
(19) United States
US 20070016608A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0016608 A1
Mullins (43) Pub. Date: Jan. 18, 2007

(54) DISPLAYABLE PRESENTATION PAGE AND
SQL SEARCHABLE RELATIONAL DATA
SOURCE IMPLEMENTATION OF A SYSTEM,
METHOD AND SOFTWARE FOR CREATING
OR MANTAINING DISTRIBUTED
TRANSPARENT PERSISTENCE OF
COMPLEX DATA OBJECTS AND THEIR
DATA RELATIONSHIPS

(76) Inventor: Ward Mullins, San Francisco, CA (US)

Correspondence Address:
Robert G. Lev
4766 Michigan Boulevard
Youngstown, OH 44505 (US)

(21) 11/432,729

(22)

Appl. No.:

Filed: May 11, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/382.302, filed on
Mar. 6, 2003, now Pat. No. 7,103,600.

15 25 35

90

40

85

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)

(52) U.S. Cl. .. 707/103 R

(57) ABSTRACT

The invention provides systems, methods and software for
creating or maintaining distributed transparent persistence
of complex data objects and associated data stores. In one
aspect, the invention also relates to an application program
ming object capable of creating or maintaining distributed
transparent persistence of data objects or data object graphs
without the necessity of inserting any byte codes or modi
fication of the object graph. Virtually any java object or
object praph can be transparently persisted. Further, copies
of a data graph or of a portion of the data graph can be
automatically reconciled and changes persisted without any
persistence coding in the object model.

10

Patent Application Publication Jan. 18, 2007 Sheet 1 of 3 US 2007/0016608A1

se

3

e

*:
K

S

S.

S

S2Co

Patent Application Publication Jan. 18, 2007 Sheet 2 of 3 US 2007/0016608A1

US 2007/0016608A1

S109|qO e?eCI JQ??O 01 pº?09?UOO Se Suo]]ng Jo SXu?TI S?I KIIeuo?dO pue 109?qO e?eCI e ºu?KeIds[CI JOJ ASÍ
$. (HRIQ?INH

Patent Application Publication Jan. 18, 2007 Sheet 3 of 3

US 2007/00 16608 A1

DISPLAYABLE PRESENTATION PAGE AND SQL
SEARCHABLE RELATIONAL DATA SOURCE
IMPLEMENTATION OF A SYSTEM, METHOD

AND SOFTWARE FOR CREATING OR
MANTAINING DISTRIBUTED TRANSPARENT
PERSISTENCE OF COMPLEX DATA OBJECTS

AND THEIR DATA RELATIONSHIPS

CONTINUING APPLICATION

0001 Based on: Utility application Ser. No. 10/382.302
filed Mar. 6, 2003 which is a continuation of Provisional
Application No. 60/361,795 filed Mar. 4, 2002.

FIELD OF THE INVENTION

0002 The field of the present invention relates generally
to computer systems, computer data stores and to methods
and Software for accessing and utilizing data stores. More
particularly, the present invention relates to a system, meth
ods and Software for creating or maintaining distributed
transparent persistence of complex data objects and associ
ated data stores. In one aspect, the invention also relates to
an application programming object capable of creating or
maintaining distributed transparent persistence of data
objects or data object graphs without the necessity of
inserting any byte codes or modification of the object graph.
Virtually any java object or object graph can be transpar
ently persisted. Further, copies of a data graph or of a portion
of the data graph can be automatically reconciled and
changes persisted without any persistence coding in the
object model.

BACKGROUND OF THE INVENTION

0003 Systems for accessing data stores from object ori
ented languages have been used for many years. A frequent
approach to accomplish access of data stores involves writ
ing and embedding custom access code within an object
application needing the access. This approach is generally
limited to having the custom code access only a single
relational table within a relational database or similar con
struct within any other data store (hereinafter collectively
“data store'). Under the circumstances where a developer
has control over the design and creation of a data store from
its inception, it is possible to design and store meaningful
information in a single table. Such design opportunities are
usually rare, however.
0004 Generally, the methods for producing persistence
for a data object, complex data object or a data store conflict
with the goals of producing pure object application models
where the object models do not include persistence objects
or persistence byte code. Particular difficulties exist in a
distributed environment since an object application model
may exist in one or more of a computer's memory, an
application data store and an application information storage
repository that may be independent of the data store orga
nization or object definitions. Advancements in the art have
been made with respect to tools for conveniently mapping
objects to systems of tables and maps in order to expedite
accessing, changing and updating data stores. See, for
example, U.S. Pat. No. 5,857,197 (and its associated pro
gramming interfaces (“APIs)) describes tools for translat
ing object data to relational data, relational data to object
data, and object data to object data to expedite the use of data

Jan. 18, 2007

stores. The BMP and the CMP Installer portions of Coco Ad
min tool in the CocoBaseTM Enterprise for O/R Binary
Software (Thought, Inc. 657 Mission Street Suite 202, San
Francisco, Calif. 94105 http://www.thoughtinc.com.) pro
vide means for providing persistence in the EJB environ
ment.

0005 Persistence problems arise with the creation,
access, changing or deleting of an object application model
that utilizes Such data stores. The object application model
may be distributed over multiple physical computer machine
locations or even distributed over multiple Internet website
locations that may be independent of the data stores. The
object application model may utilize a different set of data
objects or different set of definitions for relationships
between data objects than that of one or more of its data
Sources. In most situations, the respective structures of the
data sources and of the object applications model simply do
not conveniently allow for mapping, accessing or changing
of an overall schema of application data objects as well as
any associated definitions of relationships between two or
more data objects or elements within a data object.
0006 Importantly, relationships may exist between a data
object and one or more of the other data objects found in the
object application model or in a data object of the data
Source. A relationship between one data object and another
data object or with a data source may be member selected
from the group of three relationship types consisting of 1 to
1 (1-1), 1 to many (1-M) or many to many (M-M). Complex
combinations of these relationships may exist as a data
object relationships definition for a given data object. These
relationships are described or illustrated in further detail
later in this document.

0007 Objects may logically span multiple relational
tables or multiple object databases, and may even be dis
tributed over a logical (or hypothetical) computer system
involving multiple physically independent computer sys
tems or even multiple website locations. Creating, access
ing, maintaining or updating an object application model can
require working with multiple translation modules and
require tedious and repetitive updating of multiple indi
vidual computer systems or multiple data sources in order to
do useful work and keep the object application model
synchronized. Such approaches are both costly and
unwieldy in terms of computing and development resources,
particularly with respect to Internet based electronic com
merce (eCommerce) object application models.
0008 Data objects of an object application model are
often a feature of eCommerce object programming applica
tions, where information is obtained from a data source and
the data is defined as a data object (e.g., as a Java class) for
use with another computer application. In practice, a data
object or model of data objects may exist only in the random
access memory of a computer memory system, or may be
saved to either a data source or to some other type of
retrievable information repository. A programmer or admin
istrator of an object data application cannot easily access or
track the overall model or diagram of data objects for an
object application model or some of its specific elements.
Unfortunately, tools for accessing and persisting data objects
and associated data object relationships of a complex data
object graph model have not been well implemented in the
field of object language programming.

US 2007/00 16608 A1

0009. A computer application can execute one or more of
the following non-limiting actions with respect to one or
more of the members selected from the group consisting of
data, a data object, and a data object definition: access data,
change data, create data, create a new relationship between
one or more data objects by creating or changing at least one
data object relationship definition, change or delete a rela
tionship between one or more data objects by changing or
deleting at least one data object relationship definition,
access a data object relationship definition and use its
parameters to access a data source or a data object, and
access one or more data object relationship definitions or
data objects to create a new data object or data object
relationship. Any changes executed by a computer applica
tion with respect to one or more of the members selected
from the group consisting of data, data object or data object
definition may need to be properly persisted (permanently
stored) to preserve any changes to one or more of the
members selected from the group consisting of data, a data
object and a data object definition.
0010) A data object and an associated data object rela
tionship definition may be represented by a complex data
object graph (“CDOG”). A CDOG, for the purposes of this
document, may be thought of as a computer program data
object graph that represents a data object having at least one
relationship with at least one other data object or with itself
via a circular link. When the data object of a CDOG is
implemented in the Java computer program language, the
CDOG may be further defined as being a Java DataObject
Graph (“JDOG”).
0011. There are needs for software, methods and systems
that can easily detect and persist any changes to at least one
member selected from the group consisting of a data object,
any data associated with the related object, or any associated
CDOG definition (i.e., an changes to the data object, data or
to a relationship of the data object with another data object).
For example, there is a need to be able access a pure object
model definition from a repository based O/R mapping tool
(e.g., from a defined repository such as a file, database or
streaming source) or from a modeling tool defined reposi
tory and provide persistence for the object model without
inserting any byte code or additional objects into the object
model.

0012. Accordingly, there is a strong need in the art for a
computer applications programmer tool designed to assist a
programmer or administrator in the actions of providing
persistence for data objects or data object graphs when
deleting, inactivating or updating a CDOG, wherein the
computer applications programmer tool can be configured to
automatically reconcile all or a portion of a CDOG and
copies thereof on a distributed environment when data
objects or relationships are deleted, inactivated or updated
for a CDOG. A particularly strong need exists for such a tool
having the further ability to be configured to persist, propa
gate and reflect system wide (in a local or distributed
computer system) any such changes to a CDOG instance to
all instances of the CDOG and to all instances of associated
data, data objects and data object relationships.
Definitions

0013 The following non-exhaustive list of definitions is
used herein to define terms that may otherwise be confusing
or can sometimes have multiple meanings. Each occurrence

Jan. 18, 2007

of a defined term in the above text, in the text that follows,
or in the claims of this document, is to be given the meaning
ascribed to it in the list of definitions below.

0014) “Instance' as referred to in this document in the
context of computer Software applications is a single occur
rence of a Software logical element in the memory of a
computer system, such as a "class', an “object', a “data
object', and the like. This is analogous to the occurrence of
a logical memory unit representing a row of data in common
practice.

0.015 “Class” as referred to in this document in the
context of computer Software applications is a logic unit in
a computer application or a computer Software program
where the application or program is based upon an objected
oriented programming language (e.g., Java). In practice, a
class is a logical unit used as a logical template in an object
oriented language from which to allocate new instances of
objects.

0016 "Object' as used in the context of this document is
a general term referring to a logic unit in a computer
application or a computer Software program where the
application or program is based upon an objected oriented
programming language (e.g., Java). The term “object” may
ordinarily be used interchangeably with the term “class' as
a template or as an instance depending on the context.

0017) “Data object” as referred to in the context of this
document represents the concept of the occurrence of an
object that holds data within a specific computer application
domain and is likely to have its contents stored in a persis
tent data source of a computer system (e.g., a database
server, a binary file, a text file, or even in a combination of
two or more of Such a persistent data sources of a computer
system). A data object may exist as an independent data
object without any relationship to any other data object or it
may have one or more relationships with itself or with one
or more other data objects.
0018 “Complex data object” (or “CDO) as used in the
context of this document refers to the occurrence of a data
object that has at least one or more relationships with itself,
or at least one or more relationships with one or more other
data object(s). In a given instance of a CDO at least one
relationship is populated as a link, as defined below. A CDO
may have a multiplicity of different relationships with itself
or with one or more additional CDOs.

0019) “Relationship” or “data relationship” as used in the
context of a CDO refers to the type of logical combination
that occurs between a data object with itself, or refers to the
type of logical combination that occurs between a data
object and at least one another data object. Among other
references or descriptions, such a relationship is always
referred to or partially described by a “relationship type'.
This term is used in an object oriented language context to
reference or describe any expectations, actions and limita
tions possible between two or more data objects.

0020 “Relationship type' in the context of this document
is a label that specifies the possible multiple combinations
that can occur between a CDO and itself or with at least one
other CDO. The possible relationship type labels are 1-1
(one to one), 1-M (one to many) and M-M (many to many).
A given CDO may be simultaneously related to more than

US 2007/00 16608 A1

one other CDO through several different types of relation
ship. This is also sometimes referred to as the multiplicity of
the relationship.
0021 “Link' as used in this document with respect to a
CDO identifies a particular occurrence of a relationship
between a CDO and itself, between a CDO and another
CDO. The occurrence of at least one populated link results
in an instance of the CDO. This may be considered a
synonym for a “relationship between two objects.
0022 “Circular link' as used in this document with
respect to a CDO identifies a particular occurrence of a
relationship between a CDO and itself that may be director
indirect (e.g., linked to itself through another CDO).
0023 “Relationship definition” or “relationship descrip
tion' in the context of this document and computer software
applications refers to information, or an abstraction of
information, regarding a “relationship', 'data relation
ship'relationship type' or a “link’ that can be stored,
accessed, transferred, communicated, displayed or edited.
0024 “Complex data object graph” or “CDOG” is a term
employed herein as an abstraction to logically represent a set
of complex data objects and a set of their corresponding
relationships.
0025 “Java data object graph” or “JDOG” is a term
employed herein as an abstraction to logically represent a set
of complex data objects and a set of their corresponding
relationships that are part of a Java programming applica
tion.

0026 “Application model” or simply “model” are essen
tially interchangeable terms employed herein as abstractions
to logically convey a collective description or other repre
sentation for a set of complex data objects and a correspond
ing description or other representation of their relationships.
In one respect, these terms are used logically herein provide
a general way of efficiently communicating when referring
to set of metadata (i.e., data about data) that describes
possible data entities (e.g., objects, database tables, maps,
etc.) data relationship types, and data constraints involved in
a computer system or application, or in a specific instance of
an application. It is important to understand the context in
which the terms “application model and “model” are used
in this document. Ordinarily computer engineers refer to the
“model” as an abstraction rather than a specific possibility or
instance of the model as applied. However, in this document
for the ease of communication abstractions of the model,
possible implementations of the model and instances of the
model are all referred to generally as “application model” or
“model. From the context of its use the term will be clear.
The model is the abstract relationship between classes,
wherein the CEDO is an instance (or set of instances) that
express(es) the model.
0027 "Navigation”, “navigating or “navigated in the
context of the present document refers to an action imple
menting at least one object to interact with a set of related
objects for a certain purpose. Such as creation, access,
insertion, modification and deletion of an object, or of one
of its relationships. It is the physical act of traversing the
relationships, which might be referred to as “walking up or
down the graph' in common lingo.
0028 “Navigation model” as used herein is a special type
of application model that is applied specifically to a descrip

Jan. 18, 2007

tion (or other representation) of how objects can relate to
each other and what might be the expected behavior when a
CDOG is navigated for a certain purpose.
0029 “Object schema' is a term employed herein as an
abstraction referring to the set of data object classes that
describe the possible data objects that can be created,
modified or maintained in an application, or describing an
instance of a set of data object classes in an application.
0030) “Distributed Transparent Persistence” is a term
employed herein as an abstraction referring to the concept of
providing persistence for a member selected from the group
consisting of a data object, a data object graph, associated
data and data object relationships in a distributed environ
ment without the need for the insertion of byte code or data
objects in an object model or schema.
0031 “CocoBase Proxy Classes’ is a term employed
herein used in referring to wrapper classes that provide
CocoBase runtime compatibility for objects that arent
inherently database aware. A computer system can persist
the attributes and data for any data object that is wrapped
with a CocoProxy wrapper class by simply using CocoBase
facilities. For example, source code for the (attribute based)
CocoProxy and (get/set method based) CocoProxyM classes
a available under the
thought\cocodemo3tier31\demos\pguide directory, when the
CocoBase Software tools Suite is installed on a computer
system. This optional design provides an extensible mecha
nism for instances of data extraction and propagation.
0032 “CocoBase Navigation API is a term employed
herein to refer to an example of an API that provides
database relationship mapping and object graph manage
ment capability for persistent objects. Database relationships
are mapped to object links using CocoBase Navigator link
definitions. Persistence control is provided at each class
level in the object graph. Each of the Select, Insert, Update
and Delete operations are individually configurable.
0033) “CocoBase Transaction API is a term employed
herein to refer to an example of an API that provides object
oriented transaction Support. Transaction objects are used to
persist data object attributes and maintain synchronization
between database and in memory attribute values. The
Transaction API has many built in optimizations, and appli
cations utilizing CocoBase transactions generally benefit
from reduced database and network overhead. This facility
allows the developer to group together object changes into
a single unit of work whose implementation or storage will
Succeed or fail all at once.

0034). “CocoBase Factories” is a term employed herein to
refer to examples of software modules and softwares librar
ies that are used to provide automated, custom object
instantiation behavior. Factory behavior is completely cus
tomizable. For example, a factory may be used to bind newly
instantiated objects to a transaction object, to load a graph of
related objects using the CocoBase Navigator, or to imple
ment polymorphism in a database result set. For example, a
ProxyFactory class is part of the current Coco Base software
tools Suite distribution in the
thought\cocodemo3 tier31\demos\pguide directory, and this
factory returns result set objects wrapped in a CocoProxy
wrapper, when a CocoProxy wrapped key object is passed
into the CocoBase runtime software module as part of a
query that needs processing by the CocoBase runtime mod
ule.

US 2007/00 16608 A1

0035 “CocoBase Repository' is a term employed herein
as an abstraction referring to a dataSource to dataobject
mapping repository and associated Software modules that is
installed into a dataSource (or may optionally be a single
stand alone file, or a set of files that circumscribe a set of
dataSource to dataobject mapping definitions and associated
Software modules). A repository can optionally be in a
format such as XML, XMI and the like. See, U.S. Pat. No.
5,857,197, the CocoBaseFnterprise O/RTools Suite, and the
co-pending patent appliction entitled "Dynamic Object
Driven Database Manipulation and Mapping System for
more detailed descriptions of mapping repositories, and the
like.

0036) “CocoBase Transparent Persistence for Objects
and Object Models'. All models using a relational database
for map storage require the CocoBase repository to be
installed into the database, or in a stand-alone source access
able to CocoBase. The installation of a mapping repository
can occur automatically, if required, when using Coco Ad
minto log into the database. Pre-existing database tables can
be used, provided that the CocoBase repository is first
installed into the database, or accessible to CocoBase.
Several example of applications that implement Coco Base
transparent persistence are included in the CocoBase soft
ware tools suite distribution (see the distribution documen
tation for the location of folders or directories containing
Such examples).

SUMMARY OF THE INVENTION

0037. An object of the present invention is to provide a
system for creating or maintaining transparent persistence of
a complex data object, a complex data object graph (CDOG)
model, or a portion of a CDOG. In a preferred embodiment,
an object of the present invention is to provide Such a system
that can selectively persist all or a portion of a CDOG model
when the model is a member selected from the group
consisting of an object model generated from a data object
mapping repository and an object model generated from data
object modeling tool repository. A further object is to
provide Such a system is located on, or is part of a local or
distributed computer system.
0038 An object of the present invention is to provide a
method for creating, maintaining, accessing, navigating and
persisting complex data objects stores in a repository. In a
preferred embodiment, an object of the present invention is
to provide such a method having the step utilizing the
storage facilities of an enterprise EJB server to store and
maintain the data object repository. In a further object, Such
a method involves a local or distributed computer system.
0039. An object of the present invention is to provide a
computer software component that operates in an EJB
environment, or the like, wherein the component has the
capacity to access an object model repository or an instance
thereof in a computer memory or in another temportary
computer storage store device and persist at least one action
selected from the group consisting of creating, maintaining,
accessing, navigating, updating or deleting complex data
objects as a CDOG model. In a preferred aspect, the com
puter software component is an Enterprise Bean selected
from the group consisting of Stateless, Stateful and Entity
Beans. In a further preferred object the computer software
component is an EJB Session Bean built on top of CocoBase

Jan. 18, 2007

runtime libraries having the ability to persist all or a portion
of a CDOG model or instance thereof. An even more
preferred object is to provide such a computer software
component capable of transparently persisting all or a por
tion of a CDOG model or instance thereo for a local or
distributed computer system and automatically reconciling
and persisting any changes to an instance of the CDOG
model or any changes to the repository definition for the
CDOG model.

0040. A preferred object of the present invention is to
provide a software tool comprising the a navigation API and
Software components (as described above), adapted for a
local network or a distributed network environment, wherein
said Software tool provides persistence in an object oriented
language environment transparently by implementing a con
figurable network component capable of acquiring and per
sisting CDOGs through network APIs.
0041. A further object of the present invention is to a
Software tool capable of reading a source (or binary) pro
gramming object logic model or a database file (or other data
Source containing the stored object model information) in a
format selected from the group consisting of a UML data
file, a XMI data file, and a XML file and converting the
information into a target member selected from the group
consisting of a database definition, XML mapping file, a
database mapping definition file, and a CDOG definition file.
In a preferred object, the Software can automatically gener
ate a transparent persistence layer that corresponds to the
object model information of the source file.
0042 A further object of the present invention is to
provide a software module and Source code known as a Java
entity bean (Such as a generic session bean) that is capable
of providing persistence of either or both of a data objects
and a data model, in total or in part as determined through
setting established by a user of the computer system.
0043. An object of the present invention is to provide a
system and/or method for displaying, updating or creating
the data or structure of a data object, and optionally its links
to other objects of an object model, by utilizing a displayable
presentation page having embedded object programming
code, such as a Java Server Page (JSP) that is served up by
a server platform Such as a JSP server, and persisting data of
the object, links of the object, or object model by commu
nication of the object programming code embedded in the
displayable presentation page with a programming object
(such as a Java Bean) wherein the programming object has
implemented in its object programming logic methods for
getting, setting, resetting and loading of data, and the
programming object also includes programming code for
communicating directly or indirectly with a persistence
manager API or persistence library to persist the object, its
data and/or links to other objects in an object model, and
optionally to persist the object model itself. In a preferred
object of the present invention the displayable presentation
page is constructed having an HTML format and the embed
ded programming language is the object programming lan
guage Java, and the associated programming object is a Java
Object such as a Java Bean or entity bean.
0044 Another object of the present invention is to pro
vide a system and/or method for generating from a relational
dataSource Schema, or generating from an Object to Rela
tional mapping resource:

US 2007/00 16608 A1

0045 a. at least one displayable presentation page
(such as a JSP) having object programming embedded
within the page, with the presentation page having an
ability to display data of an object in an object model,
and optionally further display link information and/or
to further provide a labeled link button for navigating
to a linked object in an object model, and

004.6 b. generating at least one corresponding pro
gramming object, such as a Java Bean, for communi
cating with the generated presentation page and also for
communicating with a persistence manager API that
can persist the object, its data and/or links to other
objects in an object model, and

0047 c. optionally generating a set of related display
able presentation pages (such as JSPs) corresponding to
linked objects of a specified object model.

0048 d. optionally comprising an ability to query
against the object graph using a object query facility or
Syntax.

0049 Another object of the present invention is to pro
vide a method of visually navigating, updating and persist
ing an object model by utilizing linked displayable presen
tation pages (such as JSPs) corresponding to a specified
object model. A preferred object is to provide such display
able presentation pages with buttons that may be clicked to
access link information or to move the user forward or
backward to a navigated linked object of an object model
and its displayable presentation page.
0050. A further object of the present invention is to
provide a method for creating, updating, navigating and
persisting an object model starting from a information
Source which is member selected from the group consisting
of Java Classes, a relational data source, a UML model (e.g.,
XMI respresentation), and interface for manually creating an
object model by describing a set of objects, their attributes
and their links to other objects, and then in a further step
creating from the information retrieved from such an infor
mation source a set of displayable presentation pages and
their associated programming objects (such as JSPs and
associated Java Beans) corresponding to an object model
that are Suitable for visually creating, navigating or updating
the object model.

BRIEF DESCRIPTION OF THE DRAWINGS

0051. For the non-limiting purpose of illustrating some of
the concepts of complex data objects CDOs, i.e., data
objects and their relationships to one another, according to
the invention, two CDO graph drawings FIG. 1 and FIG. 2
are provided.
0.052 FIG. 1 is a complex data object (CDO) graph
drawing, which illustrates a customer object and some of its
related objects (billing address, orders and items ordered), as
well as relationships between the objects. Relationships of
the types 1 to 1 (1-1) and 1 to many (1-M) are shown in this
CDO graph. More specifically, FIG. 1 illustrates a CDO
graph drawing presenting an instance of a customer object 1
having a 1 to 1 (1-1) relationship (5) with its customer
billing address object 10, and a 1 to many relationship
(collectively 15, 25, and 35) with the three outstanding order
objects 20, 30 and 40, respectively. Order object 20 is an
instance of an outstanding order object having a 1 to many

Jan. 18, 2007

relationship (collectively 45 and 55) with the two items
ordered objects 50 and 60, respectively. Order object 30 is
an instance of an outstanding order object having a relation
ship with a single order item, but order object 30 has a 1 to
many relationship (65) with the item ordered object 70, since
many order items could have been associated. Order object
40 is an instance illustrates a 1 to many relationship (col
lectively 75 and 85) with the two items ordered objects 80
and 90, respectively.
0053 FIG. 2 is a complex data object (CDO) graph
drawing, which illustrates a company object and some of its
related objects (corporate address object and some of its
departments and employees), as well as relationships
between the objects. Relationships of all three types: 1 to 1
(1-1), 1 to many (1-M) and many to many (M-M) are shown
in this CDO graph. More specifically, FIG. 2 illustrates a
CDO graph drawing presenting an instance of a company
object 100 having a 1 to 1 relationship (650) with its
corporate address object 700, and a 1 to many relationship
(collectively 150, 250, and 350) with the three company
department objects 200, 300 and 400, respectively. Since
employees of this company may work for more than one of
the company's departments, the company department
objects 200, 300 and 400 in FIG. 2 are three instances
(many) of company department objects having relationships
(425, 450, 550 and 575, respectively) with two (many)
employee objects (respectively, 500 and 600). The cross
assignment of employee object 500 to both company depart
ment objects 200 and 300, and of employee object 600 to
both company department objects 300 and 400, illustrate a
complex many to many (M-M) relationship of departments
to employees for this company.
0054 FIG. 3 is a programming flow chart representing a
preferred embodiment of the invention which is a system for
creating, displaying, updating, and persisting the data and/or
links of a complex data object (CDO) which is part of a CDO
graph. The first programming module of the illustrated flow
chart utilizes a displayable presentation page having embed
ded object programming code. Such as a Java Server Page
(JSP), wherein the displayable presentation page may be
served up (presented) to a user by a server platform such as
a JSP server. This displayable presentation page, among
other things, may display the data of a data object and/or
provide an interface for creating or updating the data for that
data object (or for a new data object) and the displayable
presentation page may also include one or more link names
(or labelled link buttons) as connected to other data objects
of the CDO graph/model. The embedded programming code
of the displayable presentation page includes (i) logic for
accessing data and and displaying the data from a particular
data source and the logic may may perform this function
directly or delegate it to at least one other programming
module, (ii) logic for creating, updating or deleting data of
an object, (iii) a programming reference link to an associated
programming object (such as a Java Bean) that is, in turn,
directly or indirectly connected to a programming module
that contains additional logic for detecting changes to object
data and/or changes to the object graph/model that includes
the particular object or is associated with it, and (iv) logic for
reflecting to the associated programming object the data
and/or links to other objects of the data object that is being
displayed by the presentation page. The second program
ming module of the illustrated programming flow chart is
the programming object (Such as a Java Bean) that is linked

US 2007/00 16608 A1

to the first programming module which is linked to at least
one data object and is further linked to a third programming
module (either directly or indirectly, such as through an API)
which is a programming module and/or library that includes
programming logic for for tracking and persisting to at least
one data source changes to objects, object model links,
object data and/or an object model. This second program
ming module contains programming logic (a) for issuing
commands such as get, set, reset and load attributes of a dat
object, (b) for detecting changes to one or more of an object,
links between objects, or object model, (c) link to a third
programming module for persisting the detected changes.
The third programming module of the illustrated program
ming chart provides a persistence library or API with
associated programming logic for tracking and persisting to
at least one data source the changes to objects, object model
links, object data and/or an object model associated with the
displayable presentation page of the first programming mod
ule in the flow chart when it is notified of such changes by
the second programming module. In one preferred embodi
ment the displayable presentation page includes buttons to
links with related objects of an object model, the program
ming flow chart also represents the embodiment of a method
for visually navigating a populated or unpopulated object
model graph and/or its data and links between its objects.

DISCRIPTION THE INVENTION

0.055 The present invention provides a system for creat
ing or maintaining persistence for all or a part of a complex
data object graph model when a user is creating, maintain
ing, accessing and navigating complex data objects as a
complex data object graph model. In one embodiment, the
system comprises a computer system having a user inter
face, a working memory storage area and at least one device
for permanently storing information, and said system being
loaded with at least one portion of a computer software
program, wherein said Software program comprises at least
one user access interface and a set of programming routines
designed for creating or maintaining transparent persistence
when a user is creating, maintaining, accessing and navi
gating complex data objects as a CDOG model, comprising
0056 a) a set of definitions for the relationships between
a data source Schema and objects capable of storing data for
an object language application, wherein the set of definitions
is stored in a repository;
0057 b) a set of definitions for the relationships between
objects for an object language application, wherein the set of
definitions is part of an object application navigation model;
0.058 c) a list of objects, or a set of objects that are to be
persisted, wherein the list of objects or set of objects is part
of an object application navigation model;
0059 d) an object or set of objects as a programming
module that contains the logic for persisting an indicated
object or set of objects from c):
0060 e) an input method to inform the programming
module of d) with the location of information corresponding
to a), b) and c), and
0061 f) at least one data source to store persisted data.
0062. In a preferred embodiment, the present invention
provides such a system that can persist any part or all of a

Jan. 18, 2007

CDOG model instance, and to resolve and persist any
changes to the model or to the respository for the CDOG
model. Most preferred is such a system providing a point
and click graphical user interface.
0063. The present invention provides a method for cre
ating, maintaining, accessing, navigating and persisting
complex data objects stores as a CDOG model and provid
ing transparent persistence in a distributed environement,
comprising the steps of:

0064 a) creating or accessing a CDOG representation
definition or accessing an instance of the CDOG,

0065 b) monitoring and recording any changes to the
CDOG or a portion thereof on a local or distributed
computer system, and

0.066 c) persisting any changes to the CDOG on a
local or distributed computer system by updating the
CDOG or CDOG representation definition to reflect
and changes to any copies of the CDOG or CDOG
representation definition, and saving a copy of the
updated CDOG representation definition to a data
Source or to another type of information repository.

0067. In a preferred embodiment, the present invention
provides such a method wherein the information repository
is an object data store managed by an EJB Enterprise server.
In a further preferred embodiment an EJB Enterprise Java
Bean is the Software component having the ability to access
a CDOG repository file, a UML/XMI repository, or other
mapping definition repository (e.g., file, database, or stream
ing data Source) or an instance of the at least one portion of
the CDOG in a computer's memory or on a distributed
network and provide the transparent persistence for the
CDOG model.

0068 The present invention provides a computer soft
ware program having at least one user interface and having
at least one feature that provides for at least one action
selected from the group consisting of creating or maintain
ing transparent persistence when a user of a CDOG model
is creating, maintaining, accessing or navigating a CDOG
model. In a preferred aspect of the invention, the present
invention provides a Software program, or an association
with a software program, having a feature for displaying,
printing or displaying and printing a representation of the
CDOG model as a graph, or as a set of tables representing
a CDOG model. In a further preferred embodiment, such a
Software program has an editing interface for editing the
CDOG model, or has an editable input or source, such as a
file, that can be modified to implement changes to the
complex data object CDOG model (or has both an interface
for editing and an editable input or source. Such as a file).
0069. The present invention also provides an application
programming interface (API), as a preferred embodiment,
wherein the API can be accessed to create, maintain, access,
navigate and persisting complex data objects as a CDOG
model. In one aspect the API can be accessed by an
independent computer Software program, or by a computer
Software program module that is part of a Software package
including the API, to provide at least one action selected
from the group consisting of creating, maintaining, access
ing, navigating and persisting complex data objects as a
CDOG model. In a preferred aspect, the present invention
provides such an API as part of a software tool package that

US 2007/00 16608 A1

provides a method for displaying or printing a representation
of the CDOG model as a graph or set of tables representing
the CDOG model (or providing methods for both displaying
and printing a representation of the CDOG model). In
another preferred aspect, such a Software tool package that
includes the API provides an editing interface for editing the
CDOG model, or has an editable input or source, such as a
file, that can be modified to implement changes to the
CDOG model (or provides both an editing interface and an
editable input or source, such as a file.).
0070 A preferred embodiment of the present invention
provides a software tool comprising the API according (as
described above), adapted for a local network or a distrib
uted network environment, wherein said software tool pro
vides persistence in an object oriented language environ
ment transparently by implementing a configurable network
component capable of acquiring and persisting CDOGS
through network APIs.
0071. In another preferred embodiment, the CDOG API

is the Coconavigator API, the Navigator API, or the CBFa
cade API, which provides Support for manipulating complex
objects in conjunction with the THOUGHT Inc. CocoBase
Enterprise Object/Relational (O/R) database (hereinafter
“CocoBase') mapping tool (see U.S. Pat. No. 5,857, 197
(incorporated herein in its entirety), for concepts upon which
the CocoBase mapping tool is based). An object is consid
ered to be complex when it has established or potential
relationships (i.e. links) to other objects. For instance, a
Company object instance may be linked to an instance of its
corporate address and instances of a Department object,
which in turn may be linked to a set of instances of
Employee objects. An example of such an CDOG is shown
in FIG. 2, for example. The combination of these objects and
their links constitute a graph of objects (CDOG model) that
can be manipulated using the Coconavigator API. Since the
Coconavigator API works in a Java Programming language
environment, this CDOG example may also be referred to as
a JDOG example.
0072. In one preferred embodiment, the invention pro
vides a software module, or set of modules, for creating or
maintaining transparent persistence of a member selected
from the group consisting of a data object, an object graph
model and a portion of an object graph model when a user
of the System is creating, maintaining, accessing or navigat
ing complex data objects as a CDOG model, comprising:
0.073 i) a software module for creating a set of definitions
for the relationships between a data source schema and
objects capable of storing data for an object language
application, wherein the software module is capable of
causing the storage of the set of definitions in a repository;
0074 ii) a software module for creating and accessing a
set of definitions for the relationships between objects for an
object language application, wherein the Software module is
capable of causing storage of the set of definitions in a
navigation model;
0075 iii) a software module providing an input means for
a member selected from an object name, a list of objects, or
a set of objects that are to be persisted, wherein the software
module is capable of capable of causing the storage of the
input as part of a navigation model that can be access by ii);
0.076 iv) a software module containing the programming
logic to persist an object or set of objects based upon access

Jan. 18, 2007

to (a) a set of definitions for the relationships between a data
Source schema and objects capable of storing data for an
object language application, (b) a set of definitions for the
relationships between objects for an object language appli
cation, and (c) an object name, a list of objects, or a set of
objects that are to be persisted, and
0077 v) a software module having an input method
capable of informing iv) of the location of information
relating to iv)(a), iv)(b) and iv)(c).
0078. In another preferred embodiment, the invention
provides a software tool comprising the API according to the
invention or interfacing therewith, wherein the software is
adapted for performing the following steps:

0079 a) reading or accessing an object model defini
tion from a repository based O/R mapping tool (e.g.,
from a defined repository Such as a file, database or
streaming Source) or from a modeling tool defined
repository source in a format selected from the group
consisting of a database schema, a source or binary
object graph, Unified Modeling Language (“UML)
data file, an XML Metadata Interchange (XMI) data
file, an Extensible Markup Language (XML) file, and
other general data formats; and

0080 b) converting the information of (a) into a target
member selected from the group consisting of a data
base definition XML format, a database mapping defi
nition format, other general data formats, a source or
binary CDOG definition file, and application objects.

0081. In a further preferred embodiment, the present
invention provides a software tool as described above that is
adapted for performing at least one of the following addi
tional steps:

0082) a) displaying an object model, definition or
portion thereof in a format selected from the group
consisting of a database schema, a source or binary
object graph, Unified Modeling Language (“UML)
data file, an XML Metadata Interchange (XMI) data
file, an Extensible Markup Language (XML) file, and
other general data formats:

0083 b) storing a representation of a object model,
definition, or portion thereof in a repository (or tempo
rary computer memory representation) in a format
Selected from the group consisting of a database
Schema, a source orbinary object graph, Unified Mod
eling Language (“UML') data file, an XML Metadata
Interchange (XMI) data file, an Extensible Markup
Language (XMI) file, and other general data formats:

0084 c) printing a representation of a object model,
definition, or portion thereof in a repository (or tempo
rary computer memory representation) in a format
Selected from the group consisting of a database
Schema, a source orbinary object graph, Unified Mod
eling Language (“UML') data file, an XML Metadata
Interchange (XMI) data file, an Extensible Markup
Language (XMI) file, and other general data formats:

0085 d) displaying the target information of (b):
0.086 e) generating at least one application object from
the information of (a) or (b); and

0087 f) printing the target information of (b).

US 2007/00 16608 A1

0088. In a still further preferred embodiment the software
tool described above provides target information that is at
least one member selected from the group consisting a
CocoBase database definition repository, a CocoBase map.
a Coconavigate CDOG definition, a Coconavigate object
link descriptor, and a CDOG object graph definition capable
of being stored and retreived. Further preferred is such
software, wherein the source is a UML/XMI document
containing sufficient DTD information to exchange model
ing information with a UML modeling tool.

0089. In one embodiment of the software tool according
to the invention, the software tool can be set to automatically
generate a persistence layer that corresponds to the Source
UML class diagrams provided by an exported source file
from a case tool capable of exporting UML/XMI, such as
Rational Rose, Together and ArgoUML.

0090 An easy way to understand the job performed by a
CDOG Navigator API, such as the Coconavigator API, is to
imagine it as a monitor that can provide at least one object
to intercept any accesses to the data objects and their
relationships that constitute the CDOG, as well as any
changes to the data source upon which the CDOG depends,
in order to provide a means to persist any changes to the
CDOG (or CDOG model) or related data in the data source.
Any changes to the CDOG (or CDOG model) can then be
propagated by the CDOG Navigator API to a persistent data
source through a CocoBase Enterprise O/R connection.
Similarly, persistent data that updates a data source can be
utilized to create a CDOG model or to update a CDOG
model.

0091) Each CDOG (or CDOG model) managed by the
CDOG Navigator API can be associated by the CDOG
Navigator API with a CDOG descriptor (such as a file) that
may be utilized to represent all or part of a “navigation
model. In this respect, a navigation model may be
abstractly described as essentially a namespace in which a
set of data objects and a set of link descriptions (i.e.,
relationship types between data objects) are each defined. In
a preferred embodiment, a data source, data field, data field
size and data field type are listed for each data object in the
set of data objects. In another preferred embodiment, at least
one link description for two data objects, or for a single data
object having a circular link (where the link description is
utilized in conjunction with the Coconavigator API and
CocoBase mapping tool) contains one or more of the fol
lowing types of information (however other related infor
mation may be utilized):

0092 at least one link type (e.g., 1:1, 1:M, M:1 and
M:M) between data objects

0093 at least one link qualifier (currently supported
qualifiers are STD and BEAN)

0094 at least one associative CocoBase map (optional,
for M: M links only)

0095 the names of the CocoBase maps related to each
of the data objects (usually two maps that are not
necessarily distinct), and

0096 information that may be obtained for each of the
CocoBase maps related to the relationship between two
data objects, including:

Jan. 18, 2007

0097 the name of a relationship link between the two
data objects
0098 the names of the fields (i.e., keys) in a Coco
Base map that are used to establish a relationship
link between two data objects

0099 the name of a data source for each of the fields
(i.e., keys) in a CocoBase map that are used to
establish a relationship link between two data objects

0.100 the names of the fields (i.e., keys) in the
associative Coco Base map (optional, for M: M links
only)

0101 the names of a data source for each of the
fields (i.e., keys) in the associative CocoBase map
(optional, for M: M links only)

0102 the name(s) of any java classes corresponding
to fields that would impact upon the relationship
between two data objects

0.103 a setting parameter indicating whether the a
loading of a particular CocoBase map that will
impact upon a relationship between two data object
should be cascaded to other related map(s)

0.104 a setting parameter indicating whether a dele
tion of information from a particular CocoBase map
that will impact upon a relationship between two
data object should be cascaded to other related
map(s)

0105 a setting parameter indicating whether an
insertion of information into a particular CocoBase
map that will impact upon a relationship between
two data object should be cascaded to other related
map(s), and

0106 a setting parameter indicating whether an
update of information in a particular CocoBase map
that will impact upon a relationship between two
data object should be cascaded to other related
map(s).

0107 Some preferred features provided by the CocoN
avigator API and its associated software, when utilized with
the CocoBase mapping tool, or with a similar mapping tool,
are as follows:

0.108 (a) provides multiple navigation models for the
same CDOG model

0109) A preferred embodiment of the Coconavigator
API or an associated program module is configured to
allow many navigation models to be used with the same
set of java classes and CocoBase maps that are asso
ciated with a CDOG model. This preferred embodi
ment API, or an associated computer program module,
may also be configured to permit a user to Switch
dynamically from one Such navigation model to
another. Thus, while a given application is being
executed, it is possible to completely change the rela
tionships between data objects and how CDOGs of a
CDOG model should be managed.

0110 (b) circular link definitions
0.111) A preferred embodiment of the Coconavigator
API, or an associated computer program module, is

US 2007/00 16608 A1

configured to permit a user to create, access, Support
and correctly manage circular data object links. In a
navigation model, a circular link may be defined as
occurring when a data object is directly or indirectly
linked to itself as part of a CDOG. Such relationships
can be created, accessed, Supported and correctly man

Jan. 18, 2007

between the java classes that will be associated with
Such linked data objects of the navigation model. Thus,
Such a navigation model can be a pure abstraction, and
more reusable than just a populated version or single
hypothetical instance of the abstraction.

aged via the Coconavigator API. 0120 (g) customized link visitors

0112 (c) bi-directional and oriented links
0113 A preferred embodiment of the Coconavigator

0121. In a preferred embodiment, the CocoMavigator p 9.
API, or an associated computer program module, can
provide an interface which can be configured to permit

API, or an associated computer program module, is
configured to permit a user to create, access, Support
and correctly manage links between data objects as
either a bi-directional link or as an oriented link. In this
embodiment links between data objects are usually
bi-directional links and can be navigated back and forth
as an un-oriented navigational model of the CDOG
model. With such a bi-directional link feature activated,
any object in the navigation model in a given CDOG
model can be used as a navigation entry point. In an
oriented link navigation model, the link may be set as
an oriented link accessible from a single direction.
Thus, changes must be made from top down or from
bottom up on a relationship tree representation of the
navigation model, and some actions may need to origi
nate from a pre-set node of the relationship tree. In this
embodiment, Such types of links can be created,
accessed, Supported and correctly managed via the
Coconavigator API.

0114 (d) dynamic link proxy properties
0.115. In a preferred embodiment, the Coconavigator
API, or an associated computer program module, is
configured to permit a user to populate any object
property (e.g., public field or a getter/setter pair) having
its type declared as an object class with special
dynamic proxies that can monitor and update the state
of a relationship link. Examples of such types of object
classes are thought.Cocobase.navapi. LinkObjProxy of
CocoBase and subclasses of the Sun Microsystems java
class, java. util. Vector or other similar collection
classes. Bi-directional or single directional object ref
erences can be consistently maintained in this manner,
or by other similar logical mechanisms.

0116 (e) automatic synchronization of object properties
0.117) In a preferred embodiment, the Coconavigator
API, or an associated computer program module, can
be configured to automatically merge a data object and
its properties into a CDOG navigation model represen
tation when the class of object being navigated (being
created, accessed, Supported or maintained) has a prop
erty (e.g., a field or a getter/setter pair) with a name
matching the name of a corresponding link as defined
in the navigation model.

0118 (f) pure object models
0119). In a preferred embodiment, the Coconavigator
API, or an associated computer program module, can
be configured to include a data object as a relationship
link to another data object in a navigation model
without the need to declare fields and properties for the
data object. Such links should be limited however to
cases where no computer code dependency will exist

a visitor object to use this interface to visit (e.g., access
or change) a data object that is part of a CDOG
navigation model. In conjunction with CocoBase, an
example of Coconavigator API implementing this con
cept might using a LinkVisitor object (class). Other
similar classes may be defined for this purpose. The
visitor interface provides a way for a user to customize
and adapt the software, and thereby allows a user to
extend the functionality of the Coconavigator API, or
the functionality of an associated computer program
module, to provide a desired customizable behavior in
their CDOG navigation model.

0.122 (h) distributed environments
0123. In a preferred embodiment, the Coconavigator
API, or an associated computer program module, can
be configured to operate as a tool to create, access,
Support and correctly manage a CDOG navigation
model in a server environment (e.g., in an EJB con
tainer) and to persist any changes to the CDOG navi
gation model when a navigation model is distributed
across a local network or when the navigation model
involves a distributed network (e.g., a navigation model
distributed across internet connections). In one aspect,
on the server side of the network, a CDO or a CDOG
model of any complexity sent by clients (e.g., serialized
copies) across a local network, or across a distributed
network, can be correctly merged into a CDOG model
by the Coconavigator API, or by an associated com
puter program module. Additionally, the Coconaviga
tor API, or an associated computer program module,
can be configured to send a CDO or CDOG model to
a client along with link proxies serialized with parts of
the CDO or CDOG model that are being monitored by
such link proxies. By sending the CDO or CDOG
model copy along with Such link proxies and associated
parts of the CDOG or CDOG model to a client,
dynamic link proxies (described above in (d)) can be
used by the client side. Accordingly, a CDOG naviga
tion model can be created, accessed, Supported, man
aged and persisted over a distributed network.

0.124 (i) group loading or lazy loading of links
0.125. In a preferred embodiment, the Coconavigator
API, or an associated computer program module, can
be configured to monitor some or all of the data objects
(and associated relationship definitions) participating in
links of a CDOG navigation model. In a more preferred
embodiment, the data objects (and associated relation
ship definitions) participating in links of a CDOG
navigation model can be loaded as they are needed
(lazy loading) from a persistent data source or from
another type of information repository. This lazy load
ing feature can permit a very large CDOG navigation

US 2007/00 16608 A1

model to be loaded in a per-link basis as needed. In a
more preferred embodiment, the lazy loading feature
can be configured to prevent a link from being loaded
twice and can be configured to detect cycles of related
loads that have been previously loaded. Such configu
ration adaptability can be exploited to provide the more
efficient use of the resources for a computer system or
network or for a distributed computer network.

0126 Some examples of preferred features that can be
provided by the Coconavigator API and its associated
software, which are particularly enhanced when utilized
with the currently existing CocoBase mapping tool, are as
follows:

0127 (aa) CocoBase transactions
0128. A preferred embodiment of the Coconavigator
API or an associated program module is configured to
bind a data object or data object relationship of a
CDOG navigation model with a CocoBase transaction.
Such configurations may be utilized to optimize access
to the database server and to enhance performance of
the computer system, or systems, involved with the
CDOG navigation model.

0129 (bb) non-CBProp objects
0.130. The Coconavigator API or an associated pro
gram module can be configured to automatically detect
non-CBProp objects (objects with classes that do not
implement the CocoBase persistence interface known
as the CBProp interface), and automatically create
proxies in order to persist Such objects as part of a
CDOG navigation model. This is based on the Java
Bean naming patterns in the Java Language specifica
tion of Sun Microsystems, Inc.

0131 (cc) virtual foreign key fields
0.132. The Coconavigator API or an associated com
puter program module can be configured to use proxy
classes of CocoBase, such as the CocoProxyM classes,
when appropriate. Implementing proxy classes such as
the CocoProxyM classes can provide a system for
creating, accessing. Supporting, properly maintaining
and persisting virtual foreign key fields (i.e., foreign
key fields do not need to be defined in the object class
for Java programming implementations) by the Cocon
avigator API, or by an associated computer program
module.

0.133 (dd) transparent persistence
0.134. The Coconavigator API or an associated com
puter program module can be configured to use a
configurable network component capable of acquiring
and persisting CDOGs through network APIs and
thereby provide persistence transparently with respect
to the applications that are using the CDOGs. In a
preferred implementation, there is provided a software
tool comprising the Coconavigator API that is adapted
for a local network or for a distributed network envi
ronment, wherein the software tool provides persis
tence in an object oriented language environment trans
parently by implementing a configurable network
component capable of acquiring and persisting
CDOGS. Such a concept may be referred to as trans
parent persistence in the context of this API, because

10
Jan. 18, 2007

persistence can be obtained without requiring recon
figuring of an existing CDOG model or Software appli
cation in order to provide Such persistence to a com
puter Software application.

0.135 (ee) transparent persistence with automated APIs
that may be further optionally utilized with a local or
distributed implementations such as a session bean imple
mentation

0.136. The CBFacade or other modules containing high
level APIs can be utilized that can function in place of
the Coconavigator API (or co-ordinate with it) to
automate many of the transparent persistence functions.
Such a software module or modules can be utilized in
concert with a local or distributed implementation such
as a session bean to provide an easier and quicker
establishment of transparent persistence. The CBFa
cade can provide the functions as defined in (dd) and
the session bean can provide a communication link
between modules such as a transaction API and the
navigation API (and/or with the CBFacade) to assure
that transparent persistence occurrs as required. Such
transparent persistence in the context of this API can be
obtained without requiring reconfiguring of an existing
CDOG model or software application in order to pro
vide Such persistence to a computer Software applica
tion.

0.137 From the above description of features of the API,
and the features of the Coconavigator API programming
routines described below, an object computer language
programmer can produce an API having the functionality of
the Coconavigator API described herein. Essentially the
Coconavigator API has an at least one user access interface,
at least one data source access interface and at least three
main programming modules consisting of the following
programming modules or routines:

0.138 I. A programming module or routine constructed
to operate on a computer system and to provide the
following features to a user or to a software program
module of the computer system:
0.139 a) a computer programming sub-routine or
sub-module for obtaining from a member selected
from the group consisting of a data source, an
information repository, and an input device, Sufi
cient information to construct a CDOG model con
taining one or more CDOGs,

0140 b) a computer programming sub-routine or
Sub-module for constructing and loading into the
memory registers of the computer system a CDOG
or a CDOG model representation definition from a
data source or other repository, and

0141 c) a computer programming sub-routine or
Sub-module for sending a copy of some portion or all
of the CDOG representation definition to a user or to
a Software program module on a local computer
system or on a distributed network;

0.142 II. A programming module or routine con
structed to operate on a computer system and to provide
the following features to a user or to a software
program module of the computer system (i.e., a per
sistence manager)

US 2007/00 16608 A1

0.143 a) a computer programming sub-routine or
Sub-module for monitoring a user or a software
program module on a computer system that has
accessed or changed a portion of a CDOG or CDOG
model, which is included in the CDOG, or CDOG
model, representation definition of (I), above, and
obtaining any changes to the CDOG or CDOG
model,

014.4 b) a computer programming sub-routine or
Sub-module for monitoring a user or a software
program module on a computer system who has
obtained a copy of any portion of the CDOG, or
CDOG model, representation definition, and for
obtaining a copy of any changes that the user might
have made to any portion of the CDOG, or CDOG
model, representation definition, and

0145 c) a computer programming sub-routine or
sub-module for comparing a copy of a CDOG,
CDOG model, or a representation definition of either
the CDOG or CDOG model, to an original stored
version of the CDOG, CDOG model, or an original
stored representation definition for the CDOG or
CDOG model, and for updating the original to incor
porate any changes to a CDOG or a representation
definition that are made by the user or by a software
program module; and

0146 III. A programming module or routine con
structed to operate on a computer system and to provide
the following features to a user or software program
module of the computer system:
0147 a) a computer programming sub-routine or
sub-module for storing a new CDOG or CDOG
model, or storing a definition of either the CDOG or
CDOG model, in a data source or in another infor
mation repository, and

0.148 b) a computer programming sub-routine or
Sub-module for persisting (saving to permanent stor
age) either a changed portion of an updated CDOG,
an updated CDOG model, or an updated definition
representation for either a CDOG or a CDOG model,
to a data source or to another type of information
repository.

0149. In a more preferred embodiment, the CDOG API
according to the invention, (a preferred embodiment is the
Coconavigator API) can be written with an interface that
accesses and uses functionalities of the CocoBase mapping
tool, associated programming routines, or associated class
libraries. Both the object code and the source code of the
CDOG API are contemplated as part of this invention.
0150. In another preferred embodiment, the above
described CDOG API can be accessed to create, maintain,
access, navigate and persisting complex data objects as a
CDOG model. In a particularly preferred aspect, the API can
be accessed by a computer software program Such as the
CocoBase mapping tool, or by a computer software program
module that is part of a software package including the API.
to provide at least one action selected from the group
consisting of creating, maintaining, accessing, navigating
and persisting complex data objects as a CDOG model. In an
even more preferred aspect, the present invention provides
Such an API as part of a software tool package having a
feature or method for displaying or printing a graph or set of
tables representing a CDOG or a CDOG model. In yet
another preferred aspect, such a software tool package

11
Jan. 18, 2007

including the API provides an interface for editing a CDOG,
a CDOG model, or for editing a representation definition for
a CDOG or a CDOG model to provide a modification that
implements a change to a CDOG, or to its definition.
0151. As described above, a software component accord
ing to the invention that is capable of persisting all or a
portion of a CDOG may be an Enterprise Java Bean selected
from the group consisting of Stateless, Stateful or even
Entity Beans. CocoBase Enterprise Beans (CBEBs) are a
preferred embodiment of the invention and constitute a set
of Enterprise Java Beans built upon or accessing CocoBase
Runtime and EJB APIs to provide persistence in a generic,
efficient and transparent way. Distributed transparent per
sistence can be provided without the need for any object
model changes or byte code modifications. CBEBs can be
directly deployed on an EJB server with or without custom
ized settings and are capable of persisting virtually any Java
Object, any Java Object graph or any portion of the Object
graph. The Java Objects of any complexity that are arbi
trarily created by client applications can be persisted, and the
corresponding object classes can be properly mapped to a
CocoBase repository or other object repository Such as a
UML, XMI repository. Copies of the Java Object, any
portion of an Object Graph, or all of an Object Graph can be
automatically reconciled and the changes can be persisted to
a storage repository.
0152 The CocoBase Navigation API maps database for
eign key-primary key relationships to object references. The
relationship maps (sometimes referred to herein as naviga
tion models), like the database maps, are stored in a special
CocoBase repository, or may be converted into an XML file
(or files) and stored in a stand-alone file or directory. The
Navigation API supports 1 to 1, 1 to M, and M to M links
in both the object and relational spaces. For M to M
relationships, an associative table and a corresponding asso
ciative map are required, since relational databases do not
directly support M to M relationships.
0153. A navigation model must be created, or properly
reference, before CocoBase links can be defined. A naviga
tion model is a namespace used to categorize and store a set
of link definitions. Generally, a single navigation model is
Sufficient for simple applications. Multiple navigation mod
els are useful if an application switches between several
relationship configurations. This allows different views of
complex object data for the same set of underlying database
tables. Having relationship mapping separated from table
mapping is unique to CocoBase. Since maps can be used
with multiple link models, it provides reusability at the
mapping level.
0154 Below is an example of how a client application on
an EJB Server could connect to and use at least on CBEB to
provide transparent persistence, even in a distributed envi
rOnment.

EXAMPLE 1.

O155)

// create a complex object having myObi as the root of the tree

Context initialContext = new InitialContext();
SfcmbHome cmbHome =

(SfCmbHome).javax.rmi.PortableRemoteobject.narrow(
initialContext.lookup(java:comp/envieibisfembhome'),

US 2007/00 16608 A1

-continued

SfcmbHome.class);
Sfcmb myCmb = SfGmbHome.create(...f*connection
details* (...);
if create an example object
MyObject myObj = new MyObject();
myObj.setSomeField(someValue);
fi now ask the CMB to load the object from the database that

matches the example
myObi = myCmb.retrieveState(myObi);
myCmb.saveState(myObj);

i? do some more changes to my ComplexObject and save it again

myCmb.saveState(myObj);

0156 The above example can also be use to run a client
application with the TomCat Server using a JSP to access a
relational database (such as the Oracle Database) using at
least CBEB to provide transparent persistenct, even in a
distributed environment. Appendix 1 has more details of
how this can be done.

0157 Below is another example of how a client applica
tion on an EJB Server could connect to and use at least on
CBEB to provide transparent persistence, even in a distrib
uted environment. This example uses the CBFacade imple
mentation.

EXAMPLE 2

0158

// create a complex object having myObi as the root of the tree

CBFacade cbf=
CBFacade.create(“thought.CocoBase. CBFacadeLocal');
Properties props = new Properties();
props.put("cocosource.name.argsO);
props.put("cocosource.jdbcdriver.args 1);
props.put("cocosource.url''...args2);
props.put("cocosource.user'.args3);
props.put("cocosource-password.args4);
props.put("cocosource.navmodel,“Company Applinks);
cbfconnect(props);
if create an example object
MyObject myObj = new MyObject();
myObj.setSomeField(someValue);
fi now ask the CMB to load the object from the database that

matches the example
myObi = cbfload(myObj);
cbfsave(myObi);

i? do some more changes to my ComplexObject and save it again

cbfsave(myObi);

Variable

JAVA HOME
PATH

COCO HOME

12

Entry

C:\jdk1.3.1
C:\WINNT\System32;%JAVA HOME%\bin

C:\thought\cocodemo3tier31

Jan. 18, 2007

0159. The present may be embodied in specific forms
other than those particularly described above or illustrated
by the appended drawings. Upon viewing the present appli
cation preferred embodiments and other descriptions herein
of the present invention, variations and other implementa
tions that do not depart from the spirit and scope of the
present invention will be apparent to one of routine skill in
this field. Such variations and other implementations are
considered part of the present invention and within the scope
of the appended claims. Accordingly, reference should be
made to the appended claims, rather than to the forgoing
specification and drawings, as indicating the scope of the
present invention.

Appendix 1: A JSP Example Using the TomCat Server and
a Relational Database and providing Transparent Persistence
using CocoBase Enterprise OR

I. Set up a relational database such as Oracle 81 and create
a user called cityinfo.

II. Install TomCat as follows:

0.160) 1. Install the TomCat Server 4.0.x by simply
unpacking the binary distribution (Zip) into a convenient
location.

0.161. On a Windows platform, open a command prompt
and proceed as follows:

C> col X
C> jar Xfjakarta-tomcat-4.0.X. Zip
On a Unix platform, open a command prompt and do something like:
fusr/local/bin/ojar Xfjakarta-tomcat-4.0.X.zip

0162 2. Run the script jakarta-tomcat-4.0.X/bin/startup
and open a browser on http://localhost:8080 to test the
installation. The Jakarat Project Home page displaying
the Tomcat logo will appear in your browser.

0163. 3. Run the script jakarta-tomcat-4.0.X/bin/shut
down to stop the server.

III. Configure the Environment as follows, while adjusting
the environment to match a chosen relational database
(this example uses Oracle8i as the relational database):

0164. The following system variables are set for the
applications to access the proper files and libraries. Set these
variables through the Windows Control Panel under the
System properties dialog. Example entries for these vari
ables are listed below:

Description

JDK home directory
JDK utilities

Windows executables

CocoBase home directory

US 2007/00 16608 A1

-continued

Variable Entry

CATALINA HOME C:\jakarta-tomcat-4.0.1
ORA HOME C:\Oracle\Ora81

IV. Installing CocoBase Enterprise O/R
Before installing Coco Base Enterprise O/R, confirm that it
is a current release. The installation file will have the
following naming format:

install cocodemotierXX XXXX.class

This is a fully functional copy of the software with a 30 day
evaluation license. When license expires, the software will
not function unless a commercial license is obtained and
installed. In the directory containing the installation file,
enter the following command:

java install cocodemo3tier31 0516

The last four digits correspond to the software release date
and may be different, than listed, for the latest release. If
java.exe is not in the system PATH, an error will occur. If the
environment is configured properly, the installer displays the
initial CocoBase Intallation “Welcome dialog.
The default settings should be selected during the installa
tion. Fill in the user information fields completely to ensure
the proper installation of the software. If the software will be
used for commercial purposes, be sure to obtain a commer
cial license.

V. Configuring CocoBase Enterprise O/R for the Database
In this example, the database used is Oracle. Therefore, a
specific User/Schema name must be specified in the Ora
cle.properties text file to view the details of that User/
Schema in Coco Admin (GUI interface for CocoBase).
Locate and open the Oracle.properties file in the
thought\cocodemo3tier31\demos\resources directory.
Change the SCHEMANAME entry from SCOTT to CITY
INFO.

Edit the Coco Admin.properties text file, in the same direc
tory, to permanently change the login entries for Coco Ad
min. Locate the Oracle Thin entries and make the following
changes:

0.165 Change the COCOUSERID to CITYINFO
0166 Change the COCOPASSWORD to CITYINFO.

ange the Oracle Thin entry O167 Ch. he Oracle Thin COCODBURL
to the name of the database host server (e.g.
jdbc.oracle:thin:(alocalhost:1521:ORCL).

VI. Configuring the TomCat Server

The following steps describe how to configure the runtime
classpath and an Oracle data source for the TomCat
Server.

Setting up the Server Classpath

CocoBase runtime classes plus Oraclejdbc driver classes
need to be included in the jVm process that runs
TomCat. In order to do that, it is necessary to modify
the script that launches TomCat as follows:

Jan. 18, 2007

Description

TomCat home directory
Oracle home directory

0168 1. Open the script file %CATALINA HOME%/
bin/catalina.bat (Windows) or %CATALINA
HOME%/bin/catalina.sh (Unix) in your favorite text

editor

0.169 2. Look for the “setup classpath' section and edit
the settings of the environment variable CP to include
cocobase runtime classes and resources and oracle jabc
driver classes as exemplified below:

SET CP=%CP%;%COCO HOME%\classes;%COCO HOME%\demos:
%ORA HOME%\jdbc\lib\classes12.zip

Another alternative is tO copy
%COCO HOME%\demos\Coco Deploy.jar (to generate it,
use the script %COCO HOME%/demos/mkcocodirs) and
other required Java archives (e.g. oraclejdbc driver classes)
to 96CATALINA HOME%/common/lib, but note that these
files need to terminate with jar (Zip files need to be renamed
to jar).
Creating a DataSource for the Cityinfo Application
An Oracle indi datasource properly configured is required
for the TomCat server. All datasource configuration is stored
in the file %CATALINA HOME%/conf/server.xml. The
following steps describe how to add a dataSource entry to
this configuration file.
1. Open the configuration file %CATALINA HOME%/
conf/server.xml in your favorite text editor
0170 2. Edit the <Host> section by adding a <Default
Contexts entry like the following:

<Host...)

<DefaultContexts
<Resource name="dbc/MyObjDataSource' auth="Container

type="javax.sql. DataSource''>
<Resource.Params name="dbc/MyObjDataSource's

<parameters <name>user-/name><values cityinfo</values
<?parameters
<parameters <name>password</name><values cityinfo</values
<?parameters
<parameters <name>driverClassName</name>

<values oracle.jdbc.driver.OracleDriver.</values <?parameters
<parameters <name>driverName</name>

<valuesdbc:oracle:thin:(a)localhost:1521:ORCL</values
<?parameters

</ResourceParams>
</DefaultContexts

</Hosts

3. If the server is already running, make Sure it is restarted.
VII. Generating the TomCat Application Object Code with
CocoBase Enterprise O/R

US 2007/00 16608 A1

0171 Standard code generation with Coco Admin of
CocoBase Enterprise O/R is utilized to produce the JSP
for TomCat, which procedures are generally known in
the art as described in prior publications by Thought,
Inc regarding CocoBase Enterprise O/R. However, at
the Code Generation Template pull-down menu of
Coco Admin the user need to select JSP for Entity Bean
from the pull-down Java Code generation menu list.
The other general procedures of Coco Admin are fol
lowed to produce the generic web application (WAR
file).

VIII. Deploying the Generated Web Application (WAR
file) in TomCat

0172 1. Copy the generated war file to %CATALINA
HOME%/webapps

0173 2. Start the TomCat server by opening a com
mand prompt and running the Script
%CATALINA HOME%\bin\startup. This will expand
the War file under the
%CATALINA HOME%\webapps directory.

Notes:

0.174. At startup, check if the CLASSPATH entry
includes all CocoBase and Oraclejdbc driver classes to
make Sure the startup Script was properly edited.

0.175 To redeploy the war file, make sure you delete
the old war file along with the whole expanded direc
tory Structure under the
%CATALINA HOME%\webapps before copying the
new war file; then, restart the server.

IX. Viewing the Deployed Generated Web Application
(Cityinfo JSP)

The user is now ready to connect to the Cityinfo JSP. Be
sure that the TomCat Server has been started. Open a
web browser and enter the following URL:
http://localhost:8080/Cityinfo/Cityinfo

A webpage is displayed with a title of “Citylnfo Gener
ated Default JSP, or the like. The web page contains
entry fields of "Name' (* indicates that this is a primary
key field), "Country” and “Population' and allows the
actions of “Insert”, “Update”, “Delete” and “Find” for
Such entries.

Any entries made, updated or deleted in this JSP are
automatically persisted to the relational data source by
CocoBase.

The three primary source code listing for the above
application are set forth below.

Displayable Presentation Page (Cityinfo JSP)
Example

Written in HTML Format with Embedded Java
Code

0176) This Cityinfo JSP is an example of a displayable
presentation page that has embedded within the presentation
page mark-up language Some necessary object programming
language logic. Coco Admin automatically generates the
HTML and embedded Java code of this JSP (displayable
presentation page) along with the Java Code for a First Java

14
Jan. 18, 2007

Object (JSP Processor Object), and a Second Java Object
(Business Object) from an object to relational Schema map
corresponding to a relational data source in the above
example. However, these same object code listings could
have been hard coded by hand by a competent programmer
and/or produced from information taken from another
source such a UML/XMI object model, directly from a
relational data source, or from the database schema for a
data source.

0177. The presentation mark-up language (in this
example HTML) provides a WEB page (presentation page)
to display the names of three attributes of a Cityinfo Object
“Name”, “Country', and “Population' (may be referred to as
fields in a corresponding data Source) with 4 possible actions
“Insert”, “Update”, “Delete” and “Find” and a button
labeled “Submit for executing one of the four possible
commands (actions). The embedded Java code in this City
info JSP example communicates directly with the First Java
Object (the object is a JavaBean in this example, which may
be referred to as a JSP Processor Class) and also references
the name of the Java Bean (JSP Processor Class) having the
logic for carrying out or delegating the “insert/create”.
“update”, “delete”, “select/find and “submit commands of
the JSP and logic for tracking the values and properties of
the three named attributes/fields in this example.

html>
sp:useBean id="CityinfoProcessor scope="session'
ass="Cityinfo..CityinfoJspProcessor is
sp:setProperty name="CityinfoProcessor property='' is

html>
head>
itle>Cityinfo JSP</title>

body background="back.gif>
ont size = 5 color="#CC0000's
h1s<centers Cityinfo JSP Example.<?centers</h1s
lix

orm method=POST action=Cityinfo.jsp>

inter Values to lookup a specific Object.

br>Name <INPUT type=text name=''name size=“8”
alue="<jsp:getProperty
ame="CityinfoProcessor property=''name is >

Country
NPUT
pe=text name="country size="8" value="<jsp:getProperty
ame="CityinfoProcessor property="country is >

Population
NPUT type=text name="population size="8" value="<sp:getProperty
ame="CityinfoProcessor property="population' is >

<h2>Action :</h2>
<INPUT type="radio' name="action value="create's Insert
<INPUT type="radio' name="action value="update's Update
<INPUT type="radio' name="action value="delete's Delete
<INPUT type="radio' name="action value="select's Find
as

<INPUT type=submit name="submit value="Submit's
<f forms
FONT

US 2007/00 16608 A1

Cityinfo First Object Java Code Example

0178. This CityinfoJspProcessor Object is a First Java
Object (in this case a Java Bean) that Coco Admin generates
along with the JSP (displayable presentation page) and the
Second Java Object. Coco Admin generates this JSP Proces
Sor Java code and compiled Java Class from an object to
relational schema map corresponding to a relational data
Source, however these same object code listings could have
been hard coded by hand and/or produced from another
information source UML/XMI or directly from the database
schema. Further, the Java Code of the First and Second
Objects could have been consolidated into a single object,
but this would have violated the specification for Java and
JSPs and also reduced the programming flexibility of the
system. By placing the more complex logic in the business
object (second object) and keeping it separate from the JSP
Processor Object (first object), the JSP and first object can be
utilized by multiple applications.

0179 This First Java Object is a Java Bean that refer
ences and represents the attributes of its corresponding JSP
(displayable presentation page) and includes programming
logic to execute the commands (or to delegate the execution
of such commands) of the JSP, as described above. Since
using standard JSP standards and Java Procedures would
only permit the handling of a limited number of data types,
this First Java Object references the Second Java Object
(Cityinfo Object) which also reflects the data and data types
(attributes of the First Java Object) but includes more
business logic to convert forward/reverse data types at the
discretion of the programmer by merely editing the business
logic. An example of the programming code for the First
Java Object is set forth below:

package Cityinfo;
import.java.sql.*:
import.java.io.;
importavax.naming.Context;
importavax.naming.InitialContext;
importavax.transaction. UserTransaction;
import java. util.*:
import.java...math.;
f:
* EJB Jsp Processor Class Generated by Coco Admin from
THOUGHT Inc.
:

* Copyright (c) 1995-2000 THOUGHT Inc. All Rights Reserved.
: if
public class CityinfoJspProcessor implements java.io. Serializable
{
private String action = null;
private CityinfoHome cityinfoHome:
private UserTransaction utX = null:
public CityinfoJspProcessor() {

try {
Properties env = System.getProperties();
Context ic = new InitialContext(env);
try {
utX = (UserTransaction)

ic.lookup(avax.transaction.UserTransaction);
} catch (Exception e) {
System.errprintln (“Couldn't Create User Transaction!!!');
e.printStackTrace();

cityinfoHome = (CityinfoHome) ic.lookup(“CityinfoApp');
} catch (Exception re) {

System.errprintln (“Couldn't locate Cityinfo Home');
reprintStackTrace();

Jan. 18, 2007

-continued

reset();

public String getAction() {
return action;

public void setAction(String a) {
System.out.println("Setting action : + a);

action = a:

f:
* Get the attribute name value.
* (a)return name Returns the database attribute value is current set

tO.
: *

public String getName()

return name:

f:
* Get the attribute country value.
* (a)return country Returns the database attribute value is current

Set to.
:
public String getCountry()

return country;

* Get the attribute population value.
* (a)return population Returns the database attribute value is

current Set to.
: *

public Integer getPopulation()
{

return population;

f:
* Set the attribute name value.
* (aparam in name the database attribute value to set the variable

tO.
: *

public void setName(String n name)
{

name = n name:

f:
* Set the attribute country value.
* (aparam in country the database attribute value to set the variable

tO.
: *

public void setCountry (String in country)
{

country = n country;

f:
* Set the attribute population value.
* (aparam in population the database attribute value to set the

variable to.

public void setPopulation.(Integer n population)

private String name = null:
private String country = null:
private Integer population = null:
f:

population = n population;

* Check to see if values are equal - this should be based on key
fields.

:

* (aparam in population the primary key instance to compare to.
:::::: f

public boolean equals(Object t CityinfoJspProcessor)

if (! (t CityinfoJspProcessor instanceof

US 2007/00 16608 A1

-continued

CityinfoJspProcessor))

CityinfoJspProcessor t CompareCityinfoJspProcessor =
(CityinfoJspProcessor)t CityinfoJspProcessor;

ift CompareCityinfoJspProcessor.name == null)

return false:

{
if name = null)
{

return false:

else ift CompareCityinfospFrocessor.name.equals(name))
{

return false:

return true:

private void reset() {
final String emptyString = ":
final Integer ZeroInteger = new Integer(O);
final BigDecimal ZeroBigDecimal = new BigDecimal(0);
final Short ZeroShort = new Short(short)0);
final Long ZeroLong = new Long(long)0);
final Timestamp ZeroTimestamp = new Timestamp (long)0);
final Time ZeroTime = new Time((long)0);
final Float ZeroFloat = new Float((float)0);
final Double zeroDouble = new Double((double)0);
final byte emptyByte = new byte();
final java.sql. Date ZeroDate = new java.sql. Date((long)0);
setName(emptyString);
setCountry (emptyString):
setPopulation(zeroInteger);

public String toString() {
StringBuffer output = new StringBuffer();

output.append (name='+getName());
output.append (country='+getCountry());
output.append (population=+getPopulation());

return output.toString();

// Perform the action requested by user. Return status.

public String process Request() {
CityinfoInterface cityinfo = null:
String message = “:
System.out.println("Process request called ');
System.out.println(this);
try {

if action...equals("create)) {
CityinfoPK cityinfopk = new CityinfoPK();

try {
utX.begin();
cityinfopk.name = getName();
cityinfo = cityinfoHome.findByPrimaryKey(cityinfopk);
setCountry (cityinfo.getCountry());
setPopulation(cityinfo.getPopulation());
if cityinfo = null) {
message = “Entity bean "+cityinfopk+ already exists!

Duplicate Bean cannot be created:
utX.commit();
return message;

} catch (Throwable t) {
fit.printStackTrace();

futx.rollback();

try {
futX.begin();

cityinfoHome.create(getName(), getCountry(),
getPopulation());

message = “Created Cityinfo
utX.commit();

} catch (Exception e) {

+ cityinfopk + '':

Jan. 18, 2007

-continued

e.printStackTrace();
message = “Exception on Cityinfo Create='+e:

else if action.equals("update)) {
try {

utX.begin();
CityinfoPK cityinfopk = new CityinfoPK();
cityinfopk.name = getName();
cityinfo = cityinfoHome.findByPrimaryKey(cityinfopk);
setCountry (cityinfo.getCountry());
setPopulation(cityinfo.getPopulation());
message = “Set Cityinfo + this:

utX.commit();
} catch (Exception e) {

message = “Exception on Cityinfo Update='+e:

else if action.equals(“select)) {
try {

CityinfoPK cityinfopk = new CityinfoPK();
cityinfopk.name = getName();
cityinfo = cityinfoHome.findByPrimaryKey(cityinfopk);
setCountry (cityinfo.getCountry());
setPopulation(cityinfo.getPopulation());
message = “Found Cityinfo + this:

} catch (Exception e) {
message = “Exception on Cityinfo Select='+e:

else if action.equals(“delete)) {
try {

utx.begin();
CityinfoPK cityinfopk = new CityinfoPK();
cityinfopk.name = getName();
cityinfo = cityinfoHome.findByPrimaryKey(cityinfopk);
cityinfo.remove();
message = “Removed cityinfo + cityinfopk;
cityinfo = null;

utX.commit();
} catch (Exception e) {

message = “Exception on Cityinfo Delete='+e:

if cityinfo = null) {

else {
reset();

catch (Throwable e) {
message = e.toString();

return message;

Cityinfo Second Object Java Code Example

0180. This Cityinfo Object is a Second Java Object that
Coco Admin generates along with the JSP (displayable pre
sentation page) and the First Java Object. Coco Admin
generates the HTML with inbedded object code (JSP), a
First Java Object (JSP Processor Object), and this Second
Java Object (Business Object) from an object to relational
schema map corresponding to a relational data source,
however these same object code listings could have been
hard coded by hand and/or produced from another informa
tion source UML/XMI or directly from the database schema.
Further, the Java Code of the First and Second Objects could
have been consolidated into a single object, but this would
have violated the specification for Java and JSPs and also

US 2007/00 16608 A1

reduced the programming flexibility of the system. By
placing the more complex logic in the business object
(second object) and keeping it separate from the JSP Pro
cessor Object (first object), the JSP and first object can be
utilized by multiple applications.

0181. This Second Java Object (Java object in this case)
is a separate business object that sits in the programming
logic flow chart between the First Java Object (JSP Proces
sor Class) and the persistence library or persistence API.
This Second Java Object reflects the data of the first Java
Object (JSP Processor Class) and allows for further process
ing to create additional data types from the reflected data
types and to translate backwards to the more limited
reflected data types that are displayed by the JSP. This
provides more complete support for all Java Data Types that
might need to be properly retrieved from a data source and
persisted back to that or another data source (the Java JSP
Processor specification as established by SUN Microsys
tems, Inc. only Supports a small, more limited Subset of Java
data types). This Second Java Object processes commands
passed to it by the JSP via the First Java Object and
automatically translates and reverse translates the data types
passing through it to the appropriate data types for display
ing or persisting. This further processing allows more com
plex data types and business logic to be communicated with
the persistence library or persistence API than would be
possible if the JSP Processor Class communicated directly
with the persistence library or API (unless the JSP specifi
cation is violated by editing the JSP Processor Class source
code (First Java Object Code) to include additional logic
within the JSP Processor Class). An example of the Java
Code for this Second Java Object, i.e., the Cityinfo Object
(business object) is set forth below:

package Cityinfo;
import thought.CocoBase.*:
import.java...math.;
import.java.sql.*:
import java. util.*:
import.java.io.;
import.java.lang.:
f:
* Generated by GenCBClass from THOUGHT Inc.
:

* Copyright (c) 1995.2000 THOUGHT Inc. All Rights Reserved.
:

public class Cityinfo extends Object implements
Cloneable.java.io. Serializable,CBProp, thought.CocoBase.EJBPrimaryKey

f:
* Constructor for Cityinfo.
*/
public Cityinfo()

* Get the attribute name value.
* (a)return name Returns the database attribute value is current set

tO.
*/
public String getName()

* Get the attribute country value.
* (a)return country Returns the database attribute value is current

return name:

Jan. 18, 2007

-continued

Set to.
*
public String getCountry()

return country;

* Get the attribute population value.
* (a)return population Returns the database attribute value is

current Set to.
*
public Integer getPopulation()
{

return population;

f:
* Set the attribute name value.
* (aparam in name the database attribute value to set the variable

tO.
*
public void setName(String n name)

name= n name:
if(name == null) nameNullIndicator = true;
else

nameNullIndicator = false:

f:
* Set our Query Condition for column name for dynamic querying.
*
public void modifyNameMatch (int t match) {

nameMatchCondition = t match;
}
f:
* Get our Query Condition for column name for dynamic
querying.

*
public int retrieveNameMatch() {

return nameMatchCondition;

f:
* Set the attribute country value.
* (aparam in country the database attribute value to set the variable

tO.
*
public void setCountry (String in country)
{

country= n country;
if country == null) countryNullIndicator = true:
else

countryNullIndicator = false;

f:
* Set our Query Condition for column country for dynamic querying.
*
public void modifyCountryMatch(int t match) {

countryMatchCondition = t match;

f:
* Get our Query Condition for column country for dynamic
querying.

*
public int retrieveCountryMatch() {

return countryMatchCondition:

f:
* Set the attribute population value.
* (aparam in population the database attribute value to set the

variable to.
*
public void setPopulation.(Integer n population)
{

population= n population;
if(population == null) populationNull Indicator = true;
else

populationNullIndicator = false;

US 2007/00 16608 A1

-continued

f:
* Set our Query Condition for column population for dynamic

querying.
*/
public void modifyPopulationMatch(int t match) {

populationMatchCondition = t match;

f:
* Get Our Query Condition for column population for dynamic

querying.
*/
public int retrievePopulationMatch() {

return populationMatchCondition;

f:
* Implement clone so update method works correctly
*/
public Object clone()
{

Cityinfo retObject = new Cityinfo();
retObject.setName(name);
retObject.setCountry (country);
retObject.setPopulation (getPopulation());
return retObject;

f:
* Implement toString() to properly print contents
*/
public String toString()
{

String strout =
“name=''name
“ country='+country--
population=-population+

“n”;
return strout:

f:
* Take Properties result set received from database, and populate
* Object's Data fields.
* (aparam resultSet The data used in populating the Object's Data

fields
*/
public void setPropObjectData (Properties resultSet)
{

if resultSet.get("NAME) = null &&. (resultSet.get("NAME)
instanceof CBNull))

name = (String)resultSet.get("NAME);
else {

name = null:
nameNullIndicator = true:

if resultSet.get(“COUNTRY) = null &&
! (resultSet.get(“COUNTRY) instanceof CBNull))

country = (String)resultSet.get(“COUNTRY);
else {

country = null:
countryNullIndicator = true:

if resultSet.get(“POPULATION) = null &&.
! (resultSet.get(“POPULATION) instanceof CBNull))

population = ((Integer)resultSet.get(“POPULATION”));
else {

population = null;
populationNullIndicator = true;

f:
* Take the data in the Object's Data fields, and create a

CBQueryInfo
* instance, which can be used by CocoBase. Since fields are

identified
* by a key value defined by their name, field order is irrelevant

with
* this interface.

18
Jan. 18, 2007

-continued

* (a)return CBQueryInfo the Object's Data fields and query info
* (a see CBQueryInfo
*
public CBQueryInfo getPropCobjectData ()
{

cqi = new CBQueryInfo();
setProps = new Properties();
if(name = null) {

// Use the CBField Info to specify the match condition
if nameMatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(name);
cbfi.setSearchCriteria (nameMatchCondition);
setProps.put(“NAME.cbfi);

else
setProps.put(“NAME'...name);

else if(nameNull Indicator) {
// Use the CBField Info to specify the match condition
if nameMatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(name);
cbfi.setSearchCriteria (nameMatchCondition);
setProps.put(“NAME'new CBNull());

setProps.put(“NAME'new CBNull());

if country = null) {
// Use the CBField Info to specify the match condition
if countryMatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(country);
cbfi.setSearchCriteria (countryMatchCondition);
setProps.put(“COUNTRY.cbfi);

else
setProps.put(“COUNTRY...country);

else if countryNull Indicator) {
// Use the CBField Info to specify the match condition
if countryMatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(country);
cbfi.setSearchCriteria (countryMatchCondition);
setProps.put(“COUNTRY,new CBNull());

else
setProps.put(“COUNTRY,new CBNull());

if(population = null) {
// Use the CBField Info to specify the match condition
if population MatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(population);
cbfi.setSearchCriteria (populationMatchCondition);
setProps.put(“POPULATION.cbfi);

else
setProps.put(“POPULATION' population);

else if(populationNull Indicator) {
// Use the CBField Info to specify the match condition
if population MatchCondition = -1) {

CBFieldInfo cbfi = new CBFieldInfo();
cbfi.setSearchValue(population);
cbfi.setSearchCriteria (populationMatchCondition);
setProps.put(“POPULATION new CBNull());

else
setProps.put(“POPULATION new CBNull());

ifcbsqlwhere = null)
setProps.put(“CBSQLWHERE.cbs.dlwhere):

cqi.setFieldValues(setProps);
return cqi;

if Instance Variables.
protected String name = null;
protected boolean nameNullIndicator = false;
protected int nameMatchCondition = -1;

US 2007/00 16608 A1

-continued

protected String country = null;
protected boolean countryNullIndicator = false;
protected int country MatchCondition = -1;
protected Integer population = null:
protected boolean populationNullIndicator = false;
protected int populationMatchCondition = -1;
String cbsqlwhere = null;
CBQueryInfo cqi = new CBQueryInfo(); // CBProp custom query

Structure
public Properties setProps = new Properties(); // CBProp properties,

global for convenience
f:
* Check to see if values are equal - this should be based on key

fields.
* (aparam in population the State object to compare to.
*
public boolean equals(Object t Cityinfo)
{

if (t Cityinfo instanceof Cityinfo)) return false;
Cityinfo t CompareCityinfo = (Cityinfo)t Cityinfo:
ift CompareCityinfo.getName() == null) {

if name = null) return false;

else
ift CompareCityinfo.getName().equals (name))

return false:
return true:

f:
* Get the CbSQL special Query By example value.
* (a)return population Returns the qbe attribute value is current set

tO.
*/ public String getCbsqlwhere()
{

return cbSqlwhere:

f:
* set the CbSQL special Query By example value.
* (aparam population sets the qbe attribute value is current set to.
*/ public voi d setCbsqlwhere(String in cbsqlwhere)
{

cbsqlwhere= n cbsqlwhere:

Transparent Persistence with CocoBase
CocoBase accomplishes transparent persistence with java
object models without using bytecode manipulation, propri
etary interfaces or class hierarchy intrusion. This means that
no special classes or interfaces are needed in the Object
Model in order to do persistence with CocoBase. The only
requirement is that they must have a default constructor with
no arguments.

There are 3 basic Runtime components that are involved in
the transparent persistence of objects:

0182. The CocoBase Runtime O/R mapping class that
wrappers the JDBC driver and issues queries and does
the actual persistence calls. This is a class such as
thought.CocoBase. CocoPowder or thought.Coco
Base.CocopowderPlugin20 (for jabc 2.0 connections).

0183 The thought.CocoBase. Transaction object that
can track changes of instances, and acts as a change
buffer. If a Transaction object is used, then it only
calls a CocoBase Runtime driver O/R mapping runt
ime class—when the tXn.commit() is called.

0.184 The thought.CocoBase.navapi.Navigator object
that can track and detect changes in relationships based

Jan. 18, 2007

on Link definitions. Note that unlike CocoBase Maps,
Link models are not kept in the CocoBase repository.
Once a link definition model is created it is saved in the
demos/resources directory (by default—although this
can be overridden). As long as the model is in the
classpath either directly or in a subdirectory called
resources it will find the model properties file and
retrieve the navigation information.

The Navigator class can function in conjunction with a
Transaction object or it can function standalone. While
complex object graphs can be transparently managed
directly by the Navigator and without the Transaction
object, the use of the Transaction object is generally
preferred because of its buffering and update optimi
zations which only persist those attributes that have
changed.

Creating Applications with CocoBase Transparent Persis
tence

After classes have been generated and compiled, such as
with the above application, CocoBase runtime classes
can be used to persist instances of these classes. As
shown in numberous other documents in the art, the
CocoBase Navigator can easily develop a navigation
model for the application. This model can then be used
to persist the objects.

The Example below is not directed to persistence of the
Navigation model for the above Cityinfo application,
but the concepts can be easily applied to the Cityinfo
application to provide transparent persistence.

0185. First, open a CocoBase connection as follows:

Coco DriverInterface myBase = Coco DrivergetCoco Driver(
“thought.CocoBase. CocoPowder,
“org.hsql.jdbcDriver,
idbc:HypersonicSQL:hsql://localhost;
cocoprop=cocofactory=CocoProxyFactory”,
Sa,

)
if(myBase.connect() == -1) {

System.out.println("Failed connect!');
System.exit(1):

0186 Now create a CocoBase transaction object to man
age any objects that are retrieved. Notice how the transaction
object is configured through parameters and property set
tings.

thought.CocoBase. Transaction coco TXn =
new thought.CocoBase. Transaction (myBase, false);

Properties cocoTransProps = new Properties();
cocoTransProps.put(“preserveCommit’.“true);
cocoTransProps.put(“commitconnection’.“true);
cocoTransProps.put(“throw Exceptions'."true);
cocoTransProps.put(“updateConly ChangedColumns,"true);
cocoTXn.setProperties(cocoTransProps);
if Begin a new transaction.
cocoTXn.begin();

US 2007/00 16608 A1

0187. Then open a CocoBase Navigator object with the
Navigation model to be used and also we register the
Transaction object with the Navigation model:

// Instantiate a Navigator with the Link model created from
if the UML, XMI document
thought.CocoBase.navapi.Navigator navigator =
new thought.CocoBase.navapi.Navigator (my Base, "company);

if Assign the current transaction to the Navigator
navigator.setTransaction(cocoTxn);

0188 Now select the top level node to work with. Notice
our use of a CocoProxyM class which wrappers the pure
java object model class and gives the class the compatibility
with CocoBase through java reflection instead of requiring
any special interfaces in the java class itself

if Setup our object to query
Department dept = new Department();
department.setName(“SALES);
// This will read & bind all Department objects to the transaction.
Vector deptVector = myBase.selectAll(

new thought.CocoBase.CocoProxyM(dept),Department);

0189 The CocoProxyM is optional, the code example
below shows the same call without its usage.

// This will read & bind all Department objects to the transaction.
Vector deptVector = myBase.selectAll(dept, Department'):

0190. Now it is possible to step through each of these
objects and tell the retrieved object to be navigated through
the load AllLinks method which does the automatic naviga
tion for that object:

for(int i=0; i3 deptVectorsize(); i++) {
Department d = (Department)deptVector.element At(i);
if Because the cascadeLoad flag is set to true in the direction
if Department->Employees, the employees link will load automatically
d = navigator loadAllLinks(d."Department'):

Vector emps = d.getBmployees();
for (int j=0; j<emps.size(); j++) {

fi raise salaries by 20%
emp.setSalary(emp.getSalary()*1.2):

"
if Once changes are made to an object graph those changes can be
if synchronized using the update AllLinks method such as:
navigator.update AllLinkS(d. Department,true);

You can then commit the buffered changes with:
cocoTXn.commit();

These code introductions are quite Small, and can be done
entirely server side with Entity or Session beans in J2EE
environments with no model or object model intrusion. And

20
Jan. 18, 2007

for local non-J2EE applications the application intrusion is
incredibly Small, requiring a single method call for each root
node.

The Navigator Supports one-to-one, one-to-many and many
to-many relationships with cycle detection. It also detects
this locally (i.e. in the client application) or by reconciling
serialized or copied objects without any kind object model
or bytecode intrusion. This is truly transparent persistence
that is architected and designed for the VM oriented Java
language.

There are also more advanced applications included in the
demoS/pguide/navapi Subdirectory that demonstrate one-to
one, one-to-many and many-to-many relationships as well
as an EJB using the Navigator system to manage a graph of
java objects.

The Example below is not directed to persistence of the
Navigation model for the above Cityinfo application, but the
concepts can be easily applied to the Cityinfo application to
provide transparent persistence.

0191 First, open a CocoBase CBFacade Transparent
Persistence connection as follows:

// Set up the connection class - can be Local or Remote with EJB Server
CBFacade cbf=
CBFacade.create(“thought.CocoBase.CBFacadeLocal');
Properties props = new Properties();
props.put("cocosource.name'.argsO);
props.put("cocosource.jdbcdriver.args 1);
props.put("cocosource.url''...args2);
props.put("cocosource.user'.args3);
props.put("cocosource-password'args4);
props.put("cocoSource.navmodel,“Company Applinks);
cbfconnect(props);

0.192 Now select the top level node to work with. Notice
our use of a CocoProxyM class which wrappers the pure
java object model class and gives the class the compatibility
with CocoBase through java reflection instead of requiring
any special interfaces in the java class itself

if Setup our object to query
Department dept = new Department();
department.setName(“SALES);
// This will read & bind all Department objects to the transaction.
Vector deptVector = cbfloadAll(dept, Department'):

0193 Now it is possible to step through each of these
objects and tell the retrieved object to be navigated through
the load All method which does the automatic navigation for
that object:

for(int i=0; i3 deptVectorsize(); i++) {
Department d = (Department)deptVector.element At(i);
if Because the cascadeLoad flag is set to true in the direction
if Department->Employees, the employees link will load automatically
d = cbfloadAll(d."Department'):

Vector emps = d.getBmployees();

US 2007/00 16608 A1

-continued

for (int j=0; j<emps.size(); j++) {
fi raise salaries by 20%
emp.setSalary(emp.getSalary()*1.2):

if Once changes are made to an object graph those changes can be
if synchronized using the save method such as:
cbfsave(d."Department'):

You can then commit the buffered changes with:
cbfcommit();

These code introductions are quite Small, and can be done
entirely server side with Entity or Session beans in J2EE
environments with no model or object model intrusion. And
for local non-J2EE applications the application intrusion is
incredibly small, requiring a single method call for each root
node.

Both the above architecture and two implementations pre
sented herein are uniquely Suited to work in every appliction
from the tiny local app to the enterprise J2EE and to do so
with Superior performance and manageability.
I claim:

1. A system for creating or maintaining transparent per
sistence of a member selected from the group consisting of
a data object, an object graph model and a portion of an
object graph model when a user of the system is creating,
maintaining, accessing or navigating complex data objects
as a CDOG model, comprising:

a) a set of definitions for the relationships between a data
Source schema and objects capable of storing data for
an object language application, wherein the set of
definitions is stored in a repository;

b) a set of definitions for the relationships between objects
for an object language application, wherein the set of
definitions is part of an object application navigation
model;

c) a list of objects, or a set of objects that are to be
persisted, wherein the list of objects or set of objects is
part of an object application navigation model;

d) an object or set of objects as a programming module
that contains the logic capable of persisting an indi
cated object or set of objects;

e) an input method to provide the programming module of
d) with the location of information related to a), b) and
c), and

f) at least one data source to in which persisted data may
be stored.

2. A system according to claim 1, that does not require any
modifications to an object model or the inclusion of any
persistence byte code in the object model in order to provide
persistence for all or a portion of the the CDOG model.

3. A system according to claim 2, that provides persis
tence for a CDOG model on a distributed network environ
ment.

4. A system according to claim 1, further providing a
system for displaying, updating or creating the data or

21
Jan. 18, 2007

structure of one or more data objects, and optionally its links
to other objects of an object model, by utilizing a displayable
presentation page format wherein the displayable presenta
tion page source code contains embedded object program
ming code, and persisting one or more of a member selected
from the group consisting of an object, the data of an object,
links of an object, or an object model by having the object
programming code embedded in the displayable presenta
tion page directly or indirectly communicate with at least
one programming object that has has implemented in its
object programming logic methods for getting, setting, reset
ting and loading of data, and wherein the programming
object also includes programming code for communicating
directly or indirectly with a persistence manager API or
persistence library to persist one or more members selected
from the group consisting of an object, the data of an object,
a link to another object in an object model, and an object
model.

5. A system according to claim 4, wherein the displayable
presentation page is a JSP that is associated with a first Java
object referenced within the JSP source code, which is a JSP
processor class object, that is in turn associated with a
second Java object referenced by the first Java Object with
embedded business logic that reflects the data of the first
business object and can be tailored to provide additional
business logic for forward and reverse conversion of data
types acceptable for the JSP into data types to be stored in
a data Source.

6. A system according to claim 1, for creating or main
taining transparent persistence of a member selected from
the group consisting of a data object, an object graph model
and a portion of an object graph model when a user of the
System is creating, maintaining, accessing or navigating
complex data objects as a CDOG model, further comprising
a generic eb Stateful session bean.

7. A system according to claim 1, that does not require any
modifications to an object model or the inclusion of any
persistence byte code in the object model in order to provide
persistence for all or a portion of the the CDOG model,
further comprising a generic eb stateful session bean.

8. A system according to claim 2, that provides persis
tence for a CDOG model on a distributed network environ
ment, further comprising a generic eb stateful session bean.

9. A software module, or set of modules, for creating or
maintaining transparent persistence of a member selected
from the group consisting of a data object, an object graph
model and a portion of an object graph model when a user
of the System is creating, maintaining, accessing or navigat
ing complex data objects as a CDOG model, comprising:

i) a software module for creating a set of definitions for
the relationships between a data source Schema and
objects capable of storing data for an object language
application, wherein the Software module is capable of
causing the storage of the set of definitions in a reposi
tory;

ii) a software module for creating and accessing a set of
definitions for the relationships between objects for an
object language application, wherein the Software mod
ule is capable of causing storage of the set of definitions
in a navigation model;

iii) a software module providing an input means for a
member selected from an object name, a list of objects,
or a set of objects that are to be persisted, wherein the

US 2007/00 16608 A1

Software module is capable of capable of causing the
storage of the input as part of a navigation model that
can be access by ii);

iv) a software module containing the programming logic
to persist an object or set of objects based upon access
to (a) a set of definitions for the relationships between
a data source schema and objects capable of storing
data for an object language application, (b) a set of
definitions for the relationships between objects for an
object language application, and (c) an object name, a
list of objects, or a set of objects that are to be persisted,
and

V) a Software module having an input method capable of
informing iv) of the location of information relating to
iv)(a), iv)(b) and iv)(c).

10. A Software module, or set of modules, according to
claim 9, for creating or maintaining transparent persistence
of a member selected from the group consisting of a data
object, an object graph model and a portion of an object
graph model when a user of the system is creating, main
taining, accessing or navigating complex data objects as a
CDOG model, comprising Software code for generating,
accessing, or maintaining a generic eb stateful session bean
object.

11. A Software module, or set of modules, according to
claim 9, that does not require any modifications to an object
model or the inclusion of any persistence byte code in the
object model in order to provide persistence for all or a
portion of the the CDOG model, comprising software code
for generating, accessing, or maintaining a generic eib
stateful session bean object.

12. A Software module, or set of modules, according to
claim 9, that that provides persistence for a CDOG model on
a distributed network environment.

13. A Software module, or set of modules, according to
claim 9, that includes software modules automatically gen
erated from a relational data source schema, or generated
from an object to relational mapping resource, said Software
modules comprising:

a). at least one presentation page having embedded within
its source code object language programming logic that
references attributes of a data object and also referenc
ing at least one associated programming object for
excuting commands associated with navigating the

22
Jan. 18, 2007

presentation page, wherein the presentation page has an
ability to display the data of an object in an object
model, and to optionally display information regarding
at least one link of that object to another object in an
object model and/or to provide a labeled link button for
navigating to the presentation page of a linked object in
an object model, and

b). at least one associated corresponding programming
object containing programming logic for communicat
ing with the presentation page and executing com
mands associated with Such navigation, and further
containing logic for directly or indirectly communicat
ing with a persistence manager API, or persistence
library, that can persist the object, its data and/or links
to other objects in an object model as its presentation
page is being navigated, and

c). optionally comprising a set of related navigatable
presentation pages and their associated programming
objects as described in (a) and (b) above, which col
lectively represent the linked objects of a specified
object model.

d). optionally comprising an ability to query against the
object graph using a object query facility or syntax.

14. A method for visually navigating an object model
while dynamically creating, updating and persisting Such an
object model to a data source by utilizing the software
modules of claim 13, whereby a navigation model may be
navigated in at least one direction and any changes to one or
more of members selected from the group consisting of the
data of an object, an object, a link between an object, or an
object model can be dynamically persisted to a data source.

15. A method of claim 13, comprising a set of related
navigatable presentation pages and their associated pro
gramming objects as described in (a) and (b), which collec
tively represent the linked objects of a specified object
model.

16. A method according to claim 13, wherein the object
query facility utilizes EJB-QL query syntax or similar syn
tax.

17. A method according to claim 15, wherein the object
query facility utilizes EJB-QL query syntax or similar syn
tax.

