Title: DEVICE AND METHOD FOR GENERATING A STEREOSCOPIC AUGMENTED REALITY IMAGE BY USING A STEREOSCOPIC 3D IMAGE AND GPU

Abstract: The present invention relates to a device and method for generating a stereoscopic augmented reality image by using a stereoscopic 3D image and GPU, and more particularly, to an apparatus for generating a stereoscopic augmented reality image which comprises a stereoscopic 3D image inputted through a binocular camera or a left-right eye image inputted through a monocular camera, and generates a 3D graphic object of the left eye and right eye by using a GPU and overlays them in order to make users experience true stereoscopic augmented reality.

Abstract: The present invention relates to a device and method for generating a stereoscopic augmented reality image by using a stereoscopic 3D image and GPU, and more particularly, to a technique for generating a stereoscopic augmented reality image which simultaneously generates a stereoscopic 3D image by using the left eye and right eye image inputted through a binocular camera or the left eye and right eye image converted into a single point image inputted through a monocular camera, generates a 3D graphic object of the left eye and right eye by using a GPU and overlays them in order to make users experience true stereoscopic augmented reality.
명세서
발명의 명칭: 입체 3D 영상과 G P U 를 이용한 입체 증강현실 영상 생성 장치 및 방법

기술분야
[1] 입체 3D 영상과 G P U 를 사용한 입체 증강현실 영상 생성 장치 및 방법에 관한 것으로, 보다 상세하게는 양안 카메라를 통해 입력된 좌안 및 우안 영상 또는 단안 카메라를 통해 2D 영상을 3D 영상으로 변환하여 생성된 좌안 및 우안 영상으로 입체 3D 영상을 생성함과 동시에 일정 패턴을 인식하여 그 주위에 3D 그래픽 몰체를 생성하다 좌안과 우안을 가가 생성하여 오버레이(Overlay)함으로써 입체 증강 현실 영상을 생성하는 기술에 관한 것이다.

배경기술

[5] 그러나, 종래에는 주로 입체가 아닌 폐닐을 사용하고 단일 카메라로 활영된 실사 영상을 입체로 증강현실을 구현함으로써, 즉 일정 패턴 카드 위에 3D 물체(Object)를 나타낼으써 입체의 느낌을 주지지만 사용자가 인식하는 것이 2D이므로 그 느낌이 반감되었다.

발명의 상세한 설명
기술적 과제
[7] 2D 영상이 아닌 입체 3D 영상과 G P U 를 이용하여 생성된 3D 오브젝트를
오버레이하여 입체 증강현실 영상을 생성하는 기술을 제시한다.

[8] 또한, 양안 카메라를 통해 입력된 좌안 및 우안 영상으로 입체 3D 영상을 생성하고, GPU를 이용하여 생성된 3D 오브젝트를 오버레이하여 입체 증강 현실 영상을 생성하는 기술을 제시한다.

파제 해결 수단

[12] 일 양상에 따르면, 입체 3D 영상과 GPU를 이용한 입체 증강현실 영상 생성 장치는 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상으로 입체 3D 영상을 생성하는 입체 영상 생성부와 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay) 된 좌안 및 우안의 3D 오브젝트(Object)를 생성하는 오브젝트 생성부 및 생성된 좌안 및 우안의 3D 오브젝트를 입체 3D 영상의 좌안 및 우안 영상의 소정의 위치에 오버레이하여 입체 증강 현실 영상을 생성하는 입체 증강 현실 영상 생성부를 포함한다.

[15] 또 다른 양상에 따르면, 영상지정부로부터 단일 시점 영상 또는 좌안 및 우안 영상을 입력받아 영상변환부로 전송하는 영상입력부와 영상입력부로부터 수신된 영상이 좌안 및 우안 영상인 경우 입체 영상 생성부와 오브젝트 생성부로 바로 전송하고, 수신된 영상이 단일 시점 영상인 경우 좌안 및 우안 영상으로 변환하여 입체 영상 생성부와 오브젝트 생성부로 전송하는 영상변환부를 더 포함할 수 있다.

[16] 추가적인 양상에 따르면, 오브젝트 생성부는, 수신된 좌안 및 우안 영상에
포함된 패턴 중 적어도 어느 하나의 패턴을 인식하여 좌안 및 우안의 3D 오브젝트를 생성하기 위한 패턴 정보를 추출하는 패턴인식부 및 패턴 인식부에서 추출된 패턴 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 오브젝트를 생성하는 그래픽 처리부를 포함할 수 있다.

다른 양상에 따르면, 오브젝트 생성부는, 사용자로부터 3D 오브젝트 생성 정보를 입력받는 오브젝트 정보 입력부 및 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 오브젝트를 생성하는 그래픽 처리부를 포함할 수 있다.

일 양상에 따른 입력 3D 영상과 G P U를 이용한 입력 강화 현실 영상 생성 방법은, 입력영상 생성부가 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상으로 입력 3D 영상을 생성하는 단계와 오브젝트 생성부가 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay)된 좌안 및 우안의 3D 오브젝트(Overlay)를 생성하는 단계 및 입력 강화 현실 영상 생성부가 생성된 좌안 및 우안의 3D 오브젝트를 입력 3D 영상의 좌안과 우안 영상의 소정의 위치에 오버레이하여 입력 강화 현실 영상을 생성하는 단계를 포함한다.

추가적인 양상에 따르면, 입력 3D 영상을 생성하는 단계는, 영상입력부가 양안 카메라 모듈로부터 좌안 및 우안 영상을 입력받아 입력영상 생성부와 오브젝트 생성부로 전송하는 단계를 포함할 수 있다.

다른 양상에 따르면, 입력 3D 영상을 생성하는 단계는, 영상입력부가 단일 카메라 모듈로부터 단일 시점 영상을 입력받아 영상변환부로 전송하는 단계와 영상변환부가 단일 시점 영상을 수신하고 좌안 및 우안 영상으로 변환하여 입력영상 생성부와 오브젝트 생성부로 전송하는 단계를 포함할 수 있다.

또 다른 양상에 따르면, 입력 3D 영상을 생성하는 단계는, 영상입력부가 영상 저장부로부터 영상을 입력받아 영상변환부로 전송하는 단계와 영상변환부가 수신한 영상이 좌안 및 우안 영상인 경우 입력영상 생성부와 오브젝트 생성부로 바로 전송하고, 그 수신한 영상이 단일 시점 영상인 경우 좌안 및 우안 영상으로 변환하여 입력영상 생성부와 오브젝트 생성부로 전송하는 단계를 포함할 수 있다.

추가적인 양상에 따르면, 3D 오브젝트 생성 단계는, 좌안 및 우안 영상에 포함된 패턴 중 적어도 어느 하나 패턴을 인식하여 좌안 및 우안 각각의 3D 오브젝트를 생성하기 위한 패턴 정보를 추출하는 단계 및 추출된 패턴 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 오브젝트를 생성하는 단계를 포함할 수 있다.

다른 양상에 따르면, 3D 오브젝트 생성 단계는, 사용자로부터 3D 오브젝트 생성 정보를 입력받는 단계 및 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 좌안 및 우안의 3D 오브젝트를
생성하는 단계를 포함할 수 있다.

발명의 효과

[25] 또한, 입체 3D 생성과 3D 그래픽의 시니지를 통해 입체 3D 시장 확대와 3D 그래픽 시장 확대에 기여할 수 있도록 하는 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 장치 및 방법을 제공할 수 있다.

도면의 간단한 설명

[26] 도 1은 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성의 개념도이다.

[27] 도 2는 일 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 장치의 블록도이다.

[28] 도 3은 다른 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 장치의 블록도이다.

[29] 도 4는 또 다른 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 장치의 블록도이다.

[31] 도 6은 다른 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 방법의 흐름도이다.

발명의 실시를 위한 형태

[32] 기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 참조되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구상의 범주에 의해 정의된 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.

[33] 이하, 실시예들에 의해 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성 장치 및 그 방법을 설명하기 위하여 도면들을 참고하여 상세히 설명하도록 한다.

[34] 도 1은 입체 3D 영상과 G P U를 이용한 입체 증강현실 영상 생성의 개념도이다. 도 1에는 일 실시예에 따라 양안 카메라 모듈이 장착되어 입체 증강현실 영상을 생성하는 장치가 개시되어 있다. 입체 3D 영상과 G P U를 이용한
업체 중장 현실 영상 생성 장치는 이하 다양한 실시예를 들어 설명하는 바와 같이, 반드시 양안 카메라 모듈이 장착되어 있는 장치임을 의미하는 것이 아니고, 단안 카메라 모듈이 장착되어 있거나, 카메라 모듈이 전혀 장착되어 있지 아니한 장치일 수 있다.

[35] 도 1을 참조하여 업체 중장 현실 영상을 생성하는 개념을 설명하면, 먼저, 양안 카메라 모듈을 통해 일정 패턴 카드와 함께 실 물체의 좌안 및 우안 영상이 촬영된다. 일정 패턴 카드는 3D 그래픽 물체(Objec)를 생성하기 위한 패턴 정보를 포함하고 있다. 패턴 카드는 중장 현실에서 사용되는 마커라고 할 수 있는데, 패턴 카드(마커)는 컴퓨터 비전 기술로 인식하기 쉬운 어떤 물체를 의미하는 것이며, 예를 들어 검은 바탕에 독바로 쓰여진 평면 문양이나 특이한 색상을 갖는 기하학적인 물체라고 할 수 있다.

업체 중장 현실 영상 생성 장치는 양안 카메라 모듈을 통해 촬영된 패턴 카드가 포함된 좌안 및 우안의 실사 영상을 입력 받아 패턴 카드가 위치한 곳에 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 그래픽 물체를 생성한다. 이때, 업체 중장 현실 영상 생성 장치는 패턴 카드에 포함된 패턴 정보를 인식하고 분석하여 생성된 3D 그래픽 물체의 크기와 오버레이(Overlay)된 위치 등에 관한 정보를 추출한다. 업체 중장 현실 영상 생성 장치는 추출된 정보들을 이용하여 좌안 및 우안의 3D 그래픽 물체를 생성하고 이를 대응하는 좌안 및 우안의 실사 영상의 소정의 위치에 오버레이(Overlay)하여 업체 중장 현실 영상을 생성한다.

[36] 도 2는 실시예에 따른 업체 3D 영상과 G P U를 이용한 업체 중장 현실 영상 생성 장치의 블록도이다. 이하, 도 2를 참조하여 실시예에 따른 업체 3D 영상과 G P U를 이용한 업체 중장 현실 영상 생성 장치(100)에 대해 상세히 설명한다. 도 2는 양안 카메라 모듈이 장착되어 있는 업체 중장 현실 영상 생성 장치(100)를 이용하여 업체 중장 현실 영상을 생성하는 실시예를 나타내고 있다.

[37] 도 2에 도시된 바와 같이, 업체 3D 영상과 G P U를 이용한 업체 중장 현실 영상 생성 장치(100)는 업체 영상 생성부(140)와 오브젝트 생성부(150) 및 업체 중장 현실 영상 생성부(160)를 포함한다.

[38] 업체 영상 생성부(140)는 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상으로 업체 3D 영상을 생성한다. 양안 업체 영상에는 카메라 시스템을 구성하는 좌, 우 두 대의 양 카메라모듈이 동일한 대상물을 촬영하고 있어도, 사람의 눈과 같이 그 대상물은 약간의 수평적 차이를 가지고 촬영되는데 이때 발생하는 좌우 영상의 차이를 시차로 한다. 업체영상으로 생성한 것을 사람의 눈으로 감지하여 두뇌에서 업체감을 재현할 때, 좌, 우 카메라 간격과 물체를 향한 좌,우 영상의 시차 크기에 따라 영상이 매칭되지 않는 경우 눈이 피로해지고 무통을 일으키는 등의 문제를 발생하게 된다.

[39] 양안 카메라로 촬영한 두 영상 사이의 시차는 원거리에서 근거리로 갈수록 시차가 커지게 되는 특성을 갖는 것이다. 좌우 영상은 서로 닮은 영상이지만
원거리에 있는 물체와 근거리에 있는 물체들이 혼재한 형태가기 때문에 배경과 피사체들이 높이 상태에 따라 일치점에 차이가 발생하게 된다. 따라서, 어느 하나의 기준이 되는 대상 물체가 주시영역(depth = 0인 지점)을 중심으로 양 영상을 좌우 또는 상하로 이동하여 주시점을 일치시켜컨버전스를 조절하여 임체 3D 영상을 생성하게 된다.

본 설시에의 추가적인 양상에 따르면, 임체 중앙현실 영상 생성 장치(100)는 양안 카메라 모듈과 영상입력부(120)를 더 포함할 수 있다.

양안 카메라 모듈은 사람의 눈과 같이 일정하게 이격되어 동일한 대상물에 대한 좌안 및 우안의 실사 영상을 활성화한다. 영상입력부(120)는 양안 카메라 모듈로부터 활성된 좌안 및 우안 영상을 입력받아 임체 영상 생성부(140)로 전송한다.

한편, 임체 중앙현실 영상 생성 장치(100)는 영상저장부(110)를 더 포함할 수 있다. 영상 저장부(110)는 외부 장치(PC, 다른 양안 카메라 등)로부터 유무선 연결(USB, 블루투스, 적외선 통신 등)을 통해 다운로드 받은 임체 영상이나, 무선 네트워크 통신을 통해 임체 영상 콘텐츠를 제공하는 서비스에 접속하여 다운로드 받은 임체 영상을 저장할 수 있다. 영상 입력부(120)는 사용자의 UI 조작에 의해 영상 저장부(110)에 저장되어 있는 좌안 및 우안의 임체 영상을 입력받을 수 있다.

즉, 영상입력부(120)는 사용자의 UI 조작에 의해 선택적으로 양안 카메라 모듈로부터 활성된 좌안 및 우안 영상 또는 영상저장부(110)에 저장되어 있는 좌안 및 우안 영상을 입력받을 수 있다. 따라서, 임체 중앙 현실 영상 생성 장치(100)는 양안 카메라 모듈에 의해 활성된 프리뷰 영상뿐만 아니라, 영상 저장부(110)로부터 저장되어 있는 다운로드 받은 임체 영상을 이용하여 임체 중앙 현실 영상을 생성할 수 있다.

오브젝트 생성부(150)는 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상의 조정의 위치에 오버레이될 좌안 및 우안의 3D 오브젝트(Object) 영상을 생성한다. 오브젝트 생성부(150)는 영상입력부(120)로부터 좌안 및 우안 영상 중 적도 어느 하나를 수신할 수 있다. 이때, 3D 오브젝트는 좌안 및 우안 영상 각각 생성된다. 3D 오브젝트는 실사 영상에 오버레이하여 중앙 현실 영상을 생성하기 위한 가상의 물체로서, GPU(Graphic Processing Unit)를 사용하여 렌더링 과정을 거쳐 생성한다.

오브젝트 생성부(150)는 3D 오브젝트를 생성하기 위한 정보들을 이용하여 GPU를 사용하여 렌더링하여 3D 그래픽 오브젝트를 생성한다. 이때, 3D 오브젝트를 생성하기 위한 정보는 지오메트리(geography), 시점, 텍스처 매핑(texture mapping), 조명, 셰이딩(shading) 정보 등의 3D 그래픽 물체를 생성하기 위한 모델링과, 3D 오브젝트가 오버레이 될 위치, 크기(Scaling), 비틀림(Tilt) 정보 등의 중앙 현실 영상 생성을 위한 정보 등을 포함한다.

렌더링(Realtime Rendering)은 컴퓨터 프로그램을 이용하여 3D 모델 정보로부터 레스터 그레픽스 이미지라 불리는 영상을 실시간으로 만드는
과정을 의미한다. 실시간 렌더링은 아키텍처, 비디오 게임, 시뮬레이터, 특수효과, 디자인 시각화 등 다양한 분야에 사용된다. 실시간 렌더링은 많은 연산이 필요로 하기 때문에 렌더링 속도 향상을 위하여 그래픽 가속기(GPU)를 사용한다.

즉, 오브젝트 정보 입력부(152)는 임체 영상 생성부(140)에서 생성되는 임체 영상과 동일한 업계감을 갖도록 하기 위해 실제 영상의 시각적 요소와 일치하는 3D 오브젝트 생성 정보를 직접 사용자로부터 입력받을 수 있다. 그래픽 처리부(153)는 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 수신한 좌안 및 우안 영상의 시각적 요소와 일치되도록 렌더링하여 좌안 및 우안의 3D 오브젝트 영상을 생성한다.

본 설계의 추가적인 영상에 따르면, 영상 입력부(120)에서 입력되는 좌안 및 우안 영상의 소정의 위치에는 일정 폰티가 포함될 수 있고, 오브젝트 생성부(150)는 폰티에 포함될 수 있다. 일정 폰티들은 체스판 무늬 등 다양한 종류의 이미지를 포함하며, 폰티의 종류에 따라서 현실세계 영상과 합성되는 3차원 오브젝트의 종류가 결정될 수 있다. 좌안 및 우안 영상 내에 포함된 일정 폰티는 양안 카메라 모듈로부터 실사 영상 촬영시 함께 촬영될 수 있고, 다른 양안 카메라를 통해 폰티가 포함되어 촬영된 실사 영상을 다운로드 받아 영상 저장부(110)에 저장되어 있는 것이다.

폐인식부(151)는 영상 입력부(120)로부터 수신한 좌안 및 우안 영상에 포함된 폰티 중 적어도 어느 하나의 폰티를 인식하여 좌안 및 우안의 3D 오브젝트 영상을 생성하기 위한 폰티 정보를 추출한다. 즉, 폐인식부(151)는 영상 입력부(120)로부터 수신한 좌안 및 우안 영상 중 어느 하나의 영상을 탐색하여 폰티의 경계를 인식한다. 실사 영상에서 폰티의 경계가 파악되면 그 폰티의 위치 및 3차원 위치 정보를 산출하고, 폰티의 크기 및 비틀린 정도(Tilt) 등을 추산하여 폰티 정보를 추출하게 된다. 폐인식부(151)는 폰티 정보가 추출되며 폰티 정보와 3D 그래픽 모델링 정보를 그래픽 처리부(153)에 전송한다. 이때, 각종 폰티에 대응되는 3D 그래픽 모델링 정보는 별도의 메모리(메모리)에 저장되어 있을 수 있고, 폐인식부(151)는 폰티 정보 추출이 완료되면 그 폰티 정보를 이용하여 해당하는 폰티의 3D 모델링 정보를 메모리(메모리)에서 읽어 그래픽 처리부(153)로 전송할 수 있다.

이때, 오브젝트 정보 입력부(152)는 사용자의 UI 조작에 의해 사용자로부터 증강 현실 영상에서 3D 오브젝트의 업계감을 나타내기 위한 시각 정보 등을
추가로 입력받아 그래픽처리부(153)로 전송할 수 있다. 사용자로부터 입력되는 시차 정보는 임체 영상 생성부(140)에서 생성되는 임체 영상과 동일한 임체감을 갖도록 하기 위해 실사 영상인 임체 영상의 시차와 일치하는 시차 정보일 수 있다.

[54] 그래픽처리부(153)는 패턴 정보와 3D 오브젝트 생성 모델링 정보 또는 시차 정보 등을 바탕으로 그래픽가속기(GPU)를 사용하여 렌더링하여 3D 오브젝트를 생성한다. 일반적으로, 3D 그래픽 가속기를 이용하여 3D 그래픽 물체를 생성하는 렌더링 과정은 크게 지오메트리 처리(Geometry processing) 과정과 레스터 처리(rasterization) 과정으로 나눌 수 있다.

[55] 먼저 지오메트리 처리 과정은 주로 3D 좌표계의 물체를 시점에 따라 변환하고, 조명 처리와 셀링을 수행하며, 2차원 좌표계로 투영 처리하는 과정을 말한다. 기하학적 처리 과정은 상당한 양의 행렬 연산과 삼각함수 연산을 포함하므로 상당한 연산부하가 발생한다. 종래의 3D 그래픽 처리 방식에서는 CPU가 이러한 기하학적 처리 과정을 수행하였으나, 최근에는 3D 그래픽 가속기에서 이러한 기하학적 처리 과정을 수행하도록 함으로써 CPU의 연산 부하를 대폭 감소시켜, 전체 시스템의 성능을 향상시켰다.

[56] 레스터 처리 과정은 2차원 좌표계의 이미지에 색갈 값을 결정하며 프레임 버퍼에 저장하는 과정을 말한다. 레스터 처리 과정은 지오메트리 변환에 의해 벡터 그래픽으로 변환된 3D 그래픽 모델에 대해 레스터화(rasterization)를 수행한다. 레스터화는 벡터 그래픽스를 평면 패턴 이미지로 변환하는 과정이다. 즉, 레스터 처리 과정은 실제 없었던 3D 그래픽 모델의 폴리곤(polygon)을 화면상의 픽셀에 대응시켜 붇여주는 과정을 수행하여 생성되는 영상을 프레임 버퍼에 저장한다.

[57] 임체 중강 현실 영상 생성부(160)는 오브젝트 생성부(150)에서 생성된 좌안 및 우안의 3D 오브젝트를 임체 영상 생성부(140)에서 생성된 임체 3D 영상의 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay)하여 임체 중강 현실 영상을 생성한다.

[58] 또한, 추가적인 영상에 따르면, 임체 중강 현실 영상 생성 장치(100)는 영상 출력부(170)로 더 포함할 수 있다. 영상 출력부(170)는 디스플레이의 출력 포맷(line base, pixel_base, sub-pixel base, side-by-side, top-bottom, red-blue, red-green 등)에 맞도록 임체 중강 현실 생성부(160)에서 생성된 임체 중강 현실 영상을 포맷팅하여 디스플레이에 출력한다.

[59] 도 3은 다른 실시예에 따른 임체 3D 영상과 GPU를 이용한 임체 중강 현실 영상 생성 장치의 블록도이다. 이하, 도 3을 참조하여 단일 시점 영상을 이용하여 임체 중강 현실 영상을 생성하는 장치(300)에 대해 설명하기로 한다. 도 3은 단안 카메라 모듈이 장착되어 있는 임체 중강 현실 영상 생성 장치(300)를 이용하여 임체 중강 현실 영상을 생성하는 실시예를 나타내고 있다.

[60] 도 3에 도시된 바와 같이, 임체 중강 현실 영상 생성 장치(300)는
영상변환부(330), 입체 영상 생성부(340), 오브젝트 생성부(350) 및 입체 증강 현실 영상 생성부(360)를 포함한다.

영상변환부(330)는 단일 시점 영상을 수신하고, 수신된 단일 시점 영상을 좌안 및 우안 영상으로 변환하여 입체 영상 생성부(340)와 오브젝트 생성부(350)로 전송한다. 한편, 영상변환부(330)는 좌안 및 우안의 입체 영상을 수신할 수 있고, 입체 영상이 수신되는 경우 영상 변환 과정을 수행하지 않고 바로 입체 영상 생성부(340)과 오브젝트 생성부(350)에 전송한다. 여기서, 단일 시점 영상을 좌안 및 우안의 다시점 영상으로 변환하는 방법 자체에 대해서는 이미 알려진 다양한 방법들이 사용될 수 있다.

본 실험의 추가적인 양상에 따르면, 입체 증강 현실 영상 생성 장치(300)는 단안 카메라 모듈과 영상입력부(320)를 더 포함할 수 있다.

단안 카메라 모듈은 실사 영상을 환영한다. 영상입력부(320)는 단안 카메라 모듈로부터 활성된 실사 영상을 입력받아 영상 변환부(330)로 전송한다.

한편, 입체 증강 현실 영상 생성 장치(300)는 영상저장부(310)를 더 포함할 수 있다. 영상저장부(310)는 외부 장치(PC, 다른 단안 카메라, 양안 카메라 등)로부터 유무선 연결(USB, 블루투스, 적외선 통신 등)을 통해 다운로드 받은 영상이나, 무선 네트워크 통신을 통해 입체 영상 콘텐츠를 제공하는 서버에 접속하여 다운로드 받은 영상을 저장할 수 있다. 영상입력부(320)는 사용자의 UI 조작에 의해 영상저장부(310)에 저장되어 있는 단일 시점 영상 또는 좌안 및 우안 영상을 입력받아 영상 변환부(330)로 전송할 수 있다.

즉, 영상입력부(320)는 사용자의 UI 조작에 의해 선택적으로 단안 카메라 모듈로부터 활성된 단일 시점 영상 또는 영상저장부(310)에 저장되어 있는 단일 시점영상 또는 좌안 및 우안의 입체 영상을 입력받을 수 있다. 따라서, 입체 증강 현실 영상 생성 장치(300)는 단안 카메라 모듈에 의해 활성된 프리뷰 영상뿐만 아니라, 영상저장부(310)로부터 저장되어 있는 다운로드 받은 단일 시점/다시점 영상을 이용하여 입체 증강 현실 영상을 생성할 수 있다.

입체 영상 생성부(340)는 영상변환부(330)에서 전송된 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상으로 입체 3D 영상을 생성한다.

오브젝트 생성부(350)는 영상변환부(330)에서 전송된 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상의 소정의 위치에 오버레이될 좌안 및 우안의 3D 오브젝트(Object) 영상을 생성한다. 이때, 3D 오브젝트는 좌안 및 우안 영상 각각 생성된다. 3D 오브젝트는 실사 영상에 오버레이하여 증강 현실 영상을 생성하기 위한 가상의 물체로서, GPU(Graphic Processing Unit)를 사용하여 렌더링 과정을 거쳐 생성된다.

오브젝트 생성부(350)는 3D 오브젝트를 생성하기 위한 정보들을 이용하여 GPU를 사용하여 렌더링하여 3D 그래픽 오브젝트를 생성한다. 이때, 3D 오브젝트를 생성하기 위한 정보는 지오메트리(geometry), 시점, 텍스처 매핑(texture mapping), 조명, 세이딩(shading) 정보 등의 3D 그래픽 물체를
생성하기 위한 모델링과, 3D 오브젝트가 오버레이 될 위치, 크기(Scaling), 비틀림(Tilt) 정보 등의 증강현실 영상 생성을 위한 정보 등을 포함한다. 이때, 3D 오브젝트를 생성하기 위한 정보는 사용자의 UI 조작에 의해 선택될 수 있다.

 좀 더 구체적인 양상에 따르면, 오브젝트 생성부(350)는 오브젝트 정보 입력부(352)와 그래픽 처리부(353)를 포함할 수 있다. 사용자는 입체 증강 현실 영상 생성 장치(300)의 UI를 선택적으로 조작하여 3D 오브젝트 생성 정보를 직접 입력할 수 있다. 오브젝트 정보 입력부(352)는 사용자가 입체 증강 현실 영상 생성 장치(300)의 UI 조작에 의해 입력하는 3D 오브젝트 생성에 필요한 정보를 입력받는다.

즉, 오브젝트 정보 입력부(352)는 입체 영상 생성부(340)에서 생성되는 입체 영상과 동일한 입체감을 갖도록 하기 위해 실사 영상 인식 영상의 시각과 일치하는 3D 오브젝트 생성 정보를 직접 사용자로부터 입력받을 수 있다.

그래픽 처리부(353)는 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 수신한 좌안 및 우안 영상의 시각과 일치되도록 렌더링하여 좌안 및 우안의 3D 오브젝트 영상을 생성한다.

본 실시에의 추가적인 양상에 따르면, 영상입력부(320)에 입력되는 단일 시점 영상의 소정의 위치에는 일정 폭이 포함될 수 있고, 오브젝트 생성부(350)는 폐턴인식부(351)를 더 포함할 수 있다. 일정 폐턴은 캅스판 무늬 등 다양한 종류의 이미지를 포함하며, 폐턴의 종류에 따라 현실세계 영상과 합성되는 3차원 그래픽 영상의 종류가 결정될 수 있다. 단일 시점 영상과 함께 포함된 일정 폐턴은 단안 카메라 모듈로부터 실사 영상 환경에 적합할 수 있고, 다른 단안 카메라를 통해 폐턴이 포함되어 활성화된 실사 영상을 다운로드 받아 영상저장부(110)에 저장되어 있는 것일 수 있다.

폐턴인식부(351)는 영상변환부(330)로부터 수신한 좌안 및 우안 영상에 포함된 폐턴 중 적어도 어느 하나의 폐턴을 인식하여 좌안 및 우안의 3D 오브젝트 영상을 생성하기 위한 폐턴 정보를 추출한다. 즉, 폐턴인식부(351)는 영상변환부(330)로부터 수신한 좌안 및 우안 영상 중 어느 하나의 영상을 탐색하여 폐턴의 경계를 인식한다. 실사 영상에서 폐턴의 경계가 파악되면 그 폐턴의 위치한 3차원 위치 정보를 산출하고, 폐턴의 크기와 비틀림 정도(Tilt) 등을 추산하여 폐턴 정보를 추출하게 된다. 폐턴인식부(351)는 폐턴 정보가 추출되면 폐턴 정보와 3D 그래픽 모델링 정보를 그래픽처리부(353)에 전송한다. 이때, 각종 폐턴에 대한 3D 그래픽 모델링 정보는 별도의 메모리부(302)에 저장되어 있음을 알 수 있고, 폐턴인식부(351)는 폐턴 정보 추출이 완료되면 그 폐턴 정보를 이용하여 해당하는 폐턴의 3D 모델링 정보를 메모리부(302)에서 얻어 그래픽 처리부(353)로 전송할 수 있다.

이때, 오브젝트 정보 입력부(352)는 사용자의 UI 조작에 의해 사용자로부터 증강현실 영상에서 3D 오브젝트의 입체감을 나타내기 위한 시각 정보 등을 추가로 입력받아 그래픽처리부(353)로 전송할 수 있다. 사용자로부터 입력되는
시차 정보는 임체 영상 생성부(340)에서 생성되는 임체 영상과 동일한 임체감을 갖도록 하기 위해 실상 영상인 임체 영상의 시차와 일치하는 시차 정보를 함유할 수 있다.

그래픽처리부(353)는 패턴 정보와 3D 오브젝트 생성 모델링 정보 또는 시차 정보 등을 바탕으로 그래픽가속기(GPU)를 사용하여 렌더링하여 3D 오브젝트를 생성한다.

임체 증강 현실 영상 생성부(360)는 오브젝트 생성부(350)에서 생성된 좌안 및 우안의 3D 오브젝트를 임체 영상 생성부(340)에서 생성된 임체 3D 영상의 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay)하여 임체 증강 현실 영상을 생성한다.

또한, 추가적인 영상에 따르면, 임체 증강 현실 영상 생성 장치(300)는 영상출력부(370)를 더 포함할 수 있다. 영상출력부(370)는 디스플레이의 출력 포맷(line base, pixel base, sub-pixel base, side-by-side, top-bottom, red-blue, red-green 등)에 맞도록 임체 증강 현실 생성부(360)에서 생성된 임체 증강 현실 영상을 포맷팅하여 디스플레이에 출력한다.

도 4는 또 다른 실시예에 따른 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 장치의 블록도이다. 이하, 도 4를 참조하여 임체 증강 현실 영상을 생성하는 장치(500)에 대해 설명하기로 한다. 도 4는 카메라 모듈이 장착되어 있지 않은 임체 증강 현실 영상 생성 장치(500)를 이용하여 임체 증강 현실 영상을 생성하는 실시예를 나타내고 있다.

도 4에 도시된 바와 같이, 임체 증강 현실 영상 생성 장치(300)는 영상저장부(510), 영상입력부(520), 영상변환부(530), 임체 영상 생성부(540), 오브젝트 생성부(550) 및 임체 증강 현실 영상 생성부(560)를 포함한다.

영상저장부(510)는 외부 장치(PC 등)와 유무선으로 연결되어 영상을 다운로드 받거나, 무선 네트워크 통신을 통해 영상 콘텐츠를 제공하는 서버에 접속하여 다운로드 받은 영상을 저장한다. 영상저장부(510)에 저장된 영상은 단일 시점의 2D영상이나 좌안 및 우안 영상의 임체 영상이 포함될 수 있다.

영상입력부(520)는 사용자의 UI 조작에 의해 영상저장부(510)에 저장되어 있는 단일 시점 영상 또는 좌안 및 우안 영상을 입력받아 영상 변환부(530)로 전송한다.

영상변환부(530)는 단일 시점 영상 또는 좌안 및 우안 영상을 수신한다. 이때, 수신된 영상이 좌안 및 우안 영상인 경우 아무런 변환 과정 없이 바로 임체 영상 생성부(540)와 오브젝트 생성부(550)로 전송한다. 만약, 수신된 영상이 단일 시점 영상인 경우 그 단일 시점 영상을 좌안 및 우안 영상으로 변환하여 임체 영상 생성부(540)와 오브젝트 생성부(550)로 전송한다. 여기서, 단일 시점 영상을 좌안 및 우안의 다시점 영상으로 변환하는 방법 자체에 대해서는 이미 알려진 다양한 방법들이 사용될 수 있다.

임체 영상 생성부(540)는 영상 변환부(530)에서 전송된 좌안 및 우안 영상을
수신하며, 수신된 좌안 및 우안 영상으로 입체 3D 영상을 생성한다.

[84] 오브젝트 생성부(550)는 영상 변환부(530)에서 전송된 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상의 소정의 위치에 오버레이될 좌안 및 우안의 3D 오브젝트를 생성한다. 이때, 3D 오브젝트는 좌안 및 우안 영상 각각 생성된다. 3D 오브젝트는 실사 영상에 오버레이하여 증강 현실 영상을 생성하기 위한 가상의 물체로서, GPU(Graphic Processing Unit)를 사용하여 렌더링 과정을 거쳐 생성된다.

[85] 오브젝트 생성부(350)는 3D 오브젝트를 생성하기 위한 정보들을 이용하여 GPU를 사용하여 렌더링하여 3D 그래픽 오브젝트를 생성한다. 이때, 3D 오브젝트를 생성하기 위한 정보는 지오메트리(geometry), 시점, 텍스처 매핑(texture mapping), 조명, 셰이딩(shading) 정보 등의 3D 그래픽 물체를 생성하기 위한 모델링과, 3D 오브젝트가 오버레이 될 위치, 크기(Scaling), 비틀림(Tilt) 정보 등의 증강 현실 영상 생성을 위한 정보 등을 포함한다. 이때, 3D 오브젝트를 생성하기 위한 정보는 사용자의 UI 조작에 의해 선택될 수 있다.

[86] 좀 더 구체적인 상황에 따르면, 오브젝트 생성부(550)는 오브젝트 정보 입력부(552)와 그래픽 처리부(553)를 포함할 수 있다. 사용자는 입체 증강 현실 영상 생성 장치(500)의 UI를 선택적으로 조작하여 3D 오브젝트 생성 정보를 직접 입력할 수 있다. 오브젝트 정보 입력부(552)는 사용자가 입체 증강 현실 영상 생성 장치(500)의 UI 조작에 의해 입력하는 3D 오브젝트 생성에 필요한 정보를 입력받는다.

[87] 즉, 오브젝트 정보 입력부(552)는 입체 영상 생성부(540)에서 생성되는 입체 영상과 동일한 입체감을 갖도록 하기 위해 실사 영상인 입체 영상의 시차와 일치하는 3D 오브젝트 생성 정보를 직접 사용자로부터 입력받을 수 있다.

[88] 그래픽 처리부(553)는 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 수신한 좌안 및 우안 영상의 시차와 일치되도록 렌더링하여 좌안 및 우안의 3D 오브젝트 영상을 생성한다.

[89] 본 실시예의 추가적인 상황에 따르면, 영상입력부(520)에 입력되는 단일 시점 영상 또는 좌안 및 우안 영상의 소정의 위치에는 일정 폭선이 포함될 수 있다. 이때, 영상 내에 포함된 폭선은 예를 들어, 다른 단안 카메라나 양안 카메라를 통해 실사 영상에 포함되어 함께 활용된 것으로서, 그 카메라로부터 다운로드 받아 영상저장부(510)에 저장된 것이 될 수 있다. 일정 폭선은 채스판 무늬 등 다양한 종류의 이미지를 포함하며, 폭선의 종류에 따라서 현실세계 영상과 합성되는 3차원 그래픽 물체의 종류가 결정될 수 있다.

[90] 오브젝트 생성부(550)는 폭선인식부(551)를 더 포함할 수 있다. 폭선인식부(551)는 영상변환부(530)로부터 수신한 좌안 및 우안 영상에 포함된 폭선 중 적어도 어느 하나의 폭선을 인식하여 좌안 및 우안의 3D 오브젝트 영상을 생성하기 위한 폭선 정보를 추출한다. 즉, 폭선인식부(551)는 영상변환부(530)로부터 수신한 좌안 및 우안 영상 중 어느 하나의 영상을
탄색하여 패턴의 경계를 인식한다. 실사 영상에서 패턴의 경계가 파악되면 그 패턴의 위치한 3차원 위치 정보를 산출하고, 패턴의 크기와 비틀린 정도(Tilt) 등을 추산하여 패턴 정보를 추출하게 된다. 패턴인식부(551)는 패턴 정보가 추출되면 패턴 정보와 3D 그래픽 모델링 정보를 그래픽처리부(553)에 전송한다. 이때, 각종 패턴에 대응되는 3D 그래픽 모델링 정보는 별도의 메모리부(메모리)에 저장되어 있을 수 있고, 패턴인식부(551)는 패턴 정보 추출이 완료되면 그 패턴 정보를 이용하여 해당하는 패턴의 3D 모델링 정보를 메모리부(메모리)에서 읽어 그래픽처리부(553)로 전송할 수 있다.

이때, 오브젝트 정보 입력부(552)는 사용자의 UI 조작에 의해 사용자로부터 증강현실 영상에서 3D 오브젝트의 입체감을 나타내기 위한 시차 정보 등을 추가로 입력받아 그래픽처리부(553)로 전송할 수 있다. 사용자로부터 입력되는 시차 정보는 입체 영상 생성부(540)에서 생성되는 입체 영상과 동일한 입체감을 갖도록 하기 위해 실사 영상의 입체 영상의 시차와 일치하는 시차 정보일 수 있다.

그리고 그래픽처리부(553)는 패턴 정보와 3D 오브젝트 생성 모델링 정보 또는 시차 정보 등을 바탕으로 그래픽기반적기(GPU)를 사용하여 렌더링하여 3D 오브젝트를 생성한다.

입체 증강 현실 영상 생성부(560)는 오브젝트 생성부(550)에서 생성된 좌안 및 우안의 3D 오브젝트를 입체 영상 생성부(540)에서 생성된 입체 3D 영상의 좌안 및 우안 영상의 조정의 위치에 오버레이(Overlay)하여 입체 증강 현실 영상을 생성한다.

또한, 추가적인 영상에 따르면, 입체 증강 현실 영상 생성 장치(500)는 영상출력부(570)를 더 포함할 수 있다. 영상출력부(570)는 디스플레이의 출력 포맷(line base, pixel_base, sub-pixel base, side-by-side, top-bottom, red-blue, red-green 등)에 맞도록 입체 증강 현실 생성부(560)에서 생성된 입체 증강 현실 영상을 포맷팅하여 디스플레이에 출력한다.

도 5는 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법의 흐름도이다. 도 5를 참조하여 좌안 및 우안 영상을 이용하여 입체 증강 현실 영상을 생성하는 방법에 대해 기술한다.

도 5는 도 2의 실시예에 따른 입체 증강 현실 영상 생성 장치(100)를 이용하여 입체 증강 현실 영상을 생성하는 방법을 나타낸 것이다. 도 2의 실시예에 따라 입체 증강 현실 영상을 생성하는 장치(100)에 대해 앞에서 자세히 설명하였으므로, 이하 자세한 설명은 생략하기로 한다.

일 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법은, 먼저, 영상입력부(120)는 양안 카메라 모듈 또는 영상 저장부(110)로부터 좌안 및 우안 영상을 입력받아 입체 영상 생성부(140)와 오브젝트 생성부(150)로 전송한다(단계 S110).

그 다음, 입체 영상 생성부(140)는 영상입력부(120)로부터 좌안 및 우안 영상을
수신하고, 수신된 좌안 및 우안 영상으로 입체 3D 영상을 생성한다(단계 S120).

그 다음, 오브젝트 생성부(150)가 영상입력부(120)로부터 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상에 오버레이될 좌안 및 우안의 3D 오브젝트를 생성한다(단계 S130).

 좀 더 구체적으로, 3D 그래픽 오브젝트를 생성하는 단계(단계 S130)는 3D 오브젝트를 생성하기 위한 정보를 추출하는 단계(단계 S131)와, 추출된 정보를 바탕으로 3D 오브젝트를 생성하는 단계(단계 S132)를 포함할 수 있다.

3D 오브젝트를 생성하기 위한 정보를 추출하는 단계(단계 S131)는 오브젝트 정보 입력부(152)가 사용자로부터 필요한 정보를 직접 입력받을 수 있고, 반면에 입력되는 영상 내에 일정 패턴이 포함된 경우에는 그 패턴을 인식하여 패턴 정보를 추출할 수 있다. 이하, 3D 오브젝트를 생성하기 위한 정보를 사용자로부터 입력받거나 패턴 정보를 추출하여 그래픽 처리부(153)로 전송하는 전자에 대해서는 앞의 도 2의 실시예에서 이미 자세히 상술하였으므로 자세한 설명을 생략하기로 한다.

3D 오브젝트를 생성하는 단계(단계 S132)는 그래픽처리부(153)가 패턴인식부(151)로부터 수신된 정보와 3D 오브젝트 생성정보 입력부(152)로부터 수신한 추가 정보를 바탕으로 GPU를 이용하여 좌안 및 우안의 3D 오브젝트를 생성한다.

그 다음, 입체 증강 현실 영상 생성부(160)가 생성된 입체 3D 영상의 좌안 및 우안 영상의 조정의 위치에 좌안 및 우안의 3D 오브젝트를 오버레이하여 입체 증강 현실 영상을 생성한다(단계 S140).

마지막으로, 입체증강 현실 영상 출력부(170)가 생성된 입체 증강 현실 영상을 디스플레이 장치의 패널에 맞도록 포맷팅하여 출력한다(비도시).

도 6은 다른 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법의 흐름도이다. 도 6을 참조하여 단일 시점 영상을 이용하여 입체 증강 현실 영상을 생성하는 방법에 대해 설명한다. 도 6은 도 3의 실시예에 따른 입체 증강 현실 영상 생성 장치(300)를 이용하여 입체 증강 현실 영상을 생성하는 방법을 나타낸 것이다. 도 3의 실시예에 따라 입체 증강 현실 영상을 생성하는 장치(300)에 대해 앞에서 자세히 설명하였으므로, 이하 자세한 설명은 생략하기로 한다.

다른 실시예에 따른 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법은, 먼저, 영상입력부(320)가 단안 카메라 모듈 또는 영상 저장부(310)로부터 단일 시점 영상을 입력받는다(단계 S310).

그 다음, 영상변환부(330)가 입력된 단일 시점 영상을 좌안 및 우안 영상으로 변환한다(단계 S320).

그 다음, 입체 영상 생성부(340)가 변환된 좌안 및 우안 영상으로 입체 3D 영상을 생성한다(단계 S330).

그 다음, 변환된 좌안 및 우안 영상으로 3D 그래픽 오브젝트를 생성한다(단계
S340. 좀 더 구체적으로, 3D 그래픽 오브젝트를 생성하는 단계(단계 S340)는 3D 오브젝트 생성 정보를 생성하는 단계(단계 S341)와 생성된 3D 오브젝트 생성 정보를 바탕으로 3D 오브젝트를 생성하는 단계(단계 S342)를 포함할 수 있다.

[110] 3D 오브젝트를 생성하기 위한 정보를 추출하는 단계(단계 S331)는 오브젝트 정보 입력부(352)가 사용자로부터 필요한 정보를 직접 입력받을 수 있고, 반면에 입력되는 영상 내에 일정 패턴이 포함된 경우에는 그 패턴을 인식하여 패턴 정보를 추출할 수 있다. 이하, 3D 오브젝트를 생성하기 위한 정보를 사용자로부터 입력받거나 패턴 정보를 추출하여 그래픽 처리부(353)로 전송하는 절차에 대해서는 앞의 도 2의 실시예에서 이미 자세히 상술하였으므로 자세한 설명을 생략하기로 한다.

[111] 3D 오브젝트를 생성하는 단계(단계 S332)는 그래픽처리부(353)가 패턴인식부(351)로부터 수신된 정보와 3D 오브젝트 생성정보 입력부(352)로부터 수신한 추가 정보를 바탕으로 GPU를 이용하여 좌안 및 우안의 3D 오브젝트를 생성한다.

[113] 마지막으로, 생성된 입체 증강 현실 영상을 디스플레이 장치의 패널에 맞도록 포맷팅하여 출력한다(미도사).

[114] 이하, 도 4의 실시예에 따른 입체 증강 현실 영상 생성 장치(500)를 사용하여 입체 증강 현실 영상을 생성하는 방법을 설명한다. 도 4의 실시예에 따라 입체 증강 현실 영상을 생성하는 장치(500)에 대해 앞에서 자세히 설명하였으므로, 이하 자세한 설명은 생략한다.

[115] 입체 증강현실 영상 생성 방법은, 먼저, 영상입력부(520)가 영상 저장부(510)로부터 단일 시점 영상 또는 좌안 및 우안의 입체 영상을 입력받아 영상변환부(530)로 전송한다.

[116] 그 다음, 영상변환부(530)가 영상입력부(520)로부터 영상을 수신하고, 수신된 영상이 좌안 및 우안의 입체 영상인 경우 바로 입체 영상 생성부(540)와 오브젝트 생성부(550)로 전송하고, 만약, 수신된 영상이 단일 시점 영상인 경우 단일 시점 영상을 좌안 및 우안 영상으로 변환한 후 입체 영상 생성부(540)와 오브젝트 생성부(550)로 전송한다.

[117] 그 다음, 입체 영상 생성부(540)가 좌안 및 우안 영상을 수신하여 입체 3D 영상을 생성한다.

[118] 그 다음, 오브젝트 생성부(550)가 영상 변환부(530)로부터 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상으로 3D 그래픽 오브젝트를 생성한다. 좀 더 구체적으로, 3D 그래픽 오브젝트를 생성하는 단계는 3D 오브젝트 생성 정보를 생성하는 단계와 생성된 3D 오브젝트 생성 정보를 바탕으로 3D 오브젝트를 생성하는 단계를 포함할 수 있다.

[119] 3D 오브젝트를 생성하기 위한 정보를 추출하는 단계는 오브젝트 정보
입력부가 사용자로부터 필요한 정보를 직접 입력받을 수 있고, 반면에 입력되는 영상 내에 일정 패턴이 포함된 경우에는 그 패턴을 인식하여 패턴 정보를 추출할 수 있다. 이하, 3D 오브젝트를 생성하기 위한 정보를 사용자로부터 입력받거나 패턴 정보를 추출하여 그래픽 처리부(553)로 전송하는 절차에 대해서는 앞의 도 2의 실시예에서 이미 설명하였으므로 자세한 설명을 생략한다.

[120] 3D 오브젝트를 생성하는 단계는 그래픽처리부(553)가 패턴인식부(551)로부터 수신된 정보와 3D 오브젝트 생성정보 입력부(552)로부터 수신한 추가 정보를 바탕으로 GPU를 이용하여 좌안 및 우안의 3D 오브젝트를 생성한다.

[121] 그 다음, 생성된 입체 3D 영상의 좌안 및 우안 영상의 소정의 위치에 생성된 3D 그래픽 오브젝트를 오버레이하여 입체 증강현실 영상을 생성한다.

[122] 마지막으로, 생성된 입체 증강 현실 영상을 디스플레이 장치의 패널에 맞도록 포맷팅하여 출력한다.

[123] 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타나이지만, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
청구범위

[청구항 1] 좌안 및 우안 영상을 수신하며, 수신된 좌안 및 우안 영상으로 입체 3D 영상을 생성하는 입체 영상 생성부;
 좌안 및 우안 영상을 수신하며, 그 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay) 된 좌안 및 우안의 3D 오브젝트(Object)를 생성하는 오브젝트 생성부; 및 상기 생성된 좌안 및 우안의 3D 오브젝트를 상기 입체 3D 영상의 좌안 및 우안 영상의 소정의 위치에 오버레이하여 입체 증강 현실 영상을 생성하는 입체 증강 현실 영상 생성부;을 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 장치.

[청구항 2] 양안 카메라 모듈로부터 좌안 및 우안 영상을 입력받아 영상 입체 영상 생성부와 오브젝트 생성부로 전송하는 영상입력부;를 더 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 장치.

[청구항 3] 단안 카메라 모듈로부터 단일 시점 영상을 입력받아 영상 변환부로 전송하는 영상입력부; 및 영상입력부로부터 단일 시점 영상을 수신하고 좌안 및 우안 영상으로 변환하여 입체 영상 생성부와 오브젝트 생성부로 전송하는 영상변환부;을 더 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 장치.

[청구항 4] 영상저장부로부터 단일 시점 영상 또는 좌안 및 우안 영상을 입력받아 영상변환부로 전송하는 영상입력부; 및 상기 영상입력부로부터 수신된 영상이 좌안 및 우안 영상인 경우 입체 영상 생성부와 오브젝트 생성부로 바로 전송하고, 수신된 영상이 단일 시점 영상인 경우 좌안 및 우안 영상으로 변환하여 입체 영상 생성부와 오브젝트 생성부로 전송하는 영상변환부;를 더 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 장치.

[청구항 5] 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 오브젝트 생성부는,
 상기 수신된 좌안 및 우안 영상에 포함된 패턴 중 적어도 어느 하나의 패턴을 인식하여 좌안 및 우안의 3D 오브젝트를 생성하기 위한 패턴 정보를 추출하는 패턴인식부; 및 상기 패턴 인식부에서 추출된 패턴 정보를 바탕으로 GPU(Graphic
Processing Unit를 사용하여 렌더링하여 좌한 및 우안의 3D 오브젝트를 생성하는 그래픽 처리부를 포함하여 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 방법.

[청구항 6] 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 오브젝트 생성부는,
사용자로부터 3D 오브젝트 생성 정보를 입력받는 오브젝트 정보 입력부; 및
상기 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 오브젝트를 생성하는 그래픽 처리부;를 포함하는 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 장치.

[청구항 7] 임체 영상 생성부가 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상을 생성하는 단계;
오브젝트 생성부가 좌안 및 우안 영상을 수신하고, 수신된 좌안 및 우안 영상의 소정의 위치에 오버레이(Overlay)된 좌안 및 우안의 3D 오브젝트(Object)를 생성하는 단계; 및
임체 증강 현실 영상 생성부가 상기 생성된 좌안 및 우안의 3D 오브젝트를 상기 임체 3D 영상의 좌안과 우안 영상의 소정의 위치에 오버레이하여 임체 증강 현실 영상을 생성하는 단계;를 포함하는 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 방법.

[청구항 8] 제7항에 있어서, 상기 임체 3D 영상을 생성하는 단계는,
영상입력부가 양안 카메라 모듈로부터 좌안 및 우안 영상을 입력받아 임체 영상 생성부와 오브젝트 생성부로 전송하는 단계,를 포함하는 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 방법.

[청구항 9] 제7항에 있어서, 상기 임체 3D 영상을 생성하는 단계는,
영상입력부가 양안 카메라 모듈로부터 단일 시점 영상을 입력받아 영상변환부로 전송하는 단계, 및
영상변환부가 단일 시점 영상을 수신하고 좌안 및 우안 영상으로 변환하여 임체 영상 생성부와 오브젝트 생성부로 전송하는 단계,를 포함하는 임체 3D 영상과 GPU를 이용한 임체 증강 현실 영상 생성 방법.

[청구항 10] 제7항에 있어서, 상기 임체 3D 영상을 생성하는 단계는,
영상입력부가 영상 저장부로부터 영상을 입력받아 영상변환부로 전송하는 단계, 및
영상변환부가 수신한 영상이 좌안 및 우안 영상인 경우 임체 영상 생성부와 오브젝트 생성부로 바로 전송하고, 그 수신한 영상이
단일 시점 영상인 경우 좌안 및 우안 영상으로 변환하여 입체 영상 생성부와 오브젝트 생성부로 전송하는 단계;를 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법.

제7항 내지 제10항 중 어느 한 항에 있어서, 상기 3D 오브젝트 생성 단계는,
상기 좌안 및 우안 영상에 포함된 패턴 중 적어도 어느 하나 패턴을 인식하여 좌안 및 우안 각각의 3D 오브젝트를 생성하기 위한 패턴 정보를 추출하는 단계; 및
상기 추출된 패턴 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 렌더링하여 좌안 및 우안의 3D 오브젝트를 생성하는 단계;를 포함하는 입체 3D 영상과 GPU를 이용한 입체 증강 현실 영상 생성 방법.

[청구항 11] 제7항 내지 제10항 중 어느 한 항에 있어서, 상기 3D 오브젝트 생성 단계는,
사용자로부터 3D 오브젝트 생성 정보를 입력받는 단계; 및
상기 입력받은 3D 오브젝트 생성 정보를 바탕으로 GPU(Graphic Processing Unit)를 사용하여 좌안 및 우안의 3D 오브젝트를 생성하는 단계;를 포함하는 입체 3D 영상과 G P U를 이용한 입체 증강 현실 영상 생성 방법.
카메라 입력으로 들어온 패턴 위에 3D 그래픽 물체 생성 단, Left, Right 각각 구성
시 작

좌안 및 우안 영상 입력 단계

S110

입력된 좌안 및 우안 영상으로
입체 3D 영상 생성 단계

S120

3D 오브젝트 영상 생성 단계

3D 오브젝트를 생성하기 위한 정보를
추출하는 단계

S131

추출된 정보를 바탕으로
3D 오브젝트를 생성하는 단계

S132

입체 증강 현실 영상 생성 단계

S130

종 료

S140
시 작

단일 시점 영상 입력 단계

단일 시점 영상을 좌안 및 우안 영상으로 변환하는 단계

변환된 좌안 및 우안 영상으로 입력 3D 영상 생성 단계

3D 오브젝트 영상 생성 단계

3D 오브젝트를 생성하기 위한 정보를 추출하는 단계

추출된 정보를 바탕으로 3D 오브젝트를 생성하는 단계

입체 증강 현실 영상 생성 단계

종료
A. CLASSIFICATION OF SUBJECT MATTER

G06T 15/00(2006.01)i, H04N 5/262(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06T 15/00; H04N 13/00; G03B 35/08; H04N 13/02; G03B 35/00; G09B 9/058

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: reality, 3D, stereoscopic

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2005-020559 A (UNIV WASEDA et al.) 20 January 2005</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>See abstract; claim 1; figure 1</td>
<td>2-6,8-12</td>
</tr>
<tr>
<td>X</td>
<td>JP 09-167253 A (OLYMPUS OPTICAL CO LTD) 24 June 1997</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>See abstract; claim 1; figure 3</td>
<td>2-6,8-12</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-336703 A (CANON INC) 18 December 1998</td>
<td>1,7</td>
</tr>
<tr>
<td>A</td>
<td>See abstract; claim 1; figure 3</td>
<td>2-6,8-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. ❌ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, each combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
19 APRIL 2012 (19.04.2012)

Date of mailing of the international search report
20 APRIL 2012 (20.04.2012)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonun-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

G06T 15/00(2006.01)i, H04N 5/262(2006.01)i

B. 조사된 분야

조사된 최소분류(국제특허분류를 기재)
G06T 15/00; H04N 13/00; G03B 35/08; H04N 13/02; G03B 35/00; G09B 9/058

조사된 기술분야에 속하는 최소분류 이외의 문헌
한국등록심판심안공보 및 한국공개심판심안공보: 조사된 최소분류에서 기재된 IPC
일본등록심판심안공보 및 일본공개심판심안공보: 조사된 최소분류에서 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 키워드: reality, 3D, stereoscopic

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2005-020559 A (UNIV WASEDA 의 1명) 2005.01.20</td>
<td>1.7</td>
</tr>
<tr>
<td>A</td>
<td>요약: 청구항 1: 도면 1 참조</td>
<td>2-6,8-12</td>
</tr>
<tr>
<td>X</td>
<td>JP 09-167253 A (OLYMPUS OPTICAL CO LTD) 1997.06.24</td>
<td>1.7</td>
</tr>
<tr>
<td>A</td>
<td>요약: 청구항 1: 도면 3 참조</td>
<td>2-6,8-12</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-336703 A (CANON INC) 1998.12.18</td>
<td>1.7</td>
</tr>
<tr>
<td>A</td>
<td>요약: 청구항 1: 도면 3 참조</td>
<td>2-6,8-12</td>
</tr>
</tbody>
</table>

* 인용된 문헌의 특별 카테고리:
 "A" 특별히 관련이 없는 것으로 보이는 일반적인 기술문헌을 정의한 문헌
 "E" 국제출원일보다 빠른 출원일 또는 우선일을 가지거나 국제출원일 이후에 공개된 신출원 또는 특허문헌
 "L" 우선권 주재에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(예:출원 명시)를 밝히기 위하여 인용된 문헌
 "O" 구복 게시, 사용, 점검 또는 기타 수반을 언급하고 있는 문헌
 "P" 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

"T" 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상충하지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
"X" 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 청구권 발명의 신규성 또는 전보성이 없는 것으로 본다.
"Y" 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당업자에게 자명한 경우 청구권 발명은 전보성이 없는 것으로 본다.
"&" 동일한 특허문헌에 속하는 문헌

국제조사의 실시 완료일
2012년 04월 19일 (19.04.2012)

국제조사보고서 발송일
2012년 04월 20일 (20.04.2012)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 청사로 189,
정부대전청사
전화번호 82-42-472-7140

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 09-167253 A</td>
<td>1997.06.24</td>
<td>US 06151060A A</td>
<td>2000.11.21</td>
</tr>
<tr>
<td>JP 10-336703 A</td>
<td>1998.12.18</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>