_set(*“default”,”alu_1:cmd1”,[“default”)); /1 0 bits
operation_set(“‘pass”,”alu_1:cmd2”,[“pass™]); /1 0 bits
operation_set(“‘default”,”alu_1:cmd3”,[*default”]); /1 0 bits

control_group(“CG_fcu_alu_1”,[“reg_dx_alu_1:ar0:full”,
“reg_dy_alu_1:ar0:full”,
“alu_1:cmd0:fecu”,
“alu_l:cmdl:default”,
“alu_l:cmd2:pass”,

“alu_l:cmd3:default™]);

Control group “CG_fcu_alu_1” will only contain the read addresses of the input
registers and 3 bits to store the instructions for the ‘cmd0’ control port. The
instruction set decoder will automatically apply the default instructions to the ‘cmd1

and the cmd3 control ports and the pass instruction to the ‘cmd2 control port.

Example 2: The instruction set for the ALU without the shift unit is specified as

follows:

operation_set(*“noshift”,”alu_1:cmd0”,[“add”,”’sub”, passx”,*passy”,

2 992 99 %

“incx”,”incy”,”decx”, decy”, aslx”,

39 9, 2 9, 2 9

“asly”,”rsub”,”negx”, ’negy”, ’exor”,

"exnor”’”or”’”and”,,’abSX”,”absy”,

2 9, 2 9

“min”,”max”,”comx”,”’comy”, ’default”]); // 5 bits
operation_set(“flags”,”alu_1:cmd1 7 [“fgt”,flt”, " fge”, " fle”,"feq”, fne”,
“fth”’”ﬂtz”,”fgez’,’”ﬂeZ”’”fqu”,

“fnez”,”rslt”,”default™]); // 4 bits

control_group(“CG_alu_noshift”,[“reg_dx_alu 1:ar0:full « ,

10

15

20

25

30

15

“reg dy alu 1:ar0:full”,

“alu_l:cmdO:noshift”, /1'5 bits
“alu_l:cmd]:flags”, /I 4 bits
“alu_l:cmd2:pass”, /1 0 bits
“alu_l:cmd3:full”]); // 1 bit

A control bit can be gained by defining a new operation set on the ‘cmd’ control port.

For example, for logical =0 and absminmax =0:

operation_set(“logical0absminmax0”,”alu_1:cmd0”,[“add”,”sub”, ’passx”,

2 9, 3% 9

“passy”, “incx”,”incy”,”decx”,”decy”, aslx”,
3% 9 99 99 2% 9.

“asly”,”rsub”,”’negx”, negy”, default”]); /4
bits

Operation set “alu_1:cmd:full” can then be replaced in above control_group definition

by “alu_1:cmd0:logical0absminmax0”.

Example 3: The ALU_NOFLAG can be described by the following definitions.

control_group(“CG_alu_noflag”,[“reg dx_alu_1:ar0:full”,
“reg_dy_alu_1:ar0Q:full”,

“alu_1:cmdO:noshift”, //'5 bits
“alu_l:cmd1:default”, /10 bits
“alu_l:cmd2:pass”, // 0 bits
“alu_1:cmd3:full”); /1'1 bit

The following example illustrates the definition of a complete instruction set decoder
for a processor with three datapath elements : 1 ALU, 1 RAM and an constant

generator. The following operation sets are defined:

10

15

20

25

30

16

operation_set("full","ram_1 rwn",["write","read","default"]); // 2 bits

operation_set("full","immediate_1:immediate" ["<#-------mmmemmm- >"]); // 16 bits

operation_set("full","alu_1:cmd0",["add","sub","passx","passy",
"incx","incy","decx","decy",
"rsub","negx","negy","exor",
"exnor","or","and”,"default"]); // 4 bits

operation_set("addsub","alu_1:cmd0",["add","su ","incx","decx","default"]); // 2 bits

Control groups are simple groupings of control words that will be dealt with in
identical ways in the instruction set definitions. The following control groups are
defined :

control_group("CG_immediate_1",["immediate_1:immediate:full"]); // 16 bits
control_group("CG_ram_1",["ram_1:rwn:full"]); // 2 bits

control_group("CG_ alu_addsub”,["alu_1:cmd0:addsub"]); //2 bits
control_group("CG_alu_full_1",["alu_1:cmd0:full"]); // 4 bits

Instruction fields are composed of control groups. Only one control group can be
active per instruction fields during any clock cycle. The following instruction fields

are defined:

instruction_field("IF_1",["CG_immediate_1"]); // 16 bits
instruction_field("IF_2",["CG_ram_1"]); // 2 bits
instruction_field("IF_3",["CG_alu_addsub 1"]); //2 bits
instruction_field("IF_4",["CG_immediate_1","CG _alu_full 1"]); // 1+ 16 bits

Instruction sets are defined as a concatenation of instruction fields. The following

instruction sets are defined:

instruction_set("IS_VLIW",["IF_1","IF_2""IF_3"]); //2+(2+2+ 16)bits
instruction_set("IS_RISC1",[“IF_2”,"IF_4"]); //2 + (1 + 16) bits
instruction_set("IS_RISC2",["TF_2","IF_3"]); // 2+ (2) bits

10

15

20

25

17

N = 4 bits
M = 5 banks

IS_VLIW controls all datapath elements in parallel. IS_RISC1 controls the ram and
either the constant generator or the full functionality of the alu. IS_RISC2 controls the

the ram and a subset of the alu functionality.

The computer programs for controlling VLIW processors and including mixed
instruction set instructions in accordance with the above techniques represent another
aspect of this invention. These computer programs may be provided in the form of
products such as data carriers (e.g. disks, ROMs, etc) or as downloadable files or in

other ways.

With regard to compiler support instruction sets are stored in a data-structure
that explicitly models allowed parallel operations in the set, or its dual, conflicting
operations. Operations are conflicting when they use the same resources to operate on
non-identical data sets. This data-structure can be used by a compiler for instruction
selection and code generation. The instruction words created by the compiler are then
selected from any of the defined instruction sets. In one example, this conflict model
can be used in a Map step, a Compile step and a Code Generation step. Map selects
instructions and assigns them to individual data-path elements. Compile schedules
instructions and performs code optimization. At the end of Compile, code is emitted
and final instruction set selection takes place. During this code generation step the
Jump addresses in the code are re-coded to allow for the variable length instruction
words, which are stored distributed over multiple memories. In all three steps the cost

of instruction sets (in terms of size) is taken into account.

10

15

20

25

30

18

CLAIMS

1. Apparatus for processing data, said apparatus comprising:

an instruction decoder operable to decode one or more instruction fields within
a program instruction to generate at least control signals; and

a plurality of data path elements responsive to said controls signals
independently to perform in parallel respective data processing operations specified
by said program instruction, at least some program instructions decoded by said
instruction decoder allowing control signals for respective data path elements to be
independently specified; wherein

said instruction decoder is operable such that a given data processing operation
to be performed by a data path element can be specified using differently encoded

instruction fields in different program instructions.

2. Apparatus as claimed in claim 1, wherein said differently encoded instruction
fields representing said data processing operation have a different bit length within

said different program instructions.

3. Apparatus as claimed in any one of claims 1 and 2, wherein said differently
encoded instruction fields representing said data processing operation have a different

bit position within said different program instructions.

4. Apparatus as claimed in any one of claims 1, 2 and 3, wherein said program
instructions are divided into a plurality of instruction sets and said instruction decoder
is responsive to at least an instruction set identifying field within a program
instruction to control which bits within said program instruction correspond to

instruction fields for which data path elements.

5. Apparatus as claimed in any one of the preceding claims, wherein said
program instructions have a variable program instruction length and said instruction
decoder is responsive to said instruction set identifier to determine program

instruction length of a program instruction.

10

15

20

25

30

19

6. Apparatus as claimed in any one of the preceding claims, wherein said
differently encoded instruction fields are operable to represent different sets of data

processing operations that can be performed by said data path element.

7. Apparatus as claimed in claim 6, wherein at least one of said differently
encoded instruction fields within a program instruction is operable to represent a
subset of data processing operations that can be represented by a different one of said

differently encoded instruction fields within a different program instruction.

8. Apparatus as claimed in claim 7, wherein said subset has a reduced operand

range compared with said maximum set of data processing operations.

9. Apparatus as claimed in claim 8, wherein said operand range may beone of:
a register specifier;
a jump address specifier representing a jump in execution point within a
program;
an alignment specifier;and

an immediate value.

10. Apparatus as claimed in any one of the preceding claims, wherein at least one
instruction field within a program instruction itself specifies which of said plurality of

data path elements is controlled by said at least one instruction field.

11. Apparatus as claimed in any one of the preceding claims, wherein in response
to different program instructions variable numbers of said plurality of data path

elements are active or inactive.

12. Apparatus as claimed in claim 11, wherein if a data processing operation is not
specified or pending for a given data path element, then said given data path element

is inactive and performs a Nop operation.

10

15

20

25

30

20

13. Apparatus as claimed in claim 5, comprising an instruction memory operable

to store said program instructions and readable in fixed length memory accesses.

14. Apparatus as claimed in claim 13, wherein a fixed length memory access

contains at least portions of a plurality of program instructions.

15. Apparatus as claimed in claim 14, comprising a rotator and a program counter
incrementer operable to align program instructions within said memory accesses to a

predetermined position for supply to said instruction decoder.

16. Apparatus as claimed in claim 5 and claim 15, wherein said rotator is
responsive to said instruction set identifiers to determine what rotation to apply to

align said program instructions.

17. A method of processing data, said method comprising the steps of:

decoding one or more instruction fields within a program instruction to
generate at least control signals; and

in response to said controls signals controlling a plurality of data path
elements independently to perform in parallel respective data processing operations
specified by said program instruction, at least some program instructions allowing
control signals for respective data path elements to be independently specified;
wherein

a given data processing operation to be performed by a data path element can
be specified using differently encoded instruction fields in different program

instructions.

18. A method as claimed in claim 17, wherein said differently encoded instruction
fields representing said data processing operation have a different bit length within

said different program instructions.

10

15

20

25

30

21

19. A method as claimed in any one of claims 17 and 18, wherein said differently
encoded instruction fields representing said data processing operation have a different

bit position within said different program instructions.

20. A method as claimed in any one of claims 17, 18 and 19, wherein said
program instructions are divided into a plurality of instruction sets and said instruction
decoder 1s responsive to at least an instruction set identifying field within a program
instruction to control which bits within said program instruction correspond to

instruction fields for which data path elements.

21. A method as claimed in any one of claims 17 to 20, wherein said program
instructions have a variable program instruction length and said instruction decoder is
responsive to said instruction set identifier to determine program instruction length of

a program instruction.

22. A method as claimed in any one of claims 17 to 21, wherein said differently
encoded instruction fields are operable to represent different sets of data processing

operations that can be performed by said data path element.

23. A method as claimed in claim 22, wherein at least one of said differently
encoded instruction fields within a program instruction is operable to represent a
subset of data processing operations that can be represented by a different one of said

differently encoded instruction fields within a different program instruction.

24, A method as claimed in claim 23, wherein said subset has a reduced operand

range compared with said maximum set of data processing operations.

25. A method as claimed in claim 24, wherein said operand range may be one of:
a register specifier;
a jump address specifier representing a jump in execution point within a
program;

an alignment specifier;and

10

15

20

25

30

22

an immediate value.

26. A method as claimed in any one of claims 17 to 25, wherein at least one
instruction field within a program instruction itself specifies which of said plurality of

data path elements is controlled by said at least one instruction field.

27. A method as claimed in any one of claims 17 to 26, wherein in response to
different program instructions variable numbers of said plurality of data path elements

are active or inactive.

28. A method as claimed in claim 27, wherein if a data processing operation is not
specified or pending for a given data path element, then said given data path element

is inactive and performs a Nop operation.

29. A method as claimed in claim 21, wherein an instruction memory is operable

to store said program instructions and readable in fixed length memory accesses.

30. A method as claimed in claim 29, wherein a fixed length memory access

contains at least portions of a plurality of program instructions.

31. A method as claimed in claim 30, wherein a rotator and a program counter
incrementer are operable to align program instructions within said memory accesses

to a predetermined position for supply to said instruction decoder.

32, A method as claimed in claim 21 and claim 31, wherein said rotator is
responsive to said instruction set identifiers to determine what rotation to apply to

align said program instructions.

33. A computer program product for controlling an apparatus for processing data
having an instruction decoder operable to decode one or more instruction fields within
a program instruction to generate at least control signals and a plurality of data path

elements responsive to said controls signals independently to perform in parallel

10

15

20

25

30

23

respective data processing operations specified by said program instruction; said
computer program product comprising:

at least one program instruction including an instruction field with a first
encoding specifying a given data processing operation to be performed by a data path
element; and

at least one different program instruction including a differently encoded
instruction field with a second encoding different to said first encoding and specifying

said given data processing operation to be performed by said data path element.

34. A computer program product as claimed in claim 33, wherein said differently
encoded instruction fields representing said data processing operation have a different

bit length within said different program instructions.

35. A computer program product as claimed in any one of claims 33 and 34,
wherein said differently encoded instruction fields representing said data processing

operation have a different bit position within said different program instructions.

36. A computer program product as claimed in any one of claims 33, 34 and 35,
wherein said program instructions are divided into a plurality of instruction sets and
said instruction decoder is respons{ve to at least an instruction set identifying field
within a program instruction to control which bits within said program instruction

correspond to instruction fields for which data path elements.

37. A computer program product as claimed in any one of claims 33 to 36,
wherein said program instructions have a variable program instruction length and said
instruction decoder is responsive to said instruction set identifier to determine

program instruction length of a program instruction.

38. A computer program product as claimed in any one of claims 33 to 37,
wherein said differently encoded instruction fields are operable to represent different

sets of data processing operations that can be performed by said data path element.

10

15

20

25

30

24

39. A computer program product as claimed in claim 38, wherein at least one of
said differently encoded instruction fields within a program instruction is operable to
represent a subset of data processing operations that can be represented by a different
one of said differently encoded instruction fields within a different program

instruction.

40. A computer program product as claimed in claim 39, wherein said subset has a
reduced operand range compared with said maximum set of data processing

operations.

41. A computer program product as claimed in claim 40, wherein said operand
range may be one of:
a register specifier;
a jump address specifier representing a jump in execution point within a
program,;
an alignment specifier; and

an immediate value.

42. A computer program product as claimed in any one of claims 33 to 41,
wherein at least one instruction field within a program instruction itself specifies
which of said plurality of data path elements is controlled by said at least one

instruction field.

43. A computer program product as claimed in any one of claims 33 to 42,
wherein in response to different program instructions variable numbers of said

plurality of data path elements are active or inactive.

44. A computer program product as claimed in claim 43, wherein if a data
processing operation is not specified or pending for a given data path element, then

said given data path element is inactive and performs a null operation.

10

15

20

25

25

45. A computer program product as claimed in claim 37, wherein an instruction
memory is operable to store said program instructions and readable in fixed length

memory accesses.

46. A computer program product as claimed in claim 45, wherein a fixed length

memory access contains at least portions of a plurality of program instructions.

47. A computer program product as claimed in claim 46, wherein a rotator and a
program counter incrementer are operable to align program instructions within said

memory accesses to a predetermined position for supply to said instruction decoder.

48. A computer program product as claimed in claim 37 and claim 47, wherein
said rotator is responsive to said instruction set identifiers to determine what rotation

to apply to align said program instructions.

49. A computer program compiler operable to generate a computer program as

claimed in any one of claims 33 to 48.

50. Apparatus for processing data substantially as hereinbefore described with

reference to the accompanying drawings.

51. A method of processing data substantially as hereinbefore described with

reference to the accompanying drawings.

52. A computer program product substantially as hereinbefore described with

reference to the accompanying drawings.

53. A computer program compiler substantially as hereinbefore described with

reference to the accompanying drawings.

< S
Ry The %,
iy O
) L S
Jéﬁ P, R .5 INVESTOR IN PEOPLE
(l"l . r\LE\\)‘?_lp
Application No: GB0410986.4 Examiner: David Midgley

Claims searched: 1-53 Date of search: 13 September 2004

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A 1,17,33 | US5057837 A
COLWELL
Categories:
X Document indicating lack of novelty or inventive = A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date
combined with one or more other documents of but before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
carlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCY :
| G4A |

Worldwide search of patent documents classified in the following areas of the 1pc”’

| GO6F |

The following online and other databases have been used in the preparation of this search report

| Online:WPL,EPODOC,PAJ/JAPIO, TDB, INSPEC, XPESP |

A Tunativ n A anmnac AfFtha Mannamtonnnt Al Tenda and Tadnaotes

	Abstract
	Bibliographic
	Drawings
	Description
	Claims
	Search_Report

